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Abstract

Fingerprint images vary in quality. In order to ensure
that the performance of an automatic fingerprint identifica-
tion system (AFIS) will be robust with respect to the qual-
ity of input fingerprint images, it is essential to incorporate
a fingerprint enhancement module in the AFIS system. In
this paper, we introduce a new fingerprint enhancement al-
gorithm which decomposes the input fingerprint image into
a set of filtered images. From the filtered images, the ori-
entation field is estimated and a quality mask which dis-
tinguishes the recoverable and unrecoverable corrupted re-
gions in the input image is generated. Using the estimated
orientation field, the input fingerprint image is adaptively
enhanced in the recoverable regions. The performance of
our algorithm has been evaluated by conducting experi-
ments on an online fingerprint verification system using the
MSU fingerprint database containing over 600 fingerprint
images. Experimental results show that our enhancement
algorithm improves the performance of the online finger-
print verification system and makes it more robust with re-
spect to the quality of input fingerprint images.

1 Introduction

An automatic fingerprint identification system (AFIS)
is based on a comparison of minute details of ridge/valley
structures of fingerprints [3]. A total of eighteen different
types of local ridge/valley descriptions have been identified
[6]. Among them, ridge endings and ridge bifurcations

(Figure 1(a)), which are usually called minutiae, are the two
most prominent structures used in an automatic fingerprint
identification system. Automatic and reliable extraction of
minutiae from a digital fingerprint image is an extremely
difficult task. The performance of currently available
minutia extraction algorithms relies heavily on the quality
of input digital fingerprint images. Due to a number of
factors (aberrant formations of epidermal ridges of fin-
gerprints, postnatal marks, occupational marks, problems
with acquisition devices, efc.), digital fingerprint images
may not always have well-defined ridge/valley structures
which the minutia extraction algorithms usually assume.
This, of course, results in the failure of minutia extraction
algorithms, which, in turn, results in the poor performance
of the fingerprint matching module. Figures 1 and 2 show
typical examples of applying a minutia extraction algorithm
[9] to fingerprint images of both good and poor quality
which are acquired with an inkless fingerprint scanner.

In order to ensure that the performance of an automatic
fingerprint identification system will be robust with respect
to the quality of input fingerprint images, an enhancement
algorithm which will improve the clarity of the ridge/valley
structures is necessary. Ideally, the ridge/valley structures
in a fingerprint image are well-defined. Each ridge is
separated by two parallel narrow valleys; each valley is
separated by two parallel narrow ridges; and minutiae are
defined as the ridge endings and ridge bifurcations. How-
ever, in practice, such well-defined ridge/valley structures
are not always visible in the scanned fingerprint images.
Usually, a fingerprint image is corrupted by various kinds
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Figure 1. Results of applying a minutia extrac-
tion algorithm to a fingerprint image of good
quality; (a) input image; (b) extracted ridge
map; (c) extracted minutiae superimposed on
the input fingerprint image.

Figure 2. Results of applying a minutia extrac-
tion algorithm to a fingerprint image of poor
quality; (a) input image; (b) extracted ridge
map; (c) extracted minutiae superimposed on
the input fingerprint image.

of noise, such as creases, smudges, holes, efc. Despite
the existence of such noise, a trained fingerprint expert
is often able to correctly identify the minutiae by using
various visual clues such as local ridge/valley orientation,
ridge/valley continuity, etc. Therefore, we need to develop
an algorithm that can rely on these visual clues to improve
the quality of input fingerprint images.

Generally, for a given fingerprint image, the region of
interest can be divided into the following three categories:

o Well-defined region, in which ridges and valleys are
clearly visible for a minutia extraction algorithm to op-
erate reliably.

e Recoverable corrupted region, in which ridges and
valleys are corrupted by a small amount of creases,
smudges, efc. such that they can still be correctly re-
covered by an enhancement algorithm.

e Unrecoverable corrupted region, in which ridges and
valleys are corrupted by such a severe amount of noise
and distortion that it is impossible to recover them
from the corrupted image.

We refer to the first two categories of noisy fingerprint re-
gions as recoverable and the last category as unrecoverable.

