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a b s t r a c t 

Biometric recognition refers to the automated recognition of individuals based on their biological and 

behavioral characteristics such as fingerprint, face, iris, and voice. The first scientific paper on automated 

fingerprint matching was published by Mitchell Trauring in the journal Nature in 1963. The first objec- 

tive of this paper is to document the significant progress that has been achieved in the field of biometric 

recognition in the past 50 years since Trauring’s landmark paper. This progress has enabled current state- 

of-the-art biometric systems to accurately recognize individuals based on biometric trait(s) acquired un- 

der controlled environmental conditions from cooperative users. Despite this progress, a number of chal- 

lenging issues continue to inhibit the full potential of biometrics to automatically recognize humans. The 

second objective of this paper is to enlist such challenges, analyze the solutions proposed to overcome 

them, and highlight the research opportunities in this field. One of the foremost challenges is the de- 

sign of robust algorithms for representing and matching biometric samples obtained from uncooperative 

subjects under unconstrained environmental conditions (e.g., recognizing faces in a crowd). In addition, 

fundamental questions such as the distinctiveness and persistence of biometric traits need greater atten- 

tion. Problems related to the security of biometric data and robustness of the biometric system against 

spoofing and obfuscation attacks, also remain unsolved. Finally, larger system-level issues like usability, 

user privacy concerns, integration with the end application, and return on investment have not been ad- 

equately addressed. Unlocking the full potential of biometrics through inter-disciplinary research in the 

above areas will not only lead to widespread adoption of this promising technology, but will also result 

in wider user acceptance and societal impact. 

© 2016 Published by Elsevier B.V. 
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1. Introduction 

“It is the purpose of this article to present, together with some evi-

dence of its feasibility, a method by which decentralized automatic

identity verification, such as might be desired for credit, banking

or security purposes, can be accomplished through automatic com-

parison of the minutiae in finger-ridge patterns.”

– Mitchell Trauring, Nature, March 1963 

In modern society, the ability to reliably identify individu-

als in real-time is a fundamental requirement in many applica-

tions including forensics, international border crossing, financial

transactions, and computer security. Traditionally, an exclusive pos-
✩ This paper has been recommended for acceptance by S. Sarkar. 
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ession of a token, such as a passport or an ID card, has been ex-

ensively used for identifying individuals. In the context of com-

uter systems and applications, knowledge-based schemes based

n passwords and PINs are commonly used for person authentica-

ion. 2 Since both token-based and knowledge-based mechanisms

ave their own strengths and limitations, the use of two-factor

uthentication schemes that combine both these authentication

echanisms are also popular. 

Biometric recognition, or simply biometrics, refers to the auto-

ated recognition of individuals based on their biological and be-

avioral characteristics [39] . Examples of biometric traits that have

een successfully used in practical applications include face, fin-

erprint, palmprint, iris, palm/finger vein, and voice. The use of

NA, in the context of biometrics (as opposed to just forensics), is

lso beginning to gain traction. Since biometric traits are generally

nherent to an individual, there is a strong and reasonably
2 Authentication involves verifying the claimed identity of a person. 

http://dx.doi.org/10.1016/j.patrec.2015.12.013
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Fig. 1. Operation of a typical biometric system. The two fundamental problems in biometric recognition involve finding an invariant feature representation and designing a 

robust matcher for a given representation scheme. 
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ermanent link between a person and his/her biometric traits.

hus, biometric recognition can be used to identify individuals in

urveillance operations where covert recognition 

3 is required or in

cenarios where a person may attempt to conceal their true

dentity (e.g., by using forged documents to claim social welfare

enefits). Consequently, the application domain of biometrics far

xceeds that of passwords and tokens. In applications such as bor-

er control, forensics, surveillance, de-duplication, 4 and chain-of-

ustody, 5 the use of biometric solutions has clear-cut advantages

ver passwords or tokens. 

However, the emergence of biometrics does not necessarily sup-

lant the use of passwords or tokens in authentication applica-

ions. While biometrics can mitigate some of the limitations as-

ociated with the use of passwords, biometric systems themselves

re vulnerable to spoof attacks, linkability attacks (linking users

cross applications based on their biometric data), and can in-

ur additional hardware and software costs. Further, the acquisi-

ion process introduces variations in the biometric data of an in-

ividual (referred to as intra-subject variations) that may lead to

alse non-matches and false matches. False matches can lead to

dentity creep, where an adversary, after repeated attempts, man-

ges to take on the identity of a legitimate user of the system.

he lack of secrecy (e.g., face images on social media sites) and

istinctiveness (e.g., face images of identical twins) of biometric

raits pose additional problems to biometric-based authentication

chemes. Given the above limitations, a multi-factor authentication

echanism that judiciously combines biometrics with passwords

nd/or tokens may be a better approach to security in many appli-

ations [65] . 

