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Abstract

Fingerprint image synthesis has received considerable

attention because of its potential use in generating large

databases to evaluate the performance of fingerprint recog-

nition systems. Existing fingerprint synthesis algorithms

(e.g., SFinGe) focus on rendering realistic fingerprint

images, but the features (e.g., minutiae) in these fingerprints

are formed in an uncontrollable manner. However, gener-

ating synthetic fingerprint images with specified features is

more useful in developing, evaluating and optimizing finger-

print recognition systems by providing ground truth features

in the synthesized images. In this paper, we propose a

method to synthesize fingerprint images that retain prespec-

ified features (i.e., singular points, orientation field, and

minutiae). To obtain realistic fingerprints, these features

are sampled from appropriate statistical models which

are trained by using real fingerprints in public domain

databases. We validate the proposed method by comparing

the synthesized images with those generated by SFinGe and

by investigating the match score distributions on synthe-

sized and real fingerprint databases. Furthermore, the

synthesized fingerprint images and their minutiae are used

to evaluate the matching capabilities of two commercial off-

the-shelf (COTS) fingerprint matchers.

1. Introduction

Fingerprints have been widely used in many forensics

and civilian applications, such as criminal and victim identi-

fication, access and attendance control, and border control

[16]. The past decade has witnessed a vast growth in

the number of fingerprints housed in automated fingerprint

recognition systems; e.g., FBI’s IAFIS [4] holds more than

100 million fingerprints, and DHS’s US-VISIT [6] stores

over 600 million fingerprints. Such large scale fingerprint

databases impose enormous challenges to the development

and evaluation of fingerprint recognition systems.

Fingerprint recognition systems are usually evaluated

based on their recognition accuracy (or error rates) on test

data [18]. Three main steps are generally involved in

the evaluation: (i) collecting a set of fingerprint images,

(ii) extracting and matching the features in the fingerprint

images to generate genuine and imposter match scores, and

(iii) analyzing the obtained match scores to compute error

rates (e.g., false match rates and false non-match rates)

of the fingerprint recognition system. Such score-based

evaluation methods were employed in many public domain

evaluations of biometric technologies, e.g., Fingerprint

Vendor Technology Evaluation (FpVTE) [2,3] organized by

the National Institute of Standards and Technology (NIST).

Score-based evaluation has two major limitations. First,

from the viewpoint of end-users of fingerprint recognition

systems, while such a technology evaluation can give a

rough estimate of the accuracy of the systems, its scope

is limited by the size and representativeness of the test

databases. Large and representative databases are necessary

for reliable and scalable performance evaluation. However,

it is both expensive and time consuming to manually collect

fingerprint images (along with ground truth features in

them) from a large population. As a result, none of

the available fingerprint databases in public domain are

comparable in size to the operational databases in large-

scale applications. For example, the database used in

FpVTE 2003 [2] contains fingerprints from about twenty-

five thousand subjects, and the database in FpVTE 2012 [3]

contains fingerprints from 10 million subjects. Compared

with the ever-expanding operational databases (e.g., India’s

UID system [5] has already collected ten prints for about

150 millions residents), these databases are relatively small.

In order to construct large fingerprint databases at a very

low cost, some researchers [9] have proposed to generate

synthetic fingerprint images.

Second, from the viewpoint of designers of finger-

print recognition systems, system accuracy alone is not

enough to identify the technical limitations of the systems

or ways that can improve the system performance. For

example, the low system accuracy might be due to deficient

sensors which generate low quality fingerprint images,

inadequate feature extractors which result in spurious

and missing minutiae, and fragile feature matchers which

cannot efficiently distinguish similar/dissimilar features in
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the presence of distortion and noise. It is necessary to

identify the underlying sources of error in a fingerprint

recognition system in order to improve the system perfor-

mance. This can be done by utilizing the ground truth

features in fingerprint images, e.g., the features in individual

fingerprint images and the feature correspondences between

pairs of fingerprints. However, such feature information

is not available in traditional fingerprint databases because

of the prohibitive cost of manually marking ground truth

features for the large number (e.g., tens of thousands) of

fingerprints in the databases. Features (e.g., minutiae) in

the fingerprint images synthesized by existing synthesis

algorithms are formed in an uncontrollable manner and

separate algorithms have to be applied to detect the features

[7].

