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Abstract

Automatic fingerprint identification systems (AFIS) have for a long time used only minutiae
for fingerprint matching. But minutiae are only a small subset of fingerprint detail routinely used
by latent examiners for fingerprint matching. This has generated a lot of interest in extended
feature set (EFS) with the aim of narrowing down the gap between the performance of AFIS
and latent examiners. Level 3 features constitute the most significant subset of extended features.
Studies on level 3 features have reported significant improvement in the fingerprint recognition
accuracy. However, these studies were based either on live-scan fingerprints or full (rolled or
slap) fingerprints. As a result, the conclusions of these studies cannot be extended to latent
fingerprints, which are characterized by small size, poor image quality, and severe distortion
compared to full fingerprints. In this paper, we study the utility of level 3 features, including pores,
dots, incipient ridges, and ridge edge protrusions, for latent matching. Automatic algorithms for
extracting and matching these features are proposed. While most existing level 3 feature matching
algorithms only consider the locations of features, the proposed method utilizes the topological
relationship between level 3 and level 2 features, and is thus robust to nonlinear distortion and has
high discriminative capability. Given the proposed algorithms and operational latent fingerprint
databases, we identify the challenges in using level 3 features, and show the potential of level 3
features in improving latent matching accuracy. Further, by using simulated partial fingerprints, we
highlight that level 3 features can indeed improve latent matching accuracy when i) level 3 features
can be reliably extracted in both latent and full fingerprints and ii) latent fingerprints have only a
small number of minutiae or the minutiae match scores are low. With the increasing adoption of
1000ppi fingerprint scanners in law enforcement agencies, it is becoming feasible and desirable to
incorporate level 3 features into AFIS. We believe that the proposed algorithms and analysis will

be useful in the design and development of next generation AFIS.
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1 INTRODUCTION

Fingerprint recognition has been accepted as a reliableopeidentification technique for almost 100
years. Fingerprints are now routinely used worldwide taotdg suspects and victims in law enforcement
and forensics [1]. The demand for Automatic Fingerprintniifecation Systems (AFIS) became com-
pelling in the early 1960s, because of the rapid expansidingérprint recognition in law enforcement
and the ever-increasing size of fingerprint databasestteed:=Bl fingerprint database now has more than
800 million fingerprint images) [2]. Many automatic algbrits have been proposed for extracting and
matching fingerprint features, and a large number of AFISsaceessfully deployed not only for forensic
applications, but also for many emerging civilian and conuiat applications [1][2].

Three types of fingerprint images are commonly used in lawrerfent applications: ink, live-scan,
and latent (see Fig. 1). The inking method is the earlieshotkfor capturing and recording fingerprints.
To capture the ink fingerprint images of a subject, the fingecdated with ink and pressed or rolled
against a paper card. The print left on the card is then scatinebtain a digital fingerprint image. Live-
scan fingerprint images are obtained by using optical, dayacor other types of sensors to directly
image the finger. Latent fingerprint images are inadvegdeft by persons on surfaces of objects and
are lifted or photographed by using various techniques, ghgmical processing [1]. Compared to ink
and live-scan fingerprint images, latent fingerprint images characterized by small area, poor quality,
and large non-linear distortion [17].

Fingerprint features can be generally divided into threelk[2], as shown in Fig. 2. Level 1 features
are defined by fingerprint ridge flow and general morpholdgidfarmation, e.g. ridge orientation field,
ridge pattern types, and singular points. These featueesiair unique to each finger and are primarily
used for fingerprint type classification (e.g. whorl, lefofo right loop, and arch) and indexing. Level
2 features refer to individual fingerprint ridges and fingerpridge events, such as minutiae. There are
two prominent types of minutiae, i.e. ridge endings and eidijfurcations. Level 2 features are quite

discriminative and stable. Level 3 features are defined geffprint ridge dimensional features. Pores,

e Qijun Zhao and Anil K. Jain are with the Department of Comp@®&eience and Engineering, Michigan State University, East
Lansing, Ml, 48824, United States.
E-mail: {gjzhao, jait@cse.msu.edu

e Jianjiang Feng is with the Department of Automation, TsimglUniversity, Beijing 100084, China.

Email: jfeng@tsinghua.edu.cn



MSU TECHNICAL REPORT, MSU-CSE-10-14, AUGUST 2010 (SUBMITTED TO IEEE TIFS) 3

(d) (e) ()

Fig. 1. Three types of fingerprint images: (a, d) Ink, (b, €) live-scan, and (c, f) latent fingerprints.

(a-c) are 1000 ppi, and (d-f) are the corresponding 500 ppi images.

dots, incipient ridges, and ridge edge shapes are typical Rfeatures These features, if present and
reliable (assuming that the input image is of good qualigy® also quite distinctive [3][4]. While level
1 and level 2 features can be extracted from the standard piO(pixels per inch) fingerprint images,
extraction of level 3 features usually require higher reSoh (at least 1000 ppi) images [2][5][18]
(see Fig. 1). As a result, the current AFIS technology, whiglfes on 500 ppi images, mainly utilizes
level 1 and level 2 features [2][7]. Latent fingerprint exgeon the contrary, often rely on additional
level 3 information due to the limited level 1 and level 2 (iminutiae) information available in many
latents [3][25] (see Fig. 3). It has been suggested that aneta improve the AFIS performance is to

utilize level 3 features [6]. In response to this, the Coneitto Define an Extended Fingerprint Feature

1. Although it is debatable at which level dots and incipigdges belong, we classify them into level 3 features.
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Fig. 2. Fingerprint features: (a) Level 1 (ridge orientation field and singular points), (b) level 2
(minutiae, i.e. ridge endings and ridge bifurcations), (c) and level 3 (pores, dots, incipient ridges,

and ridge edge protrusions).

Set (CDEFFS) was chartered to define the next ANSI/NIST-ITndard [5] so that extended features,
including the level 3 features, can be utilized in the nextegation AFIS. Meanwhile, the availability
of high resolution (1000 ppi) fingerprint image scanner® attakes it feasible to incorporate level 3

features into AFIS.

1.1 Related Work

Among the various level 3 features, pores have received tigt attention. Stosz and Alyea [8] proposed
the first pore-based fingerprint matcher. Kryszczuk et dlsf@died the effectiveness of pores in matching
small fragmentary fingerprints to full fingerprint templaten a small 2000ppi fingerprint image database.
Jain et al. [10] utilized fingerprint features at each of theeé levels, including minutiae and pores. The
International Biometric Group [14] studied the effectiess of pores by using the algorithm in [10] to
extract pores and using the minutiae matcher in the NIST BidmIimage Software [24] to match pores.
Zhao et al. [11][12] proposed pore extraction and matchimghods and applied them to partial and full
high resolution fingerprint matching. All these studiesargd that fusion of pores with minutiae does
improve the fingerprint matching accuracy. However, theadises considered only live-scan fingerprint
images, and their matching experiments did not use a stdateeart fingerprint matcher as a baseline.

