
Abstract

Extended fingerprint features are routinely used by

latent examiners in forensic applications. They are now

being considered for inclusion in automatic fingerprint

identification systems (AFIS), particularly with the

adoption of 1000ppi resolution in the Next Generation

Identification (NGI) system. Earlier studies on this topic

suffered from two limitations: (i) experiments were based

on live scan images that are generally of good quality and

contain smaller intra-class variations compared to ink

images and (ii) the baseline minutiae matcher used to

measure the additive value of extended features was not a

state-of-the-art matcher. In this paper, we study the utility

of pores, one of the most prevalent extended fingerprint

features, on rolled ink fingerprint images at both 500ppi

and 1000ppi resolution in the NIST SD30 database. The

results show that the fingerprint image quality

significantly affects the automatic extraction and matching

accuracy of pores. Furthermore, the contribution of pores

to the overall fingerprint recognition accuracy is

miniscule when a COTS matcher is used for 500ppi rolled

ink fingerprint images. The fusion between pore matcher

and COTS minutiae matcher is a bit more effective on

1000ppi good quality rolled ink fingerprint images. We

believe that these results will be useful in the design of

next generation AFIS.

1. Introduction

Fingerprint recognition has been accepted as a reliable

personal identification technique for almost 100 years.

Fingerprints are now routinely used to identify suspects

and victims in law enforcement and forensics [1]. The

demand for automatic fingerprint identification systems

(AFIS) became compelling in the early 1960s, because of

the rapid expansion of fingerprint recognition in forensics

and the ever-increasing size of fingerprint databases (e.g.

the FBI fingerprint database now has more than 800

million fingerprint images) [2]. Many automatic

algorithms have been proposed for extracting and

matching fingerprint features, and a large number of AFIS
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are successfully deployed not only for forensic

applications, but also for civilian and commercial

applications [1, 2].

(a) (b)

(c)

Fig. 1: Example fingerprint features: (a) level 1 (ridge orientation

field and singular points), (b) level 2 (minutiae, dots, and

incipient ridges), (c) and level 3 (pores and ridge edge features).

Fingerprint features can be divided into three levels [2],

as shown in Fig. 1. Level 1 features are defined by

fingerprint ridge flow and general morphological

information, e.g. ridge orientation field, ridge pattern types,

and singular points. These features are not very unique to

each finger and are thus mostly used for fingerprint type

classification and indexing. Level 2 features refer to

individual fingerprint ridges and fingerprint ridge events,

including minutiae, dots, incipient ridges, etc. There are

two prominent types of minutiae, i.e. ridge endings and

ridge bifurcations. Level 2 features are generally believed

to be discriminative, stable, and robust. As a result,

commercial fingerprint systems are primarily based on the

minutiae features. Level 3 features are defined as

fingerprint ridge dimensional features. Pores and ridge

edge shapes are typical level 3 features. These features, if

reliably extracted, are also quite distinctive [3, 4]. Yet, to

our knowledge, they have not been incorporated in

commercial systems. The current AFIS technology mainly

utilizes the features of the first two levels [2]. Extended

fingerprint features are loosely defined as any feature that

is not currently used in commercial AFIS.

SWGFAST, the Scientific Working Group on Friction

ridge Analysis, Study and Technology, stated that the

AFIS technology is utilizing only a limited amount of

available fingerprint detail [5]. For example, in the FBI

standard minutiae template, the Type 9 minutiae record
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includes only ridge endings and bifurcations [6]. On the

contrary, latent fingerprint experts usually rely on

additional information. In particular, they routinely

explore a variety of extended features in manual latent

identification [5]. To improve the accuracy of AFIS and to

narrow the performance gap between AFIS and latent

experts, SWGFAST suggested exploiting as many

fingerprint features as possible. CDEFFS, the Committee

to Define an Extended Fingerprint Feature Set, was

chartered to define the next ANSI/NIST-ITL standard [7]

so that additional features can be utilized in the next

generation AFIS. In its report, CDEFFS [7] defined the

extended fingerprint feature set, including dots, incipient

ridges, pores, creases, and ridge edge features (protrusions

and indentations). These features provide additional

information to individualize a fingerprint and are claimed

to be routinely used by latent experts. Pores, which are

abundant on fingerprints, are one of the most prevalent

extended features. According to our statistics on NIST

SD30, there are, on an average, between 50 to 100

detectable pores in a small area of about 8mm×6mm on

500ppi and 1000ppi good quality fingerprint images.

