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Abstract

Touchless 3D fingerprint sensors can capture both 3D

depth information and albedo images of the finger sur-

face. Compared with 2D fingerprint images acquired by

traditional contact-based fingerprint sensors, the 3D fin-

gerprints are generally free from the distortion caused by

non-uniform pressure and undesirable motion of the finger.

Several unrolling algorithms have been proposed for vir-

tual rolling of 3D fingerprints to obtain 2D equivalent fin-

gerprints, so that they can be matched with the legacy 2D

fingerprint databases. However, available unrolling algo-

rithms do not consider the impact of distortion that is typ-

ically present in the legacy 2D fingerprint images. In this

paper, we conduct a comparative study of representative un-

rolling algorithms and propose an effective approach to in-

corporate distortion into the unrolling process. The 3D fin-

gerprint database was acquired by using a 3D fingerprint

sensor being developed by the General Electric Global Re-

search. By matching the 2D equivalent fingerprints with the

corresponding 2D fingerprints collected with a commercial

contact-based fingerprint sensor, we show that the compat-

ibility between the 2D unrolled fingerprints and the tradi-

tional contact-based 2D fingerprints is improved after in-

corporating the distortion into the unrolling process.

1. Introduction

Fingerprints are widely used for personal identification

in both forensics and civilian applications. Traditionally,

fingerprints have been captured by using an ink-based off-

line method or an on-line contact-based (e.g., optical, ca-

pacitive, etc.) fingerprint scanner [9]. In either case, the

subject has to press (roll) his/her fingers against a surface

(e.g., a fingerprint paper card or a glass plate), to obtain 2D
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Figure 1. Two 2D plain fingerprint images collected from the same

finger by using a contact-based sensor [17]. The image in (b) has

torsion and larger distortion than the image in (a). In both images,

ridges appear wider in the central part than in the peripheral part.

fingerprint images. One drawback of these contact-based

fingerprint acquisition approaches is that the pressure ex-

erted by the fingers is usually non-uniform and leads to un-

desirable finger motion (e.g., tracking and torsion) [8, 10].

As a consequence, the captured 2D fingerprint images are

often distorted in a nonlinear way. See Fig. 1. Such non-

linear distortion increases the intra-class variations among

the fingerprint images of the same finger, and introduces

matching errors [12].

Touchless fingerprint acquisition technology has been

proposed to directly image the fingers without contact be-

tween the finger surface and the fingerprint sensor. There

are two types of touchless fingerprint technology: 2D im-

ages (i.e., texture information only) and 3D images (i.e.,

texture + depth information). The use of 2D touchless fin-

gerprints has not been as popular as 2D contact-based sens-

ing technology since the curvature of the finger is not taken

into account. Here, we primarily focus on 3D touchless

fingerprint sensing beacuse of its capability to provide a

“rolled equivalent” 2D image that has important implica-

tions in law enforcement and homeland security applica-

tions. The 3D touchless fingerprint acquisition approach

has several advantages since it can capture i) (rolled equiva-

lent) full fingerprints by using multiple cameras (or a single
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Figure 2. A 3D fingerprint consists of 3D point cloud and the associated albedo image. It can be represented as a set of quaternions

F = {(xi, yi, zi, gi)|i = 1, 2, · · · , N}. Unrolling algorithms convert 3D fingerprints to 2D equivalent fingerprints F = g(r, c) ∈ R
R×C .

camera with mirrors) [5, 10, 14], ii) both 3D depth informa-

tion and albedo images of the finger surface [2,6,10,15], and

iii) images without the aforementioned distortion caused by

non-uniform pressure and undesirable motion of the fin-

ger [10].

3D fingerprint images, as a new representation of fin-

gerprints, can not be directly matched with the legacy 2D

fingerprints [4]. Further, it is not feasible to replace the 2D

fingerprints in existing fingerprint databases with 3D fin-

gerprints. Consequently, any new sensing technology for

fingerprints must satisfy the interoperability property due

to the lack of existing 3D database and the current lack

of 3D fingerprint technology and standards. Of course, in

an emerging application where a database of users is being

constructed from scratch, the new sensing technology can

be used to enroll all the users. Note that since the 3D fin-

gerprint sensors are significantly more expensive than 2D

contact-based sensors, we envision that the 3D sensors can

be used for acquiring high quality enrollment images and

the commodity 2D contact-based sensors can be used for

verification.