.1. Motivation and objectives 

The first known research publication on automated biometric

ecognition was the one published by Mitchell Trauring in the jour-

al Nature in 1963 on fingerprint matching [91] . The development

f automated biometric systems based on other traits such as voice

73] , face [12] , and signature [55] also started in the 1960s. Sub-
3 In a covert scenario, the subject’s biometric traits are acquired without the sub- 

ect’s explicit knowledge and surreptitiously used for recognition purposes. 
4 De-duplication involves the removal of duplicate “identities”, where, for exam- 

le, a single individual may have multiple passports under different names. 
5 This is to keep track of individuals who handle the physical evidence collected 

uring the course of a legal proceeding. 
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equently, biometrics systems based on traits like hand geometry

24] and iris [19] were developed. In this sense, 50 years have

assed since the first paper on automated biometric recognition

as published. 

In a 2007 article, Wayman [97] tracked the major developments

n biometrics in the United States from the 1960s to the 1990s, and

bserved the following: “A quick overview of biometric history shows

hat much of what we consider to be “new” in biometrics was really

onsidered decades ago. There is much left to be done, but the most

fficient route will be to consider that which is really yet undiscovered,

ot wasting time repeating the studies of years ago. Even in 2005, it

s much too early to speculate on what the first decade of the new

illennium will ultimately hold for biometrics. It seems clear, how-

ver, that the industry will continue to grow and that technical and

uman improvements to the systems will be made.”

In line with the above observation from Wayman, the objective

f this paper is to summarize the progress in biometric recogni-

ion so as to understand how this field emerged , where we are now ,

nd where we should go from here . We believe that this assessment

f biometrics research would shed light on the cross-disciplinary

ature of problems in biometric recognition, highlight the tremen-

ous opportunities for both basic and applied research in biomet-

ics, and motivate budding scientists and engineers to consider bio-

etric recognition as their field of study. 

. Biometric recognition framework 

A typical biometric recognition system has two stages of oper-

tion, namely, the enrollment stage and the recognition stage (see

ig. 1 ). In the enrollment stage, the biometric system acquires the

iometric trait of an individual, extracts a salient feature set from it

nd stores the extracted feature set in a database (often referred to

s a template), along with an identifier associating the feature set

ith an individual. During the recognition stage, the system once

gain acquires the biometric trait of an individual, extracts a fea-

ure set from it, and compares this feature set against the tem-

lates in the database in order to determine a match or to verify a

laimed identity. 

In the enrollment stage, a biometric sensor scans the biometric

rait ( B ) of a user ( Y ) to obtain a digital representation ( M ). Since

he scanned biometric trait may be affected by various sources

f noise ( η) during the sensing process, a quality check is gen-

rally performed to ensure that the acquired biometric data can

e reliably processed by successive modules. In order to facilitate
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Table 1 

Summary of various sources of intra-subject variations in the measured biometric signals for different biometric traits. 

Source of intra-subject Fingerprint Face Iris Voice 

variations 

Sensor limitations ( ηs ) Resolution (dots per inch), 

signal to noise ratio, sensor 

cleanliness 

Spatial resolution, frame rate, 

acquisition spectrum (visible 

vs. infrared), distance from 

camera, 2D vs. 3D 

Acquisition spectrum (visible 

vs. near infra-red), distance 

from sensor 

Signal to noise ratio 

Intrinsic aging ( ηa ) Variations in ridge thickness & 

height due to changes in skin 

elasticity & sebaceous gland 

activity 

Geometric changes during 

childhood & adolescence, 

wrinkles and saggy skin in 

old age 

Myotic pupil (pupil constricts) Voice changes during childhood 

& adolescence, pitch changes, 

voice shakiness in old age 

Variations in user 

interactions ( ηu ) 

Rotation, translation, finger 

pressure 

Pose, expression Pupil dilation, partially closed 

eyes (blinking), gaze angle 

Speed, intensity, accent 

variations 

Environment changes ( ηe ) Indoor vs. outdoor Illumination, background scene Illumination Background noise 

Other factors ( ηo ) Cuts, worn-out fingers, dry/wet 

fingers 

Make-up, accessories, occlusion Eye diseases, influence of 

alcohol 

Common cold 
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recognition, the raw biometric data are further processed by a fea-

ture extractor (denoted by the function f e ) to generate a compact

but expressive representation, called a feature set, which is stored

as a template ( X E ) in the system database ( D ) for future compari-

son. During the recognition stage, when the user needs to be au-

thenticated or identified, a new sample of the biometric trait is ob-

tained. Features ( X R ) are extracted from this query biometric sam-

ple and compared (denoted by the function f m 

) to the templates

stored in the database in order to determine the identity ( ̂  Y ) as-

sociated with the query (sometimes referred to as the probe) bio-

metric sample. 

