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Model Based Separation of Overlapping Latent Fingerprints
Qijun Zhao and Anil K. Jain,Fellow, IEEE

Abstract—Latent fingerprints lifted from crime scenes often
contain overlapping prints, which are difficult to separate and
match by state-of-the-art fingerprint matchers. A few methods
have been proposed to separate overlapping fingerprints to
enable fingerprint matchers to successfully match the component
fingerprints. These methods are limited by the accuracy of the
estimated orientation field, which is not reliable for poor quality
overlapping latent fingerprints. In this paper, we improve the
robustness of overlapping fingerprints separation, particularly for
low quality images. Our algorithm reconstructs the orientation
fields of component prints by modeling fingerprint orientation
fields. In order to facilitate this, we utilize the orientation
cues of component fingerprints, which are manually marked
by fingerprint examiners. This additional markup is acceptable
in forensics, where the first priority is to improve the latent
matching accuracy. The effectiveness of the proposed method
has been evaluated not only on simulated overlapping prints, but
also on real overlapped latent fingerprint images. Comparedwith
available methods, the proposed algorithm is more effective in
separating poor quality overlapping fingerprints and enhancing
the matching accuracy of overlapping fingerprints.

I. I NTRODUCTION

Fingerprints are widely used for personal authentication in
both forensic and civilian applications. Given a fingerprint
image, fingerprint matchers extract features (e.g. minutiae)
from it, and match the features against the reference fea-
ture templates to identify or verify the identity associated
with the fingerprint [1]. Typically, the input image contains
only a single fingerprint. However, in practice, particularly
in forensics, two or more fingerprints could overlay on top
of each other, resulting in an overlapped fingerprint image
(see Fig. 1(a)). Latent fingerprints lifted from crime scenes
may contain overlapping fingerprints, and live-scan fingerprint
images sometimes also have multiple impressions of fingers
because of the residual fingerprints left on the sensor. Such
overlapped fingerprint images, while difficult to process, are
useful forensic evidence for identifying suspects. Available
fingerprint matchers, however, can not accurately match over-
lapping fingerprints, because they assume that a fingerprint
image contains only a single fingerprint and hence single
orientation field [2]. Our interest here is to develop algorithms
to separate overlapping latents that will serve as a valuable tool
in forensics. Note that in forensics, the matching accuracyof
latents is extremely critical even if it involves some degree
of manual intervention by latent examiners, including manual
markup.

The prevailing procedure to recognize component finger-
prints in an overlapped image is for latent examiners to
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Fig. 1. A fingerprint image containing two overlapping latent prints (a)
constructed by overlaying two latents from the NIST SD27 database [3]. The
individual latents are marked as red and green polygons in (b). The two com-
ponent orientation fields separated by using state-of-the-art relaxation labeling
based method [4] are shown in (c) and (d). The orientation fields reconstructed
by the proposed method are shown in (e) and (f). A commercial off the shelf
(COTS) matcher was used to match the two component fingerprints with their
corresponding mated rolled fingerprints. The match scores are both 0 without
separation (using the overlapped image in (a)), and are improved to 6 and 1
for (c) and (d), respectively. By using the proposed method,the match scores
are further improved to 29 and 3 for (e) and (f), respectively, showing the
superior performance of the proposed method.

manually mark minutiae for each component fingerprint in
the image, and then feed this information to a fingerprint
matcher. Manually marking minutiae in overlapped fingerprint
images is not only tedious, but also very difficult. Recent
publications [2], [4]–[7] have proposed algorithms to separate
two overlapping fingerprints with minimal markup. Given the
component fingerprints, latent examiners no longer need to
mark the minutiae since the component fingerprints can be
effectively matched by commercial matchers. Chen et al. [2]
and Shi et al. [4] showed an improvement in the matching
accuracy of component fingerprints compared to the overlap-
ping print by applying a relaxation labeling based algorithm
on relatively good quality overlapped images synthesized from
the FVC2002 Db1b database [8]. Figure 2 shows an example
of synthesized overlapped fingerprint image used in [2] and
[4].

State-of-the-art overlapping fingerprints separation algo-
rithms [2], [4] consist of three main steps. First, orientation
field is estimated from the overlapped fingerprint image by
local Fourier analysis. Second, the mixed orientations in the
overlapping area are separated into two components, one for
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Fig. 2. Processing steps in the proposed overlapping fingerprint separation algorithm. (i) Manual markup of regions of interest (represented by polygons),
singular points (cores represented by circles and deltas bytriangles), and orientation cues (represented by magenta strokes), (ii) orientation field (OF)
reconstruction, and (iii) enhancement. The best match scores between the two component fingerprints in this overlappedfingerprint image and their mated
template fingerprints by a COTS matcher are, respectively, 38 and 68 without separation, 140 and 47 after separation by the algorithm in [4], and 328 and
128 after separation by the proposed algorithm. The overlapped image is from the database used in [2] and [4].

each component fingerprint, by using a relaxation labeling
method. Third, given the orientation fields of the component
fingerprints, the two overlapping fingerprints are separated
by enhancing the overlapped fingerprint image with Gabor
filters that are tuned according to the orientation fields of
component fingerprints. For such an approach to be effective, it
is critical to obtain accurate orientation fields of the component
fingerprints. The initial estimation of mixed orientation field
(from the overlapping print) is thus a bottleneck in these
relaxation labeling based methods. For poor quality overlapped
latent images, it is very difficult to automatically esitmate ridge
orientations. Comparing the overlapped latent image in Fig.
1(a) and the overlapped image in Fig. 2, one can easily see the
challengs in separating low quality overlapping latents caused
by complicated background and unclear ridge structures in the
images. Another drawback of the relaxation labeling based
methods is that they separate the mixed orientation fields
based only on local ridge orientation consistency under the
assumption that fingerprint ridge orientation fields are locally
smooth. Figure 1 shows the separated orientation fields of an
overlapped latent image by using the method in [4] (Figs. 1(c)
and 1(d)) and the method proposed in this paper (Figs. 1(e)
and 1(f)). As can be seen, the poor quality of latent images
seriously degrades the performance of the relaxation labeling
based method in [4].