One approach to address the interoperability issue be-

tween 3D fingerprints and traditional 2D fingerprints is to

convert the 3D fingerprints to 2D equivalent fingerprints [4].

This conversion is called virtual rolling of 3D fingerprints,

and the algorithms for achieving this are called unrolling

(or unwrapping) algorithms. While several unrolling algo-

rithms have been proposed in the literature, they do not con-

sider the distortion typically encoutered in capturing 2D fin-

gerprints. To improve the matching accuracy, it is important

to take the distortion into consideration when converting 3D

fingerprints to 2D equivalent fingerprints.

The objective of this paper is i) to compare the perfor-

mance of unrolling algorithms proposed in the literature and

ii) to propose an effective method for incorporating the dis-

tortion into the unrolling process so that the compatibility

between the 2D equivalent fingerprints and the traditional

2D fingerprints can be improved. The unrolling algorithms

will be evaluated on a set of 3D fingerprints in terms of

the compatibility between their obtained 2D equivalent fin-

gerprints and the corresponding traditional 2D fingerprints.

Specifically, we will match the 2D equivalent fingerprints

against the traditional 2D fingerprints by using a commer-

cial fingerprint matcher, i.e., VeriFinger [1], and compare

the matching accuracy on the unrolled 2D fingerprints ob-

tained by different unrolling algorithms. The experimental

results show that the 2D equivalent fingerprints and the tra-

ditional contact-based 2D fingerprints become more com-

patible after correcting for distortion.

The rest of this paper is organized as follows. Section

2 briefly reviews published unrolling algorithms. Section

3 introduces the proposed method of distortion-based un-

rolling. Section 4 presents the experimental results and Sec-

tion 5 concludes the paper.

2. Related Work

Before we review the unrolling algorithms, we first de-

fine the problem of unrolling 3D fingerprints. 3D finger-

prints captured by touchless fingerprint sensors consist of

two parts: 3D point cloud data and the albedo image. See

Fig. 2. Without loss of generality, we denote a 3D finger-

print as a set of quaternions, i.e., F = {(xi, yi, zi, gi)|i =
1, 2, · · · , N}, where (xi, yi, zi) are the coordinates of the ith
point in the fingerprint, gi is its intensity, and N is the to-

tal number of points. We further suppose that the 3D point

cloud has been aligned so that the Z-axis is along the fin-

ger length (i.e., the first principal axis of the finger). Points

with the same z-coordinate (i.e, at the same length of the

finger) consititute a slice (or a cross section) of the finger.

Given a 3D fingerprint, an unrolling algorithm maps it to a

two dimensional plane and outputs a 2D equivalent finger-

print image, i.e., F = g(r, c) ∈ R
R×C , where R and C

are, repsectively, the numbers of rows and columns in the

2D equivalent fingerprint image, and g is the intensity at the

pixel (r, c).



Figure 3. Three representative unrolling algorithms: direct sampling, cylinder model based, and tube model based. They differ from each

other in the way they sample slices (the filled-in points denote sampling points in a slice). The cylinder model assumes that all slices are

segments of circles that have the same radius; the tube model assumes that all slices are segments of circles, and different slices can have

different radii; and the direct sampling method does not assume any model for the finger surface. SH, SA, and SL are the sampling intervals

of the three algorithms, respectively.

Available unrolling algorithms can be divided into two

categories — parametric and non-parametric — according

to whether a model is assumed for the finger surface [4].

Parametric unrolling algorithms assume that the finger sur-

face can be represented as a parametric surface, e.g., cylin-

der [4], tube [2,15], and sphere [16]. In the cylinder model,

the finger surface is approximated as a cylindrical surface

centered at the principal axis of the finger. In other words,

the cylinder model assumes that all the slices are segments

of circles which have the same radius. The tube model also

assumes that all the slices are segments of circles, but their

radii (and optionally their center positions) can be different.

Unlike parametric methods, non-parametricmethods do not

assume any models for the finger surfaces. They directly

compute the corresponding pixels in the 2D equivalent fin-

gerprint image from the points in the 3D fingerprint.

