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Abstract—Latent fingerprints lifted from crime scenes often
contain overlapping prints, which are difficult to separate and
match by state-of-the-art fingerprint matchers. A few methals
have been proposed to separate overlapping fingerprints to
enable fingerprint matchers to successfully match the compent
fingerprints. These methods are limited by the accuracy of th
estimated orientation field, which is not reliable for poor quality
overlapping latent fingerprints. In this paper, we improve the
robustness of overlapping fingerprints separation, particlarly for
low quality images. Our algorithm reconstructs the orientaion
fields of component prints by modeling fingerprint orientation
fields. In order to facilitate this, we utilize the orientation
cues of component fingerprints, which are manually marked
by fingerprint examiners. This additional markup is accepteble
in forensics, where the first priority is to improve the latent
matching accuracy. The effectiveness of the proposed mettio
has been evaluated not only on simulated overlapping printsout
also on real overlapped latent fingerprint images. Comparedvith
available methods, the proposed algorithm is more effectw in
separating poor quality overlapping fingerprints and enharcing
the matching accuracy of overlapping fingerprints. (d)

Fig. 1. A fingerprint image containing two overlapping latemints (a)

|. INTRODUCTION constructed by overlaying two latents from the NIST SD27%Mdase [3]. The

individual latents are marked as red and green polygons)inT{i® two com-

Fingerprints are widely used for personal authentication ponent orientation fields separated by using state-oktheelaxation labeling

- Nl inati - - ipased method [4] are shown in (c) and (d). The orientatioddietconstructed
both forensic and civilian applications. Given a fmgerprlrﬁy the proposed method are shown in (e} and (f). A commeréiahe shelf

image_, fingerprint matchers extract f‘_:—'atures (e.9. MiBWiIFCOTS) matcher was used to match the two component fingespwith their
from it, and match the features against the reference fearresponding mated rolled fingerprints. The match scaedath 0 without
ture templates to identify or verify the identity associqteSeparation (using the overlapped image in (a)), and areovegrto 6 and 1
. p . fy . fy . . ty . for (c) and (d), respectively. By using the proposed metltloel, match scores
with the fingerprint [1]. Typically, the input image contain 4re further improved to 29 and 3 for () and (f), respectivelyowing the

only a single fingerprint. However, in practice, particlyar superior performance of the proposed method.
in forensics, two or more fingerprints could overlay on top
of each other, resulting in an overlapped fingerprint image
(see Fig. 1(a)). Latent fingerprints lifted from crime scene

. A . . o manually mark minutiae for each component fingerprint in
may contain overlapping fingerprints, and live-scan fingatp . T . ) :
. . o ; . the image, and then feed this information to a fingerprint
images sometimes also have multiple impressions of f'ng?rr]stcher Manually marking minutiae in overlapoed fin .
because of the residual fingerprints left on the sensor. Such ’ y 9 bp gerh

overlanped fingerprint imades. while difficult to process a Mades is not only tedious, but also very difficult. Recent
PP gerp ges, . P o5 publications [2], [4]-[7] have proposed algorithms to sapa
useful forensic evidence for identifying suspects. Avalida L . : o .
two overlapping fingerprints with minimal markup. Given the

fingerprint matchers, however, can not accurately matcin-ove : : )
CO{nponent fingerprints, latent examiners no longer need to

lapping fingerprints, because they assume that a flngerprrwark the minutiae since the component fingerprints can be

image contains only a single fingerprint and hence sing| . .
orientation field [2]. Our interest here is to develop altoris e?fec'uvely matched by commercial matchers. Chen et al. [2]

: : and Shi et al. [4] showed an improvement in the matching
to separate overlapping latents that will serve as a vai.tabl accuracy of component fingerprints compared to the overlap-
in forensics. Note that in forensics, the matching accuicy y P gerp P P

latents is extremely critical even if it involves some deagreg Ir??elzrtlir\]/telby 225'3“:2”? ;ﬂ:ﬁztloz(ﬁg:megs zaifﬁeg?:;;h
of manual intervention by latent examiners, including menu y9 q y bp g y

the FVC2002 Db1b database [8]. Figure 2 shows an example
markup.

The prevailing procedure to recognize component fing ?f synthesized overlapped fingerprint image used in [2] and

prints in an overlapped image is for latent examiners 3 . , . .
State-of-the-art overlapping fingerprints separationoalg
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Fig. 2. Processing steps in the proposed overlapping fingergeparation algorithm. (i) Manual markup of regions wterest (represented by polygons),
singular points (cores represented by circles and deltasriiggles), and orientation cues (represented by magersies), (ii) orientation field (OF)
reconstruction, and (iii) enhancement. The best matchescbetween the two component fingerprints in this overlagpegerprint image and their mated
template fingerprints by a COTS matcher are, respectivélyar®l 68 without separation, 140 and 47 after separation éyldporithm in [4], and 328 and
128 after separation by the proposed algorithm. The ovegldpmage is from the database used in [2] and [4].