In this paper, we make an attempt to synthesize

fingerprint images which retain prespecified features (i.e.,

singular points, orientation field, and minutiae). See Fig.

1. Statistical feature models are established for each of the

five major types of fingerprints (i.e., arch, tented arch, left

loop, right loop, and whorl). Given a fingerprint type and

the fingerprint image size, singular points, ridge orientation

field, and minutiae are sequentially sampled from their

respective statistical models (see Fig. 2). A master finger-

print containing the specified features is then generated by

using a fingerprint reconstruction algorithm [12]. Multiple

impressions are generated by applying nonlinear plastic

distortion and global rigid transformation to the master

fingerprint. Finally, image rendering is performed on the

impressions, which simulates finger dryness and noise.

Note that features in different fingerprint impressions are

traced during the synthesis.

The rest of this paper is organized as follows. Section

2 reviews related work on fingerprint image synthesis and

reconstruction. Section 3 introduces the proposed algorithm

for fingerprint image synthesis. Section 4 then validates

the synthesized fingerprints, and reports the evaluation

results with two commercial off-the-shelf (COTS) finger-

print matchers (denoted as COTS1 and COTS2). Section 5

finally concludes the paper with discussion on future work.

2. Related Work

Techniques to generate fingerprint images can be divided

into two categories: (i) fingerprint synthesis and (ii) finger-

print reconstruction. Fingerprint synthesis aims to generate

a large number of realistic-looking synthesized finger-

print images to evaluate fingerprint recognition algorithms,

whereas fingerprint reconstruction algorithms reconstruct

fingerprint images from a given set of features (typically,

minutiae) to evaluate the security of fingerprint templates.

SFinGe [9] is state-of-the-art fingerprint image synthesis

algorithm. Taking fingerprint type, image size, region

of interest, and singular points as input, SFinGe first

Figure 1. The proposed fingerprint image synthesis method

includes four main modules: (a) sampling features (singular

points, orientation field, and minutiae) from appropriate statistical

feature models; (b) generating a master fingerprint; (c) generating

multiple fingerprint impressions from the master fingerprint via

distortion (one such impression is shown here); and (d) rendering

fingerprint images by simulating finger dryness and adding noise.

generates an orientation field based on a modified Zero-

Pole model according to the fingerprint type and singular

points, and then iteratively applies Gabor filters to a seed

image (e.g., a white image with a few randomly placed

black points) to generate a master fingerprint based on

the orientation field and a fixed value of ridge frequency.

SFinGe finally generates multiple impressions of the master

fingerprint by distorting and rendering the master finger-

print with randomly-chosen distortion and noise param-

eters. Databases generated by SFinGe have been used in

a series of fingerprint verification competitions, called FVC

[16]. It has been observed that the performance of different

fingerprint matchers on the synthetic fingerprint databases

generated by SFinGe follows the same trend as on databases

of real fingerprints collected from human subjects.

One limitation of SFinGe is that it cannot control the

number and location of minutiae since the minutiae in

the synthesized fingerprint images are formed randomly

during the iterative application of Gabor filters. To obtain

the minutiae in the synthesized fingerprint images, either

manual markup or automatic extraction is needed [16].

Moreover, it has not been verified whether the minutiae

generated by Gabor filtering in SFinGe follow the distri-

bution of minutiae in real fingerprints (see Fig. 4).