If the objective is to verify the claimed identity of an individual,

the query biometric sample needs to be compared only to the tem-

plate corresponding to the claimed identity (one-to-one match).

The identity claim is accepted if the resulting similarity value (also

called the match score S ) is above a preset threshold. In this case,

the biometric system is said to operate in the verification or au-

thentication mode. If the goal is to determine the user’s identity

without the user having to claim an identity, the query needs to be

compared against all the templates in the database (one-to-many

match). This latter functionality is commonly referred to as identi-

fication and the result of an identification operation will be one of

the following two decisions: (i) output the identity of one or more

users whose templates exhibit high similarity with the query bio-

metric sample or (ii) a response indicating that the query biomet-

ric sample does not match with the templates of any of the users

already enrolled in the database. If the biometric identification sys-

tem is forced to output an identity, it is referred to as closed-set

identification. On the other hand, the option of having a reject re-

sponse results in an open-set identification system. 

As shown in Fig. 1 , the measured biometric signal M may ex-

hibit intra-subject variations, i.e., the signal does not remain stable

across measurements. These sources of intra-subject variations can

be broadly divided into five categories: (i) sensor limitations ( ηs ),

(ii) intrinsic aging of the biometric trait ( ηa ), (iii) variations in user

interaction ( ηu ), (iv) changes in the acquisition environment ( ηe ),

and (iv) all other factors affecting the biometric trait ( ηo ). As an il-

lustrative example, let us consider a face recognition system where

the face is captured using a two-dimensional (2D) camera operat-

ing in the visible spectrum. In this context, sensor limitations ( ηs )

may include low spatial resolution and frame rate of the camera,

inability to capture the full 3D structure of the human face, and

inability to capture the details of the face under low illumination

conditions. Changes in a person’s facial structure and appearance

( ηa ) can occur over time due to the effects of biological aging. Vari-

ations in the person’s facial pose and expression ( ηu ) can be intro-

duced when the user interacts with the sensor. This type of vari-

ation is more pronounced in biometric applications where cooper-

ation from the users cannot be expected (e.g., covert surveillance).

Illumination changes ( ηe ) in the acquisition environment will also
ffect the quality of the captured face images. Finally, other fac-

ors such as make-up and accessories (e.g., sunglass, hat, etc.) worn

y the person and occlusion of a person’s face by other objects

r individuals ( ηo ) will also the potential adversely affect the face

mage quality. Table 1 presents a summary of different sources of

ntra-subject variations encountered in biometric systems based on

ommonly used biometric traits such as fingerprint, face, iris, and

oice. 

.1. How to choose a biometric trait? 

A critical issue in biometric system design is the choice of bio-

etric trait. In theory, any anatomical, behavioral, or physiologi-

al characteristic of an individual can be used as a biometric trait.

owever, the choice of a biometric trait for a particular applica-

ion usually depends on the degree to which the following proper-

ies are satisfied: (i) uniqueness or distinctiveness, (ii) permanence,

iii) universality, (iv) collectability, (v) performance, (vi) user accep-

ance, (vii) invulnerability, and (viii) integration [39] . A biometric

rait is said to be unique to an individual only if every pair of in-

ividuals in the target population can be differentiated based on

his trait. Since uniqueness is difficult to guarantee, the term dis-

inctiveness is often used. Ideally, a biometric trait or its represen-

ation (extracted features) should be permanent and should retain

ts discriminatory power over the lifetime of an individual. Since

he distinctiveness and permanence of a biometric trait constitute

he fundamental premise of biometric recognition, they play a ma-

or role in determining the value of biometric trait. 

While a number of biometric traits have been proposed for

erson recognition (see Fig. 2 ), fingerprint, face, and iris are the

hree most popular biometric traits in deployed systems. One of

he reasons for the popularity of fingerprint and face is the avail-

bility of large legacy databases (e.g., driver license and immigra-

ion databases), which have been collected by law enforcement

nd other government agencies all over the world. While iris is

eing increasingly adopted for large-scale identification (e.g., the

ris recognition border crossing system in the United Arab Emi-

ates, UAE) due to its high accuracy in applications requiring de-

uplication, there are relatively fewer legacy iris databases. An-

ther major reason for the adoption of fingerprint, face, and iris

odalities is the periodic technology evaluations for these traits

along with voice) conducted by the National Institute of Stan-

ards and Technology (NIST). These large-scale evaluations on op-

rational biometric data have been responsible for documenting

he significant progress that has been made in the matching ac-

uracy of these biometric traits. 