each component fingerprint, by using a relaxation labelirigis topic [2], [4] mainly focused on relatively good quslit
method. Third, given the orientation fields of the componenverlapping fingerprints and showed improvement in match-
fingerprints, the two overlapping fingerprints are separating accuracy only on simulated overlapping live-scan fin-
by enhancing the overlapped fingerprint image with Gabgerprints. In this paper, instead of separating the estidhat
filters that are tuned according to the orientation fields ofixed orientation field, we reconstruct the orientationdfsel
component fingerprints. For such an approach to be effedtiveof component fingerprints via modeling orientation fieldsl an
is critical to obtain accurate orientation fields of the came@nt then predicting unknown orientation fields based on a small
fingerprints. The initial estimation of mixed orientatioeli number of manually marked orientation cues in fingerprints.
(from the overlapping print) is thus a bottleneck in thes€he fingerprint orientation field model not only ensures the
relaxation labeling based methods. For poor quality opgea local smoothness of component orientation fields, but also
latent images, it is very difficult to automatically esitmaidge serves as a global constraint on the reconstructed oriemtat
orientations. Comparing the overlapped latent image in Fifields. For these reasons, the proposed model based method
1(a) and the overlapped image in Fig. 2, one can easily see significantly improves the accuracy of overlapping fingarsr
challengs in separating low quality overlapping latentsseal separation, especially for the practical scenario of padity

by complicated background and unclear ridge structurelsen toverlapped latent images.

images. Another drawback of the relaxation labeling basedThe rest of this paper is organized as follows. Section
methods is that they separate the mixed orientation fieldsgives an overview of the proposed separation algorithm.
based only on local ridge orientation consistency under tsection Ill introduces in detail the reconstruction of ataion
assumption that fingerprint ridge orientation fields arallyc fields of component fingerprints via orientation field modgli
smooth. Figure 1 shows the separated orientation fields of amd prediction. Section IV then presents experimental-eval
overlapped latent image by using the method in [4] (Figs) 1(aation results along with some discussion. Section V finally
and 1(d)) and the method proposed in this paper (Figs. 1@@ncludes the paper.

and 1(f)). As can be seen, the poor quality of latent images

seriously degrades the performance of the relaxationifabel Il. OVERVIEW OF SEPARATION ALGORITHM

based method in [4]. The flowchart of the proposed overlapping fingerprint sep-

The objective of this paper is to improve the robustnessation algorithm is shown in Fig. 2. To separate two overlap
of overlapping fingerprint separation, particularly forgpo ping fingerprints, region of interest (or ROI), singular isi
quality images (e.g. overlapping latents). Previous wonk dcore and delta), and a small nhumber of orientation cues



(represented by strokes) are provided for each fingerprint.
ROI masks out the regions of the individual components in

overlapped image. Singular points and orientation cuep hel u.‘\.‘\\:\\.\\\
identify the ridge patterns of overlapping fingerprintsi@ilar l\{:\‘t\ 7

points that are outside of the ROI and not visible in the
image might also be marked with the best guess of their
positions. Such singular points are shown in green coloign F
2. Orientation cues specify the ridge orientations in sothe o
the_‘ |OC<’:1_| blocks of a flngerprln_t, which together with S'@UI Fig. 3.  Fingerprint orientation field. (a) A fingerprint imagn FVC2002
points (if any) are used to estimate the parameters of fingeb1-a [8], and its orientation field estimated by gradienseshmethod [1],
print orientation field model. Given these model paramete%Eﬁt;fiognegglfg"yeigg?ég EXCter%t gtnthTa:egci’?ﬁtz Zgzungm ?ﬁglgi:rtgb(g)e
orientation estimates are more likely to be accuratelyipted model [10]. (c) Rgsidual orier?ltation fiegllclij, whpich is the gﬁnce between the
for the fingerprint blocks. Again, these manual markupssientation fields in (a) and (b); it is smooth and continuous

much simpler than marking all the minutiae points, ensure

accurate separation of component fingerprints that is afuci

for latent fingerprint analysis. In the next section, we wil

: . . . et . aper in order to effectively utilize the relatively simplaes
introduce in detail the procedure of orientation field mautg! b b Y y o

of component fingerprints provided by fingerprint examiners

and prediction for reconstructing orientation fields (OF) Orhe proposed model-based method permits an effective use of
overlapping fingerprints. Given the reconstructed oriéoma the manual markup

fields of the two component fingerprints, the ridge frequency
in the two fingerprints can be estimated by using the method in

[9]. Finally, the two overlapping fingerprints are sepadoy [1l. ORIENTATION FIELD MODELING AND PREDICTION
enhancing the overlapped fingerprint image with Gabor §ilteA. Orientation Field Models

that are Funed 0 their respect_ive_or_ientation fields anderid ¢ orientation field of a fingerprint represents the dominan
Zﬁgu[j]nues [9]. This last step is similar to the methodsah [}, ridge orientations. Le® denote the region of interest in
: ) _ _ the input overlapping fingerprint. The fingerprint orieidat
Compared with the relaxanon labeling baseF’ methQQS fi2ld can be then viewed as a functiéfi, y) of the location
[2] and [4], the .proposed.algorlthm .does.requwe addltlon?%m € Q, whered(z,y) € [0,7) represents the dominant
inputs, namely singular points and orientation cues. Ith2] |, .o ridge orientation a{x,y). It is, however, difficult to

aul o heir rel ion labeling based sati kcﬁﬁectly model the fingerprint orientation field becausehs# t
singular points into their relaxation labeling based sapan ,ingic orientation discontinuity [1]. This problem cdwe

method without consistent performance improvement. Cheg a4 b : ; : o
. ; i y using doubled orientatiod&(x, y) and modeling it

et al. [2] subtracted the .smgular orlentatlon fn_eld gerextdty in the cosine and sine planes (or the complex plane) [12].

the manually marked singular points according to the Zero-rpe fingerprint orientation field(z, y) is smooth in most

Pole model [10] from the intial mixed orientation fields. Th?ocations of(, except in the regions around singular points

resulting orientation fields were assumed to be continuads g, Fig. 3(a)). The Zero-Pole model [10] for the orientatio
the relaxation labeling method was applied to separateethgs, gen.erated. by singular points is defined as
continuous orientation fields. There are two potential [Eots

with their approach. (i) It is unknown which component orien 1 Hfi (2 — 2¢;)
tation is affected by which singular points before separati 057 (2) = 5 arg e B 1)
. . . 2 H . (Z — Zd.)