Because it is impossible to recover the true ridge/valley
structures in the unrecoverable regions, any effort to im-
prove the quality of the fingerprint image in these regions
is futile. Therefore, the goal of a reasonable enhancement
algorithm is to improve the clarity of ridge/valley structures
of fingerprint images in recoverable regions and to mask
out the unrecoverable regions. Another very important as-
pect concerning a fingerprint enhancement algorithm is that
it should not result in any spurious ridge/valley structures.

A number of techniques have been proposed to enhance
fingerprint images [1, 4, 5, 7, 11, 16, 17]. These tech-
niques take advantage of the information about the local
ridge/valley structures and are capable of adaptively im-
proving the quality of input fingerprint images [1, 4, 5, 7,
17]. However, all of these techniques make an assump-
tion that the local ridge/valley orientations can be reliably
estimated from input fingerprint images. In practice, this
assumption is not true for fingerprint images of poor qual-
ity. Figure 3 shows some examples of estimated orientation
field of fingerprint images of poor quality. Therefore, in a
fingerprint enhancement algorithm, reliable computation of
orientation field is a central issue.
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Figure 3. Estimated orientation fields of fin-
gerprint images of poor quality superim-
posed on input images.

In this paper we introduce a fingerprint enhancement
algorithm. As described above, the purpose of this fin-
gerprint enhancement algorithm is to improve the clarity
of ridge/valley structures in recoverable regions and make
them suitable for minutia extraction algorithms. Our al-
gorithm also identifies all the corrupted regions in which
it does not have the capability of recovering the true
ridge/valley structures and labels them as unrecoverable re-
gions. The overview of the algorithm is shown in Figure 4.
Its main steps are described as follows:

e A bank of even-symmetric Gabor filters is applied to
an input fingerprint image and a set of filtered images
is produced.

o A ridge extraction algorithm is applied to each of the
filtered images and the corresponding ridge map is ob-
tained.

¢ From the extracted ridge maps of filtered images, a vot-
ing algorithm is used to generate a coarse-level ridge



map and unrecoverable-region mask. The generated
coarse-level ridge map is used for orientation field es-
timation.

¢ An orientation estimation algorithm is applied to the
generated coarse-level ridge map, and the local orien-
tation at each pixel is obtained.

the filtered images which is shown to be rather reliable. Be-
cause our algorithm can obtain a reliable estimate of the
orientation field, a better performance can thus be achieved
in the enhancement stage.

2.1 Filtering of Fingerprint Image

e From the computed orientation field and filtered im-

Fingerprints are flow-like patterns which consist of

ages, an enhanced image is obtained.
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Figure 4. An overview of the fingerprint en-
hancement algorithm.

In the following sections we will describe in detail our
fingerprint enhancement algorithm. Section 2 addresses the
main idea of our algorithm. Experimental results on finger-
print databases captured with inkless scanners are described
in section 3. Section 4 contains the summary and discus-
sion.

2 Fingerprint Enhancement

Our fingerprint enhancement algorithm consists of two
main stages: (i) orientation field estimation, and (¢i) en-
hancement. Instead of estimating the orientation field di-
rectly from the input fingerprint image, we estimate it from

locally parallel ridges and valleys. They have well-defined
local frequency and local orientation. A set of bandpass
filters can efficiently remove the undesired noise and
preserve the true ridge/valley structures. Gabor filters
have both frequency-selective and orientation-selective
properties and have optimal joint resolution in both spatial
and frequency domains [2, 9]. Therefore, it is beneficial to
use Gabor filters as bandpass filters to remove the noise and
preserve true ridge/valley structures.

Figure 5. An even-symmetric Gabor filter: (a)
Gabor filter tuned to 60 cycles/width and 0°
orientation; (b) corresponding MTF.

The even-symmetric Gabor filter has the general form

h(z,y) = ) ks 2 1
(z,y) = e:vp{ B) [55 + 55] } cos(2muox), (1)
where u is the frequency of a sinusoidal plane wave along
the x-axis, and d, and ¢, are the space constants of the
Gaussian envelope along x and y axes, respectively. Ga-
bor filters with arbitrary orientation can be obtained via a
rotation of the x — y coordinate system. The modulation
transfer function (MTF) of Gabor filter can be represented
as

_ 2 2
H(u,v) = 2w5m5yexp{_% [(u(sism) . 15_2] } N

RY 2
21, 0yexp {—% [(lt(sfzuo) + 1(;_2] } 2)

v

where 6, = 1/276, and 4, = 1/27d,. Figure 5 shows an
even-symmetric Gabor filter and its MTF.