The objective of this paper is to improve the robustness
of overlapping fingerprint separation, particularly for poor
quality images (e.g. overlapping latents). Previous work on

this topic [2], [4] mainly focused on relatively good quality
overlapping fingerprints and showed improvement in match-
ing accuracy only on simulated overlapping live-scan fin-
gerprints. In this paper, instead of separating the estimated
mixed orientation field, we reconstruct the orientation fields
of component fingerprints via modeling orientation fields and
then predicting unknown orientation fields based on a small
number of manually marked orientation cues in fingerprints.
The fingerprint orientation field model not only ensures the
local smoothness of component orientation fields, but also
serves as a global constraint on the reconstructed orientation
fields. For these reasons, the proposed model based method
significantly improves the accuracy of overlapping fingerprints
separation, especially for the practical scenario of poor quality
overlapped latent images.

The rest of this paper is organized as follows. Section
II gives an overview of the proposed separation algorithm.
Section III introduces in detail the reconstruction of orientation
fields of component fingerprints via orientation field modeling
and prediction. Section IV then presents experimental eval-
uation results along with some discussion. Section V finally
concludes the paper.

II. OVERVIEW OF SEPARATION ALGORITHM

The flowchart of the proposed overlapping fingerprint sep-
aration algorithm is shown in Fig. 2. To separate two overlap-
ping fingerprints, region of interest (or ROI), singular points
(core and delta), and a small number of orientation cues
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(represented by strokes) are provided for each fingerprint.
ROI masks out the regions of the individual components in
overlapped image. Singular points and orientation cues help
identify the ridge patterns of overlapping fingerprints. Singular
points that are outside of the ROI and not visible in the
image might also be marked with the best guess of their
positions. Such singular points are shown in green color in Fig.
2. Orientation cues specify the ridge orientations in some of
the local blocks of a fingerprint, which together with singular
points (if any) are used to estimate the parameters of finger-
print orientation field model. Given these model parameters,
orientation estimates are more likely to be accurately predicted
for the fingerprint blocks. Again, these manual markups,
much simpler than marking all the minutiae points, ensure
accurate separation of component fingerprints that is crucial
for latent fingerprint analysis. In the next section, we will
introduce in detail the procedure of orientation field modeling
and prediction for reconstructing orientation fields (OF) of
overlapping fingerprints. Given the reconstructed orientation
fields of the two component fingerprints, the ridge frequency
in the two fingerprints can be estimated by using the method in
[9]. Finally, the two overlapping fingerprints are separated by
enhancing the overlapped fingerprint image with Gabor filters
that are tuned to their respective orientation fields and ridge
frequencies [9]. This last step is similar to the methods in [2]
and [4].

Compared with the relaxation labeling based methods in
[2] and [4], the proposed algorithm does require additional
inputs, namely singular points and orientation cues. In [2]the
authors also made an attempt to incorporate manually marked
singular points into their relaxation labeling based separation
method without consistent performance improvement. Chen
et al. [2] subtracted the singular orientation field generated by
the manually marked singular points according to the Zero-
Pole model [10] from the intial mixed orientation fields. The
resulting orientation fields were assumed to be continuous and
the relaxation labeling method was applied to separate these
continuous orientation fields. There are two potential problems
with their approach. (i) It is unknown which component orien-
tation is affected by which singular points before separation.
Consequently, all possible combinations have to be evaluated,
which makes the method very complicated and error-prone. (ii)
Errors in the initial mixed orientation fields can significantly
affect the separation results.

The relaxation labeling based method of Shi et al. [4], an
improvement over [2], still suffers from the errors in the initial
mixed orientation fields, which can be serious when using local
Fourier analysis to automatically extract orientations from poor
quality overlapped latents (see Fig. 1). Although fewer manual
markup inputs (or even fully automatic systems) can reduce
the burden on fingerprint examiners and help to improve the
throughput, it is more desirable in practice to have higher
recognition accuracy with acceptable manual intervention.
Moreover, it is a common practice in latent examination to
manually mark singular points [11], and it is much easier
for fingerprint examiners to trace a small number of reliable
ridge segments than to mark all minutiae in a latent. These
facts motivated us to propose the separation method in this

(a) (b) (c)

Fig. 3. Fingerprint orientation field. (a) A fingerprint image in FVC2002
Db1-a [8], and its orientation field estimated by gradient based method [1],
which is generally smooth except at the regions around singular points. (b)
Orientation field generated by the singular points according to the Zero-Pole
model [10]. (c) Residual orientation field, which is the difference between the
orientation fields in (a) and (b); it is smooth and continuous.

paper in order to effectively utilize the relatively simplecues
of component fingerprints provided by fingerprint examiners.
The proposed model-based method permits an effective use of
the manual markup.