Another body of related work [8, 12, 19] deals with

algorithms for reconstructing fingerprints from stored

minutiae templates. Their objective is to study the

template inversion problem with the purpose of showing

that minutiae templates are invertible and need to be

secured [14]. These algorithms first reconstruct an orien-

tation field based on the given minutiae, then recon-

struct the fingerprint based on the orientation field and

the minutiae (similar to SFinGe, a fixed ridge frequency

value is assumed for the reconstructed fingerprints), and

finally render the reconstructed fingerprint image to make

it appear more realistic. Among various fingerprint recon-

struction algorithms, the algorithm proposed by Feng and

Jain [12] is the state-of-the-art, which results in a relatively

small number of spurious and missing minutiae compared

with its counterparts. In this paper, we will employ Feng

and Jain’s algorithm to generate synthetic fingerprints from

given orientation field and minutiae that are not extracted

from real fingerprints, but sampled from statistical models

according to the specified fingerprint type.

3. Proposed Method

The proposed fingerprint image synthesis algorithm

consists of four main modules: sampling fingerprint

features from statistical models, generating a master finger-

print, generating multiple impressions from the master

fingerprint, and rendering fingerprint images (see Fig. 1).

3.1. Sampling Features

In this paper, we consider synthesizing typical 500 ppi

fingerprint images with level-1 and level-2 features, i.e.,

singular points (cores and deltas), orientation field, and

minutiae (ridge endings and ridge bifurcations). Unlike

existing fingerprint synthesis and reconstruction algorithms,

the proposed method samples features from their statistical

distribution models. Different types of fingerprint features

are essentially dependent on each other. For example,

orientation field is partially determined by singular points

[20], minutiae density tends to be higher in regions around

singular points than in regions far from singular points,

and minutia directions are determined by their types and

the ridge orientations at their locations. Therefore, given a

fingerprint type to be synthesized, we sequentially sample

its features from statistical models, i.e., first singular points,

followed by orientation field, and finally, minutiae (see Fig.

2).

3.1.1 Sampling Singular Points

Cappelli and Maltoni [10] observed that the spatial

locations of singular points in fingerprints can be approx-

imated by a mixture of Gaussians. They aligned finger-

print images so that the centroid of singular points is in the

Figure 2. Singular points, orientation field, and minutiae are

sampled sequentially from their respective distribution models

according to the specified fingerprint type.

image center (which is taken as the origin), and constructed

a feature vector to represent the singular points by concate-

nating their coordinates. Further, for each of the four major

types of fingerprints (i.e., tented arch, left loop, right loop,

and whorl) that have singular points, they assumed that the

feature vectors of singular points follow a finite mixture of

Gaussian distributions. In this paper, we employ Cappelli

and Maltoni’s statistical models of singular points for

sampling. To sample the singular points for a given finger-

print type, a feature vector of singular points is randomly

generated via realizing the corresponding Gaussian mixture

model. The coordinates of the singular points can be then

retrieved from the feature vector, and aligned to the image

coordinate system (whose origin is at the top left corner of

the image) according to the given fingerprint image size.

3.1.2 Sampling Orientation Field

The orientation field of a fingerprint represents the

dominant local ridge orientations. Let Ω denote the region

of interest in the fingerprint image. The fingerprint orien-

tation field can be then viewed as a function θ(x, y) of

the location (x, y) ∈ Ω, where θ(x, y) ∈ [0, π) repre-

sents the dominant local ridge orientation at (x, y). In

order to establish the statistical distribution model of orien-

tation field, we need to first represent the orientation field

by a fixed-length feature vector. We achieve this by

decomposing the orientation field into singular and residual

components and approximating the two components by

Zero-Pole model [20] and cosine peripheral model [22],

respectively.

The Zero-Pole model [20] for the singular component of

orientation field is defined as

θSP (z) =
1

2
arg

(

∏Nc

t=1(z − zct)
∏Nd

j=1(z − zdj
)

)

, (1)

where z = x+i·y is a point in the fingerprint represented in



the complex plane, zct and zdj
correspond, respectively, to

the tth core and the jth delta, and Nc and Nd are, respec-

tively, the numbers of cores and deltas in the fingerprint.

The Zero-Pole model describes the influence of singular

points on fingerprint orientation field.

