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Utility of Level 3 Features
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Abstract

Automatic fingerprint identification systems (AFIS) have for a long time used only minutiae

for fingerprint matching. But minutiae are only a small subset of fingerprint detail routinely used

by latent examiners for fingerprint matching. This has generated a lot of interest in extended

feature set (EFS) with the aim of narrowing down the gap between the performance of AFIS

and latent examiners. Level 3 features constitute the most significant subset of extended features.

Studies on level 3 features have reported significant improvement in the fingerprint recognition

accuracy. However, these studies were based either on live-scan fingerprints or full (rolled or

slap) fingerprints. As a result, the conclusions of these studies cannot be extended to latent

fingerprints, which are characterized by small size, poor image quality, and severe distortion

compared to full fingerprints. In this paper, we study the utility of level 3 features, including pores,

dots, incipient ridges, and ridge edge protrusions, for latent matching. Automatic algorithms for

extracting and matching these features are proposed. While most existing level 3 feature matching

algorithms only consider the locations of features, the proposed method utilizes the topological

relationship between level 3 and level 2 features, and is thus robust to nonlinear distortion and has

high discriminative capability. Given the proposed algorithms and operational latent fingerprint

databases, we identify the challenges in using level 3 features, and show the potential of level 3

features in improving latent matching accuracy. Further, by using simulated partial fingerprints, we

highlight that level 3 features can indeed improve latent matching accuracy when i) level 3 features

can be reliably extracted in both latent and full fingerprints and ii) latent fingerprints have only a

small number of minutiae or the minutiae match scores are low. With the increasing adoption of

1000ppi fingerprint scanners in law enforcement agencies, it is becoming feasible and desirable to

incorporate level 3 features into AFIS. We believe that the proposed algorithms and analysis will

be useful in the design and development of next generation AFIS.
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1 INTRODUCTION

Fingerprint recognition has been accepted as a reliable person identification technique for almost 100

years. Fingerprints are now routinely used worldwide to identify suspects and victims in law enforcement

and forensics [1]. The demand for Automatic Fingerprint Identification Systems (AFIS) became com-

pelling in the early 1960s, because of the rapid expansion offingerprint recognition in law enforcement

and the ever-increasing size of fingerprint databases (e.g.the FBI fingerprint database now has more than

800 million fingerprint images) [2]. Many automatic algorithms have been proposed for extracting and

matching fingerprint features, and a large number of AFIS aresuccessfully deployed not only for forensic

applications, but also for many emerging civilian and commercial applications [1][2].

Three types of fingerprint images are commonly used in law enforcement applications: ink, live-scan,

and latent (see Fig. 1). The inking method is the earliest method for capturing and recording fingerprints.

To capture the ink fingerprint images of a subject, the finger is coated with ink and pressed or rolled

against a paper card. The print left on the card is then scanned to obtain a digital fingerprint image. Live-

scan fingerprint images are obtained by using optical, capacitive, or other types of sensors to directly

image the finger. Latent fingerprint images are inadvertently left by persons on surfaces of objects and

are lifted or photographed by using various techniques, e.g. chemical processing [1]. Compared to ink

and live-scan fingerprint images, latent fingerprint imagesare characterized by small area, poor quality,

and large non-linear distortion [17].

Fingerprint features can be generally divided into three levels [2], as shown in Fig. 2. Level 1 features

are defined by fingerprint ridge flow and general morphological information, e.g. ridge orientation field,

ridge pattern types, and singular points. These features are not unique to each finger and are primarily

used for fingerprint type classification (e.g. whorl, left loop, right loop, and arch) and indexing. Level

2 features refer to individual fingerprint ridges and fingerprint ridge events, such as minutiae. There are

two prominent types of minutiae, i.e. ridge endings and ridge bifurcations. Level 2 features are quite

discriminative and stable. Level 3 features are defined as fingerprint ridge dimensional features. Pores,
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Three types of fingerprint images: (a, d) Ink, (b, e) live-scan, and (c, f) latent fingerprints.

(a-c) are 1000 ppi, and (d-f) are the corresponding 500 ppi images.

dots, incipient ridges, and ridge edge shapes are typical level 3 features1. These features, if present and

reliable (assuming that the input image is of good quality),are also quite distinctive [3][4]. While level

1 and level 2 features can be extracted from the standard 500 ppi (pixels per inch) fingerprint images,

extraction of level 3 features usually require higher resolution (at least 1000 ppi) images [2][5][18]

(see Fig. 1). As a result, the current AFIS technology, whichrelies on 500 ppi images, mainly utilizes

level 1 and level 2 features [2][7]. Latent fingerprint experts, on the contrary, often rely on additional

level 3 information due to the limited level 1 and level 2 (i.e. minutiae) information available in many

latents [3][25] (see Fig. 3). It has been suggested that one way to improve the AFIS performance is to

utilize level 3 features [6]. In response to this, the Committee to Define an Extended Fingerprint Feature

1. Although it is debatable at which level dots and incipientridges belong, we classify them into level 3 features.
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Fig. 2. Fingerprint features: (a) Level 1 (ridge orientation field and singular points), (b) level 2

(minutiae, i.e. ridge endings and ridge bifurcations), (c) and level 3 (pores, dots, incipient ridges,

and ridge edge protrusions).

Set (CDEFFS) was chartered to define the next ANSI/NIST-ITL standard [5] so that extended features,

including the level 3 features, can be utilized in the next generation AFIS. Meanwhile, the availability

of high resolution (1000 ppi) fingerprint image scanners also makes it feasible to incorporate level 3

features into AFIS.

1.1 Related Work

Among the various level 3 features, pores have received the most attention. Stosz and Alyea [8] proposed

the first pore-based fingerprint matcher. Kryszczuk et al. [9] studied the effectiveness of pores in matching

small fragmentary fingerprints to full fingerprint templates on a small 2000ppi fingerprint image database.

Jain et al. [10] utilized fingerprint features at each of the three levels, including minutiae and pores. The

International Biometric Group [14] studied the effectiveness of pores by using the algorithm in [10] to

extract pores and using the minutiae matcher in the NIST Biometric Image Software [24] to match pores.

Zhao et al. [11][12] proposed pore extraction and matching methods and applied them to partial and full

high resolution fingerprint matching. All these studies reported that fusion of pores with minutiae does

improve the fingerprint matching accuracy. However, these studies considered only live-scan fingerprint

images, and their matching experiments did not use a state-of-the-art fingerprint matcher as a baseline.

A very limited number of studies on other types of level 3 features have also been reported. Chen
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(a) (b) (c)

Fig. 3. Some example latent fingerprints from the ELFT-EFS-PC database. Minutiae (marked

by red rectangles), pores (green circles), dots (cyan circles), incipient ridges (blue lines), and

ridge edge protrusions (magenta circles) in latents were manually marked by latent experts.