A number of researchers have investigated the use of

pores in AFIS by using live-scan fingerprint images. Stosz

and Alyea proposed the first pore-based fingerprint

matcher [8]. Kryszczuk et al. studied the effectiveness of

pores in matching small fragmentary fingerprints with full

fingerprint templates [9]. Jain et al. utilized fingerprint

features at all the three levels, including minutiae and

pores [10]. Zhao et al. proposed pore extraction and

matching methods and applied them to partial and full

high resolution fingerprint matching [11, 12]. All these

studies reported that fusion of pores with minutiae

improves the fingerprint matching accuracy. However, a

common characteristic of these studies is that they all used

live-scan fingerprint images with resolution of at least

1000ppi. As a result, the quality of the fingerprint images

used in these studies is generally very good making it easy

to extract pores. In addition, these images were collected

using the same fingerprint sensor and the capture interval

between different samples is small, resulting in small

intra-class variations. The same conditions may not hold

true for ink fingerprint images that are included in almost

all the forensics and law enforcement databases. Another

drawback of these studies is that the usefulness of pores

was shown by comparing pore matching accuracy to an in-

house minutiae matcher instead of a commercial off the

shelf (COTS) matcher.

Fingerprint images can be broadly classified into three

categories: live-scan, ink, and latent (see Fig. 2). Live-scan

fingerprint images are obtained by using optical,

capacitive or other types of sensors to directly image the

finger. Usually, live-scan images are captured under

controlled conditions and are easy to recapture, and as a

result, their quality, on average, is the best among the

(a) (b)

(c) (d)
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Fig. 2: Three types of fingerprints. (a) and (b) 500ppi and

1000ppi live-scan fingerprint images collected by CrossMatch

1000ID scanner. (c) and (d) 500ppi and 1000ppi ink fingerprint

images in NIST SD30. (e) and (f) two 1000ppi latent fingerprint

images in NIST SD27.

three kinds of fingerprint images. Given a sufficiently high

resolution image (e.g. 1000ppi), the pores in live-scan

fingerprint images are very clear and can be reliably

extracted (see Figs. 2(a) and 2(b)). Rolled Ink fingerprint

images are widely used in forensics. To capture the ink

fingerprint images of a subject, his/her finger is coated

with black ink and pressed or rolled against a paper card.

The print left on the paper card is then scanned to digital

format. In general, the quality of ink fingerprint images is

lower than live-scan fingerprint images. The pores in ink

fingerprint images are often not very clear, making it

difficult to reliably locate the pores (see Figs. 2(c) and

2(d)). Latent fingerprint images are inadvertently left by

persons on surfaces of objects and are lifted or



photographed by using various techniques, e.g. chemical

processing [1]. Latent fingerprint images are characterized

by small area, poor quality, and large non-linear distortion

[13]. Consequently, the extended features like pores can

be quite vague and unreliable as shown in Figs. 2(e) and

2(f). This was also observed in [13], which reported no

obvious improvement in the latent matching accuracy by

using pores in the NIST SD27 images. Based on the

ground truth of extended features (i.e. pores, dots, and

incipient ridges) marked on the fingerprint images in NIST

SD27 by a latent expert, Jain and Feng [13], reported that

the number of mated pores is much larger than dots and

incipient ridges (there can be more than 20 mated pores

between a latent and the corresponding mated rolled print,

but only about 5 mated dots and incipient ridges).

Moreover, some fingers do not even have any dots or

incipients, whereas all fingers have pores on them. We

therefore mainly focus on the discriminative ability of

pores in this paper.

The results of previous studies have shown that the

performance of pores can be significantly affected by the

fingerprint image quality. We believe that currently, there

is no consensus on the utility of fingerprint pores when a

large variation in fingerprint image quality exists across

the database. Note that in [10], the authors applied their

pore-based matcher to low and high quality fingerprint

images separately and reported improvement in both the

cases. But because they used live-scan images, even their

“low” quality images were, on average, still better than the

“best” ink fingerprint images in NIST SD30 considered

here.

The goal of this paper is to study the utility of

fingerprint pores in the context of varying fingerprint

image quality in operational databases. In particular, we

will use the dual resolution (500ppi and 1000ppi) rolled

ink fingerprint images in NIST SD30 for our experiments.