The residual component of orientation field is defined

as the difference between the orientation field θ and its

singular component θSP , i.e.,

θR = θ − θSP . (2)

It can be approximated by using the following cosine

peripheral model 1 [22]:

θ(x, y|k1, k2) = arctan

{

max

(

0, k1 −
k2 · y

W

)

· cos
(πx

H

)

}

,

(3)

where the parameters k1 and k2 control the curvature

changes and the lifting level of bottom lines in the residual

orientation field, respectively, and H and W are the height

and width of the fingerprint image. The parameters, k1
and k2, are estimated by solving the following optimization

problem:

argmin
k1,k2

∑

(x,y)∈Ω

sin2(θ(x, y|k1, k2)− θR(x, y)). (4)

In this way, the residual orientation field in a fingerprint

image is represented by a two-tuple ν = {k1, k2}.

The distribution of ν for each of the five major fingerprint

types is modeled as a mixture of Gaussians, i.e.,

fν(ν|Θ) =
L
∑

l=1

τl ·Gl(ν|µl,Σl), (5)

where Θ is the set of parameters which includes: L, the

number of mixture components, τl, the probability of the

lth component, and the mean µl and covariance Σl of

the Gaussian density function Gl(ν|µl,Σl). The param-

eters in the mixture models are estimated by applying the

Expectation-Maximization method [13] to a set of training

data. We trained the mixture models by using the “F” finger-

prints in the NIST SD4 database [1] which have an exclu-

sively assigned fingerprint type, are of good quality with

NFIQ [21] value from 1 to 3, have all singular points visible,

and are free from rotation (i.e., vertically aligned).

To sample the orientation field for a given fingerprint

type, the residual orientation field is generated by realizing

the distribution model of {k1, k2} associated with the

given fingerprint type and substituting them into the cosine

peripheral model in Eq. (3). This residual orientation

field is then combined with the singular orientation field

generated by the sampled singular points according to Eqs.

(1) and (2) to generate the sampled orientation field.

1Here, we assume that the fingerprint is centered in the fingerprint

image and vertically aligned.

3.1.3 Sampling Minutiae

Several distribution models [11,17,24] have been proposed

for the minutiae in fingerprints, among which Chen and

Jain’s model [11] is state-of-the-art. In [11], Chen and

Jain showed that minutiae in different types of fingerprints

are characterized by different distributions and proposed

models of minutiae distributions for the five major finger-

print types. The spatial locations and directions of minutiae

are modeled as mixture of Gaussians and mixture of von-

Mises distributions, respectively. In this paper, we employ

the Gaussian mixture based spatial distribution models of

minutiae proposed by Chen and Jain [11].

To sample minutiae, the number of minutiae in the

fingerprint is first randomly chosen according to the

empirical minutia density (i.e., the number of minutiae

in a unit area) and the fingerprint image size. The

minutia locations are then obtained by realizing the spatial

distribution model in [11], and each minutia is randomly

assigned either as a ridge ending or as a ridge bifurcation

with equal probability. The minutia directions are finally

determined according to their types (ending or bifurcation)

and the ridge orientations at their locations: the direction of

ridge bifurcation is the same as the local ridge orientation

and the direction of ridge ending is computed by adding

180 degrees to the local ridge orientation.

3.2. Generating Master Fingerprints

We employ the AM-FM based method in [12] to

reconstruct a master fingerprint from a set of sampled

features, because it generates a relatively small number of

spurious/missing minutiae in the synthetic fingerprints. In

the AM-FM method, a fingerprint is represented as

I(x, y) = 255×
1 + cos(Ψ(x, y))

2
, (6)

where Ψ(x, y) is the composite phase and can be uniquely

decomposed into continuous phase, Ψc(x, y), and spiral

phase, Ψs(x, y), i.e.,

Ψ(x, y) = Ψc(x, y) + Ψs(x, y). (7)

The spiral phase is determined by the Nm minutiae in the

fingerprint:

Ψs(x, y) =

Nm
∑

n=1

pn arctan

(

y − yn
x− xn

)

, (8)

where (xn, yn) denotes the coordinates of the nth minutia

and pn ∈ {−1, 1} denotes its type (i.e., ridge ending or

bifurcation).

