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Abstract

The question of fingerprint individuality can be posed as
follows: Given a query fingerprint, what is the probability
that the observed number of minutiae matches with a tem-
plate fingerprint is purely due to chance? An assessment of
this probability can be made by estimating the variability
inherent in fingerprint minutiae. We develop a compound
stochastic model that is able to capture three main sources
of minutiae variability in actual fingerprint databases. The
compound stochastic models are used to synthesize realiza-
tions of minutiae matches from which numerical estimates
of fingerprint individuality can be derived. Experiments on
the FVC2002 DB1 and IBM HURSLEY databases show that
the probability of obtaining a 12 minutiae match purely due
to chance is1.6× 10−5 when the number of minutiae in the
query and template fingerprints are both46.

1 Introduction

The problem of fingerprint individuality is to develop
quantitative measures that characterize the extent of unique-
ness of a fingerprint, i.e., given a query fingerprint, “What
is the probability that the observed number of minu-
tiae matches with a particular template is purely due to
chance?”. In this paper, we develop compound stochastic
models that account for three sources of minutiae variabil-
ity, namely, (i) the variability in the minutiae distributions
in different fingers, (ii) variability due to local perturba-
tions arising from non-linear distortion effects in multiple
impressions of a finger, and (iii) variability due to the size
of partial prints (or the area of finger region captured) in
multiple acquisitions of a finger. The compound stochas-
tic models are then used for synthesis and for obtaining es-
timates of fingerprint individuality; the main steps of our
methodology are outlined in Figure 1.

There have been several previous studies that addressed
the problem of fingerprint individuality using probabilistic
models on minutiae [8]. However, the assumptions made

Figure 1. Flow chart for fingerprint individu-
ality

in these studies did not satisfactorily represent the observed
minutiae variations in multiple impressions of a finger in ac-
tual fingerprint databases; The “corrected” uniform model
in [8] did not account for clustering tendencies of the minu-
tiae. Dass et al [4] accounted for intra-class minutiae vari-
ability by fitting separate (and hence, uncorrelated) stochas-
tic models for multiple acquisitions of a finger. The lack of
satisfactory measures of fingerprint individuality has been
the highlight of several recent court cases where the admis-
sibility of fingerprint evidence is being challenged based
on the premise that the uniqueness of fingerprints has not
been objectively tested and matching error rates are un-
known [5,10].

2 Compound Stochastic Models

Suppose a fingerprint database consisting ofF differ-
ent fingers andL impressions per finger is available. Let
F(f, l) denote thel-th impression of thef -th finger. The
fingerprint features we consider are the minutiae locations
and directions in eachF(f, l). As a first step towards con-
structing the compound generative model for fingerf , the
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Figure 2. Convex hull and ellipses

minutiae in all theL impressionsF(f, l), l = 1, 2, . . . , L

are combined to obtain a “master” set. A reference impres-
sion, without loss of generality,F(f, 1), say, is first cho-
sen. Next, for eachl = 2, 3, . . . , L, F(f, l) is aligned to
F(f, 1), and correspondences between minutiae inF(f, l)
andF(f, 1) are found. When a minutiae inF(f, l) does
not have any corresponding minutiae inF(f, 1), that minu-
tiae is appended to the list of minutiae inF(f, 1), thus in-
creasing the total number of minutiae inF(f, 1) by one
each time such a minutiae is found. The consolidation of
minutiae into the master set in this way results eventually
in a total ofn consolidated minutiae inF(f, 1) with cor-
respondence setsMk, k = 1, 2, . . . , n. We denote the ele-
ments in eachMk by {(Xkj , Dkj), j = 1, 2, . . . , mk}. For
each set of correspondences, we define the mean, or cen-
ter, of Xkj by X̄k = 1

mk

∑mk

j=1 Xkj . The mean ofDkj ,
D̄k, is taken to be the phase angle of the complex number∑mk

j=1 cos(Dkj)+ i sin(Dkj) (see also [7]). The deviations
of locations and directions from their respective centers are
given by

Dk = {(Xkj − X̄k, Dkj − D̄k), j = 1, 2, . . . , mk}. (1)

The first two stages of our compound generative model con-
sist of developing statistical models on (i) the centers, and
(ii) the deviations of the observed minutiae from their re-
spective centers.

2.1 Finite Mixture Model On The Centers

We assume each minutiae center in the master,
(X̄k, D̄k), k = 1, 2, . . . , n is independently distributed ac-
cording to the mixture density

f(s, θ|ΘG) =
G∑

g=1

τgf
X
g (s|µg, Σg)·f

D
g (θ|νg, κg, pg), (2)

whereG is the total number of components; for theg-th
component,fX

g (s |µg, Σg) is a bivariate Gaussian density
with meanµg and covariance matrixΣg, fD

g (θ | νg, κg, pg)
is the mixture of two Von-Mises densities (see [7]) with
meansνg andνg + π, respectively, common precision pa-
rameter,κg, and mixing probabilitiespg and1−pg, respec-
tively. The mixture model (2) enables flexible modeling of a

variety of observed minutiae patterns in fingerprint images.
Similar mixture models have been used in [4] to model the
distribution of minutiae locations and directions in different
impressions of a finger.