An important issue in applying Gabor filters is the selec-
tion of filter parameters. We have observed that in a finger-
print image of size 512 x 512, the ridge frequency is gener-
ally around 60 cycles per image width (height). Therefore,
in our fingerprint enhancement algorithm, the central fre-
quency is selected as 60 cycles/width (height). The radial
bandwidth is selected as 2.5 octaves. Eight values of central
orientation 8 are used: 0°, 22.5°, 45°, 67.5°, 90°, 112, 5°,
1359, 157.5°. The orientation bandwidth is selected as 35°.
For a given input fingerprint image, these 8 Gabor filters
are applied to obtain 8 filtered images. To obtain a filtered
image, a FFT is first performed on the input fingerprint im-
age. Then the corresponding Gabor filter with tuned radial
and orientation frequency is applied to the frequency image
and an inverse FFT is performed to obtain the filtered im-
age. Figures 6(b)-(i) show the eight filtered images for the
fingerprint image shown in Figure 6(a).

tracted from the filtered image. These ridge maps are used
to generate a coarse-level ridge map of the input fingerprint
image, which will be introduced in the next section. The
most salient property corresponding to ridges in a filtered
image is that grey level values on ridges attain their local
maxima along a direction that is orthogonal to local ridges.
Pixels can be reliably identified to be ridge pixels based on
this property. The first step of the ridge extraction algorithm
is to estimate the local orientation field according to the fol-
lowing steps:

1. Estimate the local orientation at each pixel (u, v) using
the following formula:
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where W is the size of a local window centered at pixel
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Figure 6. Examples of filtered images for a
512 x 512 fingerprint image: (a) input image;
(b-i) filtered images with Gabor filters tuned to
60 cycles/width and orientations of 0°, 22.5°,
45°, 67.5°, 90°, 112.5°, 135°, 157.5°, respec-
tively.

2.2 Ridge Extraction

For each filtered image, the following ridge extraction
algorithm is applied and the corresponding ridge map is ex-

(u,v) W = 15 in our algorithm); G, and G, are
the gradient magnitudes in = and y directions, respec-
tively, and (Ag(u,v), Ay(u,v)) represents the value
of the estimated vector field of the input fingerprint im-
age at the given pixel (u,v). This operator computes
the dominant orientation of the Fourier spectrum of the
local window centered at pixel (u, v).

2. Compute the consistency level of the orientation field
in the local neighborhood of a pixel (u, v) with the fol-
lowing formula:

1

. 2
Colwv) = 5 [ 2 0G5 =b(wo)l, ©)
(¢,5)€D

, _ d if d < 180,
"0 = { d — 180 otherwise, °’ )
d = (6" -6+ 360)mod360, (8)

where D represents the local neighborhood around
(u,v), which is a 7 x 7 local window in our algorithm;
N is the number of pixels within D; 6(3, j) and 6(u, v)
are local ridge orientations at pixels (4,7) and (u,v),
respectively.

3. If the consistency level is below a certain threshold
T., then the local orientations in this region are re-
estimated at a lower image resolution level until the
consistency is above 7%.



After the orientation field is obtained, two adaptive filters
are applied to the filtered image:

N &561 ifi =1(j) —d,j €Q
hi(u,v51,5) = e, ifi=1(j),j €Q )
0, otherwise,
N &56? ifi =1(j) +d,j € Q
ho(u,v34,5) = e, ifi=1(j),j €Q (10)
0, otherwise,
I(j) = jtan(f(u,v)), (11)
H
= — 12
d 2 cos(f(u,v))’ (12)
q - H[Sln(&_(;,v)) ’ Sln(9(2u,v))H (13)

where 6(u, v) represents the local ridge orientation at pixel
(u,v). These two masks are capable of adaptively accentu-
ating the local maximum grey level values along the normal
direction of the local ridge orientation. The filtered image
is first convolved with these two masks, h;(u,v;4,7) and
hy(u,v;4,7). If both the grey level values at pixel (u,v)
of the convolved images are larger than a certain threshold
Tridge» then pixel (u,v) is labeled as a ridge. By adapting
the mask width to the width of the local ridge, this algorithm
can efficiently locate the ridges in a fingerprint.