To obtain the continuous phase, the gradient of the

composite phase, G(x, y), is first computed from the orien-

tation field. G(x, y) is called the instantaneous frequency,



whose direction is normal to the local ridge orientation

and whose magnitude is proportional to the local ridge

frequency, i.e.,

G(x, y) = 2πf exp(i(θu(x, y) + π/2)), (9)

where θu(x, y) is the unwrapped orientation field and f is

the ridge frequency (in the experiments, we set f = 0.12).

Since the orientation field and singular points are given

together with the minutiae, we directly unwrap the orien-

tation field [12] and compute the gradient of the composite

phase by Eq. (9). Once we have the gradient of the

composite phase and take the derivative of the sprial phase

in Eq. (8), the gradient of continuous phase is obtained by

the difference between the gradients of the composite and

the spiral phases. Then, the continuous phase can be recon-

structed by

Ψc(x, y) = Gcx(x, y)x+Gcy(x, y)y + P (x, y), (10)

where Gcx and Gcy are the x− and y− derivatives

of continuous phase, and P (x, y) is the phase offset.

The phase offset is estimated by using the block-wise

planar model based method [12]. With the reconstructed

continuous phase and the spiral phase, the master finger-

print can be obtained according to Eqs. (6) and (7). Note

that this master fingerprint is free from distortion and noise,

and the features in the master fingerprint are known.

3.3. Generating Impressions From a Master Finger­
print

Multiple impressions from the same master fingerprint

(i.e., genuine pairs of fingerprint images) are generated by

distorting the master fingerprint (see Figs. 3(a) and 3(b)).

Nonlinear plastic distortion [15] is applied followed by

global rigid transformation (i.e., rotation and translation).

The nonlinear plastic distortion model simulates the skin

distortion (e.g., compression and stretching) observed in

contact-based plain fingerprints 2. The model divides a

fingerprint into three regions: close-contact, transitional,

and external regions. The close-contact (central) region is

free from skin distortion, and it is defined as an ellipse by its

center (cx, cy) and variances (sx, sy). The external region

is characterized by a slight rigid transformation caused by

dragging skin or moving finger. The rigid transformation

is defined by a rotation βN and translation (dxN , dyN).
The transitional region is the region connecting the central

and external regions. It is subject to a nonlinear distortion

controlled by the skin plasticity parameter k — a higher k
indicates a larger transitional region and thus a smoother

transition between the central and external regions.

2Note that in this paper we focus on synthesizing plain fingerprint

images collected by using contact-based sensors. To synthesize other types

of fingerprint images, such as rolled or contact-less fingerprint images,

different distortion models are required.

(a) (b)

(c) (d)

Figure 3. Multiple impressions of a master fingerprint are

generated by applying nonlinear plastic distortion and global

rigid transformation to the master fingerprint and rendering the

fingerprint images. (a) A master fingerprint, (b) an impression

obtained by distorting (a), and (c) and (d) are fingerprint images

by rendering (b) as wet and dry finger, respectively.

The global rigid transformation is applied by first

rotating the fingerprint with respect to the image center by

an angle of βR and then translating the fingerprint by dxR

and dyR along the x− and y− axes, respectively. Let us

denote the nonlinear plastic distortion and the global rigid

transformation as TN and TR, respectively. The correspon-

dences between the pixels ṽ in the distorted image and the

pixels v in the original fingerprint can be represented by the

following mapping

v 7→ ṽ = TRTN(v). (11)

Some pixels in the distorted image might not have corre-

sponding pixels in the original fingerprint. Values of these

pixels are estimated by interpolation of their neighboring

pixels. The range of the parameter values involved in the

distortion is empirically specified.