Some latents may have a small number of minutiae together with some extended features (c).

In the ELFT-EFS-PC database (255 latents), there are, on average, about 18 minutiae in a

latent, compared to 133 minutiae in a rolled ink fingerprint in the background database (4180

full fingerprints). Some latents in this database have only 4 minutiae.

and Jain [13] obtained promising results in matching dots and incipient ridges extracted from partial

fingerprints cropped from NIST SD30. The International Biometric Group [14] also investigated the

sampled points on ridge contours and ridge edgeoscopic features (i.e. high curvature points on ridge

edges) for high resolution (2000ppi) fingerprints. These features were treated as minutiae and matched

using the minutiae matcher in the NIST Biometric Image Software [24]. Neither of these two studies

designed special algorithms for matching level 3 features,but instead completely relied on existing

minutiae matchers. Zhou et al. [15] studied the creases in fingerprints and experimentally showed their

effectiveness in improving the recognition accuracy of fingerprints of elderly subjects (aged between 46

and 95, with an average age of 67). Although a significant improvement in the fingerprint recognition

accuracy was observed in all these studies, their conclusions cannot be simply applied to latent fingerprint

matching due to the huge difference in the characteristics of latent fingerprints and full fingerprints.

The National Institute of Standards and Technology (NIST) has conducted an extensive evaluation of

latent fingerprint technologies (ELFT) [16]. Extended feature sets (EFS) were manually marked in the
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latent fingerprints, and their contribution to latent search was assessed by using a number of commercial

AFIS provided by the vendors who participated in the program. The NIST evaluation showed that EFS

did improve the latent search accuracy. However, because the ELFT-EFS test did not evaluate each

extended feature separately, the contribution of individual level 3 featues could not be determined from

this evaluation. Jain and Feng [17] examined the extended features at level 1 and level 2, i.e. singularity,

ridge quality, ridge orientation field, ridge wavelength, and ridge skeleton, for latent matching using 500

ppi latent images in NIST SD27. They also studied the statistics of some of the level 3 features, including

pores, dots, and incipient ridges. By manually marking and aligning these features in 500 ppi latent and

exemplar fingerprint images in NIST SD27, they observed a very small number of mated level 3 features.

Based on this, they concluded that these level 3 features do not improve the latent matching accuracy, at

least on the NIST SD27 database. In summary, the small numberof studies on latent fingerprint matching

do not provide specific guidelines on the utility of level 3 features in improving latent matching accuracy.

1.2 Contributions of This Paper

The goals of this study are i) design level 3 feature extraction and matching algorithms, ii) determine the

utility of level 3 features in latent matching, iii) explorehow to incorporate level 3 feature matchers into

existing AFIS, and iv) make recommendations regarding the effectiveness of level 3 features. To achieve

these goals, we propose a novel algorithm for matching level3 features in small area latent fingerprints,

and systematically determine the relative contribution oflevel 3 features in improving the latent matching

accuracy. In particular, the utility of pores, dots, incipient ridges, and ridge edge protrusions is studied for

latent search. With the proposed algorithms and available latent databases, i.e. ELFT-EFS-PC (ELFT-EFS

Public Challenge Dataset [16]) and WVU (West Virginia University), we identify the challenges in using

level 3 features, and show the potential of level 3 features in improving latent matching accuracy. Further,

we highlight the cases where level 3 features can significantly improve latent matching accuracy by using

simulated partial fingerprints. The main contributions of this paper are

• Design of a topological level 3 feature matching algorithm for latent to full fingerprint matching.

Instead of considering only the locations of level 3 features, the proposed method enforces the

topological relationship between level 3 features, minutiae, and ridges. It is thus robust to image

distortion which is frequently observed in latents;

• Based on an analysis of latent fingerprint databases and results of experiments on both latent and

simulated partial fingerprint images, we show that level 3 features in available latent databases are of

limited use because the poor quality of exemplar fingerprints in these databases seriously degrades
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the reproducibility of level 3 features;

• We empirically determine the situations where level 3 features show promise in improving latent

matching accuracy.

The rest of the paper is organized as follows. Sections 2 and 3introduce the proposed extraction and

matching algorithms for level 3 features, respectively. Section 4 presents and analyzes the experimental

results. Section 5 concludes the paper.

2 LEVEL 3 FEATURE EXTRACTION

Level 3 fingerprint features considered here include pores,dots, incipient ridges, and ridge edge protru-

sions. Pores appear as bright blobs on ridges and the other three features appear between ridges (see Fig.

2(c)). We first discuss pore extraction, followed by extraction algorithm for the other three features.

2.1 Pores

Pores, also known as sweat pores, are located on finger ridges. They are formed in the sixth month of

gestation due to the sweat-gland ducts reaching the surfaceof the epidermis. Once the pores are formed,

they are fixed on the ridges; typically, there are between 9 and 18 pores along a centimeter of a ridge

[2]. A pore can be visualized as open on one print, but as closed on another print of the same finger

depending on the finger pressure and whether it is exuding perspiration. As shown in Fig. 2(c), a closed

pore appears as an isolated dot on the ridge, while an open pore is connected to one or both of the two

valleys surrounding it. As a result, the shape and size of pores can vary from one impression to another,

and therefore only the pore position is used in matching.

The basic idea of the proposed pore extraction method is to model the spatial appearance of pores in

fingerprint images and detect them via filtering the images with suitable matched filters. In [11], it was

shown that along the ridge tangential orientation, the intensity profile across the pore has a Gaussian

shape irrespective of whether it is open or closed (see Figs.4(a) and 4(b)). Based on this observation,

an anisotropic pore model was established and an adaptive pore extraction algorithm was proposed [11].

One drawback of the method is that it sets the scale parameterin the pore model as a constant multiple

of local ridge period. However, such a constant ratio parameter is difficult to specify for all fingerprints,

especially when large distortion exists across the fingerprint images, such as with latent prints. As an

improvement to the method in [11], we propose a new pore matched filter based on the automatic scale

selection technique [20]. LetX andY be the horizontal (column) and vertical (row) axes of the global

image coordinate system (x and y are the corresponding coordinates), andV and U denote the local
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Fig. 4. Properties of level 3 features. (a) and (b): Intensity profile across a pore along the ridge

tangential orientation has a Gaussian shape. (c), (d), and (e): Intensity profile across a dot, an

incipient ridge, or a ridge edge protrusion along the ridge normal orientation has the shape of a

full or half negative Gaussian.

ridge tangential and normal orientation, respectively. Let θ be the local ridge (tangential) orientation with

respect to theX axis. The proposed pore matched filter is defined as

P γ
POR(v, u; tV , tU , θ) = −t

3/4
V gV V (v; tV )g(u; tU ), (1)

where

• (v, u) = (x cos θ − y sin θ, x sin θ + y cos θ),

• g(u; tU ) = 1/(
√

2πtU )e−u2/(2tU ) is Gaussian along the ridge normal orientation and constantalong

the ridge tangential orientation,

• gV V (v; tV ) = (v2 + tV )/(
√

2πt5V )e−v2/(2tV ) is Laplacian along the ridge tangential orientation and

constant along the ridge normal orientation,

• and tV and tU are, respectively, the variances along the ridge tangential orientation and the ridge

normal orientation.

