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Abstract—Authentication systems based on biometric features (e.g., fingerprint impressions, iris scans, human face images, etc.) are

increasingly gaining widespread use and popularity. Often, vendors and owners of these commercial biometric systems claim impressive

performance that is estimated based on some proprietary data. In such situations, there is a need to independently validate the claimed

performance levels. System performance is typically evaluated by collecting biometric templates from n different subjects, and for

convenience, acquiring multiple instances of the biometric for each of the n subjects. Very little work has been done in 1) constructing

confidence regions based on the ROC curve for validating the claimed performance levels and 2) determining the required number of

biometric samples needed to establish confidence regions of prespecified width for the ROC curve. To simplify the analysis that address

these two problems, several previous studies have assumed that multiple acquisitions of the biometric entity are statistically independent.

This assumption is too restrictive and is generally not valid. We have developed a validation technique based on multivariate copula

models for correlated biometric acquisitions. Based on the same model, we also determine the minimum number of samples required to

achieve confidence bands of desired width for the ROC curve. We illustrate the estimation of the confidence bands as well as the required

number of biometric samples using a fingerprint matching system that is applied on samples collected from a small population.

Index Terms—Biometric authentication, error estimation, Gaussian copula models, bootstrap, ROC confidence bands.

Ç

1 INTRODUCTION

THE purpose of a biometric authentication system is to
validate the claimed identity of a user based on his/her

physiological characteristics. In such a system operating in
the verification mode, we are interested in accepting queries
which are “close” or “similar” to the template of the
claimed identity, and rejecting those that are “far” or
“dissimilar.” Suppose a user with true identity It supplies a
biometric query Q and a claimed identity Ic. We are
interested in testing the hypothesis

H0 : It ¼ Ic versus H1 : It 6¼ Ic ð1Þ

based on the query Q and the template T of the claimed
identity in the database, in (1), H0 (respectively, H1) is the
null (alternative) hypothesis that the user is genuine
(impostor). The testing in (1) is carried out by computing a
similarity measure, SðQ; T Þ where large (respectively,
small) values of S indicate that T and Q are close to (far
from) each other. A threshold, �, is specified so that all
similarity values lower (respectively, greater) than � lead to
the rejection (acceptance) of H0. Thus, when a decision is
made whether to accept or reject H0, the testing proce-
dure (1) is prone to two types of errors: the false reject rate
(FRR) is the probability of rejecting H0 when in fact the user
is genuine, and the false accept rate (FAR) is the probability

of accepting H0 when in fact the user is an impostor. The
genuine accept rate (GAR) is 1� FRR, which is the
probability that the user is accepted given that he/she is
genuine. Both the FRR (and, hence, GAR) and the FAR are
functions of the threshold value � (see Fig. 1a). The Receiver
Operating Curve (ROC) is a graph that expresses the
relationship between the FAR versus GAR when � varies,
that is,

ROCð�Þ ¼ ðFARð�Þ; GARð�ÞÞ; ð2Þ

and is commonly used to report the performance of a
biometric authentication system (see Figs. 1a and 1b).

In marketing commercial biometric systems, it is often the
case that error rates are either not reported or poorly reported
(i.e., reported without giving details on how it was
determined). In a controlled environment such as in
laboratory experiments, one may achieve very high accura-
cies when the underlying biometric templates are of very
good quality. However, these accuracies may not reflect the
true performance of the biometric system in real field
applications where uncontrolled factors such as noise and
distortions can significantly degrade the system’s perfor-
mance. Thus, the problem we address in this paper is the
validation of a claimed ROC curve, ROCcð�Þ, by a biometric
vendor. Of course, reporting just ROCcð�Þ does not give the
complete picture. One should also report as much informa-
tion as one can about the underlying biometric samples, such
as the quality, the sample acquisition process, sample size, as
well as a brief description of the subjects themselves. If the
subjects used in the experiments for reporting ROCcð�Þ are
not representative of the target population, then ROCcð�Þ is
not very useful. But, assuming that the underlying samples
are representative and can be replicated by other experi-
menters under similar conditions, one can then proceed to
give margins of errors for validating ROCcð�Þ.
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The process of obtaining biometric samples usually
involves selecting n individuals (or subjects) and using c
different biometric instances1 or from each individual.
Additional biometric samples can be obtained by sampling
each biometric multiple times, d, over a period of time. It is
well-known that multiple acquisitions corresponding to each
biometric exhibit a certain degree of dependence (or,
correlation); see, for example, [1], [3], [10], [16], [17], [18],
[19]). There have been several earlier efforts to validate the
performance of a biometric system based on multiple
biometric acquisitions. Bolle et al. [4] first obtained con-
fidence intervals for the FRR and FAR assuming that the
multiple biometric acquisitions were independent of each
other. To account for correlation, Bolle et al. [2], [3] introduced
the subsets bootstrap approach to construct confidence
intervals for the FAR, FRR, and the ROC curve. Schuckers
[16] proposed the beta-binomial family to model the correla-
tion between the multiple biometric acquisitions as well as to
account for varying FRR and FAR values for different
subjects. He showed that the beta-binomial model gives rise
to extra variability in the FRR and FAR estimates when
correlation is present. However, a limitation of this approach
is that it models correlation for a single threshold value. Thus,
this method cannot be used to obtain a confidence region for
the entire ROC curve. Further, Schucker’s approach is strictly
model-based; inference drawn from this model may be
inappropriate when the true underlying model does not
belong to the beta-binomial family.

To construct confidence bands for the ROC curve, Bolle
et al. [3] select T threshold values, �1; �2; . . . ; �T and compute
the 90 percent confidence intervals for the associated FARs
and GARs. At each threshold value �i, combining these
90 percent confidence intervals results in a confidence
rectangle for ROCð�iÞ (see (2)). Repeating this procedure
for each i ¼ 1; 2; . . . ; T and combining the confidence rectan-
gles obtained gives rise to a confidence region for ROCð�Þ. A
major limitation of this approach is that the 90 percent
confidence intervals for the FARs and GARs will neither
automatically guarantee a 90 percent confidence rectangle at
each �i nor a 90 percent confidence region for the ROC curve.
In other words, ensuring a confidence level of 90 percent for
each of the individual intervals cannot, in general, ensure a
specific confidence level for the combined approach. This is
the well-known problem of combining evidence from

simultaneous hypothesis testing scenarios [9], [11], [12]: In
essence, for each i, we are performing the tests

H0;i : FARð�iÞ ¼ FARcð�iÞ versus H1;i : not H0;i; ð3Þ

and

H�0;i : GARð�iÞ ¼ GARcð�iÞ versus H�1;i : not H�0;i; ð4Þ

where FARð�iÞ (respectively, FARcð�iÞ) are the true but
unknown (respectively, claimed) FAR at �i, and GARð�iÞ
(respectively, GARcð�iÞ) are the true but unknown (respec-
tively, claimed) GAR at �i. To test each H0;i (and H�0;i)
individually, the 90 percent confidence interval for FAR
(and GAR) can be used, and the resulting decision has a
FRR of at most 100� 90 ¼ 10%. The confidence region for
the ROC curve combines the 2T confidence intervals above
and is used to test the hypothesis