The locations of singular points and minutiae in the

distorted images are computed by applying the mapping in

Eq. (11) to their original locations. To determine the local

ridge orientation and minutia directions after distortion, we

define a unit vector at each local block or at the location

of each minutia, which points along the local ridge orien-

tation or the minutia direction. The initial and terminal

points of the unit vector are then distorted according to Eq.



(11). Finally, the local ridge orientation and the minutia

direction after distortion are computed as the direction of

the distorted unit vector. The correspondences between the

minutiae in different impressions are traced while distorting

the master fingerprint. The minutiae are removed when they

are outside of the fingerprint image.

3.4. Rendering Fingerprint Images

The fingerprint impressions of a master fingerprint

obtained in Section 3.3 do not contain any noise and thus

do not look very realistic. Therefore, we further render

the impressions by simulating finger dryness and adding

noise. Similar to [9], we define five levels of finger

dryness {−2,−1, 0, 1, 2}. Negative dryness level means

that the fingers are wet and the fingerprint images are

dilated to increase the ridge width. On the other hand,

positive dryness level indicates dry fingers and the finger-

print images are eroded to make the ridges thinner. After

dryness simulation, each of the ridge pixels is subject to

a random perturbation according to a specified probability

(i.e., noise level). Finally, a 3 × 3 average filter is applied

to smooth the ridge pixels, resulting in the final fingerprint

images (see Figs. 3(c) and 3(d)).

4. Experiments

4.1. Validation of Synthesized Fingerprints

Figure 4 shows example fingerprint images synthesized

by SFinGe and the proposed method. The extracted

minutiae in these fingerprints show that a large portion

of the fingerprints synthesized by SFinGe might contain

parallel ridges without any minutiae (e.g., see the bottom

right area in Fig. 4(a)). This is quite rare in real finger-

prints. Figure 5 shows the histograms of the number of

minutiae (extracted by COTS1) in foreground blocks in the

fingerprints in NIST SD4, 1,000 master fingerprints synthe-

sized by SFinGe, and 1,000 master fingerprints synthesized

by the proposed method (the probability of different finger-

print types follows their natural distribution, i.e., 3.7% for

arch, 2.8% for tented arch, 33.8% for left loop, 31.7% for

right loop, and 27.9% for whorl [23]). These results demon-

strate that, by sampling minutiae from the statistical models

that are learned from real fingerprints, the proposed method

can generate fingerprints with more naturally distributed

minutiae (see Fig. 4(b)).

We evaluated the degree of preservation of prespecified

features on the 1,000 master fingerprints generated by the

proposed method by comparing the minutiae extracted by

the COTS matchers with the prespecified minutiae. The

average numbers of true, missing, and spurious minutiae
3 are 41, 23, and 25 for COTS1, and 44, 20, and 36 for

3A prespecified minutia is correctly detected if there exists an automati-

cally extracted minutia whose distance to it is less than 10 pixels, otherwise

(a) (b)

Figure 4. Example fingerprint images synthesized by (a) SFinGe

and (b) the proposed method with minutiae extracted by COTS1.

A large portion of SFinGe generated fingerprints might contain

parallel ridges without any minutiae (see bottom right portion of

(a)), which is quite rare in real fingerprints. Minutiae in finger-

prints generated by the proposed method appear to follow a more

natural distribution.

COTS2. Many true minutiae are retained in the synthesized

fingerprints. However, there are also many missing and

spurious minutiae. The relatively large number of missing

and spurious minutiae might be caused by two reasons:

(i) the statistical feature models and the feature sampling

process are not accurate enough; (ii) the fingerprint recon-

struction algorithm [12] we employ is initially designed

for minutia template inversion, whose goal is to match the

reconstructed fingerprints to the source fingerprints (hence,

a large number of true minutiae are usually sufficient, even

though there are missing and spurious minutiae).