To unroll a 3D fingerprint, the parametric unrolling al-

gorithms first fit the assumed finger surface model to the

point cloud of the 3D fingerprint and estimate the param-

eters of the model. With the estimated model of the 3D

fingerprint, they then generate the 2D equivalent fingerprint

by flattening the parametric surface defined by the model.

These parametric unrolling methods preserve the angular

distances between points in the finger surface, instead of

the surface distances between them.

On the contrary, non-parametric unrolling algorithms

aim to preserve the geodesic or Euclidean distances be-

tween points. In [6] and [13], an iterative algorithm was

employed to optimize the locations of the points in the 2D

equivalent fingerprint image in the sense that the Euclidean

distances between neighboring points in the 3D point cloud

are well preserved. In [4], a direct sampling method is pro-

posed. It divides the 3D fingerprint into slices, and chooses

a starting point in each slice as the point where the slice

and a plane passing through the principal axis of the fin-

ger (we call this plane the baseline plane) intersect. In the

2D equivalent fingerprint image, each slice corresponds to a

row and the starting points of different slices are in the same

column. It then re-samples each slice at equidistance from

the starting point towards both ends of the slice, and maps

each sampling point to a pixel in the row corresponding to

the slice. The direct sampling method in [4] can preserve

the geodesic distances between points on the finger surface.

Moreover, it allows to choose where to start rolling the fin-

gers, e.g., from left to right or from right to left. As a result,

the obtained 2D equivalent fingerprint images can simulate

the effect of rolling fingers from “nail to nail”, which is re-

quired in collecting rolled legacy fingerprint images [11].

To summarize, existing unrolling algorithms can pre-

serve certain distance measurement between points on the

finger surface when converting 3D fingerprints to 2D finger-

prints. See Fig. 3. However, they do not consider the distor-

tion that is typically present in acquiring traditional contact-

based 2D fingerprints 1. Such distortion can affect the com-

patibility between the 2D equivalent fingerprints and the

traditional 2D fingerprints. Moreover, incorporating non-

linear distortion into unrolling provides more accurate 2D

equivalent fingerprints. This not only simplifies distortion

1In [16], the authors apply the sphere model to unwrap 3D fingerprints

and propose to correct the distortion introduced during the flattening of

a spherical surface. But, they did not consider the distortion introduced

during the pressing/rolling of the finger that is considered here.
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Figure 4. The proposed distortion model of plain fingerprints. (a) Two assumptions: i) The finger moves towards the sensor along the

direction perpendicular to the acquistion plane, and ii) no traction or torsion is applied once the finger gets contacted with the acquistion

plane. (b) The pressure decreases from the center to the boundary of the fingerprint. (c) The sampling interval at a point P depends on its

position with respect to the center O (see Equation 1). The farther P is from O, the larger the sampling interval at P is. The fingerprint

image is from the FVC2002 database [7].

processing in 2D fingerprint matching, but also makes the

matcher more efficient. In the next section, we propose an

effective approach to deal with the distortion when convert-

ing 3D fingerprints to 2D fingerprints.

3. Distortion-based Unrolling

3.1. Distortion Model

Several different distortion models, such as thin plate

spline [3] and average deformation model [12], have been

proposed for handling nonlinear distortion in fingerprint

matching. These models compute distortion between two

fingerprints based on the given corresponding feature points

in them. The model presented in [8], on the contrary, sim-

ulates nonlinear distortion encountered in a contact-based

plain fingerprint; the model has been successfully applied

in generating synthetic plain fingerprints. However, the ref-

erence non-distorted fingerprint used by the model was de-

fined as the fingerprint which was produced by a correct

finger placement, which still suffered from the pressure-

induced distortion. As a result, it is not applicable in our

case because our reference fingerprints (i.e., the 3D touch-

less fingerprints) are completely free from the pressure-

induced distortion. In the rest of this section, we propose

a new distortion model specially designed for unrolling 3D

fingerprints.