Note that unlike [11], we describe the intensity appearanceof a pore along the ridge tangential orientation

by using a Laplacian kernel because it is more robust to noise. The Gaussian kernel along the other

orientation is used merely for smoothing the noise along theridge normal orientation.

In order to apply the above pore matched filters, we first divide the fingerprint image into blocks and

estimate the local ridge orientationθ. We then instantiate a pore matched filter for each block thathas

dominant ridge orientation (called a well-defined block) according to eq. 1. The parametertU in the pore
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(a) (b) (c)

Fig. 5. Example pore extraction results. (a) Part of a rolled ink fingerprint image in NIST SD30.

(b) Pores detected in (a). (c) Pores detected in the latent fingerprint image in Fig. 1(c).

matched filter is set to a constant because it is used merely for noise smoothing. As for the parameter

tV , a multiscale setting is adopted so that pores of varying sizes can be detected. More specifically, a

set of pore matched filters are constructed for each well-defined block and convolved with the block.

The maximum response among the sets of pore matched filters isbinarized, resulting in the pore map;

candidate pore pixels have value 1 and the non-pore pixels have value 0.

The pore map contains some falsely detected pores. To removethem, the following post-processing

steps are conducted: (i) candidate pores which are not on ridges are removed; (ii) connected components

on the pore map whose area is either too small or too large are discarded; (iii) connected components

on the pore map are removed if the intensity of their pixels istoo low. After these post-processing

operations, many spurious pores are excluded, and each connected component in the post-processed pore

map corresponds to a pore. The centroids of these detected pores are recorded. Fig. 5(a) shows a portion

of a rolled ink fingerprint image, and Fig. 5(b) shows the pores detected in it by the proposed method. The

pore extraction results of the latent fingerprint image in Fig. 1(c) are shown in Fig. 5(c). Due to the poor

quality of latent fingerprint images, more false pores are detected in the latent than in the rolled image.

Yet, most of the true pores are correctly extracted in latents. Therefore, the automatic pore extraction

algorithm proposed here may provide useful information to latent examiners and cut down their workload

of manually marking pores.

2.2 Dots, Incipient Ridges, and Ridge Edge Protrusions (DIP)

While typical ridges stretch over a large area of a fingerprint and their width varies from 100µm to 300µm

[2], there are occasionally some ridges which are quite short or substantially thin (see Fig. 2(c)). These
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Fig. 6. Dots, incipient ridges, and ridge edge protrusions are easily confused with each other in

different impressions of the same finger. We thus unify them into a single feature type.

are actually dots and incipient ridges, two additional types of level 3 features in fingerprints [5]. Unlike

pores, which are present in almost every finger, dots and incipient ridges can be found in fingerprints of

only about 45% of the population and 13.5% of the fingers [13].They reside in fingerprint valleys and,

if observed in small areas, have been claimed to be distinctive for differentiating fingerprints.

Along a ridge, variations in ridge width can be observed. This gives rise to ridge edge features,

including protrusions, indentations, and discontinuities (see Fig. 2(c)), among which protrusions are the

most notable ridge edge feature [5]. A ridge edge protrusionrefers to an abrupt increase in ridge width

that is not long enough to be called a bifurcation. Although ridge edge protrusions, dots, and incipient

ridges are defined as different features, their appearance in fingerprint images can be greatly affected by

finger pressure and imaging conditions [13], and consequently, they can be confused with each other in

different impressions of the same finger. As shown in Fig. 6, adot in one impression can appear as a

ridge edge protrusion in the other impression, and an incipient ridge can appear as a series of separated

dots. Therefore, we do not distinguish among these three types of level 3 features for extraction and

matching, but collectively label them as a single feature type (denoted as DIP).

In order to extract the DIP features, a procedure similar to that for pore extraction is applied, but

with matched filters designed for DIP. Fig. 4 shows that the intensity profiles along the ridge normal

orientation are shaped as a full or half negative Gaussian. Therefore, we define the following matched

filters for the DIP features,

P γ
DIP (v, u; tV , tU , θ⊥) = t

3/4
U g(v; tV )gUU (u; tU ), (2)

whereθ⊥ is the local ridge normal orientation at the DIP feature (perpendicular toθ). The DIP matched
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(a) (b) (c)

Fig. 7. Example DIP extraction results. (a) Part of a rolled ink fingerprint image in NIST SD30. (b)

DIP features detected in (a). (c) DIP features detected in the latent fingerprint image in Fig. 3(b).

filters are applied for each block that has dominant ridge orientation withtV set to a constant, andtU to a

multiscale setting. The resulting DIP map then goes throughthe following post-processing steps. First, the

candidate DIP pixels which are not in the valleys are removed, because the DIP features should reside in

valleys only. Second, the connected components in the DIP map of either too small or too large area are

discarded. Third, those components in the DIP map whose intensity is too high are removed. After these

post-processing operations, many spurious DIP are excluded. The remaining connected components in the

DIP map are then thinned to single-pixel curves. If a curve bends too much, i.e. the maximum distance

from its pixels to the chord (straight line connecting its two ends) is too large, it is divided into two

curves at the pixel which is farthest from the chord. Finally, the centroids of these curves are recorded

to represent the extracted DIP features in the fingerprint. The DIP extraction results of the proposed

method for an example rolled ink fingerprint fragment are shown in Fig. 7(a) and Fig. 7(b) (note that if

the length of a detected DIP is larger than the local ridge period, it is displayed as an incipient ridge.

See the blue lines in Fig. 7(b)). The DIP extraction results in the latent fingerprint image in Fig. 3(b)

are shown in Fig. 7(c). Despite the poor quality of the latent, most of the true DIP features have been

correctly extracted by the proposed method, but there are many false detections (most of which are due

to ridge edge features).

3 LEVEL 3 FEATURE MATCHING

3.1 Algorithm Overview

Given a latent fingerpint, it is first matched with the exemplars in the background database by using a

minutiae matcher (VeriFinger [19] was used in our experiments). The rank 1 minutiae match score is
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Fig. 8. An overview of the proposed latent fingerprint matching algorithm which utilizes level 3

features.

then examined to determine if it is necessary to invoke the level 3 feature matching module. Specifically,

if the rank 1 minutiae match score is already above a prespecified threshold, the matcher will directly

output the identification results (e.g. the list of topN candidates); otherwise, the level 3 features will be

further compared, and the final identification results will be based on the fusion between the matching

results of minutiae and level 3 features. Fig. 8 illustratesthis algorithm.