A very limited number of studies on other types of level 3 teas have also been reported. Chen
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Fig. 3. Some example latent fingerprints from the ELFT-EFS-PC database. Minutiae (marked
by red rectangles), pores (green circles), dots (cyan circles), incipient ridges (blue lines), and
ridge edge protrusions (magenta circles) in latents were manually marked by latent experts.
Some latents may have a small number of minutiae together with some extended features (c).
In the ELFT-EFS-PC database (255 latents), there are, on average, about 18 minutiae in a
latent, compared to 133 minutiae in a rolled ink fingerprint in the background database (4180

full fingerprints). Some latents in this database have only 4 minutiae.

and Jain [13] obtained promising results in matching dotd icipient ridges extracted from partial
fingerprints cropped from NIST SD30. The International Barit Group [14] also investigated the
sampled points on ridge contours and ridge edgeoscopiarésa{i.e. high curvature points on ridge
edges) for high resolution (2000ppi) fingerprints. ThesaUues were treated as minutiae and matched
using the minutiae matcher in the NIST Biometric Image Safew[24]. Neither of these two studies
designed special algorithms for matching level 3 featubes, instead completely relied on existing
minutiae matchers. Zhou et al. [15] studied the creases geffprints and experimentally showed their
effectiveness in improving the recognition accuracy of dingints of elderly subjects (aged between 46
and 95, with an average age of 67). Although a significant aw@ment in the fingerprint recognition
accuracy was observed in all these studies, their conelsgiannot be simply applied to latent fingerprint
matching due to the huge difference in the characterisfidatent fingerprints and full fingerprints.

The National Institute of Standards and Technology (NIS83 bonducted an extensive evaluation of

latent fingerprint technologies (ELFT) [16]. Extended teatsets (EFS) were manually marked in the
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latent fingerprints, and their contribution to latent skamas assessed by using a number of commercial
AFIS provided by the vendors who participated in the prograime NIST evaluation showed that EFS
did improve the latent search accuracy. However, becauseEttFT-EFS test did not evaluate each
extended feature separately, the contribution of indigidavel 3 featues could not be determined from
this evaluation. Jain and Feng [17] examined the extendsdries at level 1 and level 2, i.e. singularity,
ridge quality, ridge orientation field, ridge wavelengthdaidge skeleton, for latent matching using 500
ppi latent images in NIST SD27. They also studied the stegistf some of the level 3 features, including
pores, dots, and incipient ridges. By manually marking dighing these features in 500 ppi latent and
exemplar fingerprint images in NIST SD27, they observed & sarall number of mated level 3 features.
Based on this, they concluded that these level 3 featureotonprove the latent matching accuracy, at
least on the NIST SD27 database. In summary, the small nuailstndies on latent fingerprint matching

do not provide specific guidelines on the utility of level afigres in improving latent matching accuracy.

1.2 Contributions of This Paper

The goals of this study are i) design level 3 feature extoactind matching algorithms, ii) determine the
utility of level 3 features in latent matching, iii) explor®w to incorporate level 3 feature matchers into
existing AFIS, and iv) make recommendations regarding ffectiveness of level 3 features. To achieve
these goals, we propose a novel algorithm for matching I8vektures in small area latent fingerprints,
and systematically determine the relative contributiotegél 3 features in improving the latent matching
accuracy. In particular, the utility of pores, dots, ineipi ridges, and ridge edge protrusions is studied for
latent search. With the proposed algorithms and availa@ést databases, i.e. ELFT-EFS-PC (ELFT-EFS
Public Challenge Dataset [16]) and WVU (West Virginia Uniaigy), we identify the challenges in using
level 3 features, and show the potential of level 3 featurémproving latent matching accuracy. Further,
we highlight the cases where level 3 features can significanprove latent matching accuracy by using
simulated partial fingerprints. The main contributions luktpaper are
« Design of a topological level 3 feature matching algorithon tatent to full fingerprint matching.
Instead of considering only the locations of level 3 feadurde proposed method enforces the
topological relationship between level 3 features, mamitiand ridges. It is thus robust to image
distortion which is frequently observed in latents;
« Based on an analysis of latent fingerprint databases anttseduexperiments on both latent and
simulated partial fingerprint images, we show that levelédees in available latent databases are of

limited use because the poor quality of exemplar fingerprintthese databases seriously degrades
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the reproducibility of level 3 features;
« We empirically determine the situations where level 3 fesgushow promise in improving latent

matching accuracy.

The rest of the paper is organized as follows. Sections 2 aintt@&luce the proposed extraction and
matching algorithms for level 3 features, respectivelict®a 4 presents and analyzes the experimental

results. Section 5 concludes the paper.

2 LEVEL 3 FEATURE EXTRACTION

Level 3 fingerprint features considered here include patets, incipient ridges, and ridge edge protru-
sions. Pores appear as bright blobs on ridges and the otteer fisatures appear between ridges (see Fig.

2(c)). We first discuss pore extraction, followed by exti@ttalgorithm for the other three features.

2.1 Pores

Pores, also known as sweat pores, are located on finger ridigeg are formed in the sixth month of
gestation due to the sweat-gland ducts reaching the swfate epidermis. Once the pores are formed,
they are fixed on the ridges; typically, there are between® Hhpores along a centimeter of a ridge
[2]. A pore can be visualized as open on one print, but as dl@seanother print of the same finger
depending on the finger pressure and whether it is exudirgpjpation. As shown in Fig. 2(c), a closed
pore appears as an isolated dot on the ridge, while an openipaonnected to one or both of the two
valleys surrounding it. As a result, the shape and size adgpoan vary from one impression to another,
and therefore only the pore position is used in matching.

