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Abstract

A fingerprint orientation field has distinct characteristics

which can differentiate fingerprints from any other flow pat-

terns: it has a specific number of singular points (cores

and deltas), the configuration of singular points follows a

certain spatial distribution, and its global shape is like an

arch. In this paper, we propose a global fingerprint orien-

tation field model, represented in terms of ordinary differ-

ential equations, which does not require any prior informa-

tion such as singular points or orientation of a fingerprint.

Further, the model requires only a small number of poly-

nomial terms to represent the global fingerprint orientation

field. The coefficients of the model are found subject to the

constraints on the total number of singular points (i.e., 0,

2, or 4) in a fingerprint. The proposed model is used to

distinguish fingerprint images from non-fingerprint images

and altered fingerprints by measuring the abnormality in

the orientation field of the image.

1. Introduction

Fingerprint patterns can be characterized by (i) ridge fre-

quency, (ii) orientation field, and (iii) minutiae distribution.

Fingerprint ridges are spaced almost equidistantly; ridge pe-

riod is typically around 10 pixels in 500 ppi fingerprint im-

ages. Fingerprint orientation field (often called ridge flow)

is smooth and has a global shape of an arch, except in local

regions around singular points (i.e., core and delta). Almost

all fingerprints fall into one of the following three categories

according to singularity: (i) no singularity (arch type), (ii)

one core and one delta (left-loop, right-loop, and tented-

arch type), and (iii) two cores and two deltas (whorl1 and

twin-loop type). The configuration of cores and deltas in a

fingerprint also follows a specific spatial distribution [11].

Minutiae distribution in a fingerprint has a tendency to be

dense around singular points since the ridge flow converges

or diverges around singular points while maintaining the

1A whorl can be viewed as consisting of two cores.

(a) NFIQ = 1, F = 0.42 (b) NFIQ = 3, F = 0.47

(c) NFIQ = 2, F = 0.81 (d) NFIQ = 2, F = 0.72

Figure 1. Images containing fingerprint-like pattern. (a) Synthe-

sized image obtained by iterative contextual filtering [10], (b) al-

tered fingerprint, where the central part of the fingerprint has been

transplanted from a different friction ridge skin, (c) synthesized fin-

gerprint by SFinGe [10], and (d) latent fingerprint from the NIST

SD27 [1]. The NFIQ value [25] and the fingerprintness value (F )

of the orientation field are shown. The NFIQ gives one of the five

discrete values from 1 (the highest quality) to 5 (the lowest qual-

ity). The fingerprintness value ranges from 0 (the lowest) to 1 (the

highest).

ridge frequency [13].

To assess the quality of the fingerprint pattern, the fea-

tures used to measure local properties (i.e., clarity of ridge

structure) and global properties (e.g., continuity of orienta-

tion field or energy concentration in the frequency domain

over the entire fingerprint region) have been utilized [6].

However, lack of global constraints that can specifically dis-

tinguish a valid fingerprint pattern from any other types of

non-fingerprint images reveals the limitations of the exist-
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Table 1. Global fingerprint orientation field models. Note that n is the order of the basis function or polynomial and Ns is the number of

singular points detected in the image. If the model requires singular points as input, the number of singular points is not included in the

number of parameters to be estimated.

Type Model # Parameters Singular Points Fingerprint-specific Features

Approximation Piecewise linear functions [26] 10Ns Estimated Not utilized

methods Polynomials [15] (n+ 1)(n+ 2) Estimated Not utilized

Fourier series [28] 2(2n+ 1)2 Estimated Not utilized

Legendre polynomials [22] (n+ 1)(n+ 2) Estimated Not utilized

Deterministic Rational polynomial function [23] 1 Required Not utilized

mathematical Constrained nonlinear (n+ 1)(n+ 2)− 3Ns Estimated Constraints on coefficients

models phase portrait model [20] from singular points

Quadratic differentials [18] 5 Required Arch-shaped global field

Peripheral models [27] 2 for each modela Estimated Arch-shaped global field

Proposed model 17 Not required Number of singular points
a

The number of coefficients here is only for the peripheral models, not including parameters in the Fourier expansion [28].

ing fingerprint quality measures to detect abnormality in the

images shown in Fig. 1. Fig. 1a is a synthesized texture

image using an iterative contextual filtering approach [10];

it has a valid fingerprint ridge frequency but its orientation

field does not follow that of a fingerprint pattern. Fig. 1b

is a fingerprint whose ridge structure in the central part of

the finger has been transplanted from other friction ridge

skin. Although the quality of local ridge structure in Fig.

