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Fingerprint Presentation Attack Detection
“presentation to the biometric data capture subsystem with the goal of interfering with the
operation of the biometric system” - ISO standard IEC 30107-1:2016(E)
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Fingerprint Spoof Attacks



MICHIGAN STATE UNIVERSITY

Requirements

• Accurate and Robust

Bonafide noisy fingerprint images

True Detection Rate > 97% @ 
False Detection Rate = 0.2%
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Requirements

• Accurate and Robust

• Low-cost and Interoperable

Live FingerprintEcoFlex Gelatin LatexWoodGlue

Spoof Attacks

Silgum

Single-finger Readers

SilkID SLK20R Lumidigm V302

Slap Reader

CrossMatch  Guardian 200
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Requirements

• Accurate and Robust
• Low-cost and Interoperable

• Efficient

Commodity Smartphone 
Redmi Note 4 ($150)

ZKTeco Access 
Control Unit

Vivo’s in-display screen 
fingerprint reader
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Requirements

• Accurate and Robust
• Low-cost and Interoperable
• Efficient

• Interpretable and Generalizable

3D t-SNE representationCNN Fixations
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Proposed Approach: Universal Material Generator

DecoderEncoder
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Proposed Approach: Universal Material Generator

[1] Huang, Xun, and Serge Belongie. "Arbitrary style transfer in real-time with adaptive instance normalization." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1501-1510. 2017.
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Proposed Approach: Universal Material Generator
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Proposed Approach: Universal Material Generator

[1] Huang, Xun, and Serge Belongie. "Arbitrary style transfer in real-time with adaptive instance normalization." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1501-1510. 2017.
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Proposed Approach: Universal Material Generator

• Style transfer-based wrapper
• Transfer style (texture) characteristics 

between known PAs

[1] Huang, Xun, and Serge Belongie. "Arbitrary style transfer in real-time with adaptive instance normalization." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1501-1510. 2017.
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Control Extent of Style Transfer

α =	0.2 α =	0.4 α =	0.6 α =	0.8 α =	1.0
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Real Spoofα =	0.0
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Proposed Approach: Universal Material Generator
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Proposed Approach: Universal Material Generator
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Proposed Approach: Universal Material Generator
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Synthetic
Lives

Real
Lives

Lives

Proposed Approach: Universal Material Generator
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Synthetic
Lives

Real
Lives

Lives

Proposed Approach: Universal Material Generator
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Style 1 Synthetic Style 2

PA (a) Source Style
(Real)

(c) Target Style
(Real)

(b) Output
(Synthetic)

Style 1 Synthetic Style 2

Bonafide

Universal Material Generator: Samples
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Universal Material Generator: Samples
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Fingerprint Spoof Generalization: Results

[2] Y. Zhang, D. Shi, X. Zhan, D. Cao, K. Zhu, and Z. Li. Slim-Res CNN: A Deep Residual Convolutional Neural Network for Fingerprint Liveness Detection. IEEE Access, 7:91476–91487, 2019.
[3] T. Chugh, K. Cao, and A. K. Jain. Fingerprint Spoof Buster: Use of Minutiae-centered Patches. IEEE Transactions on Information Forensics and Security, 13(9):2190–2202, 2018.

True Detection Rate @ False Detection Rate = 0.2%

Base CNN Base CNN + UMG wrapper

Slim-Res CNN [2] Fingerprint Spoof Buster [3] Slim-Res CNN + UMG Fingerprint Spoof Buster + UMG

73.1 ± 15.7 75.2 ± 16.6 90.6 ± 10.2 91.8 ± 10.3

MSU FPAD-v2 Dataset: 4,912 spoofs (12 materials), 5,743 live images

LivDet-2017 Dataset: 9,665 spoofs (6 materials), 8,091 live images

True Detection Rate @ False Detection Rate = 1.0%

Base CNN Base CNN + UMG wrapper

Slim-Res CNN [2] Fingerprint Spoof Buster [3] Slim-Res CNN + UMG Fingerprint Spoof Buster + UMG

72.6 ± 15.4 73.3 ± 15.5 78.3 ± 11.9 80.7 ± 10.0
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(a) Real spoof A
(Silicone)

(d) Synthesized Spoof
(spoof A + spoof B)

(b) Real spoof B
(Latex Body Paint)

(c) Real spoof mixture
(spoof A + spoof B)

Fabricating Unknown Spoofs
Spoof Mixture

Real Live

Latex Body Paint (real spoof)

Silicone (real spoof)

Real Spoof Mixture (silicone + latex body paint)

Synthetically Generated Spoof 
(style transfer b/w silicone and latex body paint)

Performance improved from TDR = 83.33% to 95.83% @ FDR = 0.2% 
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Summary

• Proposed a style-transfer based wrapper to improve the
generalization performance

• Achieved state-of-the-art performance on publicly available
LivDet-2017 and MSU FPAD-v2 datasets

• No affect on spoof detection time, < 100ms for Spoof Buster and
Slim-Res CNN

• Requires ~2 hours for training UMG wrapper and 1 hour to generate
100,000 patches on Nvidia GTX 1080Ti GPU
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Thank You