H0 : \Ti¼1fH0;i \H�0;ig versus H1 : not H0: ð5Þ

However, the combined confidence region is not guaranteed
to have a confidence level of 90 percent. In other words, the
decision of whether to accept or reject H0 does not have an
associated FRR of 10 percent as in the case of the individual
hypotheses. In fact, for a number � where 0 < � < 1,
combining 2T 100ð1� �Þ% level confidence intervals based
on a-priori selected thresholds can only guarantee a lower
bound of 100ð1� 2T�Þ% on the confidence level. This fact is
based on Bonferroni’s inequality and is well-known in the
statistics literature. Instead of trying to derive this inequality,
we point the reader to the relevant literature in statistics on
simultaneous hypotheses testing procedures; see, for exam-
ple, the following references [9], [11], [12]. The lower bound
100ð1� 2T�Þ% on the confidence level is not useful whenT is
large; in this case, 100ð1� 2T�Þ% is negative and we know
that any confidence level should range between 0 percent and
100 percent. In Bolle et al.’s procedure, the value of T is large
since the confidence rectangles are reported at various
locations of the entire ROC curve.

In this paper, we present a new approach for constructing
confidence regions for the ROC curve with a guaranteed
prespecified confidence level. In fact, we are able to construct
confidence regions for a continuum of threshold values, and
not just for finite preselected threshold values. In contrast to
the nonparametric bootstrap approach of [3], we develop a
semiparametric approach for constructing confidence
regions for ROCð�Þ. This is done by estimating the genuine
and impostor distributions of similarity scores obtained from
multiple biometric acquisitions of the n subjects where the
marginals are first estimated nonparametrically (without any
model assumptions) and then coupled together to form a
multivariate joint distribution via a parametric family of
Gaussian copula models [13]. The parametric form of the
copula models enables us to investigate how correlation
between the multiple biometric acquisitions affects the
confidence regions. Confidence regions for the ROC are
constructed using bootstrap resamples from our estimated
semiparametric model. The main steps of our procedure are
shown in Fig. 2. Note that our approach based on modeling
the distribution of similarity scores is fundamentally differ-
ent from that of [16], where binary (0 and 1) observations are
used to construct confidence intervals for the FRRs and FARs.

Our approach also varies from that of [1], [3], [10], [16] in
several respects. First, we explicitly model the correlation via
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1. By instances or entities, we mean different fingers from each individual
or iris images from the left and right eyes from each individual, etc.

Fig. 1. Obtaining the ROC curve by varying the threshold �. (a) Shows
the FRR and FAR corresponding to a threshold �1. �2 is another
threshold different from �1. (b) Shows the ROC curve obtained when �
varies. The values of ðFAR;GARÞ on the ROC curve corresponding to
the thresholds �1 and �2 are shown.



a parametric copula model and, thus, are able to demonstrate
the effects of varying the correlation on the width of the ROC
confidence regions. We also obtain a confidence band, rather
than confidence rectangles as in [3], consisting of upper and
lower bounds for the ROC curve. Further, the confidence
bands come with a guaranteed confidence level for the entire
ROC in the region of interest. Thus, we are able to perform
tests of significance for the ROC curve and report error rates
corresponding to our decision of whether to accept or reject
the claimed ROC curve.

Another important issue that we address is that of the test
sample size: How many subjects and how many biometric
acquisitions per subject should be considered in order to
obtain a confidence band for the ROC with a prespecified
width? Based on the multivariate Gaussian copula model for
correlated biometric acquisitions, we give the minimum
number of subjects required to achieve the desired width. In
presence of nonzero correlation, increasing the number of
subjects is more effective in reducing the width of the
confidence band compared to increasing the number of
biometric acquisitions per subject. For achieving the desired
confidence level, the required number of subjects based on
our method is much smaller compared to the subset
bootstrap. Rules of thumb such as the Rule of 3 [20] and the
Rule of 30 [14] grossly underestimate the number of users
required to obtain a specific width. The underestimation
becomes more severe as the correlation between any two
acquisitions of a subject increases.

The paper is organized as follows: Section 2 presents the
problem formulation. Section 3 discusses the use of multi-
variate copula functions to model the correlation between
multiple queries per subject for the genuine and impostor

similarity score distributions. Section 4 presents the con-
struction of confidence bands for the ROC curve. Section 5
discusses the minimum number of biometric samples
required for obtaining confidence bands of a prespecified
width for the ROC curve. Some of the more technical details
and experimental results have been moved to the Appendix
due to space restrictions (which can be found at http://
computer.org/tpami/archives.htm); interested readers can
also refer to the paper [6] which incorporates the relevant
details into appropriate sections of the main text.

2 PRELIMINARIES

Suppose we have n subjects available for validating a
biometric authentication system. Often, during the data
collection stage, multiple biometric entities (e.g., different
fingers) from the same subject are used. We denote the
number of biometric entities used per subject by c. To obtain
additional data, each biometric of a subject is usually
sampled a multiple number of times, d, over a period of
time. Thus, at the end of the data collection stage, we acquire
a total of ncd biometric samples from the n subjects. This
collection of ncd biometric samples will be denoted by B. To
obtain similarity scores, a pair of biometric samples,B andB0

with B 6¼ B0 , are taken from B and a matcher S is applied to
them, resulting in the similarity score SðB;B0 Þ. We will
consider asymmetric matchers for S in this paper: The
matcher S is asymmetric if SðB;B0Þ 6¼ SðB0; BÞ for the pair of
biometric samples ðB;B0Þ (a symmetric matcher implies that
SðB;B0Þ ¼ SðB;B0Þ).

In the subsequent text, we will use a fingerprint authenti-
cation system as the generic biometric system that needs to be
validated. Thus, the c different biometric entities will be
represented as c different fingers from each subject, and the
d acquisitions will be represented by d impressions of each
finger. When B and B0 are multiple impressions of the same
finger from the same user, the similarity score SðB;B0Þ is
termed as a genuine similarity score, whereas whenB andB0

are impressions from either 1) different fingers from the same
subject or 2) different subjects, the similarity score SðB;B0Þ is
termed as an impostor score. The impostor scores arising
from 1) (respectively, 2)) are termed as the intrasubject
(respectively, intersubject) impostor scores.

We give some intuitive understanding of why similarity
scores arising from certain pairs of fingerprint impressions in
B are correlated (or dependent). During the fingerprint
acquisition process, multiple impressions of a finger are
obtained by successive placement of the finger onto the
sensor. Therefore, given the first impression, B, and two
subsequent impressions B1 and B2, the similarity scores
SðB;B1Þ and SðB;B2Þ are most likely going to be correlated.
Further, the fingerprint acquisition process is prone to many
different types of uncontrollable factors such as fingertip
pressure, fingertip moisture, and skin elasticity factor. These
factors cause some level of dependence between fingerprint
impressions of two different fingers of the same user. If this is
the case, then we expect to see some level of correlation
between the similarity scores SðB1; B2Þwhere B1 and B2 are
impressions from different fingers. Also, as noted in [3], even
the scores SðB1; B2Þ from different fingers of different
subjects could be correlated. All these facts lead us to
statistically model the correlation for similarity scores in the

1904 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 12, DECEMBER 2006

Fig. 2. The main steps involved in constructing the ROC confidence

bands for validating the claim of a fingerprint vendor.



three major categories, namely, the genuine, intrauser
impostor and interuser impostor similarity scores.