Due to the presence of noise, creases, and smudges, efc.
in the input fingerprint image, the resulting ridge maps of
the filtered images often contain a large number of non-
ridge pixels being labeled as ridge pixels. A postprocess-
ing step is needed to remove these non-ridge pixels. In our
fingerprint enhancement algorithm, we use the following
heuristics:

e Compute the area of each connected component ap-
pearing in the ridge map. If the area is less than a
threshold 7', then label this connected component
as background; otherwise break the connected compo-
nent into a set of short line segments and go to the next
step.

e For each short line segment, if it is between a pair of
narrow parallel ridges, then label it as a true ridge; oth-
erwise label it as background.

After the above steps have been performed on a ridge map,
most of the spurious ridges are removed. (see figure 7).

2.3 Coarse-Level Ridge Map and Unrecoverable-
region Mask

After the ridge map of each filtered image is obtained,
the next step in our fingerprint enhancement algorithm

(b)

Figure 7. The extracted ridge map of a fil-
tered image: (a) filtered image; (b) extracted
ridge map; the dark lines represent the de-
tected ridges; grey lines represent the spu-
rious ridges removed by the postprocessing
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Figure 8. Intuitive meaning of the voting algo-
rithm; here for simplicity, we assume that the
input image is decomposed into two filtered
images; (a)-(c) correspond to rule 1; (d)-(f)
correspond to rule 2; (g)-(h) correspond to
rule 3; the left two columns show the inputs
to the voting algorithm while the third column
shows the voting results.



is to generate a coarse-level ridge map and a mask of
unrecoverable regions of the input fingerprint image.
The coarse-level ridge map is used to estimate a reliable
orientation field. The only requirement for the generated
coarse-level ridge map is that it should roughly reflect
the orientation of the local ridge/valley structures of the
input fingerprint image. It is not necessary to impose a
requirement that this coarse-level ridge map should be very
precise in terms of local ridge structures.

In our enhancement algorithm, the coarse-level ridge
map and unrecoverable region mask are generated from the
ridge maps of filtered images by using the following voting
algorithm:

¢ Divide each ridge map of filtered images into blocks
of size W x W (8 x 8 in our algorithm).

e Label each block as foreground (with a value 1) if there
are enough ridge pixels appearing around the block;
otherwise label it as background (with a value 0). Af-
ter this process, a binary block map in which a pixel
value of 1 represents the existence of ridges and O as
non-ridges is obtained for each ridge map of filtered
images.

e Delete all the connected components (8-connected) in
the binary block maps which have an area less than a
threshold (16 in our algorithm).

e For each block, examine all the eight filtered images
and compute the coarse-level ridge map according to
the following rules (an intuitive meaning of these rules
is shown in Figure 8):

1. If only one of the eight binary block map at pixel
(z,y) has the value 1 and this pixel belongs to
a connected component of size K, K > Tyock,
then the pixel values of the corresponding block
in the coarse-level ridge map are duplicated from
the associated ridge map. The pixel value of the
corresponding recoverable region mask is set to
the value 0 to indicate that this block is recover-
able.

2. If more than one binary block map at pixel (z,y)
has the value 1 and the associated local ridge ori-
entations are not orthogonal with one another,
the pixel values of the corresponding block in
the coarse-level ridge map are taken as the av-
erage values of the associated ridge maps. The
pixel value of the corresponding recoverable re-
gion mask is set to the value 0 to indicate that this
block is recoverable.

3. If more than one binary block map at pixel (z, y)
has the value 1, the associated local ridge ori-
entations may be orthogonal with one another,
and only one pixel with the value 1 resides in a
connected component of size larger than a cer-
tain threshold Tjocx, then the pixel values of
the corresponding block in the coarse-level ridge
map are duplicated from the ridge map associ-
ated with the largest connected component and
the pixel value of the corresponding recoverable
region mask is set to the value O to indicate that
this block is recoverable.

4. If the above conditions are not satisfied, then the
block is assigned a label 1 to indicate that it is
unrecoverable.

By applying this algorithm to the set of ridge maps of fil-
tered images, a coarse-level ridge map and an unrecoverable
region mask are generated.

2.4 Local Orientation Estimation and Enhanced
Image

The coarse-level ridge map generated from the ridge
maps of the filtered images preserves the local orientation
information of the ridge/valley structures of the input
fingerprint image. The orientation field of a given input
fingerprint image can now be reliably estimated from
the coarse-level ridge map by ignoring the unrecoverable
regions.