Consequently, all possible combinations have to be ewdiat J=1 ’
which makes the method very complicated and error-prone. fivherez = x + i - y is a point in the fingerprint represented
Errors in the initial mixed orientation fields can signifitign in the complex plane;., andz,4, correspond, respectively, to
affect the separation results. the it" core and the''" delta, andK and L are the numbers

The relaxation labeling based method of Shi et al. [4], aof cores and deltas in the fingerprint. In this model, cores
improvement over [2], still suffers from the errors in thitiml  are taken as zeros and deltas as poles in the complex plane,
mixed orientation fields, which can be serious when usinglloand the orientation at a point is determined by the sum
Fourier analysis to automatically extract orientatiomsifrpoor of influence of all cores and deltas. The Zero-Pole model
quality overlapped latents (see Fig. 1). Although fewer o#n provides an effective tool for describing the contributioh
markup inputs (or even fully automatic systems) can redusigular points to fingerprint orientation field. Howeverjs
the burden on fingerprint examiners and help to improve thet able to accurately describe the orientation field of many
throughput, it is more desirable in practice to have higheeal fingerprints (see Fig. 3(b)). Fingerprints with the sam
recognition accuracy with acceptable manual interventiosingular points can have different orientation fields [13].
Moreover, it is a common practice in latent examination to In order to more accurately approximate the fingerprint
manually mark singular points [11], and it is much easiarientation field, Zhou et al. [13] proposed a combination of
for fingerprint examiners to trace a small number of reliabke point-charge model [14] and a polynomial model [14]. The
ridge segments than to mark all minutiae in a latent. Thepeint-charge model, similar to the Zero-Pole model, dési
facts motivated us to propose the separation method in thie orientation field close to singular points and the pofgiad



model approximates the orientation field in the rest part More specifically, given the ROI, singular points, and the
fingerprint, which is supposed to be smooth and continowsientation cues if}-, the model coefficients are computed
The main idea of the polynomial model is to approximataccording to (4). The residual orientation @t y); € Qx

the cosine and sine components of doubled orientations gy= 1,2,--- ,mx, wheremyx is the total number of pixels
using a linear combination of a set of basis functions. Ir,[13or blocks in{2x) can be then estimated as

monomials were used as the basis functions. Some of the n 2

other basis functions that have been explored include Ldrgen 0% ((x, y);) = larctan Z;‘L:O ?iqﬁi((x’ Y);) . (5
polynomials [15] and 2D Fourier series [16]. 2 20 @idi((z,y);)

Motivated_ by_the combinat_ion quel in [13] and its SucFinaIIy, the orientation atz,y); € Qx is obtained by adding
cessful application for latent fingerprint enhancement lW ;0\ the influence of singular points to the estimated residu
fingerprint reconstruction [18], we first remove the influeiod

singular points from the orientation field by subtractifiyy’ X R
from 0, and then approximate the residual orientation field 0((z,y);) = 0%((x,v);) + 057 ((2,),)- (6)
with a set of basis functions. Let

orientation, i.e.

The above reconstructed orientation field is, howevell, stil
oF =9 — g5F (2) not very accurate (note the upper left corner and the region
ound the core in Fig. 4(b)). To obtain a more accurate

. . . . . I
be the residual orientation field (see Fig. 3(c)), an?econstruction, instead of predicting all the unknown ori-

{¢i(z,y)[i =0,1,---,n} the set of basis functions. The Co-patigns at once (one shot approach), we first predict the

smesnd sine gomp%ngnts of the doubled residual oriengatiq) iions in the neighborhood o and then gradually
can be approximated by predict the orientations at farther locations frdm: based
cos(20F (z,y)) = Y1y aii(,y), 3) on both the known orientations ific and the previously
sin(208 (z,y)) = Yo bidi (2, y), predicted orientations. The orientation field model paranse
where {a;, bili = 0,1,---,n} are the coefficients of the _keep_gettlng updated (_jurmg the_lteratlve process. At each
; ] . . . . . |¥erat|on, the known orientations iR¢c and the previously
model. Given the residual orientation field in the region of . : . . o
: ) - predicted orientations are regularized by substitutingnth
interest{(z,y); € Q|j = 1,2,---,m}, the coefficients can . L
_ ; ) A with the output of the last updated model. Such regulanpati
be obtained by solving the following minimization problems . . :
: T can gradually correct the errors in the given cue$in and
using least squares optimization: ] T . i
previous predictions. Algorithm 1 summarizes the apprpach

z:azargminaH(I)-a—CHQ, @) and Fig. 4 shows the results on an example overlapped
b = argminy, ||® - b — S||?, fingerprint image. The orientation field reconstructed by th
B T v T proposed iterative algorithm is more accurate than that by
wherea = (ag, a1, -+, an)", b = (bo, b1, -+, bn)", one-shot prediction. A similar iterative approach was also
cos(20% ((x,y)1)) sin(207((x,9)1)) employed in the so-called “Smooth Extensions” orientation
cos(20% ((x,)2)) sin(207((x,7)2)) field reconstruction algorithm in [19]. Our algorithm difée
C= : S = : , from “Smooth Extensions” in that (i) we explicitly consider
R/ . R/ singular points and (ii) we incorporate regularizatioroitie
cos(20°((@, y)m)) sIn(207((@, y)m)) reconstruction process.
do((z,9)1)  o((zy)h) - dul(z9)1)
o do((z,9)2)  ¢1((z,y)2) - dul(2,9)2) C. Related Work
B : : -, : ’ Orientation field modeling and reconstruction are funda-
() m) O (&, Y)m) - dn((Z,Y)m) mental problems in many fingerprint related applicationshs

