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Abstract
. . o . ‘Database of F fingers with L impressions per finger ‘
The question of fingerprint individuality can be posed as gt

follows: Given a query fingerprint, what is the probability ‘ “Minutiae extraction and combination of L ‘
that the observed number of minutiae matches with a tem- impressions to Obﬁm master for each finger
plate fingerprint is purely due to chance? An assessment of

. " . . - Statistical models: i) finite mixture model for minutiae
this probability can be made by estimating the variability ’ ﬁ)) local perturbation model

inherent in fingerprint minutiae. We develop a compound iii) sub-region sampling model
stochastic model that is able to capture three main sources Il

of minutiae variability in actual fingerprint databases.€rh Model validation

compound stochastic models are used to synthesize realiza- Il

tions of minutiae matches from which numerical estimates |Estimati0n of fingerprint individuality

of fingerprint individuality can be derived. Experiments on
the FVC2002 DB1 and IBM HURSLEY databases showthat ~Figure 1. Flow chart for fingerprint individu-
the probability of obtaining a 12 minutiae match purely due  ality

to chance is.6 x 10~° when the number of minutiae in the

qguery and template fingerprints are boté.

in these studies did not satisfactorily represent the oeser
. minutiae variations in multiple impressions of a finger in ac
1 Introduction tual fingerprint databases; The “corrected” uniform model
in [8] did not account for clustering tendencies of the minu-
The problem of fingerprint individuality is to develop tiae. Dass et al [4] accounted for intra-class minutiae-vari
quantitative measures that characterize the extent otieniq  ability by fitting separate (and hence, uncorrelated) stseh
ness of a fingerprint, i.e., given a query fingerprint, “What tic models for multiple acquisitions of a finger. The lack of
is the probability that the observed number of minu- satisfactory measures of fingerprint individuality hasrbee
tiae matches with a particular template is purely due to the highlight of several recent court cases where the admis-
chance?”. In this paper, we develop compound stochasticsibility of fingerprint evidence is being challenged based
models that account for three sources of minutiae variabil-on the premise that the uniqueness of fingerprints has not
ity, namely, (i) the variability in the minutiae distribotis been objectively tested and matching error rates are un-
in different fingers, (ii) variability due to local perturba known [5,10].
tions arising from non-linear distortion effects in mulép
impressions of a finger, and (iii) variability due to the size
of partial prints (or the area of finger region captured) in
multiple acquisitions of a finger. The compound stochas-
tic models are then used for synthesis and for obtaining es- Suppose a fingerprint database consisting-ofliffer-
timates of fingerprint individuality; the main steps of our ent fingers and. impressions per finger is available. Let
methodology are outlined in Figure 1. F(f,1) denote thd-th impression of thef-th finger. The
There have been several previous studies that addressefingerprint features we consider are the minutiae locations
the problem of fingerprint individuality using probabilist ~ and directions in eacl(f,). As a first step towards con-
models on minutiae [8]. However, the assumptions madestructing the compound generative model for fingethe

2 Compound Stochastic Models
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Figure 2. Convex hull and ellipses master is first divided into a lattice @f, non-overlapping

blocks,B = { By,b = 1,2,...,bo}. Next, the seDDy, is
assigned to block if X}, € B. In block B, the location de-
viations,{ X;; — X : X; € B} are modeled as a bivariate
normal distribution with meaf and covariance matrifz,
whereas the direction deviationsDy; — Dy : X € B}
are modeled as a Von-Mises distribution with méaand
precisions . The unknown parameteff; andxp are es-
timated from the observed deviations in each bléck

minutiae in all theL impressionsF(f,1),l = 1,2,...,L

are combined to obtain a “master” set. A reference impres-
sion, without loss of generalityF(f, 1), say, is first cho-
sen. Next, for each = 2,3,..., L, F(f,1) is aligned to
F(f,1), and correspondences between minutia&{if, )

and F(f,1) are found. When a minutiae i (f,!) does
not have any corresponding minutiae#i f, 1), that minu-
tiae is appended to the list of minutiae /(f, 1), thus in-
creasing the total number of minutiae J(f,1) by one
each time such a minutiae is found. The consolidation of
minutiae into the master set in this way results eventually
in a total ofn consolidated minutiae itF(f,1) with cor-
respondence sefd;,, k = 1,2,...,n. We denote the ele-