2.2 Local Perturbation Models

For the local perturbation models, the domain of the
master is first divided into a lattice ofb0 non-overlapping
blocks,B = {Bb, b = 1, 2, . . . , b0 }. Next, the setDk is
assigned to blockB if X̄k ∈ B. In blockB, the location de-
viations,{Xkj − X̄k : X̄k ∈ B} are modeled as a bivariate
normal distribution with mean0 and covariance matrixSB,
whereas the direction deviations,{Dkj − D̄k : X̄k ∈ B}
are modeled as a Von-Mises distribution with mean0 and
precisionκB. The unknown parametersSB andκB are es-
timated from the observed deviations in each blockB.

2.3 Modeling the Variability of Partial
Prints

The third and final component of our compound stochas-
tic model accounts for minutiae variability due to partial
prints in multiple acquisitions of a finger. For the impres-
sionF(f, l), a convex hull encompassing all minutiae lo-
cations is first determined (see Figure 2; minutiae are la-
beled as squares). Next, an ellipse (denoted by a dashed
line in Figure 2) is obtained by the direct least square fit-
ting method [6]. This method yields an ellipse that does
not encompass all minutiae locations on the boundary of
the convex hull. We increase the size of the ellipse to the
minimal ellipse (denoted by a solid line in Figure 2) con-
taining all minutiae locations on the boundary while main-
taining the shape of the ellipse. We denote the parameters
that uniquely determine this ellipse by the area (A(f, l)),
length of major axis (p1(f, l)), the orientation (θ(f, l)) and
the center (c(f, l)). In our experiments, we fixed the ratio
of the lengths of the major to minor axes of each ellipse
(say,r0). Thus, the effective ellipse parameters reduce to
the tripletE(f, l) ≡ (A(f, l), θ(f, l), c(f, l)) only. We de-
note byE to be the collection of all ellipse parameters for
all the fingerprint impressions in the fingerprint database.
Also, letT ≡ {T−1(f, l)}, whereT (f, l) is the rigid trans-
formation used to alignF(f, l) toF(f, 1).

For assessment of fingerprint individuality, we require to
synthesize impressions from a finger consisting of a pre-
specified number of minutiae,m0, say. We describe a con-
ditional simulation technique that performs this.

2.4 Fingerprint Synthesis

Figures 3 (a) and (b) give an instance of a fingerf ,
and the constructed master set and the minimal ellipse,
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Figure 3. Simulating m0 = 36 minutiae

respectively. First, (i) A random ellipse is generated
where the area is a sample from a normal distribution with
meanh0(m0) and standard deviationσ0 (h0 is the least
squares quadratic polynomial fitted to the scatter plot of
(m(f, l), A(f, l))). The orientation and center are randomly
selected from the second and third components ofE . (ii)
A center is generated from the mixture model of master
f . (iii) A deviation is generated according to the local
perturbation model in Section 2.2, and compounded to the
generated center from step (ii). This synthesized minutiae
is retained if its location lies within the ellipse in step (i)
and rejected otherwise. Steps (ii) and (iii) are repeated
until m0 synthesized minutiae features fall inside the el-
lipse.Figure 3 (c) shows them0 synthesized minutiae cen-
ters from the mixture model whereas Figure 3 (d) shows
the synthesized minutiae after compounding with the local
perturbation model. Finally, (iv) them0 minutiae are trans-
formed by a random rigid transformation fromT to form
the synthesized impression (Figure 3 (e)).

3 Assessing Fingerprint Individuality

Given a query fingerprint,Q, with mQ minutiae, and a
template,T , with mT minutiae, we wish to estimate the
probability thatQ andT share exactlyw minutiae:

P{M(Q, T ) = k |#Q = mQ, #T = mT }, (3)

whereM(Q, T ) is the number of minutiae matches between
Q andT as determined by a matcherM when(Q, T ) are a
pair of impostor fingerprints. We utilize the simulation tech-
nique in Section 2.4 to synthesize fingerprint impressions
so that eachQ (respectively,T ) hasmQ (mT ) minutiae. In
our experiments we tookmQ = mT , so it was sufficient
to generate only one synthetic fingerprint database with
mQ(= mT ) minutiae features for each impression. We de-
note this synthetic database byF∗(f, h), h = 1, 2, . . . , H
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Figure 4. FVC2002 DB1 (left), IBM (right)

andf = 1, 2, . . . , F whereF∗(f, h) is theh-th synthetic
impression from fingerf . The probability in (3) can be es-
timated by

p(w) =

H∑

h=1

H∑

h′=1

F∑

f=1

F∑

f
′
=1

f 6=f
′

Iw{(f, h), (f ′, h′)}

F (F − 1)H2
(4)

whereIw{(f, h), (f ′, h′)} is 1 if M(F∗(f, h),F∗(f ′, h′))
equalsw, and0, otherwise.