III. O RIENTATION FIELD MODELING AND PREDICTION

A. Orientation Field Models

The orientation field of a fingerprint represents the dominant
local ridge orientations. LetΩ denote the region of interest in
the input overlapping fingerprint. The fingerprint orientation
field can be then viewed as a functionθ(x, y) of the location
(x, y) ∈ Ω, whereθ(x, y) ∈ [0, π) represents the dominant
local ridge orientation at(x, y). It is, however, difficult to
directly model the fingerprint orientation field because of the
intrinsic orientation discontinuity [1]. This problem canbe
solved by using doubled orientations2θ(x, y) and modeling it
in the cosine andsine planes (or the complex plane) [12].

The fingerprint orientation fieldθ(x, y) is smooth in most
locations ofΩ, except in the regions around singular points
(see Fig. 3(a)). The Zero-Pole model [10] for the orientation
field generated by singular points is defined as

θSP (z) =
1

2
arg

(

∏K

i=1
(z − zci)

∏L

j=1
(z − zdj

)

)

, (1)

wherez = x + i · y is a point in the fingerprint represented
in the complex plane,zci andzdj

correspond, respectively, to
the ith core and thejth delta, andK andL are the numbers
of cores and deltas in the fingerprint. In this model, cores
are taken as zeros and deltas as poles in the complex plane,
and the orientation at a pointz is determined by the sum
of influence of all cores and deltas. The Zero-Pole model
provides an effective tool for describing the contributionof
singular points to fingerprint orientation field. However, it is
not able to accurately describe the orientation field of many
real fingerprints (see Fig. 3(b)). Fingerprints with the same
singular points can have different orientation fields [13].

In order to more accurately approximate the fingerprint
orientation field, Zhou et al. [13] proposed a combination of
a point-charge model [14] and a polynomial model [14]. The
point-charge model, similar to the Zero-Pole model, describes
the orientation field close to singular points and the polynomial
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model approximates the orientation field in the rest part of
fingerprint, which is supposed to be smooth and continous.
The main idea of the polynomial model is to approximate
the cosine and sine components of doubled orientations by
using a linear combination of a set of basis functions. In [13],
monomials were used as the basis functions. Some of the
other basis functions that have been explored include Legendre
polynomials [15] and 2D Fourier series [16].

Motivated by the combination model in [13] and its suc-
cessful application for latent fingerprint enhancement [17] and
fingerprint reconstruction [18], we first remove the influence of
singular points from the orientation field by subtractingθSP

from θ, and then approximate the residual orientation field
with a set of basis functions. Let

θR = θ − θSP (2)

be the residual orientation field (see Fig. 3(c)), and
{φi(x, y)|i = 0, 1, · · · , n} the set of basis functions. The co-
sine and sine components of the doubled residual orientations
can be approximated by

{

cos(2θR(x, y)) =
∑n

i=0
aiφi(x, y),

sin(2θR(x, y)) =
∑n

i=0
biφi(x, y),

(3)

where {ai, bi|i = 0, 1, · · · , n} are the coefficients of the
model. Given the residual orientation field in the region of
interest{(x, y)j ∈ Ω|j = 1, 2, · · · ,m}, the coefficients can
be obtained by solving the following minimization problems
using least squares optimization:

{

â = argmina ||Φ · a−C||2,

b̂ = argminb ||Φ · b− S||2,
(4)

wherea = (a0, a1, · · · , an)
T , b = (b0, b1, · · · , bn)

T ,

C =











cos(2θR((x, y)1))
cos(2θR((x, y)2))

...
cos(2θR((x, y)m))











,S =











sin(2θR((x, y)1))
sin(2θR((x, y)2))

...
sin(2θR((x, y)m))











,

Φ =











φ0((x, y)1) φ1((x, y)1) · · · φn((x, y)1)
φ0((x, y)2) φ1((x, y)2) · · · φn((x, y)2)

...
...

. . .
...

φ0((x, y)m) φ1((x, y)m) · · · φn((x, y)m)











,

andT is the transpose operator.

B. Orientation Field Reconstruction

For orientation field prediction and reconstruction, only
the orientations at a subset ofΩ are assumed to be known
(given cues); the orientations at remaining locations ofΩ
are estimated based on the model. Let us denote these two
subsets asΩC andΩX (Ω = ΩC ∪ΩX ), respectively. For the
overlapping fingerprints separation problem,ΩC corresponds
to the blocks where local orientation cues are given, andΩX

is the set of other locations in the component fingerprint.
Given a fingerprint orientation field model, unknown ori-

entations are predicted as follows: (i) compute the model
coefficients based on the known orientations inΩC , and (ii)
use the established model to estimate the orientations inΩX .

More specifically, given the ROI, singular points, and the
orientation cues inΩC , the model coefficients are computed
according to (4). The residual orientation at(x, y)j ∈ ΩX

(j = 1, 2, · · · ,mX , wheremX is the total number of pixels
or blocks inΩX ) can be then estimated as

θ̂R((x, y)j) =
1

2
arctan

(

∑n

i=0
b̂iφi((x, y)j)

∑n

i=0
âiφi((x, y)j)

)

. (5)

Finally, the orientation at(x, y)j ∈ ΩX is obtained by adding
back the influence of singular points to the estimated residual
orientation, i.e.