In order to develop the framework that incorporates
correlation, we need to introduce some notation. We denote
the set consisting of the d impressions of finger f ,
f ¼ 1; 2; . . . ; c, from subject i by Mi;f . The notation

Sði; j; f; f 0Þ ¼ fSðBu;BvÞ;Bu 2 Mi;f ; Bv 2Mj;f 0 ; Bu 6¼ Bvg
ð6Þ

represents the set of all similarity scores available from
matching the fingerprint impressions of finger f from subject
i and those of finger f 0 from subject j. Three disjoint sets of (6)
are of importance, namely, the set of genuine similarity
scores (taking i ¼ j and f ¼ f 0 in (6)), the set of intrasubject
impostor scores (i ¼ j and f 6¼ f 0), and the set of intersubject
impostor scores (i 6¼ j). We denote the genuine, intrasubject
impostor and intersubject impostor score sets by

Gi �
[c
f¼1

Sði; i; f; fÞ; I i �
[c
f¼1

[c
f 0¼1

f 0 6¼f

Sði; i; f; f 0Þ;

and I ij �
[c
f¼1

[c
f 0¼1

Sði; j; f; f 0Þ;
ð7Þ

where i 6¼ j, respectively.
We give the cardinality or dimension (the number of

possibly distinct similarity scores) of each of the sets
discussed above. The dimensions of Gi, I i, and I ij are
cdðd� 1Þ, cðc� 1Þd2 and c2d2, respectively, when the matcher
S is asymmetric. In all of these scenarios, we will denote the
dimension corresponding to each set by K (see Table 1). The
total number of sets of similarity scores arising from the
genuine, intra and interimpostor cases will be denoted byN ;
we have that N ¼ n, N ¼ n and N ¼ nðn� 1Þ, respectively,
for the total number of sets of genuine, intrasubject impostor
and intersubject scores.

When the matcher S is symmetric, the dimension
associated with each of the genuine, intrasubject impostor
and intersubject impostor sets of similarity scores gets
reduced since many of the similarity scores in each of the
three sets will be identical to each other. In the subsequent
text, we outline the methodology for validating a vendor’s
claim for an asymmetric matcher. Our methodology for
constructing the ROC confidence bands for a symmetric
matcher can be handled in a similar fashion, keeping in
mind the reduction in dimensions of each of the three sets
of similarity scores discussed above.

Subsequently,N will denote the total number of indepen-
dent sets of similarity scores andKwill denote the dimension
of each of these N sets. For i ¼ 1; 2; . . . ; N , the ith set of
similarity scores will be denoted by theK-dimensional vector

S i ¼ ðsði; 1Þ; sði; 2Þ; . . . ; sði;KÞÞT ; ð8Þ

where sði; kÞ is the generic score corresponding to the
kth component of Si, for k ¼ 1; 2; . . . ; K.

The ordered indices 1; 2; . . . ; K are associated to the
elements of each of the sets Gi, I i and I ij defined in (7) in
the following way: Let sðBf;u; Bf 0;vÞ denote the similarity
score obtained when matching impression u of finger f ,
Bf;u, with impression v of finger f 0, Bf 0;v. In the case of a
genuine set (that is, Si 2 Gi), the order of the genuine
scores is taken as sðfÞ � ðsðBf;u; Bf;vÞ, v ¼ 1; 2; . . . ; ðu� 1Þ;
ðuþ 1Þ; . . . ; d, u ¼ 1; 2; . . . ; dÞ, and Si ¼ ðsð1Þ; sð2Þ; . . . ; sðcÞÞ.
In the case when Si 2 I i, the order of the scores is taken
as sðf;f 0Þ� ðsðBf;u; Bf 0;vÞ, v ¼ 1; 2; . . . ; d, u¼1; 2; . . . ; dÞ, and
Si ¼ðsðf;f 0Þ, f 0 ¼1; 2; . . . ; ðf�1Þ; ðfþ 1Þ; . . . ; c; f ¼ 1; 2; . . . ;
cÞ. Finally, in the case when Si is an intersubject impostor
set (one of I ij), the order of the scores are taken
as sðf; f 0Þ�ðsðBf;u; Bf 0;vÞ, v¼1; 2; . . . ; d; u¼1; 2; . . . ; dÞ, and
Si ¼ ðsðf; f 0Þ, f 0 ¼ 1; 2; . . . ; c; f ¼ 1; 2; . . . ; c).

If the scores sði; kÞ are bounded between two numbers a
and b, the order preserving transformation

T sði; kÞð Þ ¼ log
sði; kÞ � a
b� sði; kÞ

� �
ð9Þ

converts each score onto the entire real line. This transforma-
tion yields better nonparametric density estimates for the
marginal distribution of similarity scores. The transformed
scores will be represented by the same notation sði; kÞ. The
distribution function for each Si will be denoted by F , that is,

Pfsði; kÞ � sk; 1 � k � Kg ¼ F ðs1; s2; . . . ; skÞ; ð10Þ

for real numbers s1; s2; . . . ; sK . Note that 1)F is a multivariate
joint distribution function on RK and 2) we assume that F is
the common distribution function for every i ¼ 1; 2; . . . ; N .
The distribution function F has K associated marginals, we
denote the marginals by Fk, k ¼ 1; 2; . . . ; K, where

P sði; kÞ � skf g ¼ FkðskÞ: ð11Þ

3 COPULA MODELS FOR F

We propose a semiparametric family of Gaussian copula
models as models for F . LetH1; H2; . . . ; HK beK continuous
distribution functions on the real line. Suppose that H is a
K-dimensional distribution function with the kth marginal
given byHk for k ¼ 1; 2; . . . ; K. According to Sklar’s theorem
[13], there exists a unique function Cðu1; u2; . . . ; uKÞ from
½0; 1�K to ½0; 1� satisfying

Hðs1; s2; . . . ; skÞ ¼ CðH1ðs1Þ; H2ðs2Þ; . . . ; HkðskÞÞ; ð12Þ

where s1; s2; . . . ; sK are K real numbers. The function C is
known as a K-copula function that “couples” the one-
dimensional distribution functions Hk, k ¼ 1; 2; . . . ; K to
obtain H. Basically, K-copula functions are K-dimensional
distribution functions on ½0; 1�K whose marginals are
uniform. Equation (12) can also be used to construct
K-dimensional distribution function H whose marginals
are the prespecified distributions Hk; k ¼ 1; 2; . . . ; K: choose
a copula function C and define the function H as in (12). It
follows thatH is aK-dimensional distribution function with
marginals Hk; k ¼ 1; 2; . . . ; K.

The choice of C we consider in this paper is the
K-dimensional Gaussian copulas [5] given by
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TABLE 1
Values of K for the Different Sets Gi, I i, and I ij

Here, c is the number of fingers and d is the number of impressions per
finger.