as fingerprint ridge orientation extraction [13], [14], fergrint
image enhancement [17], fingerprint image reconstruction
] ] ] . [18], [20], [21], and fingerprint matching [11], [19]. A nureb
B. Orientation Field Reconstruction of different fingerprint orientation field models have beea-p
For orientation field prediction and reconstruction, onlposed in the literature. Some of them describe the oriemtati
the orientations at a subset 6f are assumed to be knownfields generated by singular points. These models, inctudin
(given cues); the orientations at remaining locations{bf the Zero-Pole model [10] and its variants [22], [23], can not
are estimated based on the model. Let us denote these haodle the arch fingerprints which do not have any singular
subsets aSl¢ andQx (2 = Q¢ UQx), respectively. For the points or accurately approximate the orientation fieldg$riamn
overlapping fingerprints separation proble@y; corresponds singular points [14]. This limitation inspired the more &da
to the blocks where local orientation cues are given, @rd rate models in [13], [24]-[26]. In [13], the orientation fiksl
is the set of other locations in the component fingerprint. nearby and far from singular points are described, respeyti
Given a fingerprint orientation field model, unknown oriby a point-charge model and a polynomial model, and the two
entations are predicted as follows: (i) compute the modelodels are combined by weighted summation. In [24] and
coefficients based on the known orientationsig, and (i) [25], fingerprints are also divided into several differesgions
use the established model to estimate the orientatiofisgin according to the singular points. Orientation fields in &es

andT is the transpose operator.
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Fig. 4. Orientation field reconstruction. (a) An overlappgethge along with the ROI, singular points, and orientatiolescin one of the two component
fingerprints. The arrow in (a) points to a cue that is not vergusate. (b)-(f) show the reconstructed orientation fi@fishat component fingerprint. (b)
obtained by one-shot prediction. (c)-(f) results at the,fisecond, third and final iterations by using the proposedtiive approach. Note that the erroneous
input cues and predictions are gradually corrected. (g)(Bhdre the two separated component fingerprints of (a) basdHe reconstructed orientation fields
by the proposed method.

Algorithm 1 Orientation Field Reconstruction often do not contain any singular points. Huckemann et &l, [2
Input: Q: Region of Interest;f(2¢): Orientation cues in proposed to use quadratic differentials to model the omigort
Q¢ C Q; SP: Singular points fields in different types of fingerprints. To apply the quditra
Output: 0(Q): Reconstructed orientation field i differential based models, the fingerprints have to be atign
1: Compute the orientation field of the singular points aawith respect to the coordinate systems defined by singular
cording to (1):0°7(Q) points (or points with highest curvatures in arch fingensjin
2: Compute the residual orientation field ft-: 6%(Qc) <+~ However, it is not feasible to establish the required couaté
0(Qc) — 057 (Q0) systems when some of the singular points are missing, as in
3: Initialize the prediction areaf)p < (Di |l ate(2¢) — often the case with latent fingerprints.
Qc)NQ The combination model initially proposed in [13] was
4: while Qp is not emptydo recently improved by Feng et al. [18] for the purpose of
5. Estimate the model coefficients based #f(2) ac- reconstructing orientation fields from a given set of miaeti
cording to (4) Instead of dividing fingerprints into different parts, Feay
6: Compute the predicted residual orientations @ al. divided the fingerprint orientation fields into singukard
according to (5)9%(Qp) continuous components, and approximated them by using
7. Regularize the residual orientationsfi: 0%(Q¢) < the Zero-Pole and polynomial models, respectively. In othe
07 (Qc) words, the Zero-Pole model describes the influence of semgul
8 Q¢+ QcUQp, Qp «+ (Dilate(Qc) —Qc)NQ points (if any) on the whole fingerprint orientation field,dan
9: end while the polynomial model approximates the residual orientatio
10: Compute the reconstructed orientation field according field. In [18], it was shown that this improved combination
(6): 0(Q) «+ OF(Q) + 657 (Q) model performs better than the interpolation model in [20]

and the adapted Zero-Pole model in [21]. This model has also
been successfully applied to latent fingerprint enhancéimen
[17]. Therefore, in this paper, we employ this combination
regions are then approximated by using piecewise lineasgohanodel. Unlike in [17] and [18], we apply the model in an
portaits. Both these models require the partition of fingatp iterative approach to get more accurate prediction of unkno
into predefined regions, which is, however, very difficult irientations (see Fig. 4).

practice, especially for latent fingerprints, which ardiphand In the polynomial models, a set of basis functions are



needed to represent the fingerprint orientation fields. &hil
monomials were used by [17] and [18], Ram et al. [15] and
Wang et al. [16] proposed to use Legendre polynomials and
trigonometric polynomials, both of which compose orthogion =%
bases and are claimed to be effective in approximating finger
print orientation fields without prior knowledge of singula
points. Recently, Wang et al. [19] applied the trigononeetri

Identification Rate (%)
[y

polynomial based model (called FOMFE) to reconstruct the ot

full orientation fields from partial fingerprints. Again, ey st === No Separation
did not explore singular points in the reconstruction pssce A N OO 1
Some other orientation field models which do not requirerprio Y R

knowledge of singular points include the probability based
models in [27] and [28], which have rather high computationa
complexity. In this paper, we will compare the performance
of different polynomial based models for both cases: using
singular points and not using singular points.
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IV. EVALUATION AND DISCUSSION
A. Separation Performance