2.3 Modeling the Variability of Partial
Prints

The third and final component of our compound stochas-
tic model accounts for minutiae variability due to partial
ments in eacti/y, by {(Xi;, Dij), j = 1,2, .., my}. For p_rints in multiple acquisitions of a fingc_er. For the impres—
each set of correspondences, we define the mean, or cerﬁ-';tinoi s(];qﬁrgt ((:joertlgfr):ﬂﬂgg ?gecgnll?gisrznzg' ?rllirwjlgggﬁelolé

4 1 my y =
ter, of Xij by Xy = 77 20521 X The mean oDy, beled as squares). Next, an ellipse (denoted by a dashed
line in Figure 2) is obtained by the direct least square fit-
ting method [6]. This method yields an ellipse that does
not encompass all minutiae locations on the boundary of
the convex hull. We increase the size of the ellipse to the
Dy = {(Xx; — Xi,Drj — Di), = 1,2,...,mi}. (1) minimal ellipse (denoted by a solid line in Figure 2) con-
taining all minutiae locations on the boundary while main-
taining the shape of the ellipse. We denote the parameters
that uniquely determine this ellipse by the are| f,()),
length of major axisy; (f,1)), the orientationd(f, 1)) and
the center (f,1)). In our experiments, we fixed the ratio
of the lengths of the major to minor axes of each ellipse
(say,rg). Thus, the effective ellipse parameters reduce to
the tripletE(f,1) = (A(f,1),0(f,1),c(f,1)) only. We de-
note by¢ to be the collection of all ellipse parameters for
all the fingerprint impressions in the fingerprint database.
Also, letT = { T~(f,1)}, whereT'(f,1) is the rigid trans-

G formation used to aligtF(f,1) to F(f, 1).

F(5,0106) = > g [ (sl1g: Tg)- 17 (6lvg, g, ), (2) For assessment offin(gerprintir(ldividuality, we require to

g=1 synthesize impressions from a finger consisting of a pre-

whereG is the total number of components; for theth ~ specified number of minutiae;o, say. We describe a con-

component,f;( (5] pg, By) is a bivariate Gaussian density ditional simulation technique that performs this.

with meany., and covariance matriX,, f2 (0| vy, kg, py)

is the mixture of two Von-Mises densities (see [7]) with 2.4 Fingerprint Synthesis

means/, andv, + w, respectively, common precision pa-

rameters,, and mixing probabilitiep, andl — p,, respec- Figures 3 (a) and (b) give an instance of a finger

tively. The mixture model (2) enables flexible modelingofa and the constructed master set and the minimal ellipse,

Dy, is taken to be the phase angle of the complex number,
>0 cogDy;) +isin(Dy;) (see also [7]). The deviations
of locations and directions from their respective centees a
given by

The first two stages of our compound generative model con-
sist of developing statistical models on (i) the centersl an
(ii) the deviations of the observed minutiae from their re-
spective centers.

2.1 Finite Mixture Model On The Centers
We assume each minutiae center in the master,

(Xx, Di), k = 1,2,...,nis independently distributed ac-
cording to the mixture density
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AN 0o : andf = 1,2,...,F whereF*(f,h) is the h-th synthetic
o i S impression from fingef. The probability in (3) can be es-
. ) i @ timated by
Figure 3. Simulating mg = 36 minutiae
H H F F
/ /
respectively. First, () A random ellipse is generated > Z S LA ), (FL 1)}
where the area is a sample from a normal distribution with h=1h=17=1 J{”;jl
meanh(mo) and standard deviation, (ho is the least p(w) = (4)

— 2
squares quadratic polynomial fitted to the scatter plot of F(F-1H

(m(f,1), A(f,1))). The orientation and center are randomly whereL, {(f,h), (f',h')} is 1 if M(F*(f,h), F*(f', 1))
selected from the second and third components.ofii) equalsw, ando, otherwise.

A ce_rlter is ggngratgd from the mixture model of master  Note that (4) does not estimate (3) well when (3) is ex-
f. (iii) A deviation is generated according to the local tremely small (this is the case whenis large). To obtain

perturbation model in Section 2.2, and compounded to theggtimates ofy(w) for largew, we use the extrapolation for-
generated center from step (ii). This synthesized minutiaep1a

is retairled if its Iocaﬁon lies withi_r_1 the elli_pse in step (i p(w) = p(wo) 105 (w—wo)_ (5)

and rejected otherwise. Steps (ii) and (iii) are repeated

until mo synthesized minutiae features fall inside the el- Wherewy is the location of the modal value pfw), and
lipse.Figure 3 (c) shows the, synthesized minutiae cen- 31 is the slope of the least squares line fitted to the graph of
ters from the mixture model whereas Figure 3 (d) shows (w,109;4(p(w))) which is obtained for moderate values

the synthesized minutiae after compounding with the local using (4).

perturbation model. Finally, (iv) theiy minutiae are trans-

formed by a random rigid transformation frof to form 4 Experimental Results

the synthesized impression (Figure 3 (e)).