Plain and rolled fingerprints basically have quite differ-

ent distortion due to the different ways they are acquired. In

this paper, we focus on plain fingerprints. As can be seen

from the example plain fingerprints in Fig. 1, ridges usually

appear wider in the center than in the periphery of plain fin-

gerprints. One possible reason for this is the non-uniform

pressure across the fingerprints: the pressure decreases from

the center to the periphery of fingerprints. Because of the

plasticity of finger skin, large pressure stretches the skin

more than low pressure. Consequently, given an imaging

resolution, more points are sampled from the portion where

the pressure is large.

The objective of our proposed distortion model is to sim-

ulate such non-uniform sampling rates caused by the non-

uniform pressure across a plain fingerprint. For simplicity,

we make the following two assumptions on plain finger-

print acquisition. i) The finger moves towards the finger-

print sensor along the direction perpendicular to the acqui-

sition plane of the sensor (see Fig. 4(a)). The point on the

finger surface which touches the acquisition plane first is

defined as the center of the obtained fingerprint (denoted as

O). ii) No traction or torsion is applied to the finger once it

gets in contact with the acquisition plane. Under these as-

sumptions, the pressure reaches the maximum at the center

and gradually decreases as we approach the boundary of the

fingerprint. See Fig. 4(b). Correspondingly, the sampling

interval gradually increases from the center to the boundary.

Taking the center of the fingerprint as the origin, a co-

ordinate system is constructed in the fingerprint: Y-axis is

along the principal axis of finger and X-axis is perpendicular

to Y-axis. See Fig. 4(c). Let sh0 be the baseline sampling

interval at the center of the fingerprint. Then the sampling

interval at a point P (r1, r2) is defined as

sh = (1 + p · (1− e−r2
1
/k1 · e−r2

2
/k2)) · sh0, (1)

where r1 and r2 are, respectively, the absolute distances

from P to the X- and Y- axes, k1 and k2 denote the skin plas-

ticity along the Y- and X- axes, and p represents the amount

of pressure. Obviously, the farther P is from O, the larger

the sampling interval at P is.
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Figure 5. Illustration of the proposed direct sampling with distor-

tion corrected sampling intervals. (a) The 3D fingerprint is divided

into slices along the finger length (i.e., Z-axis) starting from the

fingerprint center Oz and using distortion corrected sampling in-

tervals. (b) The sampling starting point on each slice is defined

as the intersection point between the slice and a pre-specified un-

rolling baseline plane.

3.2. The Proposed Unrolling Algorithm

We propose a new unrolling algorithm by incorporating

the above-defined adaptive sampling intervals into the di-

rect sampling based unrolling algorithm (denoted as DS).

The original DS algorithm [4] uses the same sampling in-

terval for the whole fingerprint, and thus does not cope with

the pressure-induced distortion in 2D fingerprints. On the

contrary, the unrolling algorithm proposed here adaptively

determines a sampling interval for each point in the finger-

print according to its relative position to the center of the

fingerprint.

The first step in the proposed algorithm is to divide the

3D point cloud to a set of slices (assume that the point cloud

has been aligned so that the Z-axis is along the first principal

axis of the finger as shown in Fig. 2). In order to compute

the sampling interval between slices (i.e., the distance be-

tween them along the Z-axis), we set the Z-axis center as the

mean of the z-coordinates of all the points in the 3D finger-

print, denoted as Oz . Given the baseline sampling interval

sh0 at the center, the z-coordinates of the two slices next to

the central slice are z−1 = Oz − sh0 and z+1 = Oz + sh0,

respectively. The sampling interval at the slice z−i or z+j is

then computed as

shz = (1 + p · (1− e−d2/k1)) · sh0, (2)

where d is the absolute difference between the z-coordinates

of the slice and the central slice. Thus, the z-coordinates of

the slices next to z−i and z+j are, respectively, z−i+1
= z−i −

shz and z
+

j+1
= z+j + shz . With the obtained z-coordinates

of the slices {z−m, z−m−1, · · · , z
−

1 , Oz, z
+

1 , · · · , z
+

n−1, z
+
n },

we can easily divide the 3D point cloud into (m + n + 1)
slices. See Fig. 5(a)

In the second step, each slice is further sampled. The

sampling starting point on each slice is defined as the inter-

section point between the slice and a pre-specified unrolling

baseline plane (see Fig. 5(b)). The baseline plane passes the

principal axis of the finger and composes an angle of θb with

the X-Z plane. LetOi(x
0
i , y

0
i , zi) be the starting point on the

slice zi. The sampling interval at a point P (xk
i , y

k
i , zi) on

this slice is calculated as follows,

shk
zi = (1 + p · (1− e−d2

z
/k1 · e−d2

s
/k2)) · sh0, (3)

where dz = |zi − Oz | and ds is the geodesic distance be-

tween P andOi along the slice. Starting fromOi, the slice is

then sampled towards both ends according to the calculated

sampling interval.