θ̂((x, y)j) = θ̂R((x, y)j) + θSP ((x, y)j). (6)

The above reconstructed orientation field is, however, still
not very accurate (note the upper left corner and the region
around the core in Fig. 4(b)). To obtain a more accurate
reconstruction, instead of predicting all the unknown ori-
entations at once (one shot approach), we first predict the
locations in the neighborhood ofΩC and then gradually
predict the orientations at farther locations fromΩC based
on both the known orientations inΩC and the previously
predicted orientations. The orientation field model parameters
keep getting updated during the iterative process. At each
iteration, the known orientations inΩC and the previously
predicted orientations are regularized by substituting them
with the output of the last updated model. Such regularization
can gradually correct the errors in the given cues inΩC and
previous predictions. Algorithm 1 summarizes the approach,
and Fig. 4 shows the results on an example overlapped
fingerprint image. The orientation field reconstructed by the
proposed iterative algorithm is more accurate than that by
one-shot prediction. A similar iterative approach was also
employed in the so-called “Smooth Extensions” orientation
field reconstruction algorithm in [19]. Our algorithm differs
from “Smooth Extensions” in that (i) we explicitly consider
singular points and (ii) we incorporate regularization into the
reconstruction process.

C. Related Work

Orientation field modeling and reconstruction are funda-
mental problems in many fingerprint related applications, such
as fingerprint ridge orientation extraction [13], [14], fingerprint
image enhancement [17], fingerprint image reconstruction
[18], [20], [21], and fingerprint matching [11], [19]. A number
of different fingerprint orientation field models have been pro-
posed in the literature. Some of them describe the orientation
fields generated by singular points. These models, including
the Zero-Pole model [10] and its variants [22], [23], can not
handle the arch fingerprints which do not have any singular
points or accurately approximate the orientation fields farfrom
singular points [14]. This limitation inspired the more elabo-
rate models in [13], [24]–[26]. In [13], the orientation fields
nearby and far from singular points are described, respectively,
by a point-charge model and a polynomial model, and the two
models are combined by weighted summation. In [24] and
[25], fingerprints are also divided into several different regions
according to the singular points. Orientation fields in these



5

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Orientation field reconstruction. (a) An overlappedimage along with the ROI, singular points, and orientation cues in one of the two component
fingerprints. The arrow in (a) points to a cue that is not very accurate. (b)-(f) show the reconstructed orientation fieldsof that component fingerprint. (b)
obtained by one-shot prediction. (c)-(f) results at the first, second, third and final iterations by using the proposed iterative approach. Note that the erroneous
input cues and predictions are gradually corrected. (g) and(h) are the two separated component fingerprints of (a) basedon the reconstructed orientation fields
by the proposed method.

Algorithm 1 Orientation Field Reconstruction

Input: Ω: Region of Interest;θ(ΩC): Orientation cues in
ΩC ⊆ Ω; SP : Singular points

Output: θ̂(Ω): Reconstructed orientation field inΩ
1: Compute the orientation field of the singular points ac-

cording to (1):θSP (Ω)
2: Compute the residual orientation field inΩC : θR(ΩC)←

θ(ΩC)− θSP (ΩC)
3: Initialize the prediction area:ΩP ← (Dilate(ΩC) −

ΩC) ∩Ω
4: while ΩP is not emptydo
5: Estimate the model coefficients based onθR(ΩC) ac-

cording to (4)
6: Compute the predicted residual orientations inΩP

according to (5):̂θR(ΩP )
7: Regularize the residual orientations inΩC : θR(ΩC)←

θ̂R(ΩC)
8: ΩC ← ΩC ∪ ΩP , ΩP ← (Dilate(ΩC)− ΩC) ∩ Ω
9: end while

10: Compute the reconstructed orientation field according to
(6): θ̂(Ω)← θ̂R(Ω) + θSP (Ω)

regions are then approximated by using piecewise linear phase
portaits. Both these models require the partition of fingerprints
into predefined regions, which is, however, very difficult in
practice, especially for latent fingerprints, which are partial and

often do not contain any singular points. Huckemann et al. [26]
proposed to use quadratic differentials to model the orientation
fields in different types of fingerprints. To apply the quadratic
differential based models, the fingerprints have to be aligned
with respect to the coordinate systems defined by singular
points (or points with highest curvatures in arch fingerprints).
However, it is not feasible to establish the required coordinate
systems when some of the singular points are missing, as in
often the case with latent fingerprints.

The combination model initially proposed in [13] was
recently improved by Feng et al. [18] for the purpose of
reconstructing orientation fields from a given set of minutiae.
Instead of dividing fingerprints into different parts, Fenget
al. divided the fingerprint orientation fields into singularand
continuous components, and approximated them by using
the Zero-Pole and polynomial models, respectively. In other
words, the Zero-Pole model describes the influence of singular
points (if any) on the whole fingerprint orientation field, and
the polynomial model approximates the residual orientation
field. In [18], it was shown that this improved combination
model performs better than the interpolation model in [20]
and the adapted Zero-Pole model in [21]. This model has also
been successfully applied to latent fingerprint enhancement in
[17]. Therefore, in this paper, we employ this combination
model. Unlike in [17] and [18], we apply the model in an
iterative approach to get more accurate prediction of unknown
orientations (see Fig. 4).

In the polynomial models, a set of basis functions are
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needed to represent the fingerprint orientation fields. While
monomials were used by [17] and [18], Ram et al. [15] and
Wang et al. [16] proposed to use Legendre polynomials and
trigonometric polynomials, both of which compose orthogonal
bases and are claimed to be effective in approximating finger-
print orientation fields without prior knowledge of singular
points. Recently, Wang et al. [19] applied the trigonometric
polynomial based model (called FOMFE) to reconstruct the
full orientation fields from partial fingerprints. Again, they
did not explore singular points in the reconstruction process.
Some other orientation field models which do not require prior
knowledge of singular points include the probability based
models in [27] and [28], which have rather high computational
complexity. In this paper, we will compare the performance
of different polynomial based models for both cases: using
singular points and not using singular points.