We first match the minutiae because i) minutiae have already been shown to be stable and discriminative,

and ii) minutiae form the basis of all the available AFIS. In the rest of this section, we will describe the

three modules of the proposed level 3 feature matching method, i.e. ridge correspondence establishment,

pore matching, and DIP matching.

3.2 Ridge Correspondence Establishment

The level 3 feature matching method proposed here differs from existing methods in that it matches

level 3 features along the ridges and incorporates the topological relationship between level 3 features,

minutiae, and ridges. Given a query latentFq and an exemplar full fingerprintFt, the proposed matcher

first establishes the ridge correspondences between the twofingerprints. To facilitate the ridge matching

process, the ridges in each fingerprint are traced and sampled at a constant interval (in our experiments,

the interval is set to 10 pixels, which is the allowed tolerance of location displacement between two

matched level 3 features). During the ridge tracing and sampling, the associated minutiae (if any) are

recorded for each of the ridges, and the neighboring ridges and the neighboring sampling points on the

left-hand and right-hand sides at each sampling point of theridge are also recorded.
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Algorithm 1 Ridge Correspondence Establishment
Input: MM : Mated minutiae pairs betweenFq andFt; Rq, Rt: Ridges inFq andFt

Output: sr: Similarity between ridges inFq andFt; MR: Mated ridge pairs betweenFq andFt, and

corresponding sampling points on them

1: sr ← 0, MR← NULL

2: for each pair of mated minutiae,{M1,M2}, in MM do

3: for each pair of ridges,{R1, R2}, associated withM1 andM2 do

4: Generate candidate aligned ridge pairsCR = {RSP1, 0, RSP2, 0} from {R1, R2}
5: MRSP ← IntraRidgeMatch(CR)

6: if |MRSP | > 4 then

7: (mr, s)← InterRidgePropagation(Rq, Rt,MRSP )

8: if sr < s then

9: sr ← s, MR← mr

10: end if

11: end if

12: end for

13: end for

Algorithm 1 describes the ridge correspondence establishment. Suppose a set of mated minutiae are

found betweenFq andFt by the minutiae matcher. Fig. 9 shows an example latent and its mated rolled

fingerprint in ELFT-EFS-PC. There are three pairs of mated minutiae in them. From each pair of mated

minutiae, several pairs of candidate aligned ridges can be obtained from the ridges associated with the

two minutiae in the pair. A candidate aligned ridge pair is defined asCR = {RSP1, PR1;RSP2, PR2},
whereRSP1 andRSP2 are the two candidate ridges (or ridge segments) represented by their sampling

points and the first sampling points on them are assumed to be matched (here, the sampling points

corresponding to the mated minutiae) andPR1 andPR2 are the parent ridges from which this candidate

aligned ridge pair is generated. For the candidate aligned ridge pairs generated from mated minutiae,

the parent ridges are set to 0, which means they have no parentridges. The parent ridges will be used

in Inter-Ridge propagation to ensure that only the samplingpoints neighboring to the parent ridges are

matched during the propagation. For example, for the mated minutiae pair{Fq.M1, Ft.M1} in Fig. 9(a),

each of the three ridges associated withFq.M1 is paired with the corresponding ridge associated with
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Ft.M1, resulting in three pairs of candidate aligned ridges. Notethat if a ridge ending is mated with a

ridge bifurcation, we will have two pairs of aligned ridges,while if two ridge endings are mated, we

will get only one pair of aligned ridges.

From each of these aligned ridge pairs, the two ridges in the pair are first compared by the Intra-

Ridge matching procedure. If the two ridges can be matched (i.e. more than four sampling points are

matched between them), the Inter-Ridge propagation procedure is invoked to match the remaining ridges

in the two fingerprints based on the mated sampling points on the two ridges. After all the aligned ridge

pairs have been considered, the ridge correspondences obtained from the one which gives the highest

similarity between the ridges in the two fingerprints are taken as the final result. Next, we introduce

the two main procedures, Intra-Ridge matching and Inter-Ridge propagation, which are involved in ridge

correspondence establishment.

3.2.1 Intra-Ridge Matching

Given a candidate aligned ridge pairCR = {RSP1, PR1, RSP2, PR2}, Intra-Ridge matching is used to

find the corresponding sampling points on the two aligned ridges (or ridge segments). This is essentially a

string matching problem given that the first sampling pointsin RSP1 andRSP2 are matched. We employ

the dynamic programming technique [21] to find the longest sequence of mated sampling points on the

two ridges,MRSP = {RSPm
1 , RSPm

2 }, such that (i) the indices of mated sampling points monotonously

increase in bothRSPm
1 andRSPm

2 , (ii) changes between indices of adjacent mated sampling points are

less than 3 (i.e. no more than 3 sampling points can be skippedduring matching), and (iii) ifPRi 6= 0,

all the mated sampling points inRSPm
i should havePRi as their neighboring ridges (i = 1, 2). In our

implementation, two mated sampling points should satisfy i) the absolute difference between the distances

from them to the first sampling points is below a given threshold (i.e. 10 pixels), and ii) the absolute

difference between the ridge curvatures at them is also below a given threshold (i.e. 15 degrees). We

measure the distance between two sampling points on a ridge by using the absolute difference between

their indices, which is similar to geodesic distance. The ridge curvature at a sampling point is measured

by the change in local ridge orientation at the point with respect to the ridge orientation at the first

sampling point.

Given the mated points between two ridges, the similarity between the ridges is computed as follows.

Because short ridges are mostly unreliable, if there are fewer than 4 mated points between two ridges,

we discard them. Otherwise, we further examine the neighboring ridge structures of the mated sampling

points. Letnmsp = |MRSP | be the number of mated sampling points found onRSP1 and RSP2.



MSU TECHNICAL REPORT, MSU-CSE-10-14, AUGUST 2010 (SUBMITTED TO IEEE TIFS) 15

(a) (b)

(c) (d)

Fig. 9. Ridge correspondence establishment results for the latent L177B and its mated exemplar

in ELFT-EFS-PC. (a) Three pairs of mated minutiae are found between the latent and its exemplar.

(b) The ridges Fq.R1 and Ft.R1 associated with the mated minutiae pair {Fq.M1, Ft.M1} are

matched by Intra-Ridge matching. (c) The mated ridges found at an intermediate step as the

procedure Inter-Ridge propagation proceeds from the mated ridges in (b). (d) The final mated

ridges between the two fingerprints obtained by the proposed method. Corresponding ridges are

marked by the same color.