In the last step, a 2D equivalent fingerprint image F is

obtained based on the sampling points: each slice is a row

in F, and each sampling point on each slice is a pixel on

the slice’s corresponding row in F, while the starting points

correspond to the central column in F.

4. Experimental Results

4.1. Database

The fingerprint database used in this paper includes a set

of frontal-view 3D fingerprints and their corresponding 2D

plain fingerprints. The 3D fingerprints were captured by us-

ing a 3D fingerprint sensor being developed by the General

Electric Global Research, while the corresponding 2D plain

fingerprints were captured with a commercial contact-based

fingerprint sensor. Totally, we have collected data from 24

fingers with one 3D fingerprint and one plain fingerprint for

each of the fingers. The collected 3D fingerprint data has

varying precision in depth information. Twenty of the 3D

fingerprints have very noisy depth information. They are

used to evaluate the robustness of different unrolling algo-

rithms. The other four fingerprints have more precise depth

information, and are used to evaluate the compatibility of

unrolled 2D equivalent fingerprints and 2D contact-based

plain fingerprints.

4.2. Comparison between Unrolling Algorithms

We first compared the three representative unrolling al-

gorithms depicted in Fig. 3 (namely, cylinder model based

(CYL), tube model based (TUBE), and direct sampling

(DS)) using the twenty noisy 3D fingerprints. We observed

that when the depth information of 3D fingerprints is very

noisy, the CYL and TUBE algorithms do not perform well.

This is because both CYL and TUBE assume that slices of

3D fingerprints are segments of circles. However, such an

assumption might be violated in noisy 3D fingerprints. In

other words, erroneous circles could be fitted to the slices of

noisy 3D fingerprints (see Fig. 6). Consequently, CYL and

TUBE models can not correctly unroll the 3D fingerprints

or generate the 2D equivalent fingerprints. While the DS
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Figure 7. The mated minutiae in the 2D equivalent fingerprint images of an example 3D fingerprint obtained by using the (a) cylinder

model based (CYL), (b) tube model based (TUBE), (c) direct sampling (DS), and (d) proposed direct sampling with distortion correction

(DSwDC) algorithms. The results of CYL in (a) are taken as baseline, and the mated minutiae are shown in green color. The red minutiae

in (b)-(d) are the mated minutiae found by the other algorithms, but not by CYL. The blue minutiae in (b)-(c) are the mated minutiae found

by CYL, but missed by the other algorithms.

Figure 6. Sensitivity of unrolling algorithms to depth errors. Depth

errors can lead to incorrect radii of the circles fitted by CYL and

TUBEmodels, and hence inaccurate sampling points. DS can also

sample false points due to depth errors.

algorithm also generates false sampling points due to depth

errors (see Fig. 6), as we will show later, DS generally per-

forms better in unrolling 3D fingerprints with precise depth

information. Therefore, we incorporate the proposed dis-

tortion correction technique into the DS algorithm. Next,

we report the experimental results of CYL, TUBE, DS,

and the proposed direct sampling with distortion correction

(DSwDC) algorithm on four 3D fingerprints for which pre-

cise depth information is available.

We use CYL as the baseline. In [13], the performance

of unrolling algorithms was evaluated by the quality of the

obtained 2D equivalent fingerprint images of three example

3D fingerprints. In this paper, on the contrary, we com-

pare different unrolling algorithms according to the accu-

racy of matching their generated 2D equivalent fingerprints

and the corresponding contact-based 2D plain fingerprints,

because this is a more direct way to assess the compatibility

between the obtained 2D equivalent fingerprints and the tra-

ditional contact-based fingerprints. The fingerprint match-

ing in our experiments is done by using a commercial fin-

gerprint matcher, called VeriFinger [1].