CRðu1; u2; . . . ; ukÞ ¼ �K
R ð��1ðu1Þ;��1ðu2Þ; . . . ;��1ðukÞÞ;

ð13Þ

where each uk 2 ½0; 1� for k ¼ 1; 2; . . . ; K, �ð�Þ is the
distribution function of the standard normal, ��1ð�Þ is its
inverse, and �K

R is the K-dimensional distribution function
of a normal random vector with component means and
variances given by 0 and 1, respectively, and with
correlation matrix R. Note that R is a positive definite
matrix with diagonal entries equal to unity. The distribution
function F will be assumed to be of the form (12) with
Hk ¼ Fk for k ¼ 1; 2; . . . ; K, and C ¼ CR; thus, we have

F ðs1; s2; . . . ; skÞ ¼ CRðF1ðs1Þ; F2ðs2Þ; . . . ; FKðskÞÞ: ð14Þ

We denote the observed genuine scores by S0 �
fs0ði; kÞ; k ¼ 1; 2; . . . ; K0; i ¼ 1; 2; . . . ; N0g with K0 ¼ cdðd�
1Þ and N0 ¼ n. Each vector ðs0ði; 1Þ; s0ði; 2Þ; . . . ; s0ði;K0ÞÞ is
assumed to be independently distributed according to
(14) with correlation matrix R0 and marginals Fk;0,
k ¼ 1; 2; . . . ; K0. Both R0 and the K0 marginals are unknown
and have to be estimated from the observed scores. In
Section 5, we show how this is done based on similarity
scores obtained from a fingerprint matching system. The
observed intrasubject and intersubject impostor similarity
scores are denoted by

S11 � fs11ði; kÞ; k ¼ 1; 2; . . . ; K11; i ¼ 1; 2; . . . ; N11g

with K11 ¼ cðc� 1Þd2 and N11 ¼ n, and

S12 � fs12ði; kÞ; k ¼ 1; 2; . . . ; K12; i ¼ 1; 2; . . . ; N12g

withK12 ¼ c2d2 andN12 ¼ nðn� 1Þ, respectively. Each vector
ðs11ði; 1Þ; s11ði; 2Þ; . . . ; s11ði;K11ÞÞ (respectively, ðs12ði; 1Þ;
s12ði; 2Þ; . . . ; s12ði;K12ÞÞ) is assumed to be independently
distributed according to (14) with correlation matrix R11

ðR12Þ and marginals Fk;11, k ¼ 1; 2; . . . ; K11 (Fk;12, k ¼ 1;
2; . . . ; K12). The correlation matrices R11, R12 and the
associated marginals are estimated from the observed
impostor scores in the same way as is done for the genuine
case. Details of the estimation procedure for the impostor case
are presented in the Appendix, which can be found at http://
computer.org/tpami/archives.htm and [6].

4 CONFIDENCE BANDS FOR THE ROC CURVE

The Receiver Operating Curve (ROC) is a graph that
expresses the relationship between the Genuine Accept
Rate (GAR) and the False Accept Rate (FAR), and is used to
report the performance of a biometric authentication
system. For the threshold �, the empirical GAR and FAR
can be computed using the formulas

GAReð�Þ ¼
1

N0K0

XN0

i¼1

XK0

k¼1

Ifs0ði; kÞ > �g; ð15Þ

and

FAReð�Þ ¼
1

N1

XN11

i¼1

XK11

k¼1

I s11ði; kÞ > �f g
(

þ
XN12

i¼1

XK12

k¼1

I s12ði; kÞ > �f g
)
;

ð16Þ

where IðAÞ ¼ 1 if property A is satisfied, and 0, otherwise,
and N1 ¼ N11K11 þN12K12 denotes the total number of
impostor scores. The true but unknown values of GARð�Þ
and FARð�Þ are the population versions of (15) and (16), the
expression for the population GARð�Þ is given by

E GAReð�Þð Þ ¼ 1

N0K0

XN0

i¼1

XK0

k¼1

P s0ði; kÞ > �f g

¼ 1

K0

XK0

k¼1

Pfs0ð1; kÞ > �g

�G0ð�Þ;

ð17Þ

where each set fs0ði; kÞ; k ¼ 1; 2; . . . ; K0g for i ¼ 1; 2; . . . ; N0

is independent and identically distributed according to the
copula model (14). Subsequently, the probabilities in (17)
are functions of the unknown genuine marginal distribu-
tions, Fk;0; k ¼ 1; 2; . . . ; K0, and the genuine correlation
matrix, R0. Also, the second equality in (17) is a conse-
quence of the identically distributed assumption. In a
similar fashion, the population FARð�Þ is given by

EðFAReð�ÞÞ ¼
1

N1

XN11

i¼1

XK11

k¼1

P s11ði; kÞ > �f g
(

þ
XN12

i¼1

XK12

k¼1

P s12ði; kÞ > �f g
)

¼ N11

N1

XK11

k¼1

P s11ði; kÞ > �f g

þN12

N1

XK12

k¼1

Pfs12ði; kÞ > �g

�G1ð�Þ;

ð18Þ

where now, elements within each of the sets fs11ði; kÞ; k ¼
1; 2; . . . ; K11g for i¼1; 2; . . . ; N11 and fs12ði; kÞ; k ¼ 1; 2; . . . ;
K12g for i ¼ 1; 2; . . . ; N12 are independent and identically
distributed according to the copula model (14) with corre-
ponding correlation matrices and marginals. The probabil-
ities in (18) are functions of the unknown marginal
distributions, Fk;11 for k ¼ 1; 2; . . . ; K11 and Fk;12 for k ¼
1; 2; . . . ; K12, and the correlation matrices,R11 andR12, for the
intrasubject and intersubject impostor scores, respectively.

In light of the notations used for the population versions
of FAR and GAR, (15) and (16) are sample versions of G0ð�Þ
and G1ð�Þ. Thus, we define

Ĝ0ð�Þ � GAReð�Þ and Ĝ1ð�Þ � FAReð�Þ: ð19Þ

The empirical ROC curve can be obtained by evaluating
the expressions for GAR and FAR in (15) and (16) at various
values � based on the observed similarity scores, and
plotting the resulting curve ðĜ1ð�Þ; Ĝ0ð�ÞÞ. However, there
is an alternative way in which an ROC curve can be
constructed. Note that the ROC expresses the relationship
between the FAR and GAR, and the threshold values are
necessary only at the intermediate step for linking the FAR
and GAR values. Thus, another representation of the ROC
curve can be obtained by the following reparameterization:
We fix p as a value of FAR and obtain the threshold �� such
that Ĝ1ð��Þ ¼ p or �� � Ĝ�1

1 ðpÞ. Substituting �� in (15) gives
the ROC curve in the form ðp; Ŵ ðpÞÞ, where
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ŴðpÞ ¼ Ĝ0ð��Þ � Ĝ0 Ĝ�1
1 ðpÞ