1b is good, the orientation field shows discontinuity at the

boundaries of the altered region. Fig. 1c is a synthesized

fingerprint image using SFinGe (Synthetic Fingerprint Gen-

erator) [10]; while the ridge frequency and the orientation

field of this fingerprint image appear to be realistic, a large

portion of the fingerprint area has ridges that flow parallel

to each other without producing any minutiae. Fig. 1d is

an example of a typical latent fingerprint which is found at

crime scenes. Although the quality of the latent print in this

image is fairly good, the background line structure with sim-

ilar frequency value to a fingerprint ridge frequency makes

it difficult to locate the fingerprint pattern in the image and

extract features (e.g., orientation field and minutiae).

The most salient characteristic of a fingerprint pattern

that distinguishes it from any other textured patterns is its

orientation field. Global orientation field models for finger-

prints have been developed primarily based on the follow-

ing two approaches: (i) approximation methods, and (ii) de-

terministic mathematical models (see Table 1). Approxima-

tion methods represent the global orientation field with a set

of piecewise linear functions [26], a set of polynomials [15],

or a set of basis functions such as Fourier series [28] or Leg-

endre polynomials [22]. A fingerprint orientation field can

be represented as a vector consisting of the coefficients of

the basis functions, and fingerprints can be clustered in fea-

ture space. However, since the coefficient vectors are not

invariant to rotation and translation, the location and orien-

tation of a fingerprint have to be determined first before es-

timating the coefficients of the basis functions. In addition,

when high order basis functions are used to represent finger-

prints with high curvature (e.g., fingerprints with singular

points), these models can fit well to virtually any flow pat-

tern.

Deterministic mathematical models, on the other hand,

incorporate unique characteristics of fingerprint orientation

field such as local field around singular points [18, 20, 23]

and global field shaped like an arch [18, 27]. Sherlock et al.

[23] proposed a rational polynomial function which gives

topological behavior of the global fingerprint ridge flow in-

duced by singular points. Since the model in [23] requires

only location and type of the singularities of a fingerprint,

it does not reflect the actual ridge flow of the fingerprint.

Also, in Sherlock et al.’s approach, there is no model for

arch type of fingerprints which does not contain any singu-

lar points. Li et al. [20] proposed a constrained nonlinear

phase portrait model which represents the x-derivative and

y-derivative of the doubled orientation field with nth order

polynomials and finds coefficients of the polynomials sub-

ject to the constraints derived from the local phase portrait

behavior around singular points. Huckemann et al. [18]

proposed a model based on quadratic differentials that de-

scribes local fields around core, delta, and whorl, and global

field simulating arch-shaped field. The coordinates of the

fingerprint (translation, rotation, scale, and aspect ratio of

the axes) are estimated during model fit, while the singular

points are required as input to determine the local orienta-

tion field. Wang et al. [27] proposed two peripheral models:

a modified cosine function used in [9] and a fluid model

which simulates the 2-dimensional flow of a uniform stream

toward a cylinder.

Most deterministic mathematical models require infor-

mation about singular points. The rational polynomial

model [23] and the quadratic differential model [18] assume

that actual location and type of the singular points of a fin-



gerprint are given. The constrained nonlinear phase por-

trait model [20] estimates singular points by computing the

Poincaré index [7] of the orientation field obtained from im-

age gradient. However, the singular point information is not

typically available as a prior knowledge in practice, but is

extracted automatically from the image. Accurate detection

of singular points is still a challenging problem especially in

noisy fingerprints. If the information about singular points

is not correct, the deterministic mathematical models give

poor estimates of the orientation field.

In this paper, we propose a global orientation field model

that incorporates a unique characteristic of fingerprint flow

pattern, namely the number of singular points. First, the ra-

tional polynomial model [23] which provides a nice topol-

ogy of fingerprint ridge flow with singular points is con-

verted to a form of ordinary differential equations (ODE).

Second, a generalized ODE model is proposed, which uti-

lizes simpler polynomials and a smaller number of inde-

pendent coefficients (i.e., 16 parameters in the model and 1

parameter for rotation) compared to the polynomial model

in [15] and the constrained nonlinear phase portrait model

in [20]. Third, the constraints on the number of singular

points (0, 2, or 4) are applied to estimate the model param-

eters. Finally, the degree of similarity of a given image to

a fingerprint pattern, called fingerprintness, is measured by

computing the difference between the orientation field of

the image and the orientation field fit by the proposed model.