There is no public domain database of overlapping latent
fingerprints. It is also difficult to obtain such images fronet S = - 2R Separaion
. . = = = Relaxation Labeling
forensics laboratories because we have been told that, afte == Modelases
2 4 6 8 10 12 14 16 18 20

manual separation, the overlapped prints are not kept in the Rak
database. We, therefore, report our results on the follgwin )

three scenarios.
; ; ; : ; Fig. 5. CMC curves of (a) COTS1 and (b) COTS2 matchers on thelated
¢ S!mUIated overlapp!ng Ilvescan flngerprlnts overlapping fingerprints in the database used in [2], [4].tHa case “No
« Simulated overlapping latent fingerprints Separation”, the component fingerprints in the originalramped fingerprint
« Real overlapping latent fingerprints images are directly matched to full prints; otherwise, they first separated

See Table | for details of the three databases. Note tr%tusmg difierent algorithms and then matched.

the database of simulated overlapping livescan fingewprint
was also used in [2] and [4]. But they did not test the
matching performance of overlapping latents (i.e. the sécothe cumulative match characteristic (CMC, IdentificaticatdR
and third scenarios). The performance and comparison wsf Rank) curves for COTS1 and COTS2 matchers on the
separation algorithms is based on the matching resultsdaetwcomponent fingerprints separated by different algorithfss.
the separated component fingerprints and the enrolled faiin be seen from these curves, after separating the conmponen
fingerprints. In the following experiments, we use up to thur fingerprints, both the matchers can more accurately idethtéf
order monomials [13] as the basis functions for the propostdgerprints, compared to not separating the overlappedspri
algorithm, and compare the proposed algorithm with tHeurther, the accuracy improvement is higher by using the
relaxation labeling approach in [4]. Two state-of-the@@TS proposed separation algorithm compared to [4] (note that th
fingerprint matchers are employed, referred to as COTS1 d08@TS2 matcher we use in this paper has much better matching
COTS2. accuracy compared to the matcher used in previous studies [4
1) Smulated Overlapping Livescan Fingerprints. We first and [2]). Owing to the relatively good quality of these image
compare the performance of the proposed model based ale rank-1 identification rate of COTS2 is improved fr@g¥
rithm with the relaxation labeling based algorithm in [4] of{no separation) t®9% (using the relaxation labeling based
the database used in [2] and [4]. This database contains Edgorithm in [4]) and100% (using the proposed model based
overlapped fingerprint images, which were synthesized froatgorithm). Figure 6 shows two component fingerprints, Mwhic
the images in FVC2002 Db1-b [8]. Figure 2 shows an exampaee both correctly identified at rank-1 by COTS2 after being
overlapped fingerprint image in this database. Images m tiseparated by the proposed method, and at rank-31 and rank-3,
database are livescan fingerprint images, which generallg h respectively, after being separated by the relaxationlifzdpe
better quality than latent images. In the experiments, tl@sed method.
component fingerprints are matched against a backgroun®) Smulated Overlapping Latents: In order to evaluate the
database of 60 images from FVC2002 Dbl-b and 800 imerformance of separation algorithms on low quality latent
ages from FVC2002 Dbl-a. Each component fingerprint hasages, we construct a set of fifteen simulated overlapping
six mates in the background database (the images usedl&ents by using the latent fingerprint images in NIST SD27
synthesizing overlapping fingerprints are excluded), dmel t[3]. Authors of [2] synthesized overlapping livescan finger
maximum match score between the component fingerprprints by first normalizing the gray-scale of two livescan
and its mates is taken as its final score. Figure 5 shotisgerprint images and then taking the minimum gray value

Identification Rate (%)
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TABLE |
THREE DATABASES USED IN EXPERIMENTAL EVALUATION

[ Database | Image Type Source | #Images |
1 Simulated overlapping livescan fingerprints FVC2002 Db1-b [8] 100
2 Simulated overlapping latent fingerprints NIST SD27 [3] 15
3 Real overlapping latent fingerprints Forensics lab 4

© (d)

Fig. 7. Synthesizing overlapping latents. (a) and (b) are saurce latent
images from NIST SD27 [3], (c) simulated overlapped latemage by using
the approach in [2] and [4], and (d) simulated overlappednlatimage by
using the approach in this paper.

Fig. 6. Two component fingerprints, as marked by green palggin the
database of simulated livescan overlapping fingerprinteeyTare correctly
identified by COTS2 matcher at rank-1 after being separayeithéo proposed

mode] based metflod, and & rank 31 and rank-s after bengraerl by - anq the first 27,000 rolled fingerprints from NIST SD14 [29].
e relaxation labeling based method. (a-b) show the qweeld fingerprint . P
images, (c-d) are the component fingerprints separated eyrafaxation 1ne identification results of COTS1 and COTS2 matchers are
labeling based method, and (e-f) are the component fingespseparated presented in Fig. 8 and Fig. 9, respectively. By comparimg th
by the proposed method. retrieval ranks of the mated full fingerprints of the compatne
latents before and after separation, we can see that while th
relaxation labeling based method can improve the matching
between corresponding pixels in the two images. Howeveanks of 15 of the 30 component latents for COTS1 matcher
this approach does not work well for latent images becauaed 17 of the 30 component latents for COTS2 matcher, the
latent images usually have very complicated background apibposed model based method can improve the ranks of 22 of
different latents can have very different gray-scale rangthe component latents for both COTS1 and COTS2 matchers.
(see Fig. 7). Thus, we synthesize overlapping latents in tfis shows the superiority of the proposed method over the
following way: (i) normalize the gray-scale of original éeit relaxation labeling based method for separating low qualit
images using histogram equalization, (ii) set the pixeligal overlapping latents. Figure 10 shows the separated compone
in the simulated overlapped latent image as the averageeof thtents in the simulated overlapped latent image in Fig. 7.
intensities of the corresponding pixels in the two compdneNote the poor performance of the relaxation labeling based
latents (which are assumed to have the same size), (iifethod in the relatively dark area in the image and in the area
and post-process the resulting overlapped latent imageyusaround singular points. Using COTS2 matcher, the ranks of
histogram equalization. the mated full prints of the two original component latents a
The component latent fingerprints in these simulated over;544 and 24,859, respectively. After separating them ky th
lapped latent images are matched against a backgrouathxation labeling based method, COTS2 matcher can fgenti
database consisting of 258 rolled fingerprints from NIST $D2he second component latent at an improved rank of 16,180,
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Fig. 10. Separated component latents in the simulated apsed latent
image in Fig. 7. (a-b) manually marked features of the two ponent
latents, (c-d) component fingerprints separated by theattm labeling based
method, and (e-f) component fingerprints separated by theosed method.
Using COTS2 matcher, the ranks of the two component latewetsngroved
from 4,544 and 24,859 to 1 and 12,602, respectively, aftergbseparated by
the proposed method. The corresponding ranks after bejparated by the
relaxation labeling based method are 13,543 and 16,810ectsely.