IV. EVALUATION AND DISCUSSION

A. Separation Performance

There is no public domain database of overlapping latent
fingerprints. It is also difficult to obtain such images from the
forensics laboratories because we have been told that, after
manual separation, the overlapped prints are not kept in the
database. We, therefore, report our results on the following
three scenarios.

• Simulated overlapping livescan fingerprints
• Simulated overlapping latent fingerprints
• Real overlapping latent fingerprints

See Table I for details of the three databases. Note that
the database of simulated overlapping livescan fingerprints
was also used in [2] and [4]. But they did not test the
matching performance of overlapping latents (i.e. the second
and third scenarios). The performance and comparison of
separation algorithms is based on the matching results between
the separated component fingerprints and the enrolled full
fingerprints. In the following experiments, we use up to fourth
order monomials [13] as the basis functions for the proposed
algorithm, and compare the proposed algorithm with the
relaxation labeling approach in [4]. Two state-of-the-artCOTS
fingerprint matchers are employed, referred to as COTS1 and
COTS2.

1) Simulated Overlapping Livescan Fingerprints: We first
compare the performance of the proposed model based algo-
rithm with the relaxation labeling based algorithm in [4] on
the database used in [2] and [4]. This database contains 100
overlapped fingerprint images, which were synthesized from
the images in FVC2002 Db1-b [8]. Figure 2 shows an example
overlapped fingerprint image in this database. Images in this
database are livescan fingerprint images, which generally have
better quality than latent images. In the experiments, the
component fingerprints are matched against a background
database of 60 images from FVC2002 Db1-b and 800 im-
ages from FVC2002 Db1-a. Each component fingerprint has
six mates in the background database (the images used for
synthesizing overlapping fingerprints are excluded), and the
maximum match score between the component fingerprint
and its mates is taken as its final score. Figure 5 shows
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Fig. 5. CMC curves of (a) COTS1 and (b) COTS2 matchers on the simulated
overlapping fingerprints in the database used in [2], [4]. Inthe case “No
Separation”, the component fingerprints in the original overlapped fingerprint
images are directly matched to full prints; otherwise, theyare first separated
by using different algorithms and then matched.

the cumulative match characteristic (CMC, Identification Rate
vs. Rank) curves for COTS1 and COTS2 matchers on the
component fingerprints separated by different algorithms.As
can be seen from these curves, after separating the component
fingerprints, both the matchers can more accurately identify the
fingerprints, compared to not separating the overlapped prints.
Further, the accuracy improvement is higher by using the
proposed separation algorithm compared to [4] (note that the
COTS2 matcher we use in this paper has much better matching
accuracy compared to the matcher used in previous studies [4]
and [2]). Owing to the relatively good quality of these images,
the rank-1 identification rate of COTS2 is improved from72%
(no separation) to99% (using the relaxation labeling based
algorithm in [4]) and100% (using the proposed model based
algorithm). Figure 6 shows two component fingerprints, which
are both correctly identified at rank-1 by COTS2 after being
separated by the proposed method, and at rank-31 and rank-3,
respectively, after being separated by the relaxation labeling
based method.

2) Simulated Overlapping Latents: In order to evaluate the
performance of separation algorithms on low quality latent
images, we construct a set of fifteen simulated overlapping
latents by using the latent fingerprint images in NIST SD27
[3]. Authors of [2] synthesized overlapping livescan finger-
prints by first normalizing the gray-scale of two livescan
fingerprint images and then taking the minimum gray value
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TABLE I
THREE DATABASES USED IN EXPERIMENTAL EVALUATION.

Database Image Type Source # Images

1 Simulated overlapping livescan fingerprints FVC2002 Db1-b [8] 100
2 Simulated overlapping latent fingerprints NIST SD27 [3] 15
3 Real overlapping latent fingerprints Forensics lab 4

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Two component fingerprints, as marked by green polygons, in the
database of simulated livescan overlapping fingerprints. They are correctly
identified by COTS2 matcher at rank-1 after being separated by the proposed
model based method, and at rank-31 and rank-3 after being separated by
the relaxation labeling based method. (a-b) show the overlapped fingerprint
images, (c-d) are the component fingerprints separated by the relaxation
labeling based method, and (e-f) are the component fingerprints separated
by the proposed method.

between corresponding pixels in the two images. However,
this approach does not work well for latent images because
latent images usually have very complicated background and
different latents can have very different gray-scale ranges
(see Fig. 7). Thus, we synthesize overlapping latents in the
following way: (i) normalize the gray-scale of original latent
images using histogram equalization, (ii) set the pixel values
in the simulated overlapped latent image as the average of the
intensities of the corresponding pixels in the two component
latents (which are assumed to have the same size), (iii)
and post-process the resulting overlapped latent image using
histogram equalization.