Leaving aside face, fingerprint and iris, the other biometric

raits that have been either deployed in biometric systems or pro-

osed in the research literature can be grouped under three broad

ategories: 
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Fig. 2. A large number of body traits have been proposed and used for person recognition. Fingerprint, face, and iris modalities shown in the first row are the three most 

popular biometric traits in deployed systems. Traits such as palmprint and DNA (depicted in the second row) have legacy databases and are currently being used primarily 

in law enforcement and forensics. The third row shows traits that have been deployed in commercial applications, primarily for verification operation (one-to-one matching). 

Finally, the last two rows show traits like gait, ear, sclera, keystroke dynamics, ECG, and EEG signals, which have been proposed by researchers for person recognition in 

niche applications, but are yet to attain sufficient level of technological maturity for deployment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rather limited. 

6 
1. Traits such as palmprint and deoxyribonucleic acid (DNA)

are beginning to play a major role in law enforcement and

forensic applications, mainly because of their value in large-

scale identification. While DNA has a relatively short his-

tory (first put into operational use in 1986 [62] ) and a rel-

atively small database (current size of the National DNA In-

dex in the United States is about 12 million [89] ), often this

may be the only reliable forensic evidence available at crime

scenes. The role of DNA in exonerating wrongly convicted

and incarcerated individuals through the effort s of the Inno-

cence Project [35] is well known. While friction ridge pat-

tern on the surface of human palm, similar to a finger ridge

pattern, is claimed to be unique [3] , fingerprints are eas-

ier to capture (due to their relatively small size compared

to palmprints) and provide acceptable solutions for person

recognition. This explains why fingerprints are more popu-
lar than palmprints in biometric systems. However, given the

fact that many friction ridge impressions left at crime scenes

are those of palms, law enforcement agencies have started to

collect palmprints of suspects at the time of booking. This is

the rationale behind the decision by the Federal Bureau of

Investigation (FBI) to include palmprint modality in the Next

Generation Identification (NGI) system. 6 

2. Biometric traits such as voice, signature, hand geometry, and

vascular patterns (palm vein, hand vein, or finger vein) have

been deployed in commercial applications, mostly as a tool

for verification or authentication, but their use so far is
http://www.fbi.gov/about-us/cjis/fingerprints _ biometrics/ngi . 

http://www.fbi.gov/about-us/cjis/fingerprints_biometrics/ngi
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8 Intuitively, H ( Y | X ) measures the uncertainty in Y given X . 
9 The information-theoretic framework introduced here is to provide a high-level 

understanding of how biometric systems work and to observe the relationships 

between the various research problems in biometrics (e.g., accuracy, individuality, 

permanence, template security, etc.). The intention is not to provide a precise for- 
3. Traits like gait, ear, retina/sclera, keystroke dynamics, elec-

trocardiogram (ECG), and electroencephalogram (EEG) sig-

nals have been proposed by researchers for person recog-

nition in niche applications, but are yet to attain sufficient

level of technological maturity and acceptance. 

Biometric traits discussed above have varying degrees of dis-

tinctiveness and permanence for person recognition in a target

population. Since the basic objective of a biometric system is to

correctly establish whether the two given samples of a biomet-

ric trait belong to the same user, the recognition performance or

matching accuracy is often used as the primary criterion for se-

lecting a biometric trait. However, it is important to realize that

accuracy is not the only factor that determines the utility of a bio-

metric trait or the biometric system itself in a particular applica-

tion. Often, other practical issues such as throughput, cost, return

on investment (ROI), user experience, template size, resistance to

spoof and template attacks, and ease of system integration must

also be given due consideration during the selection of a biometric

trait. 

Due to the diverse nature of biometric applications (e.g., mo-

bile phone unlocking to international border crossing), no single

biometric trait is likely to be optimal and satisfy the requirements

of all applications. In many cases, a combination or fusion of mul-

tiple biometric traits may be required to attain the desired level

of performance; such systems are generally referred to as multi-

biometric systems [80] . One such example is the Aadhaar system in

India, where there is a need to distinguish between individuals in

a database involving hundreds of millions of identities. 7 Therefore,

the Aadhaar system uses all 10 fingerprints and both irides of sub-

jects for de-duplication of identities. 