The basic idea of the proposed pore extraction method is wehtbe spatial appearance of pores in
fingerprint images and detect them via filtering the imageb wilitable matched filters. In [11], it was
shown that along the ridge tangential orientation, thenisity profile across the pore has a Gaussian
shape irrespective of whether it is open or closed (see Bi@.and 4(b)). Based on this observation,
an anisotropic pore model was established and an adaptreeepéraction algorithm was proposed [11].
One drawback of the method is that it sets the scale paraiimetiee pore model as a constant multiple
of local ridge period. However, such a constant ratio patamie difficult to specify for all fingerprints,
especially when large distortion exists across the fingarjmages, such as with latent prints. As an
improvement to the method in [11], we propose a new pore radtéilter based on the automatic scale
selection technique [20]. LeX andY be the horizontal (column) and vertical (row) axes of thebglo

image coordinate systemx @ndy are the corresponding coordinates), dndand U denote the local
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Fig. 4. Properties of level 3 features. (a) and (b): Intensity profile across a pore along the ridge

tangential orientation has a Gaussian shape. (c), (d), and (e): Intensity profile across a dot, an
incipient ridge, or a ridge edge protrusion along the ridge normal orientation has the shape of a

full or half negative Gaussian.

ridge tangential and normal orientation, respectively.d_be the local ridge (tangential) orientation with

respect to theX axis. The proposed pore matched filter is defined as

Plogv,usty, ty,0) = —t?x’//4gvv(v; tyv)g(u;ty), (1)

where
o (v,u) = (zcosh —ysinb,xsinh + ycosh),
o g(usty) = 1/(v/2rty)e /) is Gaussian along the ridge normal orientation and consiang
the ridge tangential orientation,
o gyv(vity) = (V2 + tv)/(\/%)e—vz/(%v) is Laplacian along the ridge tangential orientation and
constant along the ridge normal orientation,
o andty andty are, respectively, the variances along the ridge tandemientation and the ridge
normal orientation.
Note that unlike [11], we describe the intensity appearari@pore along the ridge tangential orientation
by using a Laplacian kernel because it is more robust to ndiee Gaussian kernel along the other
orientation is used merely for smoothing the noise alongrithge normal orientation.
In order to apply the above pore matched filters, we first @itite fingerprint image into blocks and
estimate the local ridge orientatigh We then instantiate a pore matched filter for each block hiaat

dominant ridge orientation (called a well-defined block}@ding to eq. 1. The parametgr in the pore



MSU TECHNICAL REPORT, MSU-CSE-10-14, AUGUST 2010 (SUBMITTED TO IEEE TIFS) 9

(@) (b) (©

Fig. 5. Example pore extraction results. (a) Part of a rolled ink fingerprint image in NIST SD30.

(b) Pores detected in (a). (c) Pores detected in the latent fingerprint image in Fig. 1(c).

matched filter is set to a constant because it is used merelydise smoothing. As for the parameter
ty, a multiscale setting is adopted so that pores of varyingsstan be detected. More specifically, a
set of pore matched filters are constructed for each welhddfblock and convolved with the block.

The maximum response among the sets of pore matched filtdéisdsized, resulting in the pore map;

candidate pore pixels have value 1 and the non-pore pixeis Vaue 0.

The pore map contains some falsely detected pores. To rethewe the following post-processing
steps are conducted: (i) candidate pores which are not gegidre removed; (ii) connected components
on the pore map whose area is either too small or too largeiscarded; (iii) connected components
on the pore map are removed if the intensity of their pixeldois low. After these post-processing
operations, many spurious pores are excluded, and eaclecaadncomponent in the post-processed pore
map corresponds to a pore. The centroids of these detected are recorded. Fig. 5(a) shows a portion
of a rolled ink fingerprint image, and Fig. 5(b) shows the gatetected in it by the proposed method. The
pore extraction results of the latent fingerprint image ig. Ai(c) are shown in Fig. 5(c). Due to the poor
quality of latent fingerprint images, more false pores areaed in the latent than in the rolled image.
Yet, most of the true pores are correctly extracted in latefherefore, the automatic pore extraction
algorithm proposed here may provide useful informatioraterit examiners and cut down their workload

of manually marking pores.

2.2 Dots, Incipient Ridges, and Ridge Edge Protrusions (DIP)

While typical ridges stretch over a large area of a fingetgaid their width varies from 1Q0n to 30Qum

[2], there are occasionally some ridges which are quitetstrosubstantially thin (see Fig. 2(c)). These
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Fig. 6. Dots, incipient ridges, and ridge edge protrusions are easily confused with each other in

different impressions of the same finger. We thus unify them into a single feature type.

are actually dots and incipient ridges, two additional t/pélevel 3 features in fingerprints [5]. Unlike
pores, which are present in almost every finger, dots angiem ridges can be found in fingerprints of
only about 45% of the population and 13.5% of the fingers [TBEy reside in fingerprint valleys and,
if observed in small areas, have been claimed to be distanétir differentiating fingerprints.

Along a ridge, variations in ridge width can be observed.sThives rise to ridge edge features,
including protrusions, indentations, and discontinsitisee Fig. 2(c)), among which protrusions are the
most notable ridge edge feature [5]. A ridge edge protrusifers to an abrupt increase in ridge width
that is not long enough to be called a bifurcation. Althouglye edge protrusions, dots, and incipient
ridges are defined as different features, their appearanfiegerprint images can be greatly affected by
finger pressure and imaging conditions [13], and consefuehey can be confused with each other in
different impressions of the same finger. As shown in Fig. @pain one impression can appear as a
ridge edge protrusion in the other impression, and an ianipiidge can appear as a series of separated
dots. Therefore, we do not distinguish among these threestyb level 3 features for extraction and
matching, but collectively label them as a single featupet{denoted as DIP).

In order to extract the DIP features, a procedure similarhet for pore extraction is applied, but
with matched filters designed for DIP. Fig. 4 shows that thensity profiles along the ridge normal
orientation are shaped as a full or half negative Gaussiharefore, we define the following matched

filters for the DIP features,

P rp(v,usty ty,0F) = 7«‘?1)]/49(1); tv)guu (us ty), 2)

whered' is the local ridge normal orientation at the DIP feature e@dicular tod). The DIP matched
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Fig. 7. Example DIP extraction results. (a) Part of a rolled ink fingerprint image in NIST SD30. (b)
DIP features detected in (a). (c) DIP features detected in the latent fingerprint image in Fig. 3(b).

filters are applied for each block that has dominant ridgeration withty, set to a constant, arg to a
multiscale setting. The resulting DIP map then goes thrdbgHollowing post-processing steps. First, the
candidate DIP pixels which are not in the valleys are rempledause the DIP features should reside in
valleys only. Second, the connected components in the DI ahaither too small or too large area are
discarded. Third, those components in the DIP map whosasityeis too high are removed. After these
post-processing operations, many spurious DIP are exdlddes remaining connected components in the
DIP map are then thinned to single-pixel curves. If a curvedsetoo much, i.e. the maximum distance
from its pixels to the chord (straight line connecting itsotwnds) is too large, it is divided into two
curves at the pixel which is farthest from the chord. Finalhe centroids of these curves are recorded
to represent the extracted DIP features in the fingerprihe DIP extraction results of the proposed
method for an example rolled ink fingerprint fragment arevahn Fig. 7(a) and Fig. 7(b) (note that if
the length of a detected DIP is larger than the local ridgeogeiit is displayed as an incipient ridge.
See the blue lines in Fig. 7(b)). The DIP extraction resuitshie latent fingerprint image in Fig. 3(b)
are shown in Fig. 7(c). Despite the poor quality of the latembst of the true DIP features have been
correctly extracted by the proposed method, but there are/f@dse detections (most of which are due

to ridge edge features).