The component latent fingerprints in these simulated over-
lapped latent images are matched against a background
database consisting of 258 rolled fingerprints from NIST SD27

(a) (b)

(c) (d)

Fig. 7. Synthesizing overlapping latents. (a) and (b) are two source latent
images from NIST SD27 [3], (c) simulated overlapped latent image by using
the approach in [2] and [4], and (d) simulated overlapped latent image by
using the approach in this paper.

and the first 27,000 rolled fingerprints from NIST SD14 [29].
The identification results of COTS1 and COTS2 matchers are
presented in Fig. 8 and Fig. 9, respectively. By comparing the
retrieval ranks of the mated full fingerprints of the component
latents before and after separation, we can see that while the
relaxation labeling based method can improve the matching
ranks of 15 of the 30 component latents for COTS1 matcher
and 17 of the 30 component latents for COTS2 matcher, the
proposed model based method can improve the ranks of 22 of
the component latents for both COTS1 and COTS2 matchers.
This shows the superiority of the proposed method over the
relaxation labeling based method for separating low quality
overlapping latents. Figure 10 shows the separated component
latents in the simulated overlapped latent image in Fig. 7.
Note the poor performance of the relaxation labeling based
method in the relatively dark area in the image and in the area
around singular points. Using COTS2 matcher, the ranks of
the mated full prints of the two original component latents are
4,544 and 24,859, respectively. After separating them by the
relaxation labeling based method, COTS2 matcher can identify
the second component latent at an improved rank of 16,180,
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Fig. 8. Identification results of COTS1 matcher on the simulated overlapping
latents.
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Fig. 9. Identification results of COTS2 matcher on the simulated overlapping
latents.

(a) (b)

(c) (d)

(e) (f)

Fig. 10. Separated component latents in the simulated overlapped latent
image in Fig. 7. (a-b) manually marked features of the two component
latents, (c-d) component fingerprints separated by the relaxation labeling based
method, and (e-f) component fingerprints separated by the proposed method.
Using COTS2 matcher, the ranks of the two component latents are improved
from 4,544 and 24,859 to 1 and 12,602, respectively, after being separated by
the proposed method. The corresponding ranks after being separated by the
relaxation labeling based method are 13,543 and 16,810, respectively.

but the first component latent at a higher rank of 13,543. In
contrast, by applying the proposed model based separation
method, the first component latent can be correctly identified
by COTS2 matcher at rank-1, and the rank of the mated
full print of the second component latent is also improved
to 12,602.

3) Real Overlapping Latents: We have collected four im-
ages of real overlapping latents from two donors (one male and
one female) with cooperation from Michigan State Forensics
Laboratory. See Fig. 11. Latents in Figs. 11(a) and 11(b)
have relatively simple background, while latents in Figs. 11(c)
and 11(d) have complicated background with many letters,
which severely degrades the quality of the latent fingerprints.
In all these four images, the overlapping area comprises a
large portion of the component latent fingerprints, and few
discriminative features (e.g. minutiae) are available in the non-
overlapping area. As a result, it is of significant importance to
recover the overlapping area of the component fingerprints to
identify the latents.

The separated component latent fingerprints in these four
images are shown in Fig. 12. These component fingerprints
are matched by using COTS2 matcher against a background
database consisting of 20 rolled fingerprint images from the
two donors (one image per finger), 258 rolled fingerprint
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(a) (b) (c) (d)

Fig. 11. Four images of real overlapping latents. The red andgreen polygons mark the first and second component latents, respectively.

TABLE II
MATCHING RESULTS OFCOTS2MATCHER ON THE COMPONENT LATENT FINGERPRINTS INFIG. 11 AGAINST A BACKGROUND DATABASE OF 27,278

FULL FINGERPRINTS. THREE CASES ARE CONSIDERED: COMPONENT LATENTS WITHOUT SEPARATION, COMPONENT LATENTS SEPARATED BY THE

RELAXATION LABELING BASED METHOD [4], AND COMPONENT LATENTS SEPARATED BY THE PROPOSED MODEL BASEDMETHOD.

Component No Separation Relaxation Labeling Proposed
Latents Score Rank Score Rank Score Rank

(a) #1 3025 12 3680 1 4040 1
#2 4286 1 2857 8 5897 1

(b) #1 4952 1 3084 23 7373 1
#2 3288 3 2781 19 4964 1

(c) #1 1546 15956 1748 4430 2493 42
#2 1877 5243 1741 3245 3811 1

(d) #1 2520 393 1642 5218 2939 23
#2 1480 19073 2100 779 2472 102

images from NIST SD27, and the first 27,000 rolled fingerprint
images from NIST SD14. The matching results, as reported in
Table II, demonstrate that (i) poor quality overlapping latents
(e.g. the second component latent in Fig. 11(c) and the first
component latent in Fig. 11(d)), if properly separated, can
provide valuable evidence for latent identification, and (ii) the
proposed method is more robust on poor quality overlapping
latents than the relaxation labeling based method.

B. Comparison of Orientation Field Models

As discussed in Section III.C, most existing orientation field
models which are based on singular points are not suitable
for latent fingerprints, and for the polynomial based models,
different polynomial basis functions have been proposed. In
this section, we compare the performance of the proposed
separation algorithm when different polynomial basis func-
tions are used, including monomials in [13], [14], [17], [18],
Legendre polynomials in [15], and trigonometric polynomials
(i.e. FOMFE) in [16], [19]. For all of the three types of
polynomial basis functions, we set their order to four, which
is the recommended optimal value by the authors of studies
which proposed these polynomial basis function based models.
In the experiments, we separate the four real overlapping latent
fingerprints by using different polynomial basis functions, and
use COTS2 matcher to match the separated component latents
against the large background database used in the previous

section. Although the Legendre polynomial based model and
FOMFE were initially proposed without using singular points,
for fair comparison in our experiments, we also apply them in
the case of using singular points.