The main contributions of this paper are:

• Design and compare automatic pore extraction using

different quality fingerprint images. We show that low

quality fingerprint images lead to many false detections,

while the true detection accuracy does not significantly

change across different quality images;

• Study the fusion of pore matcher and minutiae matcher.

A commercial minutiae matcher (Verifinger by

Neurotechnology [16]), instead of an in-house minutiae

matcher, is used in our study. The results show that the

contribution of pores to the accuracy improvement of

minutiae matcher is minor for 500ppi fingerprint images,

but more noticeable for 1000ppi good quality

fingerprint images.

• Study the impact of resolution (500 ppi vs. 1000ppi) on

fingerprint recognition accuracy. It is shown that while

the increased resolution improves the accuracy of both

matchers, the improvement to minutiae matcher is more

significant than pore matcher. The fusion of pore and

minutiae matchers is also more effective for high

resolution (1000ppi) fingerprint images, but only when

the fingerprint image quality is good.

The rest of this paper is organized as follows. Section 2

introduces automatic pore extraction and matching

algorithms. Section 3 introduces the experimental design,

including the database, image quality measure, and the

evaluation methods. Section 4 then presents and analyzes

the experimental results. Section 5 concludes the paper.

2. Pore extraction and matching

Pores, also known as sweat pores, are located on finger

ridges. They are formed in the sixth month of gestation

due to the sweat-gland ducts reaching the surface of the

epidermis. Once the pores are formed, they are fixed on

the ridges and there can be between 9 to 18 pores along a

centimeter of ridge [2]. A pore can be visualized as open

on one print, but as closed on the other print depending on

pressure and whether it is exuding perspiration. As shown

in Fig.1(c), a closed pore appears as an isolated dot on the

ridge, while an open pore is connected to one or both of

the two valleys surrounding it. As a result, the shape and

size of a pore can vary from one impression to another,

and therefore only its position is used in pore matching. In

this section, we will introduce automatic algorithms for

pore extraction and matching.

2.1. Pore extraction

It can be seen from Fig. 1(c) that closed pores are

isotropic, whereas open pores are anisotropic. Compared

to other methods in the literature which are based on

isotropic models, the proposed anisotropic pore model [11]

can better cope with the open or closed status of pores and

has a better pore detection performance. The rationale of

this model is that along the ridge orientation at a pore, the

intensity profile across the pore has a Gaussian shape

irrespective of whether it is open or closed. The

anisotropic pore model is defined as:

Here, models the pores located on horizontal ridges,0P

and the pores on ridges of orientation θ. The twoθP

parameters, orientation θ and scale σ, can be determined

by the local ridge orientation and the local ridge period,

respectively. To apply the pore model, the image is first

divided into non-overlapping blocks. For each foreground
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block that has dominant ridge orientation, a local

instantiation of the model is established based on the local

ridge orientation and frequency in the block, and then

convolved with the block as a pore matched filter. An

empirically chosen threshold is then applied to the filter

response, resulting in a binary image in which pixels

corresponding to candidate pores have value 1, whereas

the other pixels have value 0. Post-processing steps are

applied to remove possible false detections, including

removing pores which are not on ridges, pores which have

very low intensity, and pores whose size are not in a pre-

specified range. We refer the readers to [11] for more

detail of the method. Figs. 3(a) and 3(b) show the

extracted pores in a pair of mated fingerprint images in

NIST SD30 (cropped for display purpose).

2.2. Pore matching

The extracted pores are matched using the method in

[12]. This method has the advantage that the pore

matching is independent of minutiae matching which

enables more effective fusion between the two match

scores [12]. Given two sets of pores, the individual pores

are compared first based on the correlation between their

local neighborhoods in the corresponding images. In our

experiments, neighborhoods of radius 15 and 25 pixels are

used for 500ppi and 1000ppi images, respectively. The

coarse correspondences between pores are then refined to

remove possible false correspondences by using the

RANSAC (RANdom SAmple Consensus) algorithm [12]

under the assumption of affine transformation between the

two fingerprints. The number of the final pore

correspondences is defined as the pore match score

between the two fingerprints. Fig. 3(c) shows the pore

correspondences in Figs. 3(a) and 3(b).

