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Abstract

Automatic fingerprint identification is one of the most
important biometric technology. In order to efficiently
match fingerprints in a large database, an indexing
scheme is necessary. Fingerprint classification, which

refers to assigning a fingerprint image into a number of

fingerprint image

pre-specified classes, provides a feasible indexing mech-
anism. In practice, however, large intraclass and small
interclass variations in global pattern configuration and
poor quality of fingerprint images make the classifi-
cation problem very difficult. A fingerprint classifica-
tion algorithm requires a robust feature extractor which
should be able to reliablely extract salient features from
input images. We present a fingerprint classification al-
gorithm with an improved feature extraction algorithm
and a novel classification scheme. This algorithm has
been tested on the NIST-4 fingerprint database. For
the 4,000 images in this database, error rates of 12.5%
for the five-class problem and 7.7% for the four-class
problem have been achieved. With a 20% reject rate
(which eliminates most of the poor quality images in the
database), the error of the four-class problem drops to
2.4%.

1. Introduction

Accurate automatic personal identification is critical
in a wide range of application domains such as national
ID card, electronic commerce, and automated bank-
ing [9]. Biometrics, which refers to automatic identi-
fication of a person based on her physiological or be-
havioral characteristics [9], is inherently more reliable
and more capable in differentiating between an autho-
rized person and a fraudulent imposter than traditional
methods such as passwords and PIN numbers. Auto-
matic fingerprint identification is one of the most reli-
able biometric technology. The high accuracy and re-
liability of fingerprint identification have long been es-
tablished and justified [7]. However, automatic finger-
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Figure 1. A fingerprint image and five ma-
jor fingerprint classes.

print identification is computationally demanding espe-
cially for a large database. Without an effective finger-
print indexing scheme, one needs to exhaustively match
a query fingerprint against all the fingerprints in the
database, which is not desirable in practice. Finger-
print classification, which classifies fingerprints into a
number of pre-specified categories, provides an index-
ing scheme to facilitate efficient matching for large fin-
gerprint databases; if two fingerprint images are the im-
pressions of the same finger, then they must belong to
the same category. Therefore, a query fingerprint needs
to be compared only with the database fingerprints of the
same category in the fingerprint matching process. Fig-
ure 1 shows a typical fingerprint image which needs to
be classified into five major categories.

The central problem in designing a fingerprint classi-
fication algorithm is to determine what features should
be used and how categories are defined based on these
features. There are mainly two types of features that
are useful for fingerprint identification: (i) local ridge
and furrow details (minute details) which have different
characteristics for different fingerprints, and (ii) global
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Figure 3. Stages in our fingerprint classification algorithm.
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Figure 2. Singular points.

pattern configurations which form special patterns of
ridges and furrows in the central region of the finger-
print. The first type of features carry the individuality
information about the fingerprints and the second type
of features carry information about the fingerprint class.
Therefore, for fingerprint classification, the features de-
rived from the global pattern configurations should be
used. These features should be invariant to the transla-
tion and rotation of the input fingerprint images. Gener-
ally, global fingerprint features can be derived from the
orientation field and global ridge shape. The orientation
field of a fingerprint consists of the ridge orientation ten-
dency in local neighborhoods and forms an abstraction
of the local ridge structures. It has been shown that the
orientation field is highly structured and can be roughly
approximated by a core-delta model [8]. Therefore, sin-
gular points (see Figure 2) and their relationship can be
used to drive fingerprint categories. On the other hand,
global ridge shape also provides important clues about
the global pattern configuration of a fingerprint image.
Previous approaches to fingerprint classification can
be roughly divided into two categories: (i) statistical ap-
proach [2, 1] and (i4) structural approach [3, 5, 6]. A
statistical approach classifies a fingerprint using feature
vectors derived directly from the orientation field or the
input images. A structural approach extracts and repre-

sents fingerprints using a number of salient fingerprint
properties and their relationships. These algorithms per-
form reasonably well when the input fingerprint images
are of good quality. When the quality of the input fin-
gerprint images is poor, the performance of these algo-
rithms degrades rapidly. The major reason for the brit-
tleness of these algorithms is that they do not utilize ro-
bust features. We have designed a fingerprint classifi-
cation algorithm based on the features mentioned above
to classify a fingerprint into five categories (arch, tented
arch, left loop, right loop, and whorl). The main stages
of the classification algorithm are depicted in Figure 3.
Our algorithm spends a significant amount of effort to
improve the quality of extracted orientation field and
ridges, which results in a more robust feature extraction
and classification.