but the first component latent at a higher rank of 13,543. In
contrast, by applying the proposed model based separation
method, the first component latent can be correctly idedtifie
by COTS2 matcher at rank-1, and the rank of the mated
full print of the second component latent is also improved
to 12,602.

3) Real Overlapping Latents: We have collected four im-
ages of real overlapping latents from two donors (one made an
one female) with cooperation from Michigan State Forensics
Laboratory. See Fig. 11. Latents in Figs. 11(a) and 11(b)
have relatively simple background, while latents in Fighc)
and 11(d) have complicated background with many letters,
which severely degrades the quality of the latent fingetprin
In all these four images, the overlapping area comprises a
large portion of the component latent fingerprints, and few
discriminative features (e.g. minutiae) are availablémmon-
overlapping area. As a result, it is of significant imporeue
recover the overlapping area of the component fingerprits t
identify the latents.

The separated component latent fingerprints in these four
images are shown in Fig. 12. These component fingerprints
are matched by using COTS2 matcher against a background
database consisting of 20 rolled fingerprint images from the
two donors (one image per finger), 258 rolled fingerprint
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Fig. 11. Four images of real overlapping latents. The redgmeén polygons mark the first and second component latergpectively.

TABLE Il
MATCHING RESULTS OFCOTS2MATCHER ON THE COMPONENT LATENT FINGERPRINTS INFIG. 11 AGAINST A BACKGROUND DATABASE OF 27,278
FULL FINGERPRINTS THREE CASES ARE CONSIDEREDCOMPONENT LATENTS WITHOUT SEPARATIONCOMPONENT LATENTS SEPARATED BY THE
RELAXATION LABELING BASED METHOD [4], AND COMPONENT LATENTS SEPARATED BY THE PROPOSED MODEL BASEMETHOD.

Component No Separation Relaxation Labeling Proposed
Latents Score Rank Score Rank Score Rank
(a) #1 3025 12 3680 1 4040 1
#2 4286 1 2857 8 5897 1
(b) #1 4952 1 3084 23 7373 1
#2 3288 3 2781 19 4964 1
(c) #1 1546 15956 1748 4430 2493 42
#2 1877 5243 1741 3245 3811 1
(d) #1 2520 393 1642 5218 2939 23
#2 1480 19073 2100 779 2472 102

images from NIST SD27, and the first 27,000 rolled fingerprirsection. Although the Legendre polynomial based model and
images from NIST SD14. The matching results, as reportedHOMFE were initially proposed without using singular psint
Table I, demonstrate that (i) poor quality overlappingtas for fair comparison in our experiments, we also apply them in
(e.g. the second component latent in Fig. 11(c) and the fithe case of using singular points.

component latent in Fig. 11(d)), if properly separated, can
provide valuable evidence for latent identification, anyttie
proposed method is more robust on poor quality overlappi
latents than the relaxation labeling based method.

The retrieval ranks of the corresponding mated fingerprints
Rf the latents are given in Table Ill. From these results, we
cgn see that (i) all the three orientation field models benefit
from the use of singular points, particularly for lower gl
_ _ _ _ latents, and (ii) none of the three models consistentlyquaré
B. Comparison of Orientation Field Models better than the others, but the monomial based model pesform
As discussed in Section III.C, most existing orientatiofdfie on average, the best, especially when singular points are no
models which are based on singular points are not suitabised. Figure 13 shows the reconstructed orientation figlds b
for latent fingerprints, and for the polynomial based modelthe proposed method with monomial basis functions for the
different polynomial basis functions have been proposed. tomponent latents in Fig. 11(c). The first component latent
this section, we compare the performance of the proposedFig. 11(c) has such a poor quality that its core points can
separation algorithm when different polynomial basis funmot be clearly located and only one possible delta closesto it
tions are used, including monomials in [13], [14], [17], [18 boundary is marked. The reconstructed orientation fields of
Legendre polynomials in [15], and trigonometric polynotsia this component latent (see Figs. 13(b) and 13(c)) show tieat t
(i.,e. FOMFE) in [16], [19]. For all of the three types ofmarked delta does not help much and can even degrade the
polynomial basis functions, we set their order to four, vilhicmatching performance for this very poor quality component
is the recommended optimal value by the authors of studiesent. On the other hand, if the singular points can belblia
which proposed these polynomial basis function based modeharked in a component latent, for example, for the second
In the experiments, we separate the four real overlapptegtia component latent in Fig. 11(c), the reconstructed oriemat
fingerprints by using different polynomial basis functipasd field is much more accurate when the reliable singular points
use COTS2 matcher to match the separated component latantssused (see Figs. 13(e) and 13(f)), and thus the matching
against the large background database used in the previaosuracy of the separated component latent can be significan
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Fig. 12. Separation results of the real overlapping latenfigs. 11(a)-11(d). The first and third columns show tie component latent fingerprint separated
by the proposed method and the relaxation labeling baseHoaietespectively. The second and fourth columns show2ftfecomponent latent fingerprint
separated by the proposed method and the relaxation Ighadised method, respectively.