3. Experimental design

3.1. Dataset

There is no public domain fingerprint database available

with ground truth for extended features. So, we created

our own ground truth data to evaluate the pore extraction

algorithm. Manually marking extended features in

fingerprint images is both time consuming and tedious

which explains our small sized evaluation database of

partial fingerprints. The NIST SD30, used in this study,

contains 720 rolled ink fingerprint images of 360 fingers,

captured at two different sessions at both 500ppi and

1000ppi resolution. Example fingerprint images from this

database are shown in Figs. 2(c) and 2(d). We created 30

partial fingerprint images (320 by 240 pixels) by cropping

the 1000ppi fingerprint images in NIST SD30 which

display various quality values (see the next section). The

pores on these partial fingerprint images were then

manually marked as ground truth for the evaluation of

automatic pore detector.

(a) (b)

(c)

Fig.3: Pore extraction and matching. (a) and (b) show a pair of

mated fingerprint images with extracted pores marked by circles,

and (c) the corresponding pores in (a) and (b).

3.2. Fingerprint image quality

In order to investigate the utility of pores with varying

quality of fingerprint images, we divided the fingerprint

images into three quality groups: good, medium and bad.

The NFIQ measure [14] is widely used in the literature,

but it was initially designed for plain fingerprint images.

Therefore, in this study, we used the symmetric derivative

based fingerprint image quality assessment method

proposed in [15]. By using the symmetric derivatives,

parallel ridges/valleys on fingerprints can be modeled as

linear symmetric features, while singular points (i.e. cores

and deltas) are parabolic symmetric features. For good

quality fingerprint images, a local patch is usually

characterized by either linear symmetry or parabolic

symmetry. In contrast, noisy or low-contrast regions will

display both symmetries. Based on this property, a

fingerprint image is first divided into blocks, two filters

are used to detect the two kinds of symmetries in each

block, and the quality of each block is defined by the

correlation between the responses of the two filters. The

quality of a fingerprint image is defined as the average of

the quality values of all its blocks.

Given a quality measure, the fingerprint images in the

database were divided into three groups (good, medium

and bad). From each group, 10 fingerprint images were

randomly chosen to construct the ground truth dataset of

the corresponding quality level. Fig. 4 shows three

example fingerprint image fragments which belong to

good, medium, and bad quality ground truth dataset,

respectively. The ground truth pores and the detected

pores on them are marked by white dots and red circles.

In fingerprint matching, all the 360 fingerprint images

from the first session were matched with all the 360

fingerprint images in the second session, resulting in 360

genuine pairs and 129,240 imposter pairs. The quality of



each pair was defined as the minimum of the quality of the

two fingerprint images in the pair. The genuine and

imposter pairs were sorted according to their decreasing

quality value. These were then divided into three equal

sized groups of good, medium and bad (120 genuine pairs

and 43,080 imposter pairs in each group).

Fig. 4: Examples of good, medium, and bad quality fingerprint

images (from left to right) in the ground truth datasets. White

dots and red circles denote the ground truth and detected pores.

Fig. 5: Pore detection accuracy on different quality groups when

different thresholds were applied to the pore matched filter

responses.

Fig. 6: The DET curves of pore matcher and VeriFinger on

500ppi rolled ink fingerprint images.

3.3. Evaluation methods

The automatic pore detection accuracy is evaluated by

using the true detection rate (Rt) and false detection rate

(Rf). Rt is defined as the ratio of the number of true

detected pores to the total number of ground truth pores

and Rf is defined as the ratio of the number of falsely

detected pores to the total number of detected pores. In our

experiments, given a detected pore, if there is a true pore

within a distance of five pixels, it is considered a true

detected pore. The receiver operating characteristic (ROC)

curves that plot Rt vs. Rf when different thresholds were

applied to the pore matched filter responses are calculated

for all the three quality groups.

For evaluating matching accuracy, the detection error

trade-off (DET) curve that plots the false rejection rates

(FRR) at a few specific false acceptance rates (FAR) is

used. In order to investigate the performance of combining

pores with minutiae, a commercial minutiae-based

fingerprint matcher, VeriFinger [16], is used. The minutiae

and pore match scores are combined using the weighted

sum rule that has been reported in the literature to give

good results especially when a small number of match

scores are available [17]. We did not use more

complicated fusion methods such as the likelihood ratio

based method [18], which need a large number of training

samples.