For all the mated sampling points inRSPm
i (i = 1, 2), we examine on left-hand and right-hand sides,

repsectively, if the neighboring ridges of each two adjacent sampling points are different or not, resulting

in two feature vectors,NRl
i ∈ {0, 1}nmsp−1 and NRr

i ∈ {0, 1}nmsp−1, in which ‘0’ means same ridge

and ‘1’ means different ridges.NRl
1 andNRr

1 are then compared withNRl
2 andNRr

2, respectively, and

the number of the same entries between them is counted, denoted asnl
NR and nr

NR for the left-hand

and right-hand sides, respectively. The similarity between the neighboring ridge structures of the mated

sampling points on the two ridges is then calculated by

sN = 0.5 × nl
NR

nmsp − 1
+ 0.5 × nr

NR

nmsp − 1
. (3)
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If the mated sampling points on the two ridges have very low similarity between their neighboring ridge

structures, they are also discarded. Fig. 9(b) shows the Intra-Ridge matching results for the ridgesFq.R1

andFt.R1 associated with the mated minutiaeFq.M1 andFt.M1 in Fig. 9(a).

3.2.2 Inter-Ridge Propagation

Given a set of mated sampling points on the two ridges found bythe Intra-Ridge matching procedure,

the Inter-Ridge propagation procedure, as sketched in Algorithm 2, matches all the remaining ridges. A

queue (denoted asQ) is constructed to store the candidate aligned ridge pairs.The queue is initialized by

generating candidate aligned ridge pairs from each pair of mated sampling points. The candidate aligned

ridge pairs are the neighboring ridges on the correspondingsides of the mated sampling points.

Algorithm 2 Inter-Ridge Propagation
Input: MRSP : Mated sampling points on two ridges inFq andFt; Rq, Rt: Ridges inFq andFt

Output: sr: Similarity between ridges inFq andFt; MR: Mated ridge pairs betweenFq andFt, and

corresponding sampling points on them

1: MR←MRSP

2: Initialize the queue of candidate aligned ridge pairs,Q, based on MRSP

3: while Q is not emptydo

4: Retrieve the first candidate aligned ridge pair inQ: CR

5: mrsp← IntraRidgeMatch(CR)

6: if |mrsp| > 4 then

7: Appendmrsp to MR

8: Generate new candidate aligned ridge pairs based onmrsp

9: Push the new candidate aligned ridge pairs intoQ

10: end if

11: end while

12: Calculate the similarity between the ridges inFq andFt: sr

After the initialization ofQ, we start the main loop of the Inter-Ridge propagation procedure to compare

the ridges in each of the candidate aligned ridge pairs inQ until Q is empty. The first candidate inQ

is popped out and matched by the Intra-Ridge matching procedure. If more than four mated sampling

points are established, new candidate aligned ridge pairs are generated and pushed intoQ. WhenQ is

empty, the Inter-Ridge propagation procedure terminates with a set of mated ridge pairs as well as the
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corresponding mated sampling points. Figs. 9(c) and 9(d) shows the mated ridge pairs found between the

two example fingerprints as the procedure Inter-Ridge propagation proceeds from the mated ridge pairs

shown in Fig. 9(b).

Let s̄N , d̄loc, and d̄ori be the average similarity between neighboring ridge structures of all the mated

ridge pairs, the average location displacement and the average orientation difference between all the

mated sampling points, respectively. LetnMRSP andnRSP denote the total number of mated sampling

points on the ridges in the two fingerprints and the total number of sampling points on ridges in the

query fingerprint, respectively. Then the similarity between the ridges in the two fingerprints is defined

as

sr = 0.3 × s̄N + 0.2× 10− d̄loc

10
+ 0.2× 15− d̄ori

15
+ 0.3× nMRSP

nRSP
. (4)

3.3 Pore Matching

Once the correspondences between ridges are obtained, the level 3 features can be matched along the

mated ridges. To implement this, we need to first associate the level 3 features with the ridges. In this

section, we discuss the matching of pores; the matching of DIP features will be discussed in the next

section. Recall that pores in a fingerprint are all located onridges. Hence, for each pore, we find the

closest ridge to it and its projection point on this ridge. The pores on the same ridge are then grouped

together and ordered along the ridge tracing direction.

Given a pair of mated ridges, the correspondences between pores on these two ridges are found using

the following method. For each pore on a ridge,POR1, we first find its closest sampling pointSP1 on the

ridge (denote the ridge asR1). If SP1 does not have a mated sampling point, thenPOR1 does not have

any mated pores; otherwise, we find the nearest pore,POR2, to the mated sampling point,SP2, of SP1.

The location displacementdi betweenPORi andSPi (i = 1, 2) is calculated as the difference between

the sampling indices of the projection point ofPORi andSPi. The location displacement between the

two pores,POR1 andPOR2, is then defined asdloc = |d1−d2|. If dloc is smaller than a given threshold

(i.e. 10 pixels for 1000ppi fingerprint images),POR1 is mated withPOR2. After all the pores in the

latent are examined, we get the mated pores between the two fingerprints. Fig. 10(a) shows the mated

pores obtained between a latent and its mated exemplar.

To calculate the pore match score, we compare the neighboring ridge structures and pore distribution

of the mated pores on each pair of mated ridges (recall that the pores on a ridge are ordered, so are

the mated pores). A comparison of neighboring ridge structures is the same as being described for

mated sampling points on ridges (see Section 3.2.1). As for the neighboring pore distribution, if two
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mated pores both have a neighboring pore on its left-hand side or right-hand side neighboring ridge, the

location displacement between the neighboring pores is calculated. Letdl,i
NP be the location displacement

between the neighboring pores on the left-hand side of theith mated pores on the mated ridges, anddr,i
NP

the location displacement between the neighboring pores onthe right-hand side of them. The similarity

between the neighboring ridge structures and pore distribution of the mated pores in the two ridges can

be then calculated as

sN = 0.4× nl
NR

nmp − 1
+ 0.4× nr

NR

nmp − 1
+ 0.1× Σ

nl
NP

i=1 (10− dl,i
NP )

10× nl
NP

+ 0.1× Σ
nr

NP

i=1 (10 − dr,i
NP )

10 × nr
NP

, (5)

where nmp is the number of mated pores on the two ridges andnl
NP and nr

NP are the number of

cooccurring neighboring pores on the left-hand and right-hand sides, respectively. Finally, the pore match

score between the two fingerprints is defined as

sPOR = 0.8× sr + 0.2× (0.3 × s̄N + 0.3× 10− d̄loc

10
+ 0.4× nMP

nP
), (6)

where s̄N is the average similarity between neighboring ridge structures and pore distribution of all

the mated pores on the mated ridge pairs,d̄loc is the average location displacement between all the

mated pores, andnMP andnP denote the total number of mated pores and the number of poresin the

query latent fingerprint, respectively. It is worth mentioning that the above match score measures the

similarity between fingerprints by considering not only thelocation displacement between mated pores

and the number of mated pores, but also the consistency of theridge structures and feature distribution

surrounding the mated pores, whereas existing methods [10][12] consider only the location displacement

or the number of mated pores.