) ) . o . We used two databases in our experiments, namely,
3 Assessing Fingerprint Individuality FVC2002 DB1 and IBM-HURSLEY. The FVC2002 DB1
database contains fingerprint imagesFof= 100 different
Given a query fingerpring), with m¢q minutiae, and a  fingers andL. = 8 impressions per finger obtained using
template,T', with ms minutiae, we wish to estimate the the optical sensor “TouchView II” by Identix. The IBM-
probability that) andT” share exactlyy minutiae: HURSLEY database contains two impressions of 269 fin-
. . . gers with manually labeled minutiae and correspondences
PAM(QT) = k| #Q =mq, #T =mr},  (3) for 900 impressions. For IBM-HURSLEY Database, we
whereM (Q, T) is the number of minutiae matches between manually checked the minutiae correspondence of a subset
Q@ andT as determined by a match&f when(Q,T) are a of the database witlh" = 229 fingers with. = 2 images
pair ofimpostor fingerprints. We utilize the simulationttec  per finger and use the subset for our experiment.
nigue in Section 2.4 to synthesize fingerprint impressions  For validating the compound stochastic model, we gen-
so that eacld) (respectivelyl’) hasmg (mr) minutiae. In erated a synthetic database consisting'dingers with L.
our experiments we tookig = my, SO it was sufficient  impressions per finger in the following way: For finger
to generate only one synthetic fingerprint database with f, a total ofn minutiae were synthesized from the fitted
mq(= mr) minutiae features for each impression. We de- mixture (for centers) and local perturbation (for deviato
note this synthetic database By (f,h),h = 1,2,..., H from centers) models. The parameterized ellipse and the



(mg, mr,w) | Pooled Estimate
(26,26, 12) 9.9 x 1010
(26,26, 26) 1.4x 1072
(36,36, 12) 3.7x 1077
(36, 36, 36) 1.5 x 10726
(46,46, 12) 1.6 x 107°
(46,46, 46) 8.1x 10728

Table 1. Fingerprint-individuality estimates

rigid transformationl’(f,1) were then, respectively, used

to obtain a synthetic minutiae set and a synthetic impres-

sion. The distribution of the number of impostor minutiae

(mg,mp,w) | Ourmodel | Model in [8]
(26,26,12) | 68x10 0 | 24 x 10
(36,36,12) | 6.5x 1077 | 1.0 x 10710
(46,46, 12) 2.0x107°% | 3.9x 1078

Table 2. Fingerprint-individuality comparison

was calculated using the formula in [8] based on the com-
bination(17,17,12). Note that our estimates are orders of
magnitude higher compared to [8]. We believe our model
gives a more realistic estimate of fingerprint individualit
compared to [8] as seen from the impostor matching distri-
butions in Figure 4.

matches for this synthetic database is obtained based on the

matcher described in [9]. This distribution is represented
by the solid line with squaresd) in Figures 4. Another
synthetic database @f fingers with L impressions per fin-
ger was constructed using the conditional simulation tech-
nigue in Section 2.4 so that the number of minutiae for the
I-th impression of fingerf is m(f,!), the observed num-
ber of minutiae. The ellipse and rigid transformation were
randomly selected frorfi and7, respectively, to generate

a synthetic impression. The value @f (ratio of lengths

of major to minor axes of the best fitting ellipse) for the

FVC and IBM databases were taken to be the mean val-

ues, namely .48 and1.61, respectively. The corresponding
distribution for the number of impostor matches is repre-

5 Summary and Conclusion

A compound stochastic model is developed for repre-
senting three sources of minutiae variability in fingerprin
images. These models are used for synthesis and for ob-
taining estimates of fingerprint individuality. Our future
work involves obtaining individuality estimates for large
databases and deriving a mathematical framework for cal-
culating the probability associated with fingerprint irdiv
uality.
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