3 LEVEL 3 FEATURE MATCHING
3.1 Algorithm Overview

Given a latent fingerpint, it is first matched with the exempliam the background database by using a

minutiae matcher (VeriFinger [19] was used in our experiteeriThe rank 1 minutiae match score is
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Fig. 8. An overview of the proposed latent fingerprint matching algorithm which utilizes level 3
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features.

then examined to determine if it is necessary to invoke thel I8 feature matching module. Specifically,
if the rank 1 minutiae match score is already above a prepédhreshold, the matcher will directly
output the identification results (e.g. the list of thpcandidates); otherwise, the level 3 features will be
further compared, and the final identification results wél llased on the fusion between the matching
results of minutiae and level 3 features. Fig. 8 illustratdés algorithm.

We first match the minutiae because i) minutiae have already bhown to be stable and discriminative,
and ii) minutiae form the basis of all the available AFIS. he trest of this section, we will describe the
three modules of the proposed level 3 feature matching rdeite ridge correspondence establishment,

pore matching, and DIP matching.

3.2 Ridge Correspondence Establishment

The level 3 feature matching method proposed here diffems fexisting methods in that it matches
level 3 features along the ridges and incorporates the agjra! relationship between level 3 features,
minutiae, and ridges. Given a query latditand an exemplar full fingerprin;, the proposed matcher

first establishes the ridge correspondences between théngerprints. To facilitate the ridge matching

process, the ridges in each fingerprint are traced and sdraple constant interval (in our experiments,
the interval is set to 10 pixels, which is the allowed tolemrof location displacement between two
matched level 3 features). During the ridge tracing and $iampthe associated minutiae (if any) are
recorded for each of the ridges, and the neighboring ridgestlae neighboring sampling points on the

left-hand and right-hand sides at each sampling point ofittge are also recorded.
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Algorithm 1 Ridge Correspondence Establishment
Input: MM: Mated minutiae pairs betweefi, and F;; R,, R;: Ridges inF, and F;

Output: s,: Similarity between ridges itf;, and F}; M R: Mated ridge pairs betweef, and F;, and
corresponding sampling points on them
1. s, +— 0, MR «— NULL
2: for each pair of mated minutiag¢ M1, M>}, in MM do
3: for each pair of ridges{ Ry, R, }, associated with\/; and M, do
4 Generate candidate aligned ridge pait® = {RSP;,0, RSP,,0} from {R;, Ry}
5: MRSP — I ntraRi dgeMat ch(CR)

6: if [MRSP| > 4 then

7: (mr,s) < I nter R dgePropagati on(R,, R, MRSP)
8: if s, < s then

9: Sy — 8, MR < mr

10: end if

11: end if

12:  end for

13: end for

Algorithm 1 describes the ridge correspondence estabéshinSuppose a set of mated minutiae are
found betweer¥;, and F; by the minutiae matcher. Fig. 9 shows an example latent anchated rolled
fingerprint in ELFT-EFS-PC. There are three pairs of matedutie in them. From each pair of mated
minutiae, several pairs of candidate aligned ridges canhit@ireed from the ridges associated with the
two minutiae in the pair. A candidate aligned ridge pair ifird®l asCR = {RSP;, PRy; RSP,, PRy},
where RSP, and RSP, are the two candidate ridges (or ridge segments) represéytéheir sampling
points and the first sampling points on them are assumed to diehed (here, the sampling points
corresponding to the mated minutiae) aR&; and PR, are the parent ridges from which this candidate
aligned ridge pair is generated. For the candidate aligiggk rpairs generated from mated minutiae,
the parent ridges are set to 0, which means they have no pddges. The parent ridges will be used
in Inter-Ridge propagation to ensure that only the samptiaopts neighboring to the parent ridges are
matched during the propagation. For example, for the maiedtiae pair{ F;,.M;, F;.M; } in Fig. 9(a),

each of the three ridges associated with\/; is paired with the corresponding ridge associated with
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F;. M7, resulting in three pairs of candidate aligned ridges. Nb& if a ridge ending is mated with a
ridge bifurcation, we will have two pairs of aligned ridgeshile if two ridge endings are mated, we
will get only one pair of aligned ridges.

From each of these aligned ridge pairs, the two ridges in tiie gre first compared by the Intra-
Ridge matching procedure. If the two ridges can be matched rfiore than four sampling points are
matched between them), the Inter-Ridge propagation prtread invoked to match the remaining ridges
in the two fingerprints based on the mated sampling pointdheriwo ridges. After all the aligned ridge
pairs have been considered, the ridge correspondenceseaibtaom the one which gives the highest
similarity between the ridges in the two fingerprints areetalas the final result. Next, we introduce
the two main procedures, Intra-Ridge matching and IntelgRipropagation, which are involved in ridge

correspondence establishment.

3.2.1 Intra-Ridge Matching
Given a candidate aligned ridge péitR = {RSP,, PRy, RSP, PRy}, Intra-Ridge matching is used to

find the corresponding sampling points on the two alignedea®d(or ridge segments). This is essentially a
string matching problem given that the first sampling point®S P, and RS P, are matched. We employ
the dynamic programming technique [21] to find the longegusace of mated sampling points on the
two ridges,M RSP = { RSP{", RSPy"}, such that (i) the indices of mated sampling points monaistyo
increase in bottRSP™ and RS P3", (ii) changes between indices of adjacent mated samplinggare
less than 3 (i.e. no more than 3 sampling points can be skigpgdg matching), and (iii) ifPR; # 0,
all the mated sampling points iRSP;™ should havePR; as their neighboring ridges & 1,2). In our
implementation, two mated sampling points should satisfiyé absolute difference between the distances
from them to the first sampling points is below a given thrédhoe. 10 pixels), and ii) the absolute
difference between the ridge curvatures at them is alsowbal@iven threshold (i.e. 15 degrees). We
measure the distance between two sampling points on a riggesibg the absolute difference between
their indices, which is similar to geodesic distance. Tligei curvature at a sampling point is measured
by the change in local ridge orientation at the point withpexg to the ridge orientation at the first
sampling point.

Given the mated points between two ridges, the similarityvben the ridges is computed as follows.
Because short ridges are mostly unreliable, if there arerfdatan 4 mated points between two ridges,
we discard them. Otherwise, we further examine the neighfpoidge structures of the mated sampling

points. Letn,,,, = |[MRSP| be the number of mated sampling points found BSP;, and RSPs.
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(© (d)

Fig. 9. Ridge correspondence establishment results for the latent L177B and its mated exemplar
in ELFT-EFS-PC. (a) Three pairs of mated minutiae are found between the latent and its exemplar.
(b) The ridges F;,.R; and F;.R, associated with the mated minutiae pair {F,.M;, F;.M;} are
matched by Intra-Ridge matching. (c) The mated ridges found at an intermediate step as the
procedure Inter-Ridge propagation proceeds from the mated ridges in (b). (d) The final mated
ridges between the two fingerprints obtained by the proposed method. Corresponding ridges are

marked by the same color.