3.4 DIP Matching

The matching of DIP features is also constrained along matedridges. Unlike pores, DIP features reside

on valleys rather than ridges. Therefore, we associate eachDIP feature with two ridges that are on the

left-hand and right-hand sides of the valley on which it resides. Given a DIP featureDIP1 which is

associated with two ridgesR11 andR12, the nearest sampling point to its projection on the ridgeR11

is first found, denoted asSP1. If SP1 does not have mated sampling points, thenDIP1 does not have

mated DIP features; otherwise, the nearest DIP feature to the mated sampling pointSP2 on the mated

ridge R21 of R11 is found, denoted asDIP2. Let di be the location displacement betweenDIPi and

SPi (i = 1, 2), then the location displacement betweenDIP1 andDIP2 is dloc = |d1 − d2|. Let R22 be

the other ridge associated withDIP2. DIP1 andDIP2 are mated DIP features only if i)dloc ≤ 10 and
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(a) (b)

Fig. 10. Example level 3 feature matching results. (a) Mated pores in the latent shown in Fig.

3(b) and its mated exemplar. Corresponding pores are marked by the same color. (b) Mated DIP

features in the latent shown in Fig. 9(a) and its mated exemplar.

ii) R12 andR22 are mated ridges. After enumerating all the DIP features inFq, we obatin the mated DIP

features. Fig. 10(b) shows the obtained mated DIP features in a latent and its mated exemplar.

Let d̄loc be the average location displacement between all the mated DIP features andnMDIP and

nDIP be the total number of mated DIP features and the number of DIPfeatures in the query latent

fingerprint, respectively. The DIP match score between the two fingerprints is then defined as

sDIP = 0.8 × sr + 0.2 × (0.3× 10− d̄loc

10
+ 0.7 × nMDIP

nDIP
). (7)

4 EXPERIMENTS

4.1 Databases

Two latent databases were used in this study. One is the ELFT-EFS-PC database [16], which has 242

1000 ppi latent fingerprints (most of them are from the same source as the latents in NIST SD27) with

1000 ppi mated full prints. The level 3 features in these latents have already been manually marked by

latent examiners. The background database consists of 4,180 1000 ppi fingerprint images, which were

collected from the mated fingerprints of the latents and the “B” session fingerprint images in the NIST

SD29 and the NIST SD30 datasets. The second latent database was collected at West Virginia University

(WVU). It has 127 latents in which the level 3 features have been manually marked. While these latents

are at 1000 ppi, the full fingerprints in the background database are only at 500 ppi. In an earlier study

[18], we investigated the utility of pores in the context of varying fingerprint image quality and resolution

by using the rolled ink fingerprint images in NIST SD30 and a commercial minutiae matcher (VeriFinger
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Fig. 11. The number of features in the latents in the ELFT-EFS-PC and WVU databases. (a)

Number of pores vs. Number of minutiae. (b) Number of DIP features vs. Number of minutiae.

[19]). It was reported that automatic pore extraction and the resulting matching accuracy are significantly

affected by fingerprint image quality. Further, it is only athigh resolution (1000 ppi) and for good quality

fingerprint images that the pores can improve the fingerprintverification accuracy, and even then only

marginally. Hence, the WVU database is not suitable for studying the utility of level 3 features in latent

matching (although many latents in it have large number of pores, the mated rolled images at 500 ppi

do not have a sufficient number of pores), and we simply used itfor reporting the statistics of level 3

features in latents.

4.2 Statistics of Level 3 Features in Latents

The statistics of level 3 features in the latents in the ELFT-EFS-PC and WVU databases have been

collected based on the manual markup data. Fig. 11 shows the number of level 3 features (i.e. pores and

DIP features) with respect to the number of minutiae. It can be seen that there is a large variance in the

number of level 3 features across different latent fingerprints. In ELFT-EFS-PC, very few of the latents

(only 6 of 242 latents) have any pores. Fig. 12 shows three example latents in ELFT-EFS-PC, which

have 91, 17, and 0 pores marked by the latent exminers, respectively. Given such a small number of

latents in ELFT-EFS-PC which have pores, pore matching is not likely to improve the latent matching

accuracy on this database. Since no public domain latent database is suitable for studying the utility of

pores, we constructed a simulated partial fingerprint database and investigated the effectiveness of pores

on that dataset (see Section 4.5). On the other hand, many (79out of 242) latents in ELFT-EFS-PC do
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Fig. 12. Example latents in ELFT-EFS-PC with markup pores. (a) 91 pores, (b) 17 pores, and (c)

0 pores.

have DIP features. Therefore, we will use the ELFT-EFS-PC database for studying the effectiveness of

DIP features.

4.3 Feature Detection Accuracy

Sixty partial fingerprints (320×240 pixels) were cropped from the 1000 ppi rolled ink fingerprint images

(∼1500×1500 pixels) in NIST SD30. The pores, dots, incipient ridges, and ridge edge protrusions in

these sixty partial fingerprint images were manually markedfor the purpose of evaluating their automatic

detection accuracy. In order to study the impact of image quality on the automatic detection accuracy,

the 60 partial fingerprint images were divided into two quality groups (good and bad) according to their

image quality evaluated by the method in [22]. Two pore detection methods were considered, i.e. the

proposed method and the method in [10]. These two methods differ in that the proposed method conducts

filtering in the spatial domain using an anisotropic model, whereas the method in [10] applies filtering

in the frequency domain with an isotropic model. Table 1 gives the average pore detection accuracy

along with the standard deviation of the two methods on the ground truth dataset;Rt, the true detection
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TABLE 1

Average pore detection accuracy and standard deviation

Method Proposed Method in [10]

Quality Good Bad Good Bad

Rt(%) 73 ± 9.5 67 ± 14.6 69 ± 16.0 63 ± 12.5

Rf (%) 20 ± 12.2 30 ± 14.4 27 ± 11.7 40 ± 18.1

TABLE 2

Average DIP detection accuracy and standard deviation

Quality Good Bad

Nm 6 ± 5.6 12 ± 8.5

Ns 4 ± 3.6 10 ± 7.0

rate, is defined as the ratio of the number of true detected pores to the total number of ground truth

pores, andRf , the false detection rate, is defined as the ratio of the number of falsely detected pores to

the total number of detected pores. These results show that the detection accuracy of both the methods

degrades as the fingerprint image quality goes down. As the fingerprint image quality changes from good

to bad, the true detection rate decreases by about 5%, and thefalse detection rate increases more by

about 10%. According to the standard deviation of the detection accuracy, in general, the automatic pore

detection methods are more robust on good quality fingerprint images than on bad quality fingerprint

images. Table 2 presents the detection accuracy of the proposed DIP detection method ([10] did not

present a DIP feature extractor), whereNm andNs denote the numbers of missing features and spurious

features, respectively. Note that the average numbers of observable DIP features on good and bad quality

fingerprint images in the ground truth dataset are 12 and 27, respectively. Again, poor quality fingerprint

images cause more missing features as well as more spurious features. These results show that improving

the quality of full fingerprint images in the background database is very important for the effectiveness

of level 3 features in latent fingerprint matching. We will further demonstrate this in the next section.