improved. Figure 14 compares the reconstructed oriemtatidiscuss the impact of manually marked orientation cues on
fields for the second component latent in Fig. 11(d) by usinge separation performance of the proposed model based
monomial based, Legendre polynomial based, and FOMR&ethod with monomial basis functions. The manually marked
models when the cues in Fig. 14(a) are provided. Althougirientation cues are essentially seeds to the proposedimode
the unavailability of the core points impairs the accuraty d®ased separation method. It is thus important to provide a
all the three models, the monomial based model gives the mssfficient number of accurate orientation cues in order for
accurate reconstruction of the orientation field. a reasonable reconstruction of fingerprint orientationdfiel
General intuition would suggest marking uniformly distrieéd
orientation cues in fingerprints. Our experiments, however
show that some regions in fingerprints are more critical and
In the last section, we demonstrated the importance of Majioviding orientation cues in such regions can signifigant!

ually marked singular points in orientation field reconstien  jmprove the reconstruction results. These regions aregif hi
and overlapping fingerprints separation. In this sectior, w

C. Impact of Markup Cues
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TABLE Il
RETRIEVAL RANKS BY COTS2MATCHER OF THE MATED FINGERPRINTS OF THE COMPONENT LATENT RIGERPRINTS(SEEFIG. 11)IN A BACKGROUND
DATABASE OF 27,278FULL FINGERPRINTS THE SEPARATED COMPONENT LATENTS ARE OBTAINED BY USING THE PREDSED METHOD WITH THREE
DIFFERENT TYPES OF POLYNOMIAL BASIS FUNCTIONSMONOMIALS, LEGENDRE POLYNOMIALS AND FOMFE. ALL OF THE THREE TYPES OF
POLYNOMIAL BASIS FUNCTIONS ARE APPLIED IN TWO CASESUSING SINGULAR POINTS(SP)AND NOT USING SINGULAR POINTS(NO SP).

Component Monomials Legendre Polynomials FOMFE
Latents SP No SP SP No SP SP No SP

@ [# 1 1 1 54 1 5

#2 1 3 1 1 1 2
b | # 1 1 1 1 1 1

#2 1 4 1 19 1 178
(c) #1 42 2 77 2789 1 9

#2 1 38 1 825 1 1096
(d) #1 23 1856 90 1446 28 53

#2 102 686 2351 2315 2734 17185

Fig. 13. Impact of singular points. (a) and (d) show the méypuaarked ROI, singular points, and orientation cues in tive component latents in Fig.
11(c). (b) and (c) are the first component latent separatetidoproposed algorithm with monomial basis functions, ajdafd (f) are the second component
latent. Singular points are used for (b) and (e), but not dsedc) and (f).
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Fig. 14. Comparison between orientation field models. (ahdadly marked ROI and orientation cues in the second comypdatent in Fig. 11(d). Singular
points are not marked. (b), (c) and (d) are, respectively,rétonstructed orientation fields using monomial basedeh@re polynomial based, and FOMFE

models. By using the COTS2 matcher, the scores between thesponding separated component latents and the mated foligerprint are 2061, 1817,

and 1327, respectively.

Fig. 15. Impact of orientation cues. (a) Manually marked R&digular points, and orientation cues in the first compotaant of Fig. 11(b), (b) reconstructed
orientation field in (b) (dashed brown and green circles ligbh repsectively, a region of high curvature and a reg@anfrom singular points), (c) a small
number of orientation cues in the high curvature region areaved, (d) the corresponding reconstructed orientatild, f(e) a small number of orientation

cues in the region far from singular points are removed, #nthé corresponding reconstructed orientation field.
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Fig. 16. Impact of orientation cues. (a) Manually marked R&hgular points, and orientation cues in the second coegolatent in Fig. 11(a), used for
reconstructing the orientation field in (b) and the sepdra@mponent latent in Fig. 12. (c) shows the reconstructéehttion field when some cues near
the boundary (see the cues pointed to by arrows) are removed.

curvature, regions far from singular points, and regiomsel examiners provide sufficient number of orientation cues in
to boundary. Next, we demonstrate this by using the firgégions of high curvature and in regions far from singular
component latent in Fig. 11(b) and the second compongmints or close to boundary. Although in practice, it coudd b

latent in Fig. 11(a). difficult for the latent examiner to decide at the first glance

Figure 15(a) highlights two critical regions in the firsiow many cues will be sufficient for an accurate separation
component latent in Fig. 11(b): one of them has high cureatu®f overlapping latents, we believe that the difficult task of
and the other is far from singular points. We remove some $¢parating overlapping latents should be viewed as a semi-
the Orientation cues from the h|gh curvature region (F|dc))5 automatic and iterative task rather than a fu“y automatic o
and from the region far from Singu|ar points (F|g 15(e))_, re““ghts out” task. In this sense, the model based Separation
spectively. The corresponding reconstructed orientdirlds method propos_ed here provides a very useful interactive too
are shown in Figs. 15(d) and 15(f). It can be seen from thef§¥ latent examiners.
figures that the reconstructed orientation fields, afteradiding
the orientation cues in the two regions, can not accurately Computational Complexity
follow the fingerprint ridges. The gequine match scores of The proposed separation method involves an iterative pro-
cotTs2 matgherm these two cases (F'_g' 15(c) and Fig. 15( pss in the reconstruction of the orientation field of over-
are, respectively, 5797 and 5186, which are lower than t

; . . ping fingerprints (see Algorithm 1). The time required
score (7373_) obtained when those orientation cues were ot tthis process depends on the size of the fingerprint, the
excluded (Fig. 15(a)).

number of given orientation cues, and the precision (i.e.