Let f;i(z,y) (i=0, 1, 2, 3,4, 5, 6, 7) denote the grey level
value at pixel (x,y) of the filtered images corresponding to
the orientation 0;, 8, = i x 22.5°. After the orientation field
has been estimated, the grey level value at pixel (z,y) of the
enhanced image can be obtained according to the following
formula:

9(@,y) = a(@,y) fpey(T,y) +
(1 - a(xay))fq(x,y)(may)a (14)
where

_0(x,y)

plz,y) = L22‘5 1, (15)
f(x,

g(z,y) = f;‘;é’)mod& (16)

1] _
a(z, y) (m, y)22.5:0(m, y) ’ (17)
(18)

and 0(z, y) represents the value of local orientation field at
pixel (z,y).



3 Postprocessing

The enhancement algorithm alone can not be expected
to perform correctly in all situations. Further, in practice,
an enhancement algorithm might introduce artifacts of its
own. We, therefore, need to devise postprocessing tech-
niques to reduce extraction of extraneous minutiae due to
both of these effects.

The key to designing such postprocessing strategies lies
in anticipating these situations where an enhancement al-
gorithm will not be effective. A postprocessing technique
is adopted to detect and overcome each of these difficult
individual situations. Here, we will illustrate one such post-
processing technique to deal with postnatal cracks that can
not be dealt by the enhancement algorithm.

A crack in a fingerprint image could be characterized as a
narrow bright region usually running transverse to the dom-
inant ridge direction. One of the heuristics to detect the
spurious minutiae resulting from these cracks is based on
the observation that these minutiae are anti-aligned and the
region between them is brighter than the average brightness
of the foreground region. We obtain the information nec-
essary to identify such minutiae from the input fingerprint
image and the set of minutiae detected from the enhanced
image. The following objective function is used to reveal
the spurious minutiae:

b B
~ log(D +1)(1I(6: — 6)ll + 1)

where 6; and 6 are the angles subtended by minutiae ¢ and
7 to a fixed axis of reference, B is the average brightness of
the line joining them, and D is the distance between them.
The value of E is computed for each pair of minutiae closer
than distance Dyj,. If the value of E is greater than Eyy,
both the minutiae are deleted and replaced by a line con-
necting the original minutiae. This connecting line facili-
tates obtaining the correct connectivity and ridge count in-
formation.

The matching results presented here do not take advan-
tage of this postprocessing heuristics. Integration of the
postprocessing strategies into our matching system is cur-
rently under way. Figures 4(a)-(c) show the minutiae de-
tected from fingerprint images with cracks without postpro-
cessing and Figures 4(d)-(f) illustrate the minutiae detected
from the same images after incorporating the postprocess-
ing step mentioned above. Figure 9 shows the intermediate
results of applying the enhancement algorithm to the finger-
print image which is shown in Figure 2.

19)

4 Experimental Results

The purpose of a fingerprint enhancement algorithm is
to improve the quality of input fingerprint images and make
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Figure 9. Results of applying the enhance-
ment algorithm to a fingerprint image of poor
quality: (a) inputimage; (b) coarse-level ridge
map; (c¢) unrecoverable-region mask which
consists of white pixels; (d) estimated orien-
tation field; (e) enhanced image; (f) minutiae
extracted from the enhanced image superim-
posed on the input image.

them more suitable for the minutia extraction module in an
AFIS system. Therefore, the ultimate criterion of evaluat-
ing such an enhancement algorithm is the amount of perfor-
mance improvement when the algorithm is applied to the
noisy fingerprint images. In order to evaluate the perfor-
mance of our fingerprint enhancement algorithm, we have
conducted two experiments on the online fingerprint ver-
ification system [9] using the MSU fingerprint database.
The MSU fingerprint database contains 670 images of 67
individuals which were captured with a scanner manufac-
tured by Digital Biometrics. The size of these images is
640 x 480. The fingerprint images in the database vary
in quality. More than 90% of the fingerprint images in
our database are captured with satisfactory quality, whereas
about 10% of the fingerprint images in our database are not
of good quality (Figure 11).