2. Feature Extraction

Our feature extraction algorithm extracts two types of
features: (i) singular points, and (i¢) fingerprint ridges.
Following is a list of the definitions needed to under-
stand these features.

2.1. Definitions

An orientation image, O, is defined as an N x [NV im-
age, where O(i, j) represents the local ridge orientation
at pixel (i, 7). Local ridge orientation is usually spec-
ified for a region (block) rather than at every pixel; an
image is divided into a set of w X w non-overlapping
blocks and a single local ridge orientation is defined for
each block. Note that in a fingerprint image, the ridges
oriented at 0° and the ridges oriented at 180° in a local
neighborhood can not be differentiated from each other.

A ridge map, R, is an N x N binary image, where
R(i,j) = 1 indicates that pixel (7, j) is a ridge pixel and
R(i,j) = 0 indicates that pixel (¢, j) is not a ridge pixel.
A ridge in a ridge map is an 8-connected component. A
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Figure 4. Orientation image; (a) input im-
age; (b) orientation image superimposed
on the input image.

thinned ridge has a width of 1 pixel and a thinned ridge
map consists of thinned ridges.

A Recurring ridge is defined as a chain of pixels,
r1,T2, ..., n, in a thinned ridge map, where r; is the first
ridge pixel, r, is the last ridge pixel, and each pair of
consecutive pixels, (r;_1,7;) is eight connected, which
cumulatively turns more than a certain degree when trav-
eling from r; to 7, where 1 <14 < j < n.

A singular point is either a core point or a delta point
which is characterized by its position and type (See Fig-
ure 2). A core is defined as a point in the orientation
field where the orientation in a small local neighbor-
hood around the point presents semi-circular tendency.
A deltais defined as a point in the orientation field where
a small local neighborhood around the point forms three
sectors and the orientation in each sector presents hyper-
bolic tendency.

2.2. Local Orientation and Ridges

The orientation image represents an intrinsic prop-
erty of a fingerprint image. We have developed a least
mean square orientation estimation algorithm [4], which
provides a fairly smooth orientation field estimate for
a reasonable quality fingerprint image. Figure 4 shows
an example of the orientation image estimated with our
algorithm. After orientation image has been estimated
from an input image, a ridge extraction algorithm [4] is
applied to extract the ridge map and the thinned ridge
map (Figure 5).

2.3. Ridge Verification

In an ideal fingerprint image, ridges and furrows
are well-defined in each local neighborhood. The lo-
cal ridge orientation can be reliably estimated from the
sinusoidal-shaped plane waves of ridges and furrows.

Figure 5. Ridge map; (a) extracted ridges
from the input image in Figure 4; (b)
thinned ridge map.
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Figure 6. Ridge verification.

In practice, due to variations in impression conditions,
ridge configuration, skin conditions, and characteristics
of the acquisition devices, a significant percentage (10-
15% based on our experience) of acquired fingerprint
images is of poor quality. The ridge structures in poor-
quality fingerprint images are not always well-defined,
which may lead to: (i) incorrect local ridge orientation
estimates and (i) incorrect extracted ridges. It is very
difficult to correctly classify a fingerprint based on the
incorrect orientation field and incorrect ridge structures.
Therefore, a noise removal algorithm should be applied
to obtain more precise orientation estimates and ridges.

We have developed a ridge verification algorithm
which receives as input a thinned ridge map and outputs
a refined thinned ridge map, a refined orientation field,
and a quality index which indicates the goodness of the
input ridge map. Let R, @', and R’ be the input ridge
map, the interpolated orientation field, and the verified
ridge map, respectively. The major steps in our ridge
verification algorithm are as follows:

1. Initialize O', R', and A which is a map used to
indicate the genuine regions.

2. Delete all ridge pixels in R which have more than



two 8-connected neighboring pixels to ensure that
each ridge is a single 8-connected chain.