It is important to emphasize that the design of a biometric sys-

tem generally involves a complex interplay of factors related to

user interaction (with the biometric sensor), the end-application,

and the biometric recognition technology. For example, consider a

financial application like Internet banking, where the overarching

objective of using a biometric system is to minimize the losses in-

curred due to fraudulent transactions without causing too much

inconvenience to the genuine customers. In this scenario, the bank

needs to decide whether a particular transaction should be autho-

rized or declined. Hence, the level of authentication required will

depend on the risk associated with a transaction. A simple authen-

tication scheme (e.g., account number and PIN) may be sufficient

for an account balance inquiry, while a much higher level of iden-

tity assurance (e.g., a strong biometric match) may be required to

perform a high-value funds transfer. It is also possible to combine

the biometric match score with other contextual information such

as customer’s past transaction history and current location of the

customer to generate an overall risk score, which can form the ba-

sis for the authorization decision. Thus, designing a biometric sys-

tem not only requires knowledge of biometric technology, but also

a good understanding of application requirements and issues re-

lated to human factors, ergonomics, and environmental variables. 

2.2. Core research challenges in biometrics 

The main objective of a biometric system is to recognize in-

dividuals accurately. This in turn implies that a biometric sys-

tem must have low recognition error rates. While false match rate

(FMR) and false non-match rate (FNMR) quantify the errors in

a verification system, false positive identification rate (FPIR) and

false negative identification rate (FNIR) are used as the error met-
7 As of 31 January 2016, over 970 million Aadhaar numbers have been issued in 

the project. 

m

p

o

i

I

ics in an identification system. The conditional entropy 8 H(Y | ˆ Y ) ,

here Y and 

ˆ Y are the true and predicted identities, respectively,

s a function of the recognition error rates of the biometric sys-

em. 9 In the case of biometric verification, H(Y | ˆ Y ) = (H b ( FMR ) +
 b ( FNMR )) / 2 , where H b (p) = −(p log 2 p + (1 − p) log 2 (1 − p)) is

he binary entropy function and 0 ≤ FMR, FNMR ≤ 0.5. For

losed set identification, H(Y | ˆ Y ) = −((1 − FNIR ) log 2 (1 − FNIR ) +
PIR log 2 ( FPIR / (N − 1))) . Since every stage of processing in a bio-

etric system from the sensor to the matcher typically leads to

oss of some discriminatory information, the following relation-

hip is usually true: H(Y | ˆ Y ) ≥ H(Y | S ) ≥ H(Y | X ) ≥ H(Y | M ) ≥
(Y | B ) . 

The primary challenge in a biometric recognition system is to

esign a suitable sensor , feature representation scheme , and similar-

ty measure to minimize the recognition errors (or H(Y | ˆ Y ) ). This

an be achieved by suppressing the effect of various noise sources

ithout degrading the inherent identity information contained in a

iometric trait. In particular, the following two conditions must be

atisfied: (i) the similarity between different samples of the same

iometric trait acquired from the same subject (intra-subject sim-

larity) should be very high, and (ii) the similarity between differ-

nt samples of a biometric trait acquired from different individuals

inter-subject similarity) should be very low. While advancements

n sensor design can certainly benefit a biometric system by min-

mizing H ( Y | M ), such improvements heavily rely on scientific and

echnological breakthroughs in related fields (e.g., optics). Conse-

uently, most of the research in biometric recognition has rightly

ocused on the following two fundamental problems: 

1. The challenge of identifying the best representation scheme for

a given biometric trait. The desired set of features should re-

tain all the discriminative information that is distinctive to

a person and remain invariant to intra-subject variations. In

other words, the feature extractor f e must be designed such

that it minimizes H ( Y | X ), which is the conditional entropy of

Y given the feature representation X . Note that H(Y | X ) =
H(Y ) − H(X ) + H(X | Y ) , where H ( X ) is the entropy of the

biometric template and H ( X | Y ) quantifies the intra-subject

variations. Thus, minimizing H ( Y | X ) requires maximization

of biometric template entropy and simultaneously minimiz-

ing intra-subject variations. While it may be relatively easy

to enhance the entropy of the biometric template by extract-

ing more features from the sensed images, there is no guar-

antee that these additional features will lead to better ac-

curacy, unless these features also exhibit small intra-subject

variations. 

2. The challenge of designing a robust matcher for a given rep-

resentation scheme. The desired matching algorithm must

model the variations in the features belonging to the same

individual, while accounting for variations between features

of different individuals. Thus, the matcher f m 

must minimize

H ( Y | X R , D ), the conditional entropy of Y given the query fea-

tures X R as well as the templates in database D . 