In the first experiment, the fingerprint enhancement al-
gorithm was not applied. Each fingerprint image in the
database was directly matched against the other fingerprint
images in the database. In the second experiment, our fin-
gerprint enhancement algorithm was first applied to each
fingerprint image in the database. Then, the verification is
conducted on the enhanced fingerprint images. The match-
ing score in our experiment is defined as the square of the
number of paired minutiae, normalized by the product of
the numbers of minutiae in the input fingerprint image and
the template [9]. The distributions of the matching scores
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Figure 10. Postprocessing technique for re-
ducing spurious minutiae due to cracks. (a)-
(c) show the minutiae before the postprocess-
ing step. (d)-(f) show the minutiae after the
postprocessing step.

obtained in the two experiments are shown in Figure 12.
Table 1 shows the recognition rates and reject rates with dif-
ferent threshold values on the matching score. From these
experimental results, we can observe that the performance
of the online fingerprint verification system has significantly
improved when our fingerprint enhancement algorithm is
applied to the input fingerprint images. In particular, using
the enhancement algorithm has substantially reduced the re-
ject rate while maintaining essentially the same recognition
rate.

o 2 4 & 8 10 12 14
requency(%)
o 2 4 & 8 10 12 14

P, e
i e

O 1o 2 3 40 S50 6 70 8 90 10C
Normalized Matching Score

% 40 50 6 70 8 9 100
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Figure 12. Distributions of correct and incor-
rect matching scores: vertical axis repre-
sents distribution of matching scores in per-
centage; (a) distribution of matching scores
on original fingerprintimages; (b) distribution
of matching scores on enhanced fingerprint
images.

Figure 11. Fingerprint images of poor quality
in the MSU fingerprint database.

Threshold | Recogni- | Reject | Recogni- Reject
Value tion Rate Rate tion Rate Rate
Enhanced | Enhanced

20 99.42% | 11.23% | 99.25% 7.37%
22 99.86% | 14.56% | 99.95% 9.66%
24 99.89% | 16.78% | 99.99% 11.07%
26 99.96% | 20.20% 100% 14.84%
28 99.98% | 23.15% 100% 16.28%
30 99.99% | 27.45% 100% 18.21%

Table 1. Recognition and
different threshold values

score.

reject rates with
on the matching

5 Conclusions and Future Work

‘We have introduced a new fingerprint enhancement algo-

rithm. This algorithm, unlike other algorithms, concentrates
a large amount of effort on the estimation of the orientation
field which plays a critical role in the minutia extraction al-
gorithm. Experimental results show that our algorithm is



capable of obtaining a relatively good estimate of orienta-
tion field even though the quality of the input fingerprint
image is poor. This improvement, in turn, results in an im-
provement in the quality of input fingerprint images. Our
algorithm also picks up the unrecoverable corrupted regions
in the fingerprint and mask them out. This is a very impor-

[5] L. O’Gorman and J. V. Nickerson, An Approach to
Fingerprint Filter Design, Pattern Recognition, Vol.
22, No. 1, pp. 29-38, 1989.

[6] Henry C. Lee and R. E. Gaensslen, editors, Advances
in Fingerprint Technology, Elsevier, New York, 1991.

tant property because such unrecoverable regions do appear
in some of the corrupted fingerprint images and they are ex-
tremely harmful to minutia extraction. We note that our al-
gorithm does not perform very well around singular regions
where ridges and valleys have relatively high curvature val-
ues. It tends to mask these regions as unrecoverable re-
gions. However, because minutiae around singular regions
are usually assigned lower weights during matching, such a
deficiency is not serious. It currently takes approximately
195 seconds for our enhancement algorithm to process one
512 x 512 fingerprint image on a SPARC 20 workstation.
Obviously, this is too slow for an online application. We are
studying various methods to speedup the algorithm.

In the process of extracting ridge maps from filtered im-
ages, we currently use only the local orientation informa-
tion and orthogonal peak information. However, we have
observed that there is a great difference between the ridge
regions and non-ridge regions in terms of texture properties.
Therefore, our results can be improve by incorporating tex-
ture features in ridge extraction of filtered images. Because
this algorithm is slow and since it is futile to improve the
clarity of ridge/valley structures of input fingerprint images
of good quality, a quality checking module is necessary in
an AFIS system. This module checks the quality of the in-
put fingerprint image. The enhancement module is applied
to the input fingerprint image if and only if the quality of
the input fingerprint image is poor and the true ridge/valley
structures are recoverable. We are currently designing such
a module.
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