3. Trace and label all the ridges in R. For each
traced ridge, r = {(z1, Y1), (T2, Y2), -, (Tn,Yn) },
do the following: (i) Smooth r; (ii) Let (Zic, Yic)
and (T (i41)e, y(i—i-l)e) denote the starting point and
ending point of a segment in r, where € is the
length of the segment and i = 0, €, 2¢, ..., | =< |e.
Find the 4 nearest neighboring ridge points, (u,v),

(p7 q)’ (ulvv/)’ and (plaql) (Flgure 6) (xievyie);
(24116 Y1) (9, 0). and (u,v) form a quadri-
lateral at one side of the segment. (Zic,Yic),
(x(i-l-l)ea y(i-i-l)e)r (r',q'), and (u',v") form a
quadrilateral at the other side of the segment; (ii1)
For each quadrilateral, find the minimum rectangle
that contains the quadrilateral. Compute the ra-
tio, ), between the area of the quadrilateral and the
area of the minimum rectangle. If n is larger than
a threshold (ng = 0.75), then label all the pixels
inside the quadrilateral as foreground pixels. Oth-
erwise, label them as background pixels.

4. Remove all the foreground connected components
whose area is less than a threshold (wy = 15) and
fill all the background connected components in A
whose area is less than a threshold (19 = 15).

5. Compute local orientation at all the pixels in O,
where the corresponding pixels in A are foreground
pixels, as the orientation of the nearest ridge seg-
ment. Interpolate the local orientation at all pix-
els in O', where the corresponding pixels in A are
background pixels.

6. Return the percentage of the area of the foreground
regions in A with respect to total area of A as the
quality index.

An example of ridge verification is depicted in Figure 7,
which demonstrates that a better orientation field can be
obtained by using our ridge verification algorithm.

2.4. Singular Point Detection

In an orientation field, the Poincare index of a core-
shaped singular point has a value of (1/2) and the
Poincare index of a delta-shaped singular point has a
value of (—1/2) [8]. Let ¥, (-) and ¥, (-) represent the x
and y coordinates of a closed digital curve with Ny pix-
els. The Poincare index at pixel (4, j) which is enclosed
by the digital curve can be computed as follows:

Poincare(i,j) = iZA(IC),
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Figure 7. Ridge verification; (a) input im-
age; (b) orientation field; (c) verified ridge
map, where the verified ridges are marked
with gray shade; (d) interpolated orienta-
tion field.
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The size of the closed digital curve is crucial for the
performance of a singular point detection algorithm us-
ing the Poincare index. If it is too small, then a small
perturbation of orientations may result in spurious sin-
gular points being detected. On the other hand, if it is too
large, then a true pair of core and delta which are close to
one another may be ignored because the Poincare index
of a digital curve that includes an equal number of cores
and deltas is 0. We have developed a singular point de-
tection algorithm which uses a closed square curve with
a length of 25 pixels. We have empirically determined
that a curve of 25 pixels is a good trade-off between de-
tections and misses of singular points. Let O be the
interpolated orientation field. The main steps in our sin-
gular point detection algorithm are as follows:

1. Initialize A, which is a label image used to indicate
the singular points.



Figure 8. Singular point detection.

2. For each pixel (i,j) in O', compute the Poincare
index and assign the corresponding pixel in A a
value 1 if the Poincare index is (1/2) and a value 2
if the Poincare index is (-1/2).

3. Find each connected component in A with pixel
values 1. If the area of the connected component
is larger than 7, a core is detected at the centroid
of the connected component. If the area of the con-
nected component is larger than 20, then two cores
are detected at the centroid of the connected com-
ponent.

4. Find each connected component in A with pixel
values 2. If the area of the connected component
is larger than 7, a delta is detected at the centroid
of the connected component.

5. If more than two cores or more than two deltas are
detected, smooth the orientation field O' and go
back to step 1.

Although the heuristic that at most two cores and two
deltas exist in a fingerprint is not always true, it is rarely
observed that a fingerprint has more than two cores and
two deltas. Results of applying our singular point de-
tection algorithm on two fingerprint images are shown
Figure 8.