Figure 7 shows the 2D equivalent fingerprint images 2

of an example 3D fingerprint and the mated minutiae found

by VeriFinger between them and the corresponding contact-

based 2D plain fingerprint. Note that the 2D equivalent

2Please note that we intentionally blur the fingerprint images and show

only the minutia locations because of the privacy protection constraint of

this project.



Method CYL TUBE DS DSwDC

# Mated Minutiae 12 13 14 17

Table 1. The average number of mated minutiae in the 2D equiva-

lent fingerprints generated by the CYL, TUBE, DS, and proposed

DSwDC algorithms.

fingerprint images have been post-processed by applying

adaptive histogram equivalization to improve the contrast,

and the pixel values are reversed to make the ridge pixels

dark and the valley pixels bright so that they are consistent

with traditional contact-based fingerprints in which valleys

are brighter than ridges. From these results, it can be seen

that the CYL algorithm tends to over-sample the top por-

tion of the fingerprint because it uses the same radius for

all the slices across the fingerprint. As a result, the image

generated by CYL obtains the minimum number of mated

minutiae (i.e., 18). The results of the TUBE and DS algo-

rithms are very similar. The numbers of mated minutiae in

the images generated by TUBE and DS are, respectively, 19

and 20. The largest number of mated minutiae (i.e. 25) are

obtained in the 2D equivalent fingerprint image generated

by the proposed DSwDC algorithm.

4.3. Effectiveness of Distortion Correction

Figure 8 shows the matching results in a portion of the

2D equivalent fingerprints of an example 3D fingerprint.

Mated minutiae in the 2D equivalent fingerprint generated

by the baseline CYL algorithm are shown in green color;

the mated minutiae found by the other algorithms but not

by CYL are marked by red color; and the mated minutiae

missed by the other algorithms are displayed in blue color.

Table 1 gives the average number of mated minutiae in the

2D equivalent fingerprints generated by the four algorithms.

Obviously, many more minutiae in the DSwDC generated

2D equivalent fingerprint image can be matched with the

minutiae in the contact-based 2D plain fingerprint.

The relatively poor matching accuracy of the 2D equiva-

lent fingerprints generated by the other unrolling algorithms

is due to the fact that minutiae matching is dependent on the

spatial configuration of minutiae, which is easily affected by

fingerprint distortion. By simulating the pressure-induced

distortion in 2D plain fingerprints, the proposed DSwDC

unrolling algorithm achieves better matching accuracy. This

demonstrates the effectiveness of distortion correction in

improving the compatibility between 2D equivalent finger-

prints and traditional contact-based fingerprints.

5. Conclusions

In this paper, we studied the impact of fingerprint distor-

tion on the compatibility of traditional contact-based finger-

prints and 2D equivalent fingerprints obtained by unrolling

(a) (b)

(c) (d)

Figure 8. The mated minutiae in a portion of the 2D equivalent

fingerprints of an example 3D fingerprint obtained by using the (a)

CYL, (b) TUBE, (c) DS, and (d) proposed DSwDC algorithms.

3D fingerprints. By analyzing the pressure exerted by the

finger in acquiring contact-based plain fingerprints, we pro-

posed a distortion model to adaptively determine the sam-

pling intervals across fingerprints. Further, we presented a

novel approach to unrolling 3D fingerprints based on the

distortion corrected sampling intervals. The experimental

results on several available 3D fingerprints and their corre-

sponding contact-based plain fingerprints demonstrated that

the compatibility between the 2D equivalent fingerprints

and traditional contact-based plain fingerprints can be ef-

fectively improved by incorporating distortion into the un-

rolling process. In our ongoing work, we are studying the

sensitivity of the parameters involved in the unrolling algo-

rithm and improving the compatibility between 2D rolled

equivalent fingerprints and legacy rolled fingerprints by in-

vestigating the distortion in rolled fingerprints. As the sen-

sor is still in the prototype stage, we expect to provide our

distortion correction results to sensor designers to further

improve the sensor characteristics and collect additional

data.
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