The fingerprintness is then used to distinguish fingerprint

images from non-fingerprint images (e.g., natural scene im-

ages, other biometric modality images such as face and iris)

and altered fingerprints.

2. Global Fingerprint Orientation Field Model

Orientation field of a fingerprint, θ(x, y), describes the

tangential direction of the ridges at a point (x, y), where

0 ≤ θ(x, y) < π. Since the orientation has π-ambiguity

(i.e., two different vectors, one directed at θ and the other

directed at (θ + π), have the same orientation), the orienta-

tion field is often converted to a vector field by doubling the

angles.

A 2-dimensional vector field can be represented by the

first-order ODE as follows:

ẋ = f(x, y) and ẏ = g(x, y), (1)

where f(x, y) and g(x, y) are real-valued functions. Given

f(x, y) and g(x, y), the orientation field can be uniquely

determined as:

θ(x, y) =
1

2
tan−1

(

ẏ

ẋ

)

=
1

2
tan−1

(

g(x, y)

f(x, y)

)

. (2)

The x-isocline in differential equations is the set of

points where ẋ = 0; that is, the x-isocline of the system

in Eq. (1) is the set of points where f(x, y) = 0 [17]. Simi-

larly, the y-isocline of the system is the set of points where

ẏ = 0, i.e., g(x, y) = 0. A singularity occurs at a point

where both ẋ = 0 and ẏ = 0; that is, the x-isocline and the

y-isocline intersect.

2.1. From Rational Polynomial Function to ODE

Sherlock et al. [23] proposed a fingerprint orientation

field model with rational polynomial function:

Q(z) =
(z − z1)(z − z2) · · · (z − zM )

(z − p1)(z − p2) · · · (z − pN )
, (3)

where z = x+ iy, {zm}1≤m≤M and {pn}1≤n≤N are cores

and deltas, respectively, in the complex domain. Given this

model, the orientation field from Q(z) is obtained by:

θ(z) =
1

2
arg

(

ei2θ∞ ·Q(z)
)

, (4)

where θ∞ is the orientation of the fingerprint.

In Eq. (3), the set of points where the phase part is equal

to (2k+1)π/2, k is an integer, corresponds to x-isocline of

its ODE representation. Similarly, the set of points where

the phase part is equal to kπ, k is an integer, corresponds to

y-isocline. For loop type of fingerprints (with one core and

one delta), the x-isocline (Eq. (5)) and the y-isocline (Eq.

(6)) are in a form of a circle and a line, respectively:

(x− xo)
2 + (y − yo)

2 − r2o = 0, (5)

ax+ by + c = 0. (6)

Fig. 2 illustrates the orientation field of the loop model

from the rational polynomial function and its vector field

with x-isocline and y-isocline.

Similarly, the x-isocline (Eq. (7)) and the y-isocline (Eq.

(8)) for double-loop type of fingerprints (with two cores and

two deltas) in the rational polynomial model can be repre-

sented in the following forms:

(x2 + y2){(x− xo)
2 + (y − yo)

2 − r2o}

+Ax2 +Bxy −Ay2 + Cx+Dy + E = 0, (7)

(x2 + y2)(ax+ by + c)

+Ax2 +Bxy −Ay2 + Cx+Dy + E = 0. (8)

The x-isocline and y-isocline for double-loop finger-

prints also consist of geometric forms: line, circle, and hy-

perbola. Fig. 3 shows the double-loop model from the ra-

tional polynomial function with x-isocline and y-isocline in

the vector field. Note that the parameters in Eqs. (5) – (8)

are solely determined by the given singular points.



(a) (b)

Figure 2. Model for a loop type of fingerprint based on the rational

polynomial function. (a) Orientation field and (b) vector field with

x-isocline (orange solid curve) and y-isocline (blue dotted line)

with singular points (a core is marked as a circle and a delta is

marked as a triangle).

2.2. Generalized Orientation Field Model in ODE

Based on the rational polynomial function converted into

the ODE form, a generalized fingerprint orientation field

model in nonlinear ODE is derived from the double-loop

model which is the most complicated case. The generalized

model is shown in Eq. (9): f(x, y) is the 4th order poly-

nomial with fewer polynomial terms and the coefficients of

the 3rd order polynomial terms are correlated; g(x, y) is the

3rd order polynomial with full polynomial terms, but the co-

efficients of the 3rd order polynomial terms are correlated.