2.5. Recurring Ridges

The global shape of ridges determines the global con-
figuration of fingerprints. Ridges in fingerprints are
highly structured. Generally, in the upper region (which
can be roughly defined as the region above the highest
core points in loops, tented arches, and whorls and the
region above the most curved ridges in arches) of a fin-
gerprint, ridges are a family of uni-modal smooth curve
segments. In the bottom region, ridges form a family of
relatively flat curves. In the middle region, depending
on the fingerprint class, ridges may be of the follow-
ing types: uni-modal curve segment, recurring segment,

circular segments, multi-recurring segments, spiral seg-
ments, etc. The presence of a particular type of ridges
defines the class of a fingerprint. If the ridge type can be
accurately determined, then the fingerprint can be cor-
rectly classified.

We classify ridges into three categories: (i) non-
recurring ridge, (it) type-1 recurring ridge, and (ii7)
type-2 recurring ridge. Letr = {ry,rs,...,7p} be a
ridge of length n, where r; is the first ridge pixel, r, is
the last ridge pixel, and each pair of consecutive pixels
is eight connected. Then 7' = {ry,rac, ..., "'me }, Where
m = |2=£], is obtained by sampling r at intervals of

€
length e. Define the cumulative orientation of r as:

1 m—1
AO(r) = |% w(k
k=2
p(k), if [p(k)| <,
w(k) = 2m + p(k), if p(k) < —m,
2w — p(k), otherwise,
p(k) = 9(k) — 9k~ 1),

where (k) represents the angle from 7/ (k) to v’ (k + 1).
Define any sequence of ridge pixels in 7, {r;, 2, ...,7;},
where 1 < ¢ < j < n, a sub-ridge of r. A non-
recurring ridge, r, is a ridge such that the cumulative
orientation of any sub-ridge of r is less than a threshold,
Tron = 150°. A type-1 recurring ridge, r, is a ridge
such that the cumulative orientation of any sub-ridge of
r is between the two thresholds, T}, and T... = 270°.
A type-2 recurring ridge, r, is a ridge such that the cu-
mulative orientation of any sub-ridge of r is larger than
a threshold, T)... or a ridge such that there exist mul-
tiple disjoint sub-ridges of r, which are type-1 recur-
ring ridges. Obviously, uni-modal ridge segments and
flat ridge segments are non-recurring ridges. Circular
ridge segments, multi-recurring ridge segments and spi-
ral ridge segments are type-2 recurring ridges.

It is very difficult to correctly extract all the true
ridges from an input fingerprint image, especially when
the quality of the input fingerprint image is poor. It is
essential that a ridge classification algorithm be able to
handle the following undesirable situations: (i) spuri-
ous ridges, (i¢) broken ridges, and (¢i7) missing ridges.
Ridge verification (see Figure 7) can be used to remove
all the spurious ridges from a ridge map. Broken ridges
can be connected based on the information present near
the end of broken ridges. However, it is very difficult to
recover missing ridges. This needs both high-level struc-
tural analysis and local structural analysis of the ridge
pattern, which is very difficult to formulate and imple-
ment. We have developed a ridge classification algo-
rithm which traces each ridge in the verified ridge map
and classifies each ridge into one of the three categories
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Figure 9. Ridge classification; ridges clas-
sified as (a) non-recurring, (b) type-1 re-
curring, and (c) type-2 recurring.

mentioned above (Figure 9).

3. Classification

The fingerprint classification algorithm classifies in-
put fingerprints into five categories according to the
number of singular points detected, their relative posi-
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Figure 10. Fingerprint class prototypes;
the dashed lines in (b), (c), and (d) are the
symmetric axis.

tions and presence of type-1 and type-2 recurring ridges.
A prototype of each class is shown in Figure 10. Let O’
be the interpolated orientation field; N, and N, be the
number of cores and deltas detected from O’, respec-
tively; N7 and N, be the number of type-1 recurring
ridges and type-2 recurring ridges in R’. The classifica-
tion criteria used in our algorithm is as follows:

1. If (N2 > 0) and (N. = 2) and (N4 = 2), then a
whorl is identified.

2. If (Ny = 0) and (N, = 0) and (N, = 0) and
(Ng = 0), then an arch is identified.

3. If (Ny > 0) and (Ny = 0) and (N, = 1) and
(Ng = 1), then classify the input using the core
and delta assessment algorithm given below.