The retrieval ranks of the corresponding mated fingerprints
of the latents are given in Table III. From these results, we
can see that (i) all the three orientation field models benefit
from the use of singular points, particularly for lower quality
latents, and (ii) none of the three models consistently performs
better than the others, but the monomial based model performs,
on average, the best, especially when singular points are not
used. Figure 13 shows the reconstructed orientation fields by
the proposed method with monomial basis functions for the
component latents in Fig. 11(c). The first component latent
in Fig. 11(c) has such a poor quality that its core points can
not be clearly located and only one possible delta close to its
boundary is marked. The reconstructed orientation fields of
this component latent (see Figs. 13(b) and 13(c)) show that the
marked delta does not help much and can even degrade the
matching performance for this very poor quality component
latent. On the other hand, if the singular points can be reliably
marked in a component latent, for example, for the second
component latent in Fig. 11(c), the reconstructed orientation
field is much more accurate when the reliable singular points
are used (see Figs. 13(e) and 13(f)), and thus the matching
accuracy of the separated component latent can be significantly
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(a)

(b)

(c)

(d)

Fig. 12. Separation results of the real overlapping latentsin Figs. 11(a)-11(d). The first and third columns show the1
st component latent fingerprint separated

by the proposed method and the relaxation labeling based method, respectively. The second and fourth columns show the2
nd component latent fingerprint

separated by the proposed method and the relaxation labeling based method, respectively.

improved. Figure 14 compares the reconstructed orientation
fields for the second component latent in Fig. 11(d) by using
monomial based, Legendre polynomial based, and FOMFE
models when the cues in Fig. 14(a) are provided. Although
the unavailability of the core points impairs the accuracy of
all the three models, the monomial based model gives the most
accurate reconstruction of the orientation field.

C. Impact of Markup Cues

In the last section, we demonstrated the importance of man-
ually marked singular points in orientation field reconstruction
and overlapping fingerprints separation. In this section, we

discuss the impact of manually marked orientation cues on
the separation performance of the proposed model based
method with monomial basis functions. The manually marked
orientation cues are essentially seeds to the proposed model
based separation method. It is thus important to provide a
sufficient number of accurate orientation cues in order for
a reasonable reconstruction of fingerprint orientation field.
General intuition would suggest marking uniformly distributed
orientation cues in fingerprints. Our experiments, however,
show that some regions in fingerprints are more critical and
providing orientation cues in such regions can significantly
improve the reconstruction results. These regions are of high
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TABLE III
RETRIEVAL RANKS BY COTS2MATCHER OF THE MATED FINGERPRINTS OF THE COMPONENT LATENT FINGERPRINTS(SEEFIG. 11) IN A BACKGROUND

DATABASE OF 27,278FULL FINGERPRINTS. THE SEPARATED COMPONENT LATENTS ARE OBTAINED BY USING THE PROPOSED METHOD WITH THREE

DIFFERENT TYPES OF POLYNOMIAL BASIS FUNCTIONS: MONOMIALS , LEGENDRE POLYNOMIALS, AND FOMFE. ALL OF THE THREE TYPES OF

POLYNOMIAL BASIS FUNCTIONS ARE APPLIED IN TWO CASES: USING SINGULAR POINTS(SP)AND NOT USING SINGULAR POINTS(NO SP).

Component Monomials Legendre Polynomials FOMFE
Latents SP No SP SP No SP SP No SP

(a) #1 1 1 1 54 1 5
#2 1 3 1 1 1 2

(b) #1 1 1 1 1 1 1
#2 1 4 1 19 1 178

(c) #1 42 2 77 2789 1 9
#2 1 38 1 825 1 1096

(d) #1 23 1856 90 1446 28 53
#2 102 686 2351 2315 2734 17185

(a) (b) (c)

(d) (e) (f)

Fig. 13. Impact of singular points. (a) and (d) show the manually marked ROI, singular points, and orientation cues in thetwo component latents in Fig.
11(c). (b) and (c) are the first component latent separated bythe proposed algorithm with monomial basis functions, and (e) and (f) are the second component
latent. Singular points are used for (b) and (e), but not usedfor (c) and (f).
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(a) (b) (c) (d)

Fig. 14. Comparison between orientation field models. (a) Manually marked ROI and orientation cues in the second component latent in Fig. 11(d). Singular
points are not marked. (b), (c) and (d) are, respectively, the reconstructed orientation fields using monomial based, Legendre polynomial based, and FOMFE
models. By using the COTS2 matcher, the scores between the corresponding separated component latents and the mated rolled fingerprint are 2061, 1817,
and 1327, respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 15. Impact of orientation cues. (a) Manually marked ROI, singular points, and orientation cues in the first component latent of Fig. 11(b), (b) reconstructed
orientation field in (b) (dashed brown and green circles highlight, repsectively, a region of high curvature and a regionfar from singular points), (c) a small
number of orientation cues in the high curvature region are removed, (d) the corresponding reconstructed orientation field, (e) a small number of orientation
cues in the region far from singular points are removed, and (f) the corresponding reconstructed orientation field.
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(a) (b) (c)

Fig. 16. Impact of orientation cues. (a) Manually marked ROI, singular points, and orientation cues in the second component latent in Fig. 11(a), used for
reconstructing the orientation field in (b) and the separated component latent in Fig. 12. (c) shows the reconstructed orientation field when some cues near
the boundary (see the cues pointed to by arrows) are removed.

curvature, regions far from singular points, and regions close
to boundary. Next, we demonstrate this by using the first
component latent in Fig. 11(b) and the second component
latent in Fig. 11(a).