4. Results and analysis

4.1. Pore detection accuracy

Fig. 5 shows the ROC (i.e. Rt vs. Rf) curves of the pore

detection accuracy on the three quality groups. While the

best true detection rate does not change significantly

across different quality groups, the false detection rate, on

average, increases as the fingerprint image quality

decreases. Given a true detection rate of 70%, the false

detection rate is ~20%, ~40%, and ~70% for the good,

medium, and bad quality groups, respectively. As can be

seen in Fig. 4, noise and degradation of ridge/valley

structures in poor fingerprint images lead to detection of

many spurious pores.

4.2. Pore matching accuracy

The DET curves of pore matching alone on the three

different quality groups of 500ppi rolled ink fingerprint

images are plotted in Fig. 6. For comparison, the DET

curves of VeriFinger minutiae matcher are also shown.

Note that the recognition accuracy of both pore matcher

and VeriFinger decreases as the fingerprint image quality

degrades. The accuracy of pore matcher is significantly

worse than that of VeriFinger on all the three quality

groups. While for good quality fingerprint images, pore

matching accuracy is much worse than VeriFinger, for bad

quality images, the performance difference between pore

matcher and VeriFinger becomes small. This vast

difference between the accuracy of pore matcher and

VeriFinger also affects the fusion of pores and minutiae as

shown in the next section.

4.3. Combining minutiae and pores

The weighted sum fusion method [17] was employed to

combine the match scores of pores and VeriFinger. The



DET curves before and after fusion are shown in Fig. 7.

From these results, we can see that when the fingerprint

image quality is bad, the fusion of pores with VeriFinger

minutiae matcher leads to some improvement in the

recognition accuracy; on the other hand, if the fingerprint

image quality is good, including the pores either does not

improve the recognition accuracy, or even degrades the

recognition.

(a)

(b)

(c)

Fig. 7: The DET curves before and after fusion by weighted sum

fusion method on 500ppi rolled ink fingerprint images of (a)

good, (b) medium, and (c) bad quality.

Given that the accuracy of pore matcher on the 500ppi

fingerprint images is quite poor compared to minutiae

matcher (at FAR of 0.01%, the FRRs of VeriFinger are

5.83%, 5.83%, and 29.17% on good, medium, and bad

quality groups, respectively, but 71.67%, 76.67%, and

89.17% for pores), the fusion results are not surprising; it

is well known that a weak classifier can degrade the

accuracy of a very strong classifier. The FRRs after fusion

of VeriFinger and pores become 5.83%, 5.83%, and

28.33% on the three quality groups. The improvement

made by pores to the recognition accuracy, if any, is

minute.

Fig. 8: The DET curves of VeriFinger and Pores on 1000ppi and

500ppi fingerprint images in different quality groups.

4.4. Impact of resolution

The above recognition experiments used 500ppi rolled

ink fingerprint images. In the literature, it has been

claimed that at least 800ppi is required to accurately detect

pores [8] and almost all the existing studies employed

live-scan fingerprint images of 1000ppi or greater

resolution. In order to evaluate the impact of fingerprint

image resolution on the utility of pores, we also repeated

the above recognition experiments by using the 1000ppi

rolled ink fingerprint images in NIST SD30. The DET

curves of pores and VeriFinger on the good and bad

quality groups are shown in Fig. 8 (for comparison, the

results on 500ppi fingerprint images are also given). These

curves demonstrate that the recognition accuracy of the

minutiae-based matcher is significantly improved when

the fingerprint image resolution is increased from 500ppi

to 1000ppi, whereas the improvement in the accuracy of

the pore-based matcher is relatively small. The average

improvement over FMR100, FMR1000 and FMR10000

(i.e. FRR at FAR=1%, FAR=0.1% and FAR=0.01%) on

the good, medium and bad quality groups is (27.52%,

28.48%, 18.35%) and (60.54%, 75.37%, 80.72%) for

pores and VeriFinger, respectively. It is interesting that the

pore-based matcher achieves bigger improvement on good

quality fingerprint images than bad quality fingerprint

images, and on the contrary, the minutiae-based matcher

obtains larger improvement on bad quality fingerprint

images. This might be because for bad quality fingerprint

images, increasing the image resolution would make very

little contribution to improving the usability of pores,

which are fine details on fingerprint ridges. On the other

hand, the ridge and valley structures on bad quality

fingerprint images can be effectively improved by higher

image resolution. Because minutiae are defined by ridge

path events, the accuracy of the minutiae-based matcher

on bad quality fingerprint images is thus greatly improved



when higher resolution fingerprint images are used.