Figure 16 shows the results on another example, i.e. thRck size) of the estimated orientation field. According to
second component latent in Fig. 11(a). Figure 16(a) showgr experimental results, for 500 ppi fingerprint images and
the cues based on which the Separated Component IatenhiBlock size of8 x 8 pixels (as used in our experiments),
Fig. 12(a) is obtained, and the corresponding reconstiuci®e proposed algorithm converges in about five iteratioms an
orientation field is shown in Fig. 16(b). If we remove some ggkes less than one second (on a 3GHz processor with 4GB
the cues near the boundary as marked by the arrows in Figemory) to reconstruct the orientation field per component
16(a), the reconstructed orientation field becomes lesgatee ﬁngerprint_ As a Comparison, according to [4], the relal@xt
as shown in Fig. 16(c). This is due to the insufficient numbegpeling based method in [4] takes about three seconds to
of constraints (i.e. markup cues) on the boundary. Pretiicif  separate the orientation fields in one overlapped fingerprin
orientations on the boundary is more like extrapolationt{pa jmage, and the method in [2] takes more than 30 seconds.
ularly when insufficient cues are given), which is more diffic However, the proposed method requires additional manually
than interpolation. Because of the less accurate recansttu marked features, i.e. orientation cues. Although markiregé
orientation field, the genuine match scores of COTS2 matchg{ditional cues does take extra time from latent examiners,
for the separated component latents also decreases frof 58@se cues enable the proposed method to more accurately
to 4880. separate low quality overlapping fingerprints.

Based on the above results, it is suggested that the latenit is worthwhile to mention that while it is also possible
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to incorporate manually marked orientation cues into thmpact of orientation cues in different fingerprint regioos
relaxation labeling based methods, this would requirentatea large database will be very useful.

examiners to check the two dominant orientations in the
overlapping area blocks. This is because the relaxaticlitadp
algorithm is not able to correct the errors in the estimated

orientation field or to handle the discrepancy between nparky ANl Jain's research was supported in part by the WCU
orientation cues and computed local orientatowhat the (World Class University) program through the National Re-

relaxation labeling algorithm does is to simply classifye thS€arch Foundation of Korea funded by the Ministry of Edu-
given two orientations in a block to one of the two componefffition. Science and Technology (R31-2008-000-1000-03. Th

fingerprints based on local consistency of the fingerpriﬁf‘thors would like to thank Capt. Gregoire P. Michaud, DI/Lt.

orientation field. On the contrary, the proposed model basg@"y S: Daniels, D/Sgt. Scott Hrcka, and D/Sgt. Derek Emme
method can not only predict unknown orientations, but {fom Michigan State Police and Soweon Yoon from Michigan

can also fix the errors in the estimated orientation field. AYate University for their support in data collection anéfus
pcussion. All correspondence should be directed to Anil K

a result, the proposed method can more effectively as W,%ialn
in.

ACKNOWLEDGEMENT

as efficiently utilize the orientation cues manually marke
by latent examiners in the reconstruction of the component
orientation fields in overlapping fingerprints.

(1]

(2]

Overlapping latent fingerprints are frequently encourttere
at crime scenes. The identification of component fingergyint
both by latent examiners and by AFIS, is very challenging
because of the complex background, poor quality, and con-

V. CONCLUSIONS

taminated ridge structures. In this paper, we have proposé
a model based method for separating overlapping latent fin-
gerprints. The proposed algorithm reconstructs the aatant  [5]
field of overlapping fingerprints based on a set of manually
marked features, including regions of interest, singuEnis, [g]
and orientation cues. Based on the underlying model of
fingerprint ridge orientation field, the proposed method ca
simultaneously predict unknown orientations in fingerfgin
and regularize the estimated orientations. Experimeagallts
on both simulated and real overlapping latents demongtrate (8]
the proposed method, compared to state-of-the-art rétexat
labeling based method, is more effective, thanks to the mani®]
ally marked cues and the underlying orientation field madels
Fingerprint orientation field models have been widely usggb
for regularizing the estimation of fingerprint ridge oriation
field. In this paper, we employed the models not just fd#!
regularization, but also for predicting unknown orierdas.
Although we have primarily utilized the combination mode[t2]
based on the Zero-Pole model and monomial basis functi(wgs*]
[13], [17], [18], which requires singular points, and thegke
endre polynomial based [15] and FOMFE [16], [19] models,
which do not need singular points, our approach does ite1d
depend on nor require any specific orientation field model. |ix;
our future work, we plan to improve the prediction capailit
of existing fingerprint orientation field models in order tql]
further improve the accuracy of model based separation o?
overlapping latent fingerprints. Another direction we ptan
take is to enhance the feasibility of the proposed methilq]
by studying the optimal way of specifying orientation cues.
One potential way to guide the specification of orientation
cues is to divide fingerprints into different regions. Framst [18]
perspective, more quantitative and systematic evaluafitime

[19]
11t is for this reason that the authors in [4] included a smimatfoperation
to the separated orientation fields to eliminate some errors
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