4. If (Ny > Ts) and (N, > 0), then a whorl is identi-
fied.

5. If (Ny > Ty) and (N5 = 0) and (N, = 1) then
classify the input using the core and delta assess-
ment algorithm.

6. If (N. = 2), then a whorl is identified.

7. If (N. = 1) and (N4 = 1), then classify the input
using the core and delta assessment algorithm.

8 If (Ny > 0) and (N, = 1), then classify the input
using the core and delta assessment algorithm.

9. If (N, = 0) and (N4 = 0), then an arch is identi-
fied.

10. If none of the above conditions is satisfied, then re-
Jject the fingerprint.

The core and delta assessment algorithm is used to clas-
sify a one-core and one-delta fingerprint into one of the
following categories: (i) left loop, (i7) right loop, and
(#i7) tented arch. The steps of this algorithm are:

1. Estimate the symmetric axis which crosses the core
in its local neighborhood.

2. Compute the angle, o, between the line segment
from the core to the delta and the symmetric axis.

3. Compute the average angle difference, 3, between
the local ridge orientation on the line segment from
the core to the delta and the orientation of the line
segment.

4. Count the number of ridges, v, that cross the line
segment from the core to the delta.

5 If (a < 10°) or (B < 15°) and (v = 0), then
classify the input as a tented arch.

6. Ifthe delta is on the right side of the axis, then clas-
sify the input as a left loop.

7. If the delta is on the left side of the axis, then clas-
sify the input as a right loop.

4. Experimental Results

We have tested our fingerprint classification algo-
rithms on a number of databases. Here, we present the
performance of our classification algorithm on the NIST-
4 database which contains 4,000 images (image size is
512 x 480) taken from 2,000 different fingers, 2 images
per finger. Five fingerprint classes are defined: (i) Arch,
(i) Tented arch, (7i7) Left Loop, (iv) Right Loop, and
(v) Whorl. Fingerprints in this database are uniformly
distributed among these five classes. The five-class error
rate in classifying these 4,000 fingerprints is 12.5%. The
confusion matrix is given in Table 1; numbers shown in
bold font are correct classifications. Since a number of



Assigned Class
True Class ATT | L[R[W
A 885 | 13 | 10 | 11 0
T 179 | 384 | 54 | 14 5
L 31 | 27 | 755 | 3 20
R 30 | 47 3 | 717 | 16
Y 6 1 15 | 15 | 759

Table 1. Five-class classification results on
NIST-4 database; A-Arch, T-Tented Arch, L-
Left Loop, R-Right Loop, W-Whorl.

fingerprints in NIST-4 database are labeled as belong-
ing to two different classes, each row of the confusion
matrix in Table 1 does not sum up to 800. For the five-
class problem, most of the classification errors are due to
misclassifying a tented arch as an arch. By combining
these two arch categories into a single class, the error
rate drops to 7.7%. Besides the tented arch-arch errors,
the other errors mainly come from misclassifications be-
tween arch/tented arch and loops and due to poor image

(a) (b)

Figure 11. Misclassifications: (a) aleft loop
as an arch and (b) a tented arch an arch.

Reject rate 0% 5% 10% | 20%
5-class Error | 12.5% | 11.6% | 10.1% | 7.5%
4-class Error | 7.7% 6.6% 51% | 2.4%

Table 2. Error-reject tradeoff.

Acknowledgments

quality. Two examples of misclassified fingerprints are
shown in Figure 11. A lower error rate can be achieved
by adding the reject option, which is based on the quality
index of the input image. The error rates corresponding
to different reject rates are listed in Table 2.

S. Summary and Conclusions

Fingerprint classification provides an important in-
dexing mechanism for automatic fingerprint identifica-
tion. At a first glance, the fingerprint classification prob-
lem appears to be rather simple. But because of large in-
traclass and small interclass variations in global pattern
configuration and poor quality of input images, the de-
sired accuracy of 1% error rate at 20% reject rate is very
difficult to achieve. We have designed a fingerprint clas-
sification algorithm which classifies input fingerprints
into five categories according to the number of singu-
lar points detected, their relative position, and presence
of type-1 and type-2 recurring ridges. Our algorithm in-
vests a significant amount of effort in feature extraction
to make robust to interclass variations as well as poor
quality of input images. Experiment results demonstrate
that our algorithm has better classification performance
than previously reported in the literature on the same
database. Currently, we are studying an alternative clas-
sification scheme which classifies fingerprints according
to the pattern similarity. We are also investigating an im-
age enhancement algorithm based on a bank of Gabor
filters.
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