It is important to point out that there is no representation

cheme or matcher that can be applied universally to all biometric

raits. In fact, the feature extraction and matching algorithms must
ulation for each problem using the information-theoretic approach. For exam- 

le, the best way to present or compare biometric verification performance, in 

ur opinion, is the ROC curve. See the recent paper by Daugman on the use of 

nformation theory pertaining to IrisCodes, http://www.CL.cam.ac.uk/users/jgd10 0 0/ 

nfoTheoryIrisCode.pdf . 

http://www.CL.cam.ac.uk/users/jgd1000/InfoTheoryIrisCode.pdf
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Fig. 3. Biometric samples obtained from identical twins. (a) Face, (b) fingerprint, and (c) iris images. While it is difficult to distinguish between these two users based on 

face images, it is indeed possible to distinguish between them using fingerprint or iris. 
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e carefully selected after taking into account the characteristics

f the underlying biometric trait, the properties of the biometric

amples captured by the sensor, and the requirements of the

pplication (error rate, processor and memory constraints,

hroughput, etc.). 

Since the inherent distinctiveness and permanence of a biomet-

ic trait determine the recognition accuracy of a biometric sys-

em to a large extent, analysis of these two properties for differ-

nt biometric traits is also considered a core research problem in

iometrics. 

Genetic similarity between related individuals (e.g., twins, fa-

her and son) may contribute to the lack of distinctiveness for

ome biometric traits (e.g., facial appearance as shown in Fig. 3 ).

he iris texture and, to some extent, local fingerprint details, are

nown to be generated through random morphogenesis (pheno-

ype characteristics). For this reason, fingerprints and irides of

dentical twins have been empirically shown to satisfy the distinc-

iveness property [38] . The “distinctiveness” of a biometric trait is

 quantifiable measure of the distinctiveness of the trait based on

he selected feature representation. It can be mathematically de-

ned as the mutual information between the user identity Y and

he feature representation X derived from the biometric trait (de-

oted as I ( Y ; X )). Since I(Y ; X ) = H(Y ) − H(Y | X ) , it is clear that

he distinctiveness of a biometric trait is a useful theoretical mea-

ure, which can indicate the best recognition accuracy achievable

ased on the selected features X . A rigorous evaluation of distinc-

iveness for different biometric traits and features derived from

hem is still an open research problem. 

The effects of body growth on common identifiers like face, fin-

erprint, or iris (and the representations derived from them) have

ot been systematically studied in the literature. The notion of per-

anence (also referred as persistence) can be studied by model-

ng the variations caused by aging as a form of time-varying noise

a ( t ). Ideally, one would like to precisely understand the effect of

a ( t ) on H ( Y | X ) and design a feature extractor f e such that the ef-

ect of aging on H ( Y | X ) is minimal. However, this is challenging in

ractice because it is very difficult to isolate the effect of aging

henomenon from other types of noise affecting a biometric mea-

urement [10,43,49] . 

. Evolution of biometric recognition 

One trigger for the systematic use of biometric traits to rec-

gnize a person was the enactment of the Habitual Criminals Act

n 1869 in the United Kingdom [84] . This Act made it mandatory

o maintain a register of all persons convicted of a crime in the

nited Kingdom along with appropriate evidences of identity. This

egister was used to identify repeat offenders, who were gener-
lly incarcerated with a higher degree of punishment compared

o first-time offenders. The need for such an identification scheme

as expressed by a Home Office Committee as follows, 

“What is wanted is a means of classifying the records of habit-

ual criminal, such that as soon as the particulars of the person-

ality of any prisoner (whether description, measurements, marks,

or photographs ) are received, it may be possible to ascertain

readily, and with certainty, whether his case is in the register,

and if so, who he is”

(in p. 257 of [84] , emphasis added). 

In order to identify repeat offenders, a French police officer

amed Alphonse Bertillon introduced a system of person identi-

cation based on a set of anthropometric measurements [8] . Ad-

itionally, he utilized multiple descriptive attributes such as eye

olor, scars, and marks (referred to as soft biometrics in contempo-

ary literature) in order to recognize an individual (see Fig. 4 ). But

he Bertillon system lacked automation, was cumbersome to ad-

inister uniformly (making it prone to error), and could not guar-

ntee variations across individuals. Therefore, it was quickly aban-

oned in favor of a simpler and more accurate approach involving

anual comparison of human fingerprints. This was made possible

y the pioneering works of Henry Faulds, William Herschel, and Sir

rancis Galton, who established the uniqueness of certain features

n a fingerprint ridge pattern such as minutia points [28] . 

.1. Historical developments in fingerprint recognition 

“Perhaps the most beautiful and characteristic of all superficial

marks (on human body) are the small furrows with the inter-

vening ridges and their pores that are disposed in a singularly

complex yet even order on the under surfaces of the hands and

feet.”