Note that (4) does not estimate (3) well when (3) is ex-
tremely small (this is the case whenw is large). To obtain
estimates ofp(w) for largew, we use the extrapolation for-
mula

p(w) = p(w0) 10β1(w−w0), (5)

wherew0 is the location of the modal value ofp(w), and
β1 is the slope of the least squares line fitted to the graph of
(w, log10(p(w))) which is obtained for moderatew values
using (4).

4 Experimental Results

We used two databases in our experiments, namely,
FVC2002 DB1 and IBM-HURSLEY. The FVC2002 DB1
database contains fingerprint images ofF = 100 different
fingers andL = 8 impressions per finger obtained using
the optical sensor “TouchView II” by Identix. The IBM-
HURSLEY database contains two impressions of 269 fin-
gers with manually labeled minutiae and correspondences
for 900 impressions. For IBM-HURSLEY Database, we
manually checked the minutiae correspondence of a subset
of the database withF = 229 fingers withL = 2 images
per finger and use the subset for our experiment.

For validating the compound stochastic model, we gen-
erated a synthetic database consisting ofF fingers withL

impressions per finger in the following way: For finger
f , a total ofn minutiae were synthesized from the fitted
mixture (for centers) and local perturbation (for deviations
from centers) models. The parameterized ellipse and the
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(mQ, mT , w) Pooled Estimate
(26, 26, 12) 9.9 × 10−10

(26, 26, 26) 1.4 × 10−23

(36, 36, 12) 3.7 × 10−7

(36, 36, 36) 1.5 × 10−26

(46, 46, 12) 1.6 × 10−5

(46, 46, 46) 8.1 × 10−28

Table 1. Fingerprint-individuality estimates

rigid transformationT (f, l) were then, respectively, used
to obtain a synthetic minutiae set and a synthetic impres-
sion. The distribution of the number of impostor minutiae
matches for this synthetic database is obtained based on the
matcher described in [9]. This distribution is represented
by the solid line with squares (2) in Figures 4. Another
synthetic database ofF fingers withL impressions per fin-
ger was constructed using the conditional simulation tech-
nique in Section 2.4 so that the number of minutiae for the
l-th impression of fingerf is m(f, l), the observed num-
ber of minutiae. The ellipse and rigid transformation were
randomly selected fromE andT , respectively, to generate
a synthetic impression. The value ofr0 (ratio of lengths
of major to minor axes of the best fitting ellipse) for the
FVC and IBM databases were taken to be the mean val-
ues, namely1.48 and1.61, respectively. The corresponding
distribution for the number of impostor matches is repre-
sented in Figures 4 (a) and (b) by dashed lines. We also
obtained the empirical distributions based on the real fin-
gerprint impressions, and based on the uniform distribu-
tion (no clustering tendencies) for the centers and devi-
ations (denoted by the dot-dashed lines with circles and
solid lines, respectively). Note the close agreement between
the impostor distributions of the synthesized and empirical
databases, thus, demonstrating the adequateness of the com-
pound models in representing the distribution of minutiae in
the two databases.

Fingerprint individuality estimates are given in Table 1
by pooling the impostor matches from the FVC2002 DB1
and IBM-HURSLEY databases (H = 40 synthetic impres-
sions per finger were used). Table 2 gives the fingerprint in-
dividuality estimate from our model for the “12-point match
criteria” based on FVC 2002 DB1 database. For compari-
son purposes, the fingerprint individuality estimates derived
using the methodology of [8] is also given. One important
point is that [8] computes the individuality estimate based
on the number of minutiae in the query and template that
occur in theoverlaparea. In this paper,mQ andmT repre-
sent the total number of minutiae in a query and template,
respectively. In order to make valid comparisons, we found
the mean number of minutiae occurring in the overlap area
in our simulations; whenmQ = mT = 26, this mean was
approximately17. Consequently, the estimate2.4 × 10−15

(mQ, mT , w) Our model Model in [8]
(26, 26, 12) 6.8 × 10−10 2.4 × 10−15

(36, 36, 12) 6.5 × 10−7 1.0 × 10−10

(46, 46, 12) 2.0 × 10−5 3.9 × 10−8

Table 2. Fingerprint-individuality comparison

was calculated using the formula in [8] based on the com-
bination(17, 17, 12). Note that our estimates are orders of
magnitude higher compared to [8]. We believe our model
gives a more realistic estimate of fingerprint individuality
compared to [8] as seen from the impostor matching distri-
butions in Figure 4.

5 Summary and Conclusion

A compound stochastic model is developed for repre-
senting three sources of minutiae variability in fingerprint
images. These models are used for synthesis and for ob-
taining estimates of fingerprint individuality. Our future
work involves obtaining individuality estimates for larger
databases and deriving a mathematical framework for cal-
culating the probability associated with fingerprint individ-
uality.
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