We compared the match score distributions obtained

from synthesized fingerprint databases and those from real

fingerprint databases. Five impressions were generated

from each of the 1,000 master fingerprints to construct a

synthesized fingerprint database. The NIST SD4 database

(2,000 pairs of fingerprints) [1] was used to generate the

match score distributions on real fingerprints. In the

matching experiments, the first image of each finger was

used as a reference and the remaining images were used as

query. Figure 6 shows the obtained genuine and imposter

score distributions of COTS2. Similar trends can be

observed in the distributions for the synthesized fingerprint

database and for real fingerprint databases.

4.2. Evaluation of COTS Fingerprint Matchers

The evaluation of COTS fingerprint matchers using the

synthesized fingerprint database was conducted in two

it is called missing; an automatically extracted minutia is a spurious

minutia if its distance to any of the prespecified minutiae is larger than

10 pixels, otherwise it is a true minutia
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Figure 5. Histograms of the number of minutiae in (a) 16× 16, (b) 32× 32, and (c) 64× 64 foreground blocks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Normalized Match Scores from COTS2 on NIST SD4

F
re

q
u
e
n
c
y

Genuine Scores

Imposter Scores

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Normalized Match Scores from COTS2 on Synthesized Database

F
re

q
u
e
n
c
y

Genuine Scores

Imposter Scores

(b)

Figure 6. Match score distributions of COTS2 on (a) the NIST SD4 and (b) the synthesized fingerprint databases. Scores are normalized to

[0, 1] by min-max normalization.

scenarios: (i) using the prespecified minutiae as ground

truth to generate standard templates for the fingerprint

matchers, and (ii) using the fingerprint matchers to extract

proprietary templates from the synthetic fingerprint images.

The first scenario evaluates the minutia matching perfor-

mance under the assumption of zero feature extraction error

(ground truth features are used). The second scenario

evaluates the overall fingerprint matching accuracy when

proprietary templates are used.

The receiver operating characteristic (ROC) curves of

COTS1 and COTS2 matchers in both scenarios are shown

in Fig. 7, from which the following inferences can be made

about the two matchers. These observations can serve as

potential guidance for improving the matchers:

• COTS1 has a higher matching accuracy than COTS2

on the standard minutiae templates generated from the

ground truth minutiae. This indicates that COTS1

has a better matching module for minutiae only input

(i.e., only the location and direction of minutiae are

available in fingerprint matching).

• COTS2 has a higher accuracy than COTS1 when their

proprietary templates are used. This is potentially due

to the following two reasons: (i) COTS2 has higher

feature extraction accuracy, and (ii) COTS2 is more

effective in utilizing various discriminative features

(not merely minutiae) in fingerprints.

• COTS1 performs better using the ground truth

minutiae than using its proprietary template, which

again demonstrates its potentially low feature

extraction accuracy and relatively low efficiency in

exploiting non-minutiae features.

5. Conclusion and Future Work

A new method has been proposed for fingerprint image

synthesis based on statistical feature models. Compared

with the well-known method SFinGe, the proposed method

provides more control on the features in synthesized finger-

prints via sampling the features from statistical models

and generating fingerprint images containing the sampled

features. This additional ability enables us to conduct

efficient evaluation and optimization of fingerprint recog-

nition systems as demonstrated by the experiments with two

COTS fingerprint matchers.

As this approach, to our knowledge, is the first attempt

in synthesizing fingerprints based on statistical feature
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Figure 7. The receiver operating characteristic (ROC) curves of

the two COTS matchers used here on the synthesized fingerprint

image database (5,000 images of 1,000 fingers, 5 images per

finger).

models, the proposed method is still limited in retaining

the prespecified features in the synthesized fingerprint

images. We are currently enhancing the proposed method

along two directions. (i) Improving the statistical feature

models and the sampling process. For example, corre-

lation between different individual minutiae in a fingerprint

is not adequately considered in the existing spatial distri-

bution models of minutiae, and the dependency of minutia

locations on the orientation field is not exploited in the

current method. (ii) Enhancing the fingerprint image recon-

struction algorithm to further reduce the number of missing

and spurious minutiae.
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