Thus, there are 8 coefficients for each f(x, y) and g(x, y).

ẋ=f(x, y)=x4+2x2y2+y4+ax3+bx2y+axy2+by3

+Ax2 +Bxy + Cy2 +Dx+ Ey + F,

ẏ=g(x, y)=a′x3 + b′x2y + a′xy2 + b′y3

+A′x2+B′xy+C′y2+D′x+E′y+F ′. (9)

2.2.1 Constraints on Singularity

As a global constraint which characterizes a fingerprint pat-

tern, the number of singular points in the modeled orienta-

tion field needs to be restricted to 0, 2, or 4. Considering that

the singular points occur when x-isocline and y-isocline in-

tersect, we want to find a constraint on the number of real

roots of the following polynomial system:

f(x, y) = 0 and g(x, y) = 0.

According to Hermite’s theorem, the constraint which

specifies the number of real roots of a polynomial system

can be found as follows [21]:

1. Find the Gröbner bases [5] of the polynomial system, G.

2. Construct a set of monomials that are not multiples

of the leading terms of the polynomials in G, M =
{m1,m2, . . . ,mP }.

(a) (b)

Figure 3. Model for a double-loop type of fingerprint based on the

rational polynomial function. (a) Orientation field and (b) vector

field with x-isocline (orange solid curve) and y-isocline (blue dot-

ted curve) with singular points (cores are marked as circles and

deltas are marked as triangles).

3. Compute normal forms2 of each monomial in M multi-

plied by x and y; that is, for each monomial mp in M ,

the normal forms of xmp and ymp are computed.

4. Construct coefficient matrices, Px and Py , where the

(i, j)-th entry of Px is the coefficient of the term mi in

the normal form of xmj (similarly, the (i, j)-th entry of

Py is the coefficient of the term mi in the normal form

of ymj).

5. Construct a trace matrix T1 which is defined as follows:

T1 =







Tr(m1m1) · · · Tr(m1mP )
...

...

Tr(mPm1) · · · Tr(mPmP )






, (10)

where Tr(mimj) is the trace of a matrix P
ki+kj

x P
li+lj
y

when mi = xkiyli and mj = xkjylj .

6. Hermite’s Theorem The signature of T1 is equal to

the number of real roots of the polynomial system; the

signature of a real symmetric matrix is the difference be-

tween the numbers of positive and negative eigenvalues.

Note that eigenvalues of Px and Py are used to find sin-

gular points of a fingerprint (i.e., real roots of the polyno-

mial system).

2.2.2 Parameter Estimation

A foreground mask, R, consists of the local blocks with a

sufficient dynamic range in image intensity. The dynamic

range of a local block, D(x, y), is defined as the difference

between the minimum and the maximum grayscale intensity

after discarding 10% of the highest and the lowest grayscale

intensities in the block [29]. If D(x, y) is greater than 20,

2Given the Gröbner bases G of a polynomial system, the normal form

of any polynomial is a polynomial which does not contain any term that is

divisible by the leading terms of the polynomials in G after a finite number

of reductions.



(a) (b) (c) (d) (e)

Figure 4. Orientation field and singular points estimated by the proposed model for (a) arch, (b) tented arch, (c) loop, (d) whorl, and (e)

twin-loop type fingerprint.

the block is determined as foreground. The orientation field

in the foreground mask is computed by image gradient [7].

To ensure that the modeled orientation field well reflects the

high curvature ridge structure including singular region, the

absolute value of the determinant of a characteristic matrix

in vector field linearization3 [24] is used as a weight matrix

in parameter estimation.

The objective function for parameter estimation is:

min
∑

(x,y)∈R

sin2[θ(x, y)− θ̂(x, y)] · [ω + (1 − ω)c(x, y)]

subject to the signature of T1 as 0, 2, or 4, (11)

where θ(x, y) is the orientation field extracted from the im-

age, θ̂(x, y) is the modeled orientation field, ω is a weight

(ω = 0.2 is used in the paper), c(x, y) is the map of the ab-

solute value of the determinant of a characteristic matrix at

(x, y), and T1 is the trace matrix in Eq. (10).

While the origin of the image coordinate system is set

to the center of the image (translation parameters are not

needed), the rotation parameter needs to be estimated. The

modeled orientation field with rotation angle r is obtained

as follows:

θ̂(x) =
1

2
tan−1

(

R
2g(R−1

x)

R2f(R−1x)

)

, (12)

where x =

[

x
y

]

and R =

[

cos r − sin r
sin r cos r

]

.