4.4 Latent Fingerprint Matching

We have evaluated the latent matching performance with pores and DIP features on the 242 latents in

ELFT-EFS-PC. Features (including minutiae, ridge skeletons, pores, and DIP) were manually marked in
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(a) (b)

Fig. 13. Poor quality of exemplar fingerprints significantly degrades the utility of level 3 features.

(a) Latent L030G in ELFT-EFS-PC, and (b) its mated full fingerprint image. Nine mated minutiae

are found between them. But none of the 91 pores marked in the latent (as shown in (a)) have

any corresponding pores in the mated full fingerprint.

latents, and automatically extracted from full fingerprints in the background database by using VeriFinger

and the proposed level 3 feature extraction methods. As discussed in Section 3.1, level 3 features are

matched only when the rank 1 minutiae match score of a latent is smaller than the given threshold

(in our experiments, it was empirically set to 80 according to the raw match scores of VeriFinger on

ELFT-EFS-PC, which ranged from 0 to 248). For the sake of efficiency, we matched level 3 features

only between the latent and the top 100 candidate exemplars retrieved by VeriFinger. The match scores

of VeriFinger and level 3 features were then combined by using the weighted sum rule [23]. Before the

fusion, the minutiae match scores of each query latent fingerprint were normalized by using the max-min

normalization method [23] based on the maximum and minimum scores between it and the exemplars.

According to the experimental results, among the 6 latents in ELFT-EFS-PC that have patron pores,

three are already correctly identified at rank 1 by VeriFinger, two (L030G with 91 pores and L201U

with 17 pores, see Figs. 12(a) and 12(b)) are correctly matched with their true mates after rank 1 but

before rank 100, and the remaining one (L014G with 83 pores, see Fig. 3(b)) is correctly matched at rank

2874. By applying the proposed level 3 feature based latent matching method, however, the identification

results of the latents L030G and L201U are not improved. Thisis because i) the number of pores is

small or the pores are sparsely distributed in the latent (e.g. L201U), or ii) the corresponding region of

the latent in its mated full fingerprint image is of poor quality and has few pores (e.g. L030G). Fig. 13
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Fig. 14. Identification accuracies of VeriFinger and combination of VeriFinger and the proposed

DIP matcher on the ELFT-EFS-PC database.

shows the latent L030G and its mated full fingerprint. Although there are nine mated minutiae in the two

prints shown in Fig. 13, no corresponding pores are found in the full fingerprint for any of the markup

pores in the latent. This is due to the poor quality of the corresponding region in the full fingerprint.

Fig. 14 presents the Cumulative Match Curves of VeriFinger and combination of VeriFinger and the

proposed DIP matcher on the ELFT-EFS-PC database. At rank 1,VeriFinger correctly identified 65

latents; this number was improved to 75 after incorporatingthe proposed DIP matcher. In addition, many

of the other latents had the ranks of their true mates improved. For example, for the latent shown in Fig.

10(b), its true mate was ranked at 82 by VeriFinger; after incorporating the proposed DIP matcher, the

rank was improved to 4. From these results, we can see that level 3 features, when reliably present in

both latents and their mated full fingerprints, are indeed useful in improving the latent matching accuracy.

Unfortunately, there are many difficulties in using level 3 features on the available latent databases. For

one thing, there are very few latents in the latent databaseswith a sufficient number of level 3 features.

This is not only because of the generally low quality of latent fingerprints, but also because latent experts

often are not able to mark some of the level 3 features. While we can clearly see a large number of pores

in the latent shown in Fig. 1(c), according to the markup datain ELFT-EFS-PC, three of the four latent

experts did not mark any pores in it. Another concern is that the quality of the exemplar full fingerprints

in these databases is not good enough to automatically extract reliable level 3 features. As a consequence,

it is not possible to utilize the level 3 features even thoughthey are present in latents (as shown in Fig.

13). Such a problem of reproducibility of level 3 features inexemplar full fingerprints has also been
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Fig. 15. Identification accuracy of the 131 simulated partial fingerprints and 4180 background

exemplars. (a) Performance of the proposed pore matcher and the ICP based pore matcher. (b)

Performance of combing VeriFinger and pore matchers.

acknowledged in a recent survey on level 3 features among latent examiners [25].

4.5 Simulated Partial Fingerprint Recognition

The experimental results presented above not only show the potential of level 3 features in improving

latent matching accuracy, but also demonstrate the difficulty of using level 3 features in existing latent

databases due to the small number of latents having level 3 features and the poor quality of mated

full fingerprints. In order to better understand the utilityof level 3 features, in particular pores, we

constructed an additional set of 131 simulated partial fingerprint images of small area (320×240 pixels).

They were cropped from the 1000ppi “B” session rolled ink fingerprint images (∼1500×1500 pixels) in

NIST SD30. The pores in these 131 partial fingerprints were manually marked, whereas the minutiae and

ridge skeletons were extracted by VeriFinger [19]. The background database in the experiments was the

same as in our experiments with ELFT-EFS-PC, except that theexemplars from the “B” session rolled

ink fingerprint images in NIST SD30 were substituted with thecorresponding “A” session images in

the database (since the simulated partial fingerprint images as the query fingerprints were cropped from

the “B” session images). All features in the exemplars were automatically extracted by VeriFinger and

the proposed level 3 feature extraction methods. Next, we report the performance of the proposed pore

matching method, and we compare it with VeriFinger and the ICP based pore matching method [10] to

show the effectiveness of the proposed method and the utility of pores.
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Fig. 16. Number of minutiae vs. the minutiae match scores in fingerprints with different

identification results.