� �
: ð20Þ

Note that, in the case when there is no �� such that

Ĝ1ð��Þ ¼ p, one can redefine the inverse, Ĝ�1
1 ðpÞ � ��,

where �� is the smallest � satisfying Ĝ1ð�Þ � p. This

definition of the inverse of Ĝ1 is more general and always

yields a unique ��. The true but unknown ROC curve can be

obtained in the same way as above by replacing the

empirical versions with the corresponding population

version; thus, we have

W ðpÞ ¼ G0 G
�1
1 ðpÞ

� �
; ð21Þ

where G�1
1 ðpÞ � ��, where �� is the smallest � satisfying

G1ð�Þ � p. The two representations of the ROC curves

(Ĝ1ð�Þ; Ĝ0ð�ÞÞ and ðp; Ŵ ðpÞÞ, are close approximations of

one another for large N0, and therefore we use the latter

representation for deriving the confidence bands. For fixed

numbers C0 and C1 satisfying 0 � C0 < C1 � 1, let us

consider all p ¼ FAR values that fall in ½C0; C1�. A confidence

band for the true (claimed) ROC curve of a biometric system

at confidence level 100ð1� �Þ% gives two envelope func-

tions, eLðpÞ and eUðpÞ, so that for all p in ½C0; C1�, the true ROC

curve lies inside the interval ð eLðpÞ; eUðpÞ Þwith probability of

at least 100ð1� �Þ%. The numbers C0 and C1 form the lower

and upper bounds of the range of FAR and will be chosen to

cover typical reported values of FAR in biometric applica-

tions. If C0 ¼ 0 and C1 ¼ 1, the resulting ROC confidence

band is constructed for the true ROC curve for all p in ð0; 1Þ.
For a specific p ¼ FAR, the corresponding value of GAR,

W ðpÞ, is a proportion which takes values in ½0; 1�. For

proportions, the transformation

ffiffiffiffiffiffi
N0

p
sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
ŴðpÞ

q
� sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
W ðpÞ

p� �
ð22Þ

is a variance stabilizing transformation [15]; the quantity in

(22) is asymptotically distributed as a normal with zero mean

and constant variance (independent of p and WðpÞ) for large

N0. To obtain the envelopes, we first consider a continuum

version of the absolute values of (22) for FAR values, p, in

½C0; C1�, and take the maximum over p 2 ½C0; C1�. This gives

the statistic

z � max
p:C0�p�C1

ffiffiffiffiffiffi
N0

p
jsin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
ŴðpÞ

q
� sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
W ðpÞ

p
j: ð23Þ

Assume for the moment that the distribution of z is known.

If z1�� denotes the 100ð1� �Þ% percentile of z, the

envelopes are given by

eLðpÞ ¼ ðsinðsin�1
ffiffiffiffiffiffiffiffiffiffiffiffi
ŴðpÞ

q
þ z1��=

ffiffiffiffiffiffiffi
N0

p
ÞÞ2

and

eUðpÞ ¼ ðsinðsin�1
ffiffiffiffiffiffiffiffiffiffiffiffi
ŴðpÞ

q
þ z1��=

ffiffiffiffiffiffiffi
N0

p
ÞÞ2: ð24Þ

However, the distribution of z is difficult to obtain

analytically and, thus, we present two approaches to

approximate the distribution of z in (23) based on 1) the

bootstrap methodology and 2) an asymptotic representation

of the distribution of z for large N0.

4.1 The Semi and Nonparametric Bootstrap
Approaches

The value z1�� will be found based on bootstrap samples
from the fitted semiparametric Gaussian copula models
described in Section 3. This bootstrap procedure requires
the simulation of scores from the estimated distribution
functions in (14) and is described in detail in the
Appendix, which can be found at http://computer.org/
tpami/archives.htm. Thus, we denote by

S�0 � fs�0ði; kÞ; k ¼ 1; 2; . . . ; K0; i ¼ 1; 2; . . . ; N0g;

S�11 � fs�11ði; kÞ; k ¼ 1; 2; . . . ; K11; i ¼ 1; 2; . . . ; N11g;

and

S�12 � fs�12ði; kÞ; k ¼ 1; 2; . . . ; K12; i ¼ 1; 2; . . . ; N12g

to be the sets of genuine, intraimpostor and interimpostor
similarity scores obtained by one simulation from the fitted
copula models. Also, let

W �ðpÞ ¼ G�0 G�
�1

1 ðpÞ
� �

; ð25Þ

where G�0ð�Þ (respectively, G�1ð�Þ) is obtained from (15)
(respectively, (16)) with the bootstrap samples s�ði; kÞ used
in place of the sði; kÞs. We form the quantity

z� � maxC0�p�C1

ffiffiffiffiffiffi
N0

p
j sin�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W �ðpÞ

p
� sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
ŴðpÞ

q
j; ð26Þ

with ŴðpÞ andW �ðpÞdefined as in (20) and (25), respectively.
By repeating the above procedure a large number of times,
B� ¼ 1; 000, we obtain 1, 000 values of z�, z�1; z

�
2; . . . ; z�1;000. The

100ð1� �Þ% percentile of the distribution of z� can be
approximated by z�½1000ð1��Þ�, which is the ½B�ð1� �Þ�th
element in the ordered list of z�1; z

�
2; . . . ; z�1000. Thus, we

approximate z1�� by z�½1000ð1��Þ�.

In the nonparametric bootstrap approach, the set S�0 is
obtained as follows: Sample with replacement one K0

dimensional vector from the N0 sets in S0 and repeat this
sampling N0 times. The sets S�11 and S�12, respectively, are
obtained from the sets S11 and S12 in a similar fashion. The
nonparametric bootstrap confidence bands are then con-
structed using the methodology outlined in the preceding
paragraph.

4.2 An Asymptotic Representation of z

We approximate the distribution of z asymptotically whenN0

is large. LetC0 � p1 < p2 < . . . < pm < pmþ1 < . . . < pM � C1

be a partition of the interval ½C0; C1�. In the Appendix, which
can be found at http://computer.org/tpami/archives.htm,
we show that

z � maxC0<p<C1

ffiffiffiffiffiffi
N0

p
j sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
Ŵ ðpÞ

q
� sin�1

ffiffiffiffiffiffiffiffiffiffiffiffi
WðpÞ

p
j

� max1�m�M jDM � Ĝ0;M þDM � Ĝ1;M j;
ð27Þ

whereDm is a diagonal matrix with the ðm;mÞ-th entry given

by 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4WðpmÞð1�WðpmÞÞ

p
, DM � Ĝ0;M and DM � Ĝ1;M are

independent of each other, the distribution of DM � Ĝ0;M

(respectively, DM � Ĝ1;M ) is approximately a M-dimensional

multivariate normal with mean 0 (respectively, 0) and

covariance matrix given by �0 (respectively, �1) given in (58)
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in the Appendix, which can be found at http://computer.