In total, 17 parameters, including a rotation parameter,

are estimated during model fit. The constrained nonlin-

ear optimization problem is solved by interior-point algo-

rithm [8]. For the initial parameter estimation, the objec-

tive function in Eq. (11) is used without applying the con-

straints. Then the parameters are estimated by applying one

of the three constraints for the number of singular points (0,

2, and 4) at each time. Only the estimated parameters which

do not violate the constraint are considered as valid. Fig. 4

shows the orientation field and singular points estimated by

the proposed model for various types of fingerprints.

3Note that the determinant of a characteristic matrix of the linearized

vector field is non-zero at singular points.

3. Defining a Fingerprint Pattern

One of the fundamental questions in image analysis is

to determine if a given image contains a specific type of

objects or textures [19]. In fingerprint identification, it is

important to ensure that a given image contains valid finger-

print pattern which is appropriate for fingerprint matching.

A global orientation field model can be used (i) to check the

validity of the input image to Automated Fingerprint Iden-

tification Systems (AFIS), and (ii) to check the integrity of

exemplars (rolled or slap fingerprints) in a reference finger-

print database. If a valid fingerprint image of a good quality

is given as input to an AFIS, a global orientation field model

specifically designed to represent fingerprint patterns is ex-

pected to fit well to the orientation field of the input image.

If the input image is a poor quality fingerprint which does

not provide reliable orientation field as input to the model

or the input is not a fingerprint image, the orientation field

obtained from the model is expected to deviate significantly

from the orientation field of the image. Fig. 5a shows an

example of a good quality fingerprint image and its orien-

tation field difference map (difference of image orientation

field and modeled orientation field); Fig. 5b shows an ex-

ample of a non-fingerprint image and its orientation field

difference map.

As a measure of the similarity of a given image to a valid

fingerprint pattern, we introduce a term, fingerprintness (F ),

which indicates the similarity of a given image to fingerprint

patterns and is a normalized score ranged from 0 to 1. In

this paper, we measure fingerprintness in terms of the ori-

entation field of an image. A 10-dimensional feature vector

is constructed by concatenating 5-dimensional feature vec-

tors (contrast, energy, and homogeneity of the gray-level

co-occurrence matrix (GLCM) [16], and the mean and stan-

dard deviation) from (i) the orientation field difference map

in the foreground region R, and (ii) the orientation field dif-

ference map multiplied by the grayscale dynamic range map

D. A support vector machine (SVM) classifier is trained by

a set of fingerprint images and a set of non-fingerprint im-

ages, and the F value for a test image is determined as the



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. Orientation field difference map. (a)–(d) A fingerprint image, its orientation field, the orientation field from the model, and

the orientation field difference map; (e)–(h) a non-fingerprint image, its orientation field, the orientation field from the model, and the

orientation field difference map.

normalized decision value from the SVM classifier.

Prior to obtaining the F value of an image, the image can

be rejected by the size of R and the validity of the model fit.

If the foreground region R takes less than 30% of the en-

tire image area, the image is considered to consist of blocks

with smooth variation in grayscale intensity which is not a

desirable property of a good quality fingerprint. Also, if

the model does not find any feasible solution satisfying any

of the three constraints on the number of singularities, the

input image is also rejected.

4. Experimental Results

The proposed fingerprint orientation field model is used

to measure the abnormality in the orientation field of a

given image compared to a fingerprint pattern. Since we

are interested in abnormality detection, positive class refers

to non-fingerprint or altered fingerprint class, and negative

class refers to fingerprint class. We collect fingerprint and

non-fingerprint images from the following sources: (i) first

2,000 fingerprint impressions in the NIST SD4 [2], and (ii)

2,000 images drawn from the ImageNet dataset [14] (100

object classes are randomly selected with 20 images per

class), 2,000 face images from the FERET database [3],

2,000 iris images from the MBGC database [4], and 2,000

images from the altered fingerprint database [30].

Table 2 summarizes the number of images that are de-

tected as non-fingerprints by (i) size of R, (ii) validity of

model fit, and (iii) abnormality in orientation field as a fin-

gerprint pattern.

A 2-class classification problem is solved by using the

10-dimensional feature vector extracted from the orientation

field difference map to discriminate non-fingerprint images

(ImageNet images, faces, and irises) that are passed through

the rejection criteria from fingerprint images. An SVM with

radial basis function [12] is used as a classifier and the per-

formance is evaluated by 10-fold cross validation. Fig. 6

shows the Receiver Operating Characteristic (ROC) curve

for the average performance over 10 folds.