–Sir Francis Galton, Nature, June 28, 1888 

Traditionally, fingerprint images have been broadly classified

nto three categories, namely, (i) rolled/full, (ii) plain/flat, and (iii)

atent (see Fig. 5 ). Typically, rolled and plain fingerprint images ob-

ained using live-scan fingerprint sensors are of good quality (es-

ecially if the user is cooperative). In contrast, latent fingerprints

re lifted from surfaces of objects that are inadvertently touched

r handled by a person through a variety of means ranging from

imply photographing the print to more complex dusting or chem-

cal processing. While forensic applications typically require latent-

o-rolled print comparison, most of the other applications involve

omparisons between plain/rolled prints [51] . 

Fingerprint features can generally be categorized into three lev-

ls as shown in Fig. 6 . Level 1 features capture macroscopic details
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Fig. 4. The Bertillon system, so named after its inventor Alphonse Bertillon [8] , relied on the precise measurement of various attributes of the body for identifying recidivists. 

These measurements included, among others, the height of the individual, the length of the arm, geometry of the head, and the length of the foot. Some of the steps in the 

measurement process are depicted in (a) and the results were marked on a card as shown in (b). 

Fig. 5. Three different types of impressions of the same finger. (a) Rolled fingerprint, (b) plain fingerprint, and (c) latent fingerprint. 
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of the fingerprint such as ridge flow, ridge frequency, pattern type,

and singular points (e.g., core and delta). Level 2 features refer to

minutiae, such as ridge bifurcations and endings. Level 3 features

capture the dimensional attributes of the ridge and include ex-

tended features such as ridge path deviation, width, shape, pores,

edge contour, incipient ridges, breaks, creases, scars, and other per-

manent details. Level 1 and Level 2 friction ridge details are the

most commonly used features by all deployed fingerprint recog-

nition systems. Generally, Level 1 features are first extracted, fol-

lowed by Level 2 features with the guidance of Level 1 features. 

Numerous solutions have been proposed in the literature to

tackle the problem of matching features extracted from two fin-
erprint images to determine if they were acquired from the same

nger [51] . Most of these solutions adopt one of the following

hree approaches: image correlation, matching of ridge features,

nd minutiae matching. Minutiae-based matching is the most com-

only used approach, primarily due to the following reasons: (i)

inutiae have been used successfully for fingerprint comparison

y forensic examiners over the past 100 years and (ii) minutiae-

ased representation is storage efficient. 

Some of the major milestones in the history of fingerprint

ecognition are summarized in Fig. 7 . In 1891, Argentine police of-

cials initiated the fingerprinting of criminals and used fingerprint

s an evidence in a homicide case in 1892 [34] . This is believed
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Fig. 6. Feature representation for fingerprint recognition. (a) A grayscale fingerprint image, (b) Level 1 features (orientation field or ridge flow and singular points), (c) Level 

2 feature (ridge skeleton and minutiae), and (d) Level 3 features (ridge contour, pore, and dot). 

Fig. 7. Some major milestones in the history of fingerprint recognition. Here, FBI stands for the Federal Bureau of Investigation, AFIS represents Automated Fingerprint 

Identification System, DHS indicates the Department of Homeland Security, US-VISIT stands for United States Visitor and Immigration Status Indicator Technology, NGI 

indicates FBI’s Next-Generation Identification, and UIDAI represents Unique Identification Authority of India. 
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o be the first use of fingerprints in criminal proceedings. In 1901,

he Scotland Yard in the United Kingdom began using fingerprint

n law enforcement applications. 10 Fingerprints were accepted as

n evidence of identity in a British criminal case for the first time

n 1905. In 1924, the United States Congress authorized the De-

artment of Justice to collect fingerprints along with the arrest in-

ormation. This paved the way for the establishment of a finger-

rint identification system by the FBI, which started collecting fin-

erprints using tenprint cards (see Fig. 8 ). 

The FBI initiated the implementation of automated fingerprint

dentification system (AFIS) in the 1970s. Though this system is

eferred to as AFIS, it must be emphasized that the automation

as not fully completed in the initial years of deployment. Hu-

an experts were still required to process the fingerprint cards
10 http://onin.com/fp/fphistory.html . 

n

(

nd identify the basic features such as minutia points, which were

hen matched automatically by the AFIS to retrieve a short-list of

ost similar matches from the database. The final match decision

ontinued to remain in the hands of human experts. More recent

arge-scale deployments of fingerprint recognition systems such as

he US-VISIT 11 program by the Department of Homeland Security

21] , FBI’s NGI program, and India’s Aadhaar project [72] tend to be

ully automated systems that use all 10 fingers of the human hand

s well as other modalities such as face, iris, and palmprint. 