org/tpami/archives.htm. The maximum in ½C0; C1� is ap-

proximated by the component of the multivariate normal that

takes on the maximum absolute value. We define

max1�m�M jDM � Ĝ0;M þDM � Ĝ1;M j � zM: ð28Þ

The distribution of z is approximated by the distribution of
zM for large M. Denoting the 100ð1� �Þ% percentile of zM
by z1��;M , the 100ð1� �Þ% confidence interval for WðpÞ is
given by ðeLðpÞ; eUðpÞÞ, where

eLðpÞ ¼ sin sin�1
ffiffiffiffiffiffiffiffiffiffiffiffi
Ŵ ðpÞ

q
� z1��;M=

ffiffiffiffiffiffiffi
N0

p� �� �2

and

eUðpÞ ¼ sin sin�1
ffiffiffiffiffiffiffiffiffiffiffiffi
ŴðpÞ

q
� z1��;M=

ffiffiffiffiffiffiffi
N0

p� �� �2

: ð29Þ

4.3 Testing the Claim of a Biometric Vendor

Suppose that a vendor of a biometric authentication system
claims that his/her biometric authentication system has a
ROC curve given byROCc ¼ ðp;WcðpÞÞ, for p in some interval
½C0; C1�. Based on acquisitions from n subjects, we can test the
validity of this claim by generating our own genuine and
impostor similarity scores and obtaining the 100ð1� �Þ%
confidence band for the true ROC curve, ðp;WðpÞÞ, for
p 2 ½C0; C1�. We assume that the subjects as well as the scores
generated from the subjects in the vendor’s database are a
representative sample from the underlying population of
subjects and the corresponding distributions of genuine and
impostor scores derived from this population. If this
assumption is true, then the confidence bands constructed
from the previous section can be used for validating the
vendor’s claim. We perform the test

H0 : WðpÞ ¼WcðpÞ versus H1 : WðpÞ 6¼WcðpÞ; ð30Þ

for some p, and will accept H0 (the claimed ROC curve) if

eLðpÞ �WcðpÞ � eUðpÞ ð31Þ

for all p 2 ðC0; C1Þ; otherwise, we will reject it. We can also
perform a test for claims of specific values of FRR and
FAR, FRRc, and FARc. At pc ¼ FARc, we obtain the upper
and lower limits of GARðpcÞ, GARLðpcÞ, and GARUðpÞ. We
will accept the claimed error rates if

GARLðpcÞ � GARc � GARUðpcÞ; ð32Þ

where GARc ¼ 1� FRRc and reject it otherwise.

5 EXPERIMENTAL RESULTS

We evaluate the methodology developed in the previous
sections for biometric authentication systems based on
fingerprints. For evaluation purposes, it is necessary that
the fingerprint databases consist of multiple impressions of
a finger as well as impressions from several different fingers
for each subject. Many publicly available databases do not
meet these requirements and as a result, we focused on two
databases that were appropriate for our purpose, namely, a
database consisting of fingerprint impressions collected in
our laboratory, and a different database obtained from West
Virginia University.

The Michigan State University (MSU) database [8] consists
of fingerprint impressions from four different fingers (the
right index, right middle, left index, and left middle fingers) of
160users.Atotalof four impressionsperfingerwereobtained;
two impressions were obtained on the first day and the
remainingtwoafter aperiodofaweek.Thefingerprint images
were acquired using a solid state sensor manufactured by
Veridicom, Inc, with image sizes 300	 300 and resolution
500 dpi. Fig. 3 show all four impressions of three fingers in this
database. The first two fingers (first two rows) are from the
same subject, whereas the images in the last row are from a
different subject. A fingerprint similarity score was generated
usinganasymmetricmatcher,describedin[17].All rawscores
ranged between 0 and 1,000 and, thus, the transformation (9)
with a ¼ 0 and b ¼ 1; 000 was used to convert the scores onto
the real line. All subsequent analysis was performed on the
transformed similarity scores. Thus, we have the following
values for N and K (with n ¼ 160, c ¼ d ¼ 4): N ¼ 160 and
dimensionality K ¼ 4	 4	 3 ¼ 48 for the set of genuine
scores, N ¼ 160 and K ¼ 4	 3	 42 ¼ 192 for the set of
intrasubject impostor scores, and N ¼ 160	 159 ¼ 25; 440
and K ¼ 42 	 42 ¼ 256 for the set of intersubject impostor
scores. The number of parameters in the correlation matrices
that need to be estimated for the genuine, intrasubject
impostor and intersubject impostor scores are, respectively,
ð48	47Þ=2¼1; 128, ð192	191Þ=2¼18; 336, and ð256	255Þ=2
¼32; 640. The number of parameters far exceeds the total
number of observations in each of the three sets of scores. In
order to avoid overfitting, we reduce the value of K in each
case. Instead of selecting all four fingers, we choose only c ¼ 2,
namely, the right index and right middle fingers, and use the
d ¼ 2 impressions per finger obtained on the first day. In this
case, the number of parameters that need to be estimated are 6,
28, and 120 for the genuine, intrasubject and intersubject
impostor sets of scores, respectively.

The West Virginia University (WVU) fingerprint database
consists of fingerprint impressions from 263 different users.
We used the first two impressions of the right index finger to
obtain similarity scores with the same matcher as above; thus,
c ¼ 1 and d ¼ 2 for the WVU database. Consequently, there is
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Fig. 3. Examples of fingerprint impressions from [8]: Each row gives the

four impressions per finger collected. The first two rows are different

fingers from the same subject, whereas the last row contains fingerprint

impressions from a different subject.



only one kind of impostor score, namely, the intersubject
impostor score for this database. Table 2 gives the number of
subjects ðnÞ, as well as the values of c (number of different
fingers per subject) and d (number of impressions per finger)
for the MSU and WVU databases.

5.1 Estimating the Joint Distribution of Similarity
Scores

In order to estimate the joint distribution, F , of similarity
scores corresponding to the genuine, intrasubject and
intersubject impostor sets, we first need to estimate each
marginal Fk, k ¼ 1; 2; . . . ; K and correlation matrix R from
observed data. The estimation of Fk and R are described in
detail in the Appendix, which can be found at http://
computer.org/tpami/archives.htm and in [6]. We show the
results of the nonparametric estimation procedure for the first
two marginal distributions corresponding to each of the
genuine, intrasubject impostor and intersubject impostor
scores for the MSU database (see Fig. 4). Note the very good
agreement between the observed density histogram and the
fitted density curve for each figure, especially at the tails of the
distributions. A good fit at the tails is essential for the

construction of a valid ROC curve that accurately reflects the
authentication performance based on the observed data of
similarity scores.

The estimate of the genuine correlation matrix (of
dimension 4	 4) is given by

R̂0 ¼

1:00 0:99 0:15 0:16
0:99 1:00 0:15 0:16
0:15 0:15 1:00 0:99
0:16 0:16 0:99 1:00

0
BB@

1
CCA: ð33Þ

The ordered row (and column) dimensions 1, 2, 3, and 4,
respectively, represents the scores sðB1;1; B1;2Þ, sðB1;2; B1;1Þ,
sðB2;1; B2;2Þ, and sðB2;2; B2;1Þ; recall that c ¼ 2 and d ¼ 2.
Consequently, the off-diagonal entries of (33) give the
correlation between the corresponding row and column
dimensions. For example, the entry 0.15 in the second row
and third column of matrix R̂0 is the correlation between
between sðB1;1; B1;2Þ and sðB2;1; B2;2Þ. The off-diagonal
entries of R̂0 indicate that there is a significant amount of
correlation in the set of genuine similarity scores. We also
obtained estimates of the intrasubject (of dimension 8	 8)
and intersubject (of dimension 16	 16) correlation matrices
in a similar fashion (see the Appendix, which can be found at
http://computer.org/tpami/archives.htm). We also devel-
oped an assessment of fit of the copula functions to the
observed data and found that the estimated Gaussian copula
functions are a good fit to each of the genuine, intrasubject
and intersubject impostor sets of similarity scores. The
methodology and related plots are presented in the Appen-
dix, which can be found at http://computer.org/tpami/
archives.htm.