(a)

(b)

(c)

Fig. 9: The DET curves before and after fusion by weighted sum

fusion method on 1000ppi rolled ink fingerprint images of (a)

good, (b) medium, and (c) bad quality.

The pore-based and minutiae-based match scores of the

1000ppi rolled ink fingerprint images were fused by using

the weighted sum fusion method [17]. The corresponding

DET curves are presented in Fig. 9 for the good, medium,

and bad quality groups. Comparing these curves with

those in Fig. 7, we can see that the fusion results differ on

500ppi and 1000ppi rolled ink fingerprint images. While

the fusion between pores and minutiae does not make any

noticeable improvement on 500ppi fingerprint images, the

fusion is more effective on 1000ppi good quality

fingerprint images. We believe that this is due to the

different contributions of increased resolution to the

accuracy of the pore-based and minutiae-based matchers

on different quality fingerprint images. Moreover, when

500ppi fingerprint images are used, the fusion makes very

minor improvement in the recognition accuracy of

VeriFinger, i.e. about 2.88% for FMR10000 (decreasing

from 29.17% to 28.33%) on bad quality fingerprint images

and no improvement on medium and good quality

fingerprint images. In contrast, the improvement can be up

to about 50% (decreasing from 1.67% to 0.83%) on

1000ppi good quality fingerprint images. These results

demonstrate that the utility of pores is related to the

fingerprint image quality and can be improved by using

high resolution fingerprint images.

Fig. 10 gives an example of successfully using pores to

improve the recognition, where one genuine pair and one

imposter pair of 1000ppi good quality rolled ink

fingerprint images in NIST SD30 are shown. As can be

seen in Fig. 10(a) and Fig. 10(c), VeriFinger generated a

higher match score for the imposter pair (0.0249) than for

the genuine pair (0.0214). This might be because some

parts of the images in the genuine pair were contaminated

resulting in spurious and missing minutiae, and the images

in the imposter pair have similar pattern type. On the other

hand, the pore matcher found an obviously larger number

of mated pores on the genuine pair than on the imposter

pair (see Fig. 10(b) and Fig. 10(d)). After fusion of pores

and VeriFinger, the match score of the genuine pair is

improved to 0.0571, whereas that of the imposter pair is

just 0.0396. Note that there are still some falsely mated

pores found by the pore matcher, and the recognition

accuracy is thus expected to be further enhanced by

improving the pore extractor and matcher.

5. Conclusions

We have studied the utility of pores, one of the most

prevalent extended fingerprint features, on rolled ink

fingerprint images. Pores are believed to be routinely used

by forensic experts for latent matching. Although most

previous studies claimed that pores are effective in

improving the accuracy of minutiae matcher, they have

following limitations: (i) used high resolution (>1000ppi)

live-scan fingerprint images whose quality is generally

very good and intra-class variation is small compared to

rolled inked impressions; (ii) did not use a commercial

state-of-the-art minutiae matcher as a baseline. This study

is based on rolled ink fingerprint images which are widely

used in forensic applications. Fingerprint images of three

different quality at two different resolutions (500ppi and

1000ppi) were considered in our experiments. By using

NIST SD30 database, a commercial minutiae matcher

(VeriFinger), and state-of-the-art pore extraction and

matching algorithms, we investigated the impact of

fingerprint image quality on the accuracy of automatic

pore extraction, and the effectiveness of pores in

improving fingerprint recognition accuracy. Our

experimental results show that the (i) automatic pore

extraction and matching accuracy is significantly affected

by fingerprint image quality, (ii) pores do not provide any

significant improvement to the fingerprint recognition



accuracy on 500ppi fingerprint images, and (iii) fusion of

pore and minutiae matchers is effective only for high

resolution (1000ppi) fingerprint images of good quality. In

general, it is recommended that pores be used only for

high resolution fingerprint images of good quality. As

observed in this study, even COTS minutiae matchers are

not perfect in recognizing good quality fingerprints. In our

ongoing study, we are attempting to improve the

performance of automatic pore extraction and matching

and investigating better fusion strategy for combining pore

and minutiae matchers. We also plan to examine the utility

of ridge edges, another prevalent extended feature.

(a) (b)

(c) (d)

Fig. 10: (a) and (b) show a genuine pair with mated minutiae found by VeriFinger and mated pores found by the pore matcher. (c) and (d)

show an imposter pair with mated minutiae found by VeriFinger and mated pores found by the pore matcher.
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