The identification accuracy on this dataset is presented in Fig. 15. Using VeriFinger, among the 131

query partial fingerprints, 80 fingerprints were correctly identified at rank 1. After incorporating the

proposed pore matcher, 27 additional fingerprints were successfully identified at rank 1. Compared with

the results on ELFT-EFS-PC, these results are much more promising; they show the effectiveness of level

3 features in matching partial fingerprints of small area which will otherwise pose a challenge to minutiae

based AFIS due to the limited number of minutiae they contain. Moreover, the importance of collecting

good quality full fingerprints can also be seen from these results. With the fast development of fingerprint

imaging techniques and the widespread use of high resolution (1000 ppi) live-scan fingerprint scanners,

we believe that it is becoming feasible to collect good quality fingerprints. This will facilitate extraction

of reliable level 3 features and thereby further improve thelatent matching accuracy of existing AFIS by

incorporating level 3 features.

Fig. 16 compares the fingerprints which are correctly identified at rank 1 by both VeriFinger and the

proposed method with those which are correctly identified after rank 1 by VeriFinger, but at rank 1

after incorporating the proposed method. Interestingly, the improvement due to level 3 features is only

in situations where fingerprints have a small number of minutiae or low minutiae match scores. This

indicates that i) minutiae matchers usually work very well when there is a sufficient number of minutiae,

and ii) the contribution of level 3 features is more effective for fingerprints which have few minutiae

or low minutiae match scores. In [25], about one-third of theparticipant latent examiners reported that

they do not consider level 3 features when level 2 features are of sufficient quality and are sufficient in

number, which confirms our findings here. Moreover, these observations also justify the proposed level
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(a) (b)

Fig. 17. Pore matching results on an example partial fingerprint and its mated full fingerprint

(cropped for display purposes) by using (a) the proposed method and (b) the ICP based method.

The polygons highlight the corresponding reference minutiae between the fingerprints. Due to

the large distortion in the fingerprints, the ICP based method mis-matches many pores; on the

contrary, the proposed method is more robust to distortion, and can still correctly match most of

the pores.

3 feature based latent fingerprint matching algorithm sketched in Section 3.1.

For comparison, the ICP based level 3 feature matching method in [10] has also been implemented.

Given a pair of mated minutiae between two fingerprints, the method in [10] first uses the two mated

minutiae to align the level 3 features (here, pores) in the two fingerprints, and then employs the ICP

algorithm to further align and match the level 3 features. The match score for the two fingerprints was

finally computed based on the average distance,d̄, between the obtained mated pores:sPOR = 1−d̄/dMax,

wheredMax is the maximum distance between mated pores (in our experiments, the distance threshold

between two mated pores was set to 10 pixels). The CMC of the ICP based method in Fig. 15(a) shows

that its performance is much worse than the proposed method:Only 10 fingerprints are correctly identified

at rank 1. By fusing its scores with the scores of VeriFinger,we did not get consistent improvement in

the identification accuracy (see Fig. 15(b)).

Fig. 17 shows the pore matching results on an example partialfingerprint and its mated full fingerprint

(cropped for display purposes) by using the proposed methodand the ICP based method, respectively.

Obvious distortion can be observed between the two fingerprints (note the polygons highlight the corre-

sponding minutiae). As a consequence, in the ICP based method, most pores are falsely matched (see

Fig. 17(b)). On the contrary, most pores are correctly matched by the proposed method despite the large

distortion (see Fig. 17(a)). Based on the match scores, the rank of the mated fingerprint in this pair is 1
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(the proposed method) and 16 (the ICP based method), respectively, while VeriFinger ranks it at 5. These

results illustrate the advantage of the proposed method in considering ridge structures and inter-feature

topology when matching level 3 features in fingerprints.

5 CONCLUSIONS

We have studied the utility of level 3 features for latent fingerprint matching. Automatic algorithms have

been proposed for extracting and matching several level 3 features, i.e. pores, dots, incipient ridges,

and ridge edge protrusions. The proposed matching algorithm compares level 3 features along ridges,

and enforces the topological relationship between level 3 features, minutiae, and ridges. It is thus more

effective for latent fingerprints of small area and robust todistortion (on the set of simulated partial

fingerprints, after combination with VeriFinger minutiae matcher, the rank 1 identification rate by the

proposed method is∼ 81.8%, whereas that by the existing ICP based method is∼ 61.1%). Based on the

performance of the proposed algorithms on operational latent databases and simulated partial fingerprints,

we have shown that

• Published level 3 feature matching algorithms provide poorperformance on operational latent fin-

gerprint databases. Further, conclusions made by previouslevel 3 studies do not hold for challenging

latent fingerprint matching problems;

• The limited number of latents that have level 3 features and the low reproducibility of level 3 features

in poor quality exemplar full fingerprints make the level 3 features of limited use in improving the

latent matching accuracy on the available latent databases;

• The latent matching accuracy can be improved by level 3 features if the features can be reliably

extracted in both latents and mated full fingerprints (the rank 1 accuracy on the ELFT-EFS-PC

database is improved from∼ 26.9% to ∼ 31% after incorporating the proposed DIP matcher);

• The contribution of level 3 features is more effective when the number of minutiae in latents is

small or the minutiae-based match score is low.

While the results of our study demonstrate the potential of level 3 features in improving latent matching

accuracy, they also show the difficulties in using level 3 features. In order to better explore level 3 features

in latent matching and to improve the latent matching accuracy of contemporary AFIS, we would like

to make the following recommendations:

• Additional attention should be paid during enrollment to ensure that a sufficient number of level 3

features in fingerprints be captured. As observed in this study, poor quality of full fingerprints is

one of the major reasons for limited contribution of level 3 features. Using high resolution (≥1000
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ppi) scanners is a necessary but not a sufficient condition for extracting level 3 features. Fingerprint

image quality assessment software that can provide real-time quality level estimates will be very

useful. Since existing fingerprint image quality assessment algorithms (e.g. [22][26]) do not consider

level 3 features, new fingerprint quality assessment algorithms need to be developed;

• Tiny latent fingerprints that have few minutiae but very clear level 3 features should not be simply

discarded. As current AFIS generally cannot correctly identify latents with very few minutiae (say

fewer than 6), more attention should be paid to them in terms of level 3 features, provided that a

large percentage of level 3 features are available in them;

• Latent experts and AFIS developers should cooperate to forma consensus on how to mark level 3

features and ridge quality map in order to optimize the utility of level 3 features. As we observed

in the ELFT-EFS-PC database, level 3 feature marking in manylatents is not satisfactory from the

viewpoint of AFIS developers. In addition, large inconsistency exists among different latent experts.

The close cooperation between latent experts and AFIS developers will in the end help improve the

fingerprint standard, such as CDEFFS [5];

• Use level 3 features only when it is necessary. Marking level3 features in latents is time-consuming

and tedious. Furthermore, when a large number of minutiae are available, the additive value of level

3 features is limited. A simple indicator for using level 3 features is when the minutiae match score

at rank 1 is lower than a predefined threshold;

• ELFT-EFS evaluation would be more useful if the fingerprint image database was made open, and

the utility of level 3 features was separately tested instead of being mixed with other extended

features.
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