5.2 Construction of the ROC Confidence Bands

The 95 percent ROC confidence bands are constructed
based on the semiparametric bootstrap, asymptotic, and the
nonparametric bootstrap approaches for the MSU and
WVU databases. The resulting upper and lower bounds of
all the three approaches closely match with each other for
the two databases; due to space restrictions, we only show
the bands for the MSU database in Fig. 5. Fig. 5 shows that
the semi-parametric bootstrap and the asymptotic ap-
proaches give good approximations to the true upper and
lower confidence bands even for moderate sample sizes.
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TABLE 2
Values of n, c, and d for the MSU and WVU Databases

Used in the Experiments

Fig. 4. Fitted density functions (solid line) for the (a) and (b) genuine,

(c) and (d) intrasubject, and (e) and (f) intersubject marginal distribu-

tions. (a), (c), and (e) k ¼ 1 and (b), (d), and (f) k ¼ 2.

Fig. 5. Upper and lower ROC envelopes obtained using the three

different methods: The nonparametric, semiparametric bootstrap, and

asymptotic envelopes are represented by the symbols 
, ut, and �,
respectively. The middle solid line is the nonparametric ROC curve.



5.3 Effects of Correlation on the ROC Confidence
Bands

Our next set of experiments consist of studying the effect of
correlation among the multiple impressions of a user on the
width of the ROC confidence band. Since this requires
varying the correlation, this experiment is not possible
using real data since real data would give only one estimate
of correlation for each of the sets of genuine, intrasubject
and intersubject impostor similarity scores. Instead, our
experiment is based on simulated sets of genuine, inter-
subject impostor and intrasubject impostor similarity scores
from the multivariate Gaussian K-copula models with
Toeplitz forms for the correlation matrix. Let

R�ð�Þ ¼

1 � � � � � �
� 1 � � � �
� � 1 � � � �

..

. ..
. ..

. . .
. ..

.

� � � � � � 1

0
BBBBB@

1
CCCCCA ð34Þ

denote the correlation matrix with all off-diagonal entries
equal to �. The dimension of R�ð�Þ will be different
according to whether the sets of scores are genuine,
intrasubject or intersubject impostor scores.

For a genuine set, the parameterization of the correlation
matrix as R � R�ð�1Þ �R�ð�2Þ implies that the correlation
between any two components of sðfÞ corresponding to
finger f is �2 and the correlation between a component of
sðfÞ and a component of sðf 0Þ for two different fingers,
f 6¼ f 0, is �1 � �2. For an intrasubject impostor set, the
paramterization of the correlation matrix implies that the
correlation between any two components of sðf; f 0Þ for each
pair ðf; f 0Þ is �2 and the correlation between a component of
sðf; f 0Þ and a component of sðg; g0Þ for two different pairs,
ðf; f 0Þ 6¼ ðg; g0Þ, is �1 � �2. For an intersubject impostor set, the
parameterization implies that the correlation between any
two pairs of components in sðf; f 0Þ is �2 and the correlation
between a component of sðf; f 0Þ and a component of sðg; g0Þ
for two different pairs, ðf; f 0Þ 6¼ ðg; g0Þ, is �1 � �2.

One advantage of selecting correlation matrices to be of
the form R � R�ð�1Þ �R�ð�2Þ is that the matrices can be
determined from specifying only two real numbers, �1 and
�2, and is therefore, easy to use for illustrative purposes. For
a given estimated correlation matrix R̂, we find the values
of �1 and �2 that minimize the sum of Euclidean distances
between the entries of R̂ and R�ð�1Þ �R�ð�2Þ,

k R̂�R�ð�1Þ �R�ð�2Þ k2; ð35Þ

where R�ð�1Þ and R�ð�2Þ are as in (34) with �1 and �2

plugged in for �, respectively, and � is the Kronecker delta

product. The minimizers of �1 and �2, �̂1 and �̂2, for each of
the genuine, intrasubject impostor and intersubject impos-
tor sets of scores, as well as the dimensions of each of R�ð�1Þ
and R�ð�2Þ are given in Table 3 for the MSU database. For
the WVU database, the estimated values of �2 was found to
be 0.99 and 0.39, respectively, for the genuine and impostor
sets of similarity scores.

In order to show the effects of increasing correlation on
the ROC confidence bands, four combinations of (�1; �2)
were selected. The first three combinations are:

1. ð�1 ¼ 0; �2 ¼ 0Þ,
2. ð�1 ¼ 0; �2 ¼ �̂2Þ, and
3. ð�1 ¼ �̂1; �2 ¼ �̂2Þ, where �̂1 and �̂2 are selected

according to the entries of Table 3 for each set of
genuine, intrasubject impostor and intersubject im-
postor similarity scores.

4. This combination is obtained by setting the genuine �1

to 0.6 and the remaining�1s and�2s selected according
to the entries in Table 3.

The 95 percent (� ¼ 0:05) level confidence bands for the
ROC curve were constructed based on B� ¼ 1; 000 bootstrap
resamples. Fig. 6 gives the ROC confidence bands based on
the semiparametric bootstrap. Note that the width of the
confidence bands generally increases as we move from
combination 1 to 4. The median widths of the confidence
bands for the four combinations are 4.62, 5.41, 5.51, and
6.06, respectively. The effects of correlation on the con-
fidence bands using the asymptotic approach and for the
WVU database were similar to the bootstrap approach and,
therefore, are not presented here.

5.4 Validation of the ROC Confidence Bands

We conducted several tests to validate the ROC confidence
bands at a specified confidence level. Recall that the 100ð1�
�Þ% ROC confidence bands, by definition, cover the true ROC
curve with a probability of at least 100ð1� �Þ% on repeated
sampling from the underlying population of similarity scores.
Treating the entire MSU database withn ¼ 160 subjects as the
underlying population, we selected a subset of 120 subjects
from this population for constructing the semiparametric
bootstrap ROC confidence bands; a subset of 120 subjects (as
opposed to smaller subsets of the data) is selected so that
estimation of the nonparametric marginal distributions can
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TABLE 3
Different Values of �̂1 and �̂2 for the Genuine, Intrasubject

Impostor, and Intersubject Impostor Similarity Scores,
as Well as the Different Dimensions of Rð�1Þ and Rð�2Þ

for an Asymmetric Matcher

Fig. 6. Effects of correlation on the ROC confidence bands. The lines

with “*,” ut, 
, and 	, respectively, denote the four different combinations

of intrafinger and interfinger correlations 1, 2, 3, and 4.



be performed reliably. We then determined if the population
ROC curve (the empirical ROC curve for the 160 subjects) was
within the constructed confidence bands. This procedure was
repeated 200 times (with different subsets of 120 subjects from
the population of 160), and each time, we determined if the
population ROC curve was within the constructed ROC
confidence bands. The percentage of coverage based on this
validation procedure should be at least 100ð1� �Þ%. In our
experiments, we selected � ¼ 0:05 for the 95 percent ROC
confidence bands and obtained a coverage proportion of
99.5 percent. For the WVU database, validation of the ROC
confidence bands was carried out with subsamples of
198 users. The procedure of constructing the ROC confidence
bands was repeated 500 times. The empirical ROC curve
(ROC curve based on the 263 users) was found to be inside the
95 percent confidence bands in 497 (out of the 500) trials,
resulting in a coverage probability of 99.4 percent.