The proposed model is also used to distinguish altered

fingerprints from normal fingerprint images. Fig. 7 shows

the ROC curves in detecting altered fingerprints with (i) the

proposed model with GLCM features extracted from the ori-

entation field difference map, and (ii) the polynomial model

with histogram features from the orientation field difference

map (without multiplication with D) used in [30]. The

orientation field model and salient feature extraction help

improve the altered fingerprint detection accuracy signifi-

cantly.

Figs. 8 and 9 show examples of fingerprint images with

low fingerprintness values. If the model fit is wrong (Fig.

8a is a double-loop type of fingerprint, but the model fits a

loop type), a high response in the orientation field difference

map is observed. Fig. 8b shows a case where the fingerprint

is potentially altered which explains its low fingerprintness

value. On the other hand, if the orientation field extracted

from the image is noisy due to the poor quality of finger-

print ridges (e.g., Fig. 9), the orientation field difference

can also be high although the proposed model leads to a

good estimation of the orientation field.

Fig. 10 shows an example of non-fingerprint image



Table 2. Detection results for non-fingerprint images and altered fingerprints.

Detection Criteria NIST SD4 ImageNet Face Iris Altered Fingerprints

Size of R 1 326 1,862 1,574 43

Validity of model fit 6 28 3 13 21

F < Fo

b at 1% FPR 20 1,477 119 367 1,713

Total number of detected images 27 1,831 1,984 1,954 1,777

(Detection rate (%)) (1.35%) (91.55%) (99.20%) (97.70%) (88.85%)
b

The thresholds Fo corresponding to false positive rate (FPR) of 1% are 0.62 and 0.65 for non-fingerprint image detection

and altered fingerprint detection, respectively.
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Figure 6. ROC curve for fingerprint vs. non-fingerprint (i.e., natu-

ral scenes, objects, faces, and irises) classification. The average

performance (red line) and the minimum and maximum perfor-

mances (blue bars) in the 10-fold cross validation are shown.

with high fingerprintness value where the image contains

fingerprint-like orientation. Fig. 11 is a fingerprint with

small altered region, which gives high fingerprintness value.

5. Conclusions and Future Work

Global fingerprint orientation field models are necessary

to capture unique characteristics of a fingerprint pattern.

Such models can be used to (i) distinguish fingerprints from

any other types of texture pattern, (ii) represent the finger-

print orientation field in a compact form, and (iii) estimate

the orientation field from noisy or partially missing ridge

structures in fingerprints. The global orientation field mod-

els published in the literature are highly dependent on singu-

lar point information; if incorrect information about singu-

larities is provided, the models are likely to fail to fit to the

image. In this paper, we propose an ODE representation of

the global orientation field which is derived from the ratio-

nal polynomial model, but does not require singular point

information as input. A set of constraints on the number of

singular points in fingerprints is applied to find coefficients

of the model. The proposed model is used to detect abnor-

mality in the orientation field of a given image and then

classify it as a fingerprint or a non-fingerprint pattern.

Future work on global orientation field modeling and fin-

gerprintness measure includes:

1. Improving the global orientation field model by incorpo-

rating other fingerprint-specific features such as config-
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Proposed OF Model
with GLCM Feature Vector

Polynomial OF Model
with Histogram Feature Vector

Figure 7. ROC curve for fingerprint vs. altered fingerprint classifi-

cation. The proposed orientation field model with GLCM features

is compared to the polynomial model with histogram features used

in [30].

uration of singular points and arch-shaped global field;

2. Including features from ridge structure and minutiae dis-

tribution into the definition of fingerprintness.
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(a) F = 0.55 (b) F = 0.62

Figure 8. Fingerprint images with low fingerprintness values. (a)

Failure in correct model fit and (b) potentially altered fingerprint.

The modeled orientation fields are overlaid on the images.

(a) (b)

Figure 9. A noisy fingerprint image with low fingerprintness value

(F = 0.55). (a) Orientation field extracted from the image and (b)

orientation field estimated by the proposed model.

(a) (b)

Figure 10. A non-fingerprint image with high fingerprintness value

(F = 0.87) due to fingerprint-like orientation field extracted from

the image. (a) Orientation field extracted from the image and (b)

modeled orientation field.

(a) (b)

Figure 11. An altered fingerprint with high fingerprintness value

(F = 0.88) due to small altered region in (a).