Figure 15(a) highlights two critical regions in the first
component latent in Fig. 11(b): one of them has high curvature
and the other is far from singular points. We remove some of
the orientation cues from the high curvature region (Fig. 15(c))
and from the region far from singular points (Fig. 15(e)), re-
spectively. The corresponding reconstructed orientationfields
are shown in Figs. 15(d) and 15(f). It can be seen from these
figures that the reconstructed orientation fields, after discarding
the orientation cues in the two regions, can not accurately
follow the fingerprint ridges. The genuine match scores of
COTS2 matcher in these two cases (Fig. 15(c) and Fig. 15(e))
are, respectively, 5797 and 5186, which are lower than the
score (7373) obtained when those orientation cues were not
excluded (Fig. 15(a)).

Figure 16 shows the results on another example, i.e. the
second component latent in Fig. 11(a). Figure 16(a) shows
the cues based on which the separated component latent in
Fig. 12(a) is obtained, and the corresponding reconstructed
orientation field is shown in Fig. 16(b). If we remove some of
the cues near the boundary as marked by the arrows in Fig.
16(a), the reconstructed orientation field becomes less accurate
as shown in Fig. 16(c). This is due to the insufficient number
of constraints (i.e. markup cues) on the boundary. Prediction of
orientations on the boundary is more like extrapolation (partic-
ularly when insufficient cues are given), which is more difficult
than interpolation. Because of the less accurate reconstructed
orientation field, the genuine match scores of COTS2 matcher
for the separated component latents also decreases from 5897
to 4880.

Based on the above results, it is suggested that the latent

examiners provide sufficient number of orientation cues in
regions of high curvature and in regions far from singular
points or close to boundary. Although in practice, it could be
difficult for the latent examiner to decide at the first glance
how many cues will be sufficient for an accurate separation
of overlapping latents, we believe that the difficult task of
separating overlapping latents should be viewed as a semi-
automatic and iterative task rather than a fully automatic or
“lights out” task. In this sense, the model based separation
method proposed here provides a very useful interactive tool
for latent examiners.

D. Computational Complexity

The proposed separation method involves an iterative pro-
cess in the reconstruction of the orientation field of over-
lapping fingerprints (see Algorithm 1). The time required
by this process depends on the size of the fingerprint, the
number of given orientation cues, and the precision (i.e.
block size) of the estimated orientation field. According to
our experimental results, for 500 ppi fingerprint images and
a block size of8 × 8 pixels (as used in our experiments),
the proposed algorithm converges in about five iterations and
takes less than one second (on a 3GHz processor with 4GB
memory) to reconstruct the orientation field per component
fingerprint. As a comparison, according to [4], the relalaxtion
labeling based method in [4] takes about three seconds to
separate the orientation fields in one overlapped fingerprint
image, and the method in [2] takes more than 30 seconds.
However, the proposed method requires additional manually
marked features, i.e. orientation cues. Although marking these
additional cues does take extra time from latent examiners,
these cues enable the proposed method to more accurately
separate low quality overlapping fingerprints.

It is worthwhile to mention that while it is also possible
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to incorporate manually marked orientation cues into the
relaxation labeling based methods, this would require latent
examiners to check the two dominant orientations in the
overlapping area blocks. This is because the relaxation labeling
algorithm is not able to correct the errors in the estimated
orientation field or to handle the discrepancy between markup
orientation cues and computed local orientations1. What the
relaxation labeling algorithm does is to simply classify the
given two orientations in a block to one of the two component
fingerprints based on local consistency of the fingerprint
orientation field. On the contrary, the proposed model based
method can not only predict unknown orientations, but it
can also fix the errors in the estimated orientation field. As
a result, the proposed method can more effectively as well
as efficiently utilize the orientation cues manually marked
by latent examiners in the reconstruction of the component
orientation fields in overlapping fingerprints.

V. CONCLUSIONS

Overlapping latent fingerprints are frequently encountered
at crime scenes. The identification of component fingerprints,
both by latent examiners and by AFIS, is very challenging
because of the complex background, poor quality, and con-
taminated ridge structures. In this paper, we have proposed
a model based method for separating overlapping latent fin-
gerprints. The proposed algorithm reconstructs the orientation
field of overlapping fingerprints based on a set of manually
marked features, including regions of interest, singular points,
and orientation cues. Based on the underlying model of
fingerprint ridge orientation field, the proposed method can
simultaneously predict unknown orientations in fingerprints
and regularize the estimated orientations. Experimental results
on both simulated and real overlapping latents demonstratethat
the proposed method, compared to state-of-the-art relaxation
labeling based method, is more effective, thanks to the manu-
ally marked cues and the underlying orientation field models.

Fingerprint orientation field models have been widely used
for regularizing the estimation of fingerprint ridge orientation
field. In this paper, we employed the models not just for
regularization, but also for predicting unknown orientations.
Although we have primarily utilized the combination model
based on the Zero-Pole model and monomial basis functions
[13], [17], [18], which requires singular points, and the Leg-
endre polynomial based [15] and FOMFE [16], [19] models,
which do not need singular points, our approach does not
depend on nor require any specific orientation field model. In
our future work, we plan to improve the prediction capability
of existing fingerprint orientation field models in order to
further improve the accuracy of model based separation of
overlapping latent fingerprints. Another direction we planto
take is to enhance the feasibility of the proposed method
by studying the optimal way of specifying orientation cues.
One potential way to guide the specification of orientation
cues is to divide fingerprints into different regions. From this
perspective, more quantitative and systematic evaluationof the

1It is for this reason that the authors in [4] included a smoothing operation
to the separated orientation fields to eliminate some errors.

impact of orientation cues in different fingerprint regionson
a large database will be very useful.
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