For all the mated sampling points IRSP (i = 1,2), we examine on left-hand and right-hand sides,
repsectively, if the neighboring ridges of each two adjasampling points are different or not, resulting
in two feature vectorsNR. € {0,1}"»~1 and NR! € {0,1}"»~1, in which ‘0’ means same ridge
and ‘1’ means different ridgesv R} and N R} are then compared withv R, and N R}, respectively, and
the number of the same entries between them is counted,etbasty , and n’yy for the left-hand
and right-hand sides, respectively. The similarity betw#e neighboring ridge structures of the mated

sampling points on the two ridges is then calculated by

1 r
sN=05x —DNE _ 4 05x —NE 3)
Nmsp — nmsp—l
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If the mated sampling points on the two ridges have very lawilarity between their neighboring ridge
structures, they are also discarded. Fig. 9(b) shows tha-Ritige matching results for the ridgés. R,
and F;.R, associated with the mated minuti&g.\/; and F;.M; in Fig. 9(a).

3.2.2 Inter-Ridge Propagation

Given a set of mated sampling points on the two ridges foundhbyintra-Ridge matching procedure,
the Inter-Ridge propagation procedure, as sketched inratgo 2, matches all the remaining ridges. A
gueue (denoted a3) is constructed to store the candidate aligned ridge p@ivs.queue is initialized by
generating candidate aligned ridge pairs from each pairaiechsampling points. The candidate aligned

ridge pairs are the neighboring ridges on the corresponsiihgs of the mated sampling points.

Algorithm 2 Inter-Ridge Propagation
Input: MRSP: Mated sampling points on two ridges i, and F;; R,, R;: Ridges inF;, and F}

Output: s,: Similarity between ridges itf;, and F;; M R: Mated ridge pairs betweef, and F;, and
corresponding sampling points on them
1. MR+~ MRSP
2: Initialize the queue of candidate aligned ridge paips,based on MRSP
3: while @) is not emptydo
4. Retrieve the first candidate aligned ridge pairgn CR
5. mrsp < IntraRidgeMatch(CR)
6: if |mrsp| > 4 then

7 Appendmrsp to MR

8: Generate new candidate aligned ridge pairs basedhop
9 Push the new candidate aligned ridge pairs ifjto
10:  end if

11: end while

12: Calculate the similarity between the ridgesAp and F;: s,

After the initialization ofQ, we start the main loop of the Inter-Ridge propagation pioce to compare
the ridges in each of the candidate aligned ridge pair® iantil Q is empty. The first candidate i@
is popped out and matched by the Intra-Ridge matching proeedf more than four mated sampling
points are established, new candidate aligned ridge pegrgenerated and pushed iffo WhenQ is

empty, the Inter-Ridge propagation procedure terminatéls & set of mated ridge pairs as well as the
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corresponding mated sampling points. Figs. 9(c) and 9(0Wshhe mated ridge pairs found between the
two example fingerprints as the procedure Inter-Ridge mapan proceeds from the mated ridge pairs
shown in Fig. 9(b).

Let 5, die, andd,,; be the average similarity between neighboring ridge stirest of all the mated
ridge pairs, the average location displacement and theageeorientation difference between all the
mated sampling points, respectively. Lei;rsp andnrsp denote the total number of mated sampling
points on the ridges in the two fingerprints and the total neinmdf sampling points on ridges in the
query fingerprint, respectively. Then the similarity beénethe ridges in the two fingerprints is defined

as

10 — djpe 15 — dpyi
sr:O.3x§N+0.2x7l+0.2x7+0.3xnMRSP. (4)
10 15 NRSP

3.3 Pore Matching

Once the correspondences between ridges are obtainedsvide3| features can be matched along the
mated ridges. To implement this, we need to first associatdetel 3 features with the ridges. In this
section, we discuss the matching of pores; the matching Bf fleatures will be discussed in the next
section. Recall that pores in a fingerprint are all locatedidges. Hence, for each pore, we find the
closest ridge to it and its projection point on this ridge eTores on the same ridge are then grouped
together and ordered along the ridge tracing direction.

Given a pair of mated ridges, the correspondences betweaes pa these two ridges are found using
the following method. For each pore on a ridg&) R, we first find its closest sampling poiftP; on the
ridge (denote the ridge a8,). If SP, does not have a mated sampling point, ti&0R; does not have
any mated pores; otherwise, we find the nearest pe€eR,, to the mated sampling poin$,P, of SP;.
The location displacement betweenPOR; andSP; (i = 1,2) is calculated as the difference between
the sampling indices of the projection point BOR; and SP;. The location displacement between the
two pores,POR; and PORy, is then defined ag,. = |di — dz|. If d;,. is smaller than a given threshold
(i.e. 10 pixels for 1000ppi fingerprint imagesdyOR; is mated withPOR,. After all the pores in the
latent are examined, we get the mated pores between the tgerfiints. Fig. 10(a) shows the mated
pores obtained between a latent and its mated exemplar.

To calculate the pore match score, we compare the neiglgoddge structures and pore distribution
of the mated pores on each pair of mated ridges (recall thaptres on a ridge are ordered, so are
the mated pores). A comparison of neighboring ridge strestus the same as being described for

mated sampling points on ridges (see Section 3.2.1). Asherniighboring pore distribution, if two
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mated pores both have a neighboring pore on its left-hare @idight-hand side neighboring ridge, the
location displacement between the neighboring pores @utzéd. Lerdégfp be the location displacement
between the neighboring pores on the left-hand side ofithenated pores on the mated ridges, alﬁgj

the location displacement between the neighboring poreth@might-hand side of them. The similarity
between the neighboring ridge structures and pore disivitbwf the mated pores in the two ridges can

be then calculated as

! ; SN (10 — df! S (10 — dyY
s = 04x —NR 4oy NR gy Dimt : Kp) | gy Zimt _ Np) (5)
Nmp — 1 Nmp — 1 10 X niyp 10 x n'yp

where n,,,, is the number of mated pores on the two ridges aAd> and n’y, are the number of
cooccurring neighboring pores on the left-hand and rigiitehsides, respectively. Finally, the pore match
score between the two fingerprints is defined as

10 — dyoc nyp

spor = 0.8 x s, +0.2 x (0.3 x 55 + 0.3 X
where sy is the average similarity between neighboring ridge stmes and pore distribution of all
the mated pores on the mated ridge paifs, is the average location displacement between all the
mated pores, and,;p andnp denote the total number of mated pores and the number of potes
query latent fingerprint, respectively. It is worth mentig that the above match score measures the
similarity between fingerprints by considering not only tbeation displacement between mated pores
and the number of mated pores, but also the consistency afdbe structures and feature distribution
surrounding the mated pores, whereas existing methodgLpP]Qjonsider only the location displacement

or the number of mated pores.