5.5 Sample Size Requirements

As correlated multiple biometric observations affect the
width of the ROC confidence bands, we now proceed to
determine the number of users, n�, required by a system to
report a 100ð1� �%Þ ROC confidence band with a width
of at most w. We take w ¼ 1%. Our results are based on
simulation with correlations selected according to combi-
nations 1, 2, 3, and 4 in Section 5.3. Thus, the results
reported here can be generalized to real data which exhibit
different degrees of intrafinger and interfinger correla-
tions. The values of n� are given for different combinations
of c and d and, therefore, varying dimensionality of the
genuine, intrasubject and intersubject sets of similarity
scores. Consequently, we assume a common marginal for
each of the three sets given by the mixture over
component scores. We selected C0 ¼ 0:1%, C1 ¼ 10%, and
M ¼ 21 here, and pm ¼ 10ð�1þ0:1ðm�1ÞÞ;m ¼ 1; 2; . . . ;M. For
each m ¼ 1; 2; . . . ;M, the width of the ROC confidence
band at each FAR ¼ pm (see (29)) is given by

wðpmÞ ¼ eUðpmÞ � eLðpmÞ

¼ 4z1��;M
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W ðpmÞð1�WðpmÞÞ

p
ffiffiffi
n
p

ð36Þ

for large nð¼ N0Þ, where z1��;M is the 100ð1� �Þ% percentile
of the distribution of zM defined in (28); the second equality is
from applying the delta method [15] to eUðpmÞ � eLðpmÞ in
(29). In order to determine z1��;M , we first estimate the
covariancematrices�0 and�1 (see(59) intheAppendix,which
can be found at http://computer.org/tpami/archives.htm)
as accurately as possible. This estimation is performed based
on 1,000 simulated samples from each of the correlation
combinations 1, 2, 3, and 4 forn ¼ 1; 000 subjects. To achieve a
width ofw for the confidence band implies thatwðpmÞ � w for
all pm, m ¼ 1; 2; . . . ;M. Thus, the minimum number of users
required is given by the formula n� ¼ n0 þ 1 where n0 is the
greatest integer less than or equal to

max1�m�M
4z1��;M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðpmÞð1�WðpmÞÞ

p
wðpmÞ

 !2

þ1: ð37Þ

We also compare the minimum sample size requirements
given by our method to that of the subset bootstrap approach

[3]. One important point is that [3] obtains confidence
rectangles, and not confidence bands, at each threshold value
on the ROC curve. In order to perform a valid band to band
comparison of the two methods, we applied the subset
bootstrap procedure to the alternative parametrization of
the ROC curve given in (20). As mentioned earlier, the subset
bootstrap is not able to give an overall confidence level of
100ð1� �Þ% using M individual 100ð1� �Þ% confidence
intervals. To guarantee a 100ð1� �Þ% confidence level, the
level of each individual confidence interval would have to be
100ð1� �=MÞ% using Bonferroni’s inequality. For m ¼
1; 2; . . . ;M, the minimum sample size requirement, nsbðmÞ,
for themth confidence interval can be obtained using similar
asymptotic arguments as in Section 4.2 withC0 ¼ C1 ¼ pm. It
follows that the minimum sample size required to achieve the
prespecified width for allM confidence intervals is given by

n�sb ¼ max1�m�M nsbðmÞ: ð38Þ

Table 4 reports the averagen� andn�sb over 10 simulation runs
with the numbers below n� (respectively, n�sb) representing
the average total number of observations n�cd (n�sbcd). The
numbers in the parenthesis are the corresponding standard
deviations over the 10 runs. If a biometric authentication
system was tested based on n users, where n is chosen
according to the n� entries in Table 4, we will be 95 percent
certain that the true ROC curve will lie in the interval
½Ŵ � 0:5; Ŵ þ 0:5�. Table 4 indicates that as the correlation
among the multiple impressions of a finger increases for each
fixed c and d, the total number of observations needed to
achieve the width w for the confidence band increases. The
same holds true when c and d values are increased for each
correlation combination. Thus, in the presence of nonzero
correlation, we are better off selecting a larger number of
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TABLE 4
Mean n� and n�sb Values for Achieving a Width of
1 Percent for the 95 Percent Confidence Band

The total number of observations, n�cd and n�sbcd, are given below the n�

and n�sb entries, respectively. Entries are calculated as the means of
10 simulation runs. The corresponding standard deviations are given in
parenthesis.



users rather than increasing the number of acquisitions per
user. Note that the sample sizes required by our method,n�, is
smaller compared to n�sb for achieving the same overall
confidence level.

We also obtained the minimum sample sizes determined
by the “Rule of 3” [20] and the “Rule of 30” [14] (see
Appendix, which can be found at http://computer.org/
tpami/archives.htm for their derivation). For the finger-
print database [8], n3 was approximately 150 for all pairs of
correlation combination, c and d, while n30 was approxi-
mately 770. Comparing the values of n3 and n30 with n�cd,
we see that both n3 and n30 grossly underestimate the total
number of biometric acquisitions required to achieve a
desired width. The underestimation becomes more promi-
nent when significant correlation is present between multi-
ple acquisitions of the biometric templates from a subject.

To illustrate the effects of correlation on the sample size
requirement for the WVU database, we choose three
combinations of the genuine and impostor within finger
correlations, namely, ð�gen2 ; �imp2 Þ ¼ ð0; 0Þ; ð0:49; 0:19Þ and
(0.99, 0.39) to reflect the no correlation (or, independence),
intermediate and high correlation states. Table 5 reports the
average n� and n�sb over 10 simulation runs for the width
w ¼ 1%, with the average total number of observations, n�d
and n�sbd given by the entries directly below the n�s. The
numbers in the parenthesis are the corresponding standard
deviations over the 10 runs. Note here, again, that n� is
smaller compared to n�sb for achieving the same overall
confidence level.

6 CONCLUSION

With the growing deployment of biometric systems in
several government and commercial applications, it has
become even more important to validate the performance
levels of a system claimed by a vendor. We present a flexible

semiparametric approach for estimating both the genuine

and impostor distributions of similarity scores using multi-

variate Gaussian copula functions with nonparametric

marginals. Confidence bands for the ROC curve are

constructed using 1) semiparametric bootstrap re-samples

and 2) asymptotic approximations derived from the esti-

mated models. We also determine the minimum required

number of subjects needed to achieve a desired width for the

confidence band of the ROC curve. Currently, the imple-

mentation of the ROC validation procedure and the

estimation of required number of samples are based on

fingerprint databases with a small number of subjects. We

plan to test our methodology on larger databases as they

become available. We will also focus on extending the

current framework to validate reported performances of

multimodal systems.
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