3.4 DIP Matching

The matching of DIP features is also constrained along matieges. Unlike pores, DIP features reside
on valleys rather than ridges. Therefore, we associate BéeHeature with two ridges that are on the
left-hand and right-hand sides of the valley on which it desi Given a DIP featur®P; which is
associated with two ridge®;; and R;», the nearest sampling point to its projection on the ridtje

is first found, denoted aSP;. If SP, does not have mated sampling points, tliehP; does not have
mated DIP features; otherwise, the nearest DIP featureetortiited sampling poin¥ P» on the mated
ridge Ro; of Ry; is found, denoted a®IP,. Let d; be the location displacement betwefd P; and
SP; (i = 1,2), then the location displacement betwelhi P, and DIP, is dj,. = |di — da|. Let Ros be
the other ridge associated with/ P,. DI P, and DI P, are mated DIP features only if &,. < 10 and
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Fig. 10. Example level 3 feature matching results. (a) Mated pores in the latent shown in Fig.
3(b) and its mated exemplar. Corresponding pores are marked by the same color. (b) Mated DIP

features in the latent shown in Fig. 9(a) and its mated exemplar.

ii) Ri2 and Ry, are mated ridges. After enumerating all the DIP features,inwe obatin the mated DIP
features. Fig. 10(b) shows the obtained mated DIP featareslatent and its mated exemplar.

Let d;,. be the average location displacement between all the matedfeatures anch,;p;p and
nprp be the total number of mated DIP features and the number off@dRires in the query latent

fingerprint, respectively. The DIP match score between weefingerprints is then defined as
NMDIP

10 — CZloc
— 407 . 7
10 * x npip ) ( )

sprp = 0.8 x s, +0.2 x (0.3 x

4 EXPERIMENTS
4.1 Databases

Two latent databases were used in this study. One is the HESHPC database [16], which has 242
1000 ppi latent fingerprints (most of them are from the samgc®oas the latents in NIST SD27) with
1000 ppi mated full prints. The level 3 features in thesentstdnave already been manually marked by
latent examiners. The background database consists o® 4A@0 ppi fingerprint images, which were
collected from the mated fingerprints of the latents and ®&session fingerprint images in the NIST
SD29 and the NIST SD30 datasets. The second latent datalaaseollected at West Virginia University
(WVVU). It has 127 latents in which the level 3 features haverbmanually marked. While these latents
are at 1000 ppi, the full fingerprints in the background dasabare only at 500 ppi. In an earlier study
[18], we investigated the utility of pores in the context afrying fingerprint image quality and resolution

by using the rolled ink fingerprint images in NIST SD30 and enotercial minutiae matcher (MVeriFinger
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Fig. 11. The number of features in the latents in the ELFT-EFS-PC and WVU databases. (a)

Number of pores vs. Number of minutiae. (b) Number of DIP features vs. Number of minutiae.

[19]). It was reported that automatic pore extraction aredresulting matching accuracy are significantly
affected by fingerprint image quality. Further, it is onlyrégh resolution (1000 ppi) and for good quality
fingerprint images that the pores can improve the fingerpnification accuracy, and even then only
marginally. Hence, the WVU database is not suitable foryshgithe utility of level 3 features in latent
matching (although many latents in it have large number oégothe mated rolled images at 500 ppi
do not have a sufficient number of pores), and we simply uséar iteporting the statistics of level 3

features in latents.

4.2 Statistics of Level 3 Features in Latents

The statistics of level 3 features in the latents in the EEHFS-PC and WVU databases have been
collected based on the manual markup data. Fig. 11 showsuthber of level 3 features (i.e. pores and
DIP features) with respect to the number of minutiae. It carsben that there is a large variance in the
number of level 3 features across different latent fingatpriln ELFT-EFS-PC, very few of the latents
(only 6 of 242 latents) have any pores. Fig. 12 shows threenplalatents in ELFT-EFS-PC, which
have 91, 17, and 0 pores marked by the latent exminers, rigdgcGiven such a small number of
latents in ELFT-EFS-PC which have pores, pore matching tdikely to improve the latent matching
accuracy on this database. Since no public domain lateabdsae is suitable for studying the utility of
pores, we constructed a simulated partial fingerprint detaland investigated the effectiveness of pores
on that dataset (see Section 4.5). On the other hand, manguf78f 242) latents in ELFT-EFS-PC do
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Fig. 12. Example latents in ELFT-EFS-PC with markup pores. (a) 91 pores, (b) 17 pores, and (c)

0 pores.

have DIP features. Therefore, we will use the ELFT-EFS-Ptalisse for studying the effectiveness of

DIP features.

4.3 Feature Detection Accuracy

Sixty partial fingerprints (320240 pixels) were cropped from the 1000 ppi rolled ink fingerpimages
(~1500x 1500 pixels) in NIST SD30. The pores, dots, incipient ridgesd ridge edge protrusions in
these sixty partial fingerprint images were manually marfkedhe purpose of evaluating their automatic
detection accuracy. In order to study the impact of imagditguan the automatic detection accuracy,
the 60 partial fingerprint images were divided into two gtyagiroups (good and bad) according to their
image quality evaluated by the method in [22]. Two pore deiacmethods were considered, i.e. the
proposed method and the method in [10]. These two methofis difthat the proposed method conducts
filtering in the spatial domain using an anisotropic moddieveas the method in [10] applies filtering
in the frequency domain with an isotropic model. Table 1 gitlee average pore detection accuracy

along with the standard deviation of the two methods on tloeigal truth dataset?;, the true detection
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TABLE 1

Average pore detection accuracy and standard deviation

Method Proposed Method in [10]
Quality Good Bad Good Bad
R (%) 73+9.5 | 67T£14.6 | 69+ 16.0 | 63 £12.5
Ry (%) | 20£12.2 | 30£14.4 | 27+£11.7 | 40+ 18.1

TABLE 2

Average DIP detection accuracy and standard deviation

Quality | Good Bad
N, 6+56 | 12+8.5
N 4+£36 | 10£7.0

rate, is defined as the ratio of the number of true detectedsptr the total number of ground truth
pores, andRy, the false detection rate, is defined as the ratio of the numwibfalsely detected pores to
the total number of detected pores. These results showhbaddtection accuracy of both the methods
degrades as the fingerprint image quality goes down. As tigeriimint image quality changes from good
to bad, the true detection rate decreases by about 5%, anilfeedetection rate increases more by
about 10%. According to the standard deviation of the digteGccuracy, in general, the automatic pore
detection methods are more robust on good quality fingdrjpriages than on bad quality fingerprint
images. Table 2 presents the detection accuracy of the pedpDIP detection method ([10] did not
present a DIP feature extractor), whée¥g, and N, denote the numbers of missing features and spurious
features, respectively. Note that the average numbersasreable DIP features on good and bad quality
fingerprint images in the ground truth dataset are 12 andezperctively. Again, poor quality fingerprint
images cause more missing features as well as more spueatisds. These results show that improving
the quality of full fingerprint images in the background detse is very important for the effectiveness

of level 3 features in latent fingerprint matching. We wiltther demonstrate this in the next section.

4.4 Latent Fingerprint Matching

We have evaluated the latent matching performance withspangl DIP features on the 242 latents in

ELFT-EFS-PC. Features (including minutiae, ridge skelstgores, and DIP) were manually marked in
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(@) (b)

Fig. 13. Poor quality of exemplar fingerprints significantly degrades the utility of level 3 features.
(a) Latent LO30G in ELFT-EFS-PC, and (b) its mated full fingerprint image. Nine mated minutiae
are found between them. But none of the 91 pores marked in the latent (as shown in (a)) have

any corresponding pores in the mated full fingerprint.

latents, and automatically extracted from full fingersimt the background database by using VeriFinger
and the proposed level 3 feature extraction methods. Asussd in Section 3.1, level 3 features are
matched only when the rank 1 minutiae match score of a latemstrialler than the given threshold
(in our experiments, it was empirically set to 80 accordioghe raw match scores of VeriFinger on
ELFT-EFS-PC, which ranged from 0 to 248). For the sake of iefiicy, we matched level 3 features
only between the latent and the top 100 candidate exemmaisved by VeriFinger. The match scores
of VeriFinger and level 3 features were then combined bygiire weighted sum rule [23]. Before the
fusion, the minutiae match scores of each query latent fprggrwere normalized by using the max-min
normalization method [23] based on the maximum and minimaares between it and the exemplars.
According to the experimental results, among the 6 latemtSLFT-EFS-PC that have patron pores,
three are already correctly identified at rank 1 by VeriFmdeo (LO30G with 91 pores and L201U
with 17 pores, see Figs. 12(a) and 12(b)) are correctly negtehith their true mates after rank 1 but
before rank 100, and the remaining one (L014G with 83 poesFsg. 3(b)) is correctly matched at rank
2874. By applying the proposed level 3 feature based latemtiimg method, however, the identification
results of the latents LO30G and L201U are not improved. Thibecause i) the number of pores is
small or the pores are sparsely distributed in the lategt (€201U), or ii) the corresponding region of

the latent in its mated full fingerprint image is of poor qtatnd has few pores (e.g. LO30G). Fig. 13
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Fig. 14. Identification accuracies of VeriFinger and combination of VeriFinger and the proposed

DIP matcher on the ELFT-EFS-PC database.

shows the latent LO30G and its mated full fingerprint. Altgbuhere are nine mated minutiae in the two
prints shown in Fig. 13, no corresponding pores are foundhénfall fingerprint for any of the markup
pores in the latent. This is due to the poor quality of the egponding region in the full fingerprint.

Fig. 14 presents the Cumulative Match Curves of VeriFinget eombination of VeriFinger and the
proposed DIP matcher on the ELFT-EFS-PC database. At rankerfinger correctly identified 65
latents; this number was improved to 75 after incorporativegproposed DIP matcher. In addition, many
of the other latents had the ranks of their true mates imgloer example, for the latent shown in Fig.
10(b), its true mate was ranked at 82 by VeriFinger; afteoiporating the proposed DIP matcher, the
rank was improved to 4. From these results, we can see thalt 3efeatures, when reliably present in
both latents and their mated full fingerprints, are indeezfulsn improving the latent matching accuracy.

Unfortunately, there are many difficulties in using levekatures on the available latent databases. For
one thing, there are very few latents in the latent databagthsa sufficient number of level 3 features.
This is not only because of the generally low quality of latémgerprints, but also because latent experts
often are not able to mark some of the level 3 features. Whileean clearly see a large number of pores
in the latent shown in Fig. 1(c), according to the markup datBLFT-EFS-PC, three of the four latent
experts did not mark any pores in it. Another concern is thatquality of the exemplar full fingerprints
in these databases is not good enough to automaticallycexéléable level 3 features. As a consequence,
it is not possible to utilize the level 3 features even thotlgky are present in latents (as shown in Fig.

13). Such a problem of reproducibility of level 3 featuresexemplar full fingerprints has also been
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Fig. 15. Identification accuracy of the 131 simulated partial fingerprints and 4180 background
exemplars. (a) Performance of the proposed pore matcher and the ICP based pore matcher. (b)

Performance of combing VeriFinger and pore matchers.

acknowledged in a recent survey on level 3 features amoegtlaxaminers [25].

4.5 Simulated Partial Fingerprint Recognition

The experimental results presented above not only show dtenfial of level 3 features in improving
latent matching accuracy, but also demonstrate the difficfl using level 3 features in existing latent
databases due to the small number of latents having leveb®iress and the poor quality of mated
full fingerprints. In order to better understand the utiliy level 3 features, in particular pores, we
constructed an additional set of 131 simulated partial fipget images of small area (32240 pixels).
They were cropped from the 1000ppi “B” session rolled ink érggint images1500x 1500 pixels) in
NIST SD30. The pores in these 131 partial fingerprints wereually marked, whereas the minutiae and
ridge skeletons were extracted by VeriFinger [19]. The pgaoknd database in the experiments was the
same as in our experiments with ELFT-EFS-PC, except thaetleenplars from the “B” session rolled
ink fingerprint images in NIST SD30 were substituted with tteresponding “A’ session images in
the database (since the simulated partial fingerprint imagethe query fingerprints were cropped from
the “B” session images). All features in the exemplars wern®ratically extracted by VeriFinger and
the proposed level 3 feature extraction methods. Next, werteghe performance of the proposed pore
matching method, and we compare it with VeriFinger and thié Based pore matching method [10] to

show the effectiveness of the proposed method and theyutilipores.
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Fig. 16. Number of minutiae vs. the minutiae match scores in fingerprints with different

identification results.

The identification accuracy on this dataset is presentedgn1s. Using VeriFinger, among the 131
guery partial fingerprints, 80 fingerprints were correctientified at rank 1. After incorporating the
proposed pore matcher, 27 additional fingerprints wereessfually identified at rank 1. Compared with
the results on ELFT-EFS-PC, these results are much moreigirgmthey show the effectiveness of level
3 features in matching partial fingerprints of small areaclkihill otherwise pose a challenge to minutiae
based AFIS due to the limited humber of minutiae they contslioreover, the importance of collecting
good quality full fingerprints can also be seen from thesalt®sWith the fast development of fingerprint
imaging techniques and the widespread use of high resol@ti@00 ppi) live-scan fingerprint scanners,
we believe that it is becoming feasible to collect good dudingerprints. This will facilitate extraction
of reliable level 3 features and thereby further improvel#tient matching accuracy of existing AFIS by
incorporating level 3 features.

Fig. 16 compares the fingerprints which are correctly idietiat rank 1 by both VeriFinger and the
proposed method with those which are correctly identifietgrafank 1 by VeriFinger, but at rank 1
after incorporating the proposed method. Interestingdjig, improvement due to level 3 features is only
in situations where fingerprints have a small number of niubr low minutiae match scores. This
indicates that i) minutiae matchers usually work very wellem there is a sufficient number of minutiae,
and ii) the contribution of level 3 features is more effeetifor fingerprints which have few minutiae
or low minutiae match scores. In [25], about one-third of paticipant latent examiners reported that
they do not consider level 3 features when level 2 featuresofsufficient quality and are sufficient in

number, which confirms our findings here. Moreover, thesemasions also justify the proposed level
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Fig. 17. Pore matching results on an example partial fingerprint and its mated full fingerprint
(cropped for display purposes) by using (a) the proposed method and (b) the ICP based method.
The polygons highlight the corresponding reference minutiae between the fingerprints. Due to
the large distortion in the fingerprints, the ICP based method mis-matches many pores; on the
contrary, the proposed method is more robust to distortion, and can still correctly match most of

the pores.

3 feature based latent fingerprint matching algorithm diedcin Section 3.1.

For comparison, the ICP based level 3 feature matching rdeith¢10] has also been implemented.
Given a pair of mated minutiae between two fingerprints, thethmd in [10] first uses the two mated
minutiae to align the level 3 features (here, pores) in the fiwgerprints, and then employs the ICP
algorithm to further align and match the level 3 featurese Tiatch score for the two fingerprints was
finally computed based on the average distadckeetween the obtained mated poresyr = 1—d/dpraz,
whered;,, is the maximum distance between mated pores (in our expetsnthe distance threshold
between two mated pores was set to 10 pixels). The CMC of tReb&ed method in Fig. 15(a) shows
that its performance is much worse than the proposed me@wlg:10 fingerprints are correctly identified
at rank 1. By fusing its scores with the scores of VeriFinges, did not get consistent improvement in
the identification accuracy (see Fig. 15(b)).

Fig. 17 shows the pore matching results on an example pérgsdrprint and its mated full fingerprint
(cropped for display purposes) by using the proposed medimodthe ICP based method, respectively.
Obvious distortion can be observed between the two fingagfnote the polygons highlight the corre-
sponding minutiae). As a consequence, in the ICP based nhetthost pores are falsely matched (see
Fig. 17(b)). On the contrary, most pores are correctly nmeddby the proposed method despite the large

distortion (see Fig. 17(a)). Based on the match scores athie af the mated fingerprint in this pair is 1
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(the proposed method) and 16 (the ICP based method), rasggcivhile VeriFinger ranks it at 5. These
results illustrate the advantage of the proposed methoamsidering ridge structures and inter-feature

topology when matching level 3 features in fingerprints.

5 CONCLUSIONS

We have studied the utility of level 3 features for latent &ngint matching. Automatic algorithms have
been proposed for extracting and matching several leveladurfes, i.e. pores, dots, incipient ridges,
and ridge edge protrusions. The proposed matching algoritbmpares level 3 features along ridges,
and enforces the topological relationship between levada@ures, minutiae, and ridges. It is thus more
effective for latent fingerprints of small area and robustistortion (on the set of simulated partial
fingerprints, after combination with VeriFinger minutiaeatther, the rank 1 identification rate by the
proposed method is 81.8%, whereas that by the existing ICP based method &l.1%). Based on the
performance of the proposed algorithms on operationattatatabases and simulated partial fingerprints,
we have shown that

« Published level 3 feature matching algorithms provide pmenformance on operational latent fin-
gerprint databases. Further, conclusions made by prelgaoak3 studies do not hold for challenging
latent fingerprint matching problems;

« The limited number of latents that have level 3 features haddw reproducibility of level 3 features
in poor quality exemplar full fingerprints make the level atigres of limited use in improving the
latent matching accuracy on the available latent databases

« The latent matching accuracy can be improved by level 3 featii the features can be reliably
extracted in both latents and mated full fingerprints (thekrd accuracy on the ELFT-EFS-PC
database is improved from 26.9% to ~ 31% after incorporating the proposed DIP matcher);

« The contribution of level 3 features is more effective whae humber of minutiae in latents is
small or the minutiae-based match score is low.

While the results of our study demonstrate the potentiadedll 3 features in improving latent matching
accuracy, they also show the difficulties in using level 3dess. In order to better explore level 3 features
in latent matching and to improve the latent matching acgud contemporary AFIS, we would like
to make the following recommendations:

« Additional attention should be paid during enroliment ts@ne that a sufficient number of level 3

features in fingerprints be captured. As observed in thidystpoor quality of full fingerprints is

one of the major reasons for limited contribution of leveleatiures. Using high resolutiop> {000
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ppi) scanners is a necessary but not a sufficient conditioexXtracting level 3 features. Fingerprint
image quality assessment software that can provide mal-tjuality level estimates will be very
useful. Since existing fingerprint image quality assessralgorithms (e.g. [22][26]) do not consider
level 3 features, new fingerprint quality assessment dlgos need to be developed;

« Tiny latent fingerprints that have few minutiae but very clesvel 3 features should not be simply
discarded. As current AFIS generally cannot correctly ifigtatents with very few minutiae (say
fewer than 6), more attention should be paid to them in terfmswel 3 features, provided that a
large percentage of level 3 features are available in them;

« Latent experts and AFIS developers should cooperate to éononsensus on how to mark level 3
features and ridge quality map in order to optimize thetytidif level 3 features. As we observed
in the ELFT-EFS-PC database, level 3 feature marking in mai@nts is not satisfactory from the
viewpoint of AFIS developers. In addition, large inconsigty exists among different latent experts.
The close cooperation between latent experts and AFIS alesed will in the end help improve the
fingerprint standard, such as CDEFFS [5];

« Use level 3 features only when it is necessary. Marking I8viglatures in latents is time-consuming
and tedious. Furthermore, when a large number of minutiaeeailable, the additive value of level
3 features is limited. A simple indicator for using level aferes is when the minutiae match score
at rank 1 is lower than a predefined threshold;

o ELFT-EFS evaluation would be more useful if the fingerprmage database was made open, and
the utility of level 3 features was separately tested irtstebbeing mixed with other extended

features.
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