The growth in application areas for fingerprint recognition has

oincided with the development of new sensors to capture the fin-

erprint (friction ridge) patterns (see Fig. 9 ). In 1892, Juan Vucetich
11 In March 2013, the United States Visitor and Immigration Status Indicator Tech- 

ology (US-VISIT) was replaced by the Office of Biometric Identity Management 

OBIM). 

http://onin.com/fp/fphistory.html
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Fig. 8. A tenprint card used in law enforcement. The top two rows show fingerprints acquired by rolling each finger from one side to the other (so called rolled fingerprints). 

The bottom row shows plain or slap fingerprints: slap impressions of four fingers (little to index finger) of the left hand acquired simultaneously are shown on the left part 

of the bottom row, two thumb prints are shown in the middle, and the slap impressions of four fingers (index to little finger) of the right hand acquired simultaneously are 

shown on the right. 

Fig. 9. Evolution of fingerprint sensing technology. Fingerprint sensors have evolved in two ways. On the one hand, they have become compact in size and cheaper in cost, 

which makes it possible to embed fingerprint sensors in devices such as laptops or mobile phones. While some applications still use a large surface area fingerprint sensor 

(for capturing a full fingerprint impression resulting in higher accuracy), they are equipped with several advanced functionalities. A typical example is the slap sensor used 

in the US-VISIT program [21] , which can capture impressions of multiple fingers simultaneously, thereby facilitating rapid capture of tenprints. Other examples include the 

3D fingerprint sensor introduced by TBS in 2005 [70] and the touchless fingerprint sensor introduced by Safran in 2010 [26] , which can acquire the images of multiple 

fingers on-the-fly as the user moves his hand across the device. 
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pioneered the use of inked fingerprint images, which are acquired

by first applying ink to the subject’s fingertip and then rolling or

pressing the finger on paper, thereby creating an impression of

the fingerprint ridges on paper. Later, the development of flatbed

document scanners enabled the digitization of the inked finger-

prints into images on a computer. Live-scan fingerprint sensors,

which produce the digital image directly from a subject’s finger-

tip via digital imaging technologies (e.g., optical, capacitive, and

ultrasound) were developed in the 1990s [3] . Some of the recent

advances in fingerprint sensing include the development of sen-

sors that allow rapid ten-print capture [21] , sensors that can record

the three-dimensional (3D) information of the ridge-valley patterns

present on a fingertip [70] , touchless fingerprint acquisition (e.g.,

Morpho’s Finger-on-the-Fly) and imaging of fingerprints in multi-

ple spectral bands (e.g., Lumidigm’s Multi-Spectral Imaging (MSI)

sensors). 

With the advancements in the semiconductor industry, live-

scan fingerprint scanners continue to become more compact and

efficient, thereby enabling new applications in consumer electronic

devices. For example, the Touch-ID fingerprint recognition system

in iPhone-6 enables phone unlocking capability as well as mobile
 u  
ayments via the Apple Pay service. In the near future, it may

e possible to capture face, fingerprint, iris, and voice biometric

odalities using a commodity smartphone. The ability to securely

uthenticate a smartphone user using multibiometrics can be ex-

ected to open up a number of new applications involving mobile

ommerce and transactions. 

.2. Historical developments in face recognition 

“This (face) recognition problem is made difficult by the great

variability in head rotation and tilt, lighting intensity and angle,

facial expression, aging, etc.”

–Woodrow Bledsoe, 1966 

Although human beings have been using faces to recognize one

nother since time immemorial, the work on enabling comput-

rs to recognize human faces was started in the mid-1960s by

oodrow W. Bledsoe and his colleagues at Panoramic Research

12] . Bledsoe qualified his face recognition system as a “man-

achine” system, because it required human experts to first man-

ally locate some facial landmarks on a photograph. The matching
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Fig. 10. Major milestones in the history of automated face recognition. While the events in the top row highlights the important landmarks in the evolution of face recog- 

nition algorithms, those in the bottom row correspond to the turning points in the development of face acquisition systems. 
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as then done automatically based on 20 normalized distances de-

ived from these facial landmarks (e.g., width of the mouth, width

f eyes, etc.). A system to automatically extract such facial land-

arks was proposed in Takeo Kanade’s Ph.D. thesis [41] published

n 1973, which can be considered to have presented the first fully

utomated face recognition system. Fig. 10 presents a brief sum-

ary of the milestones in the development of face recognition

lgorithms. 

While the earliest face recognition systems were based on ge-

metric features (distances between pre-defined landmarks), the

igenface approach popularized by Turk and Pentland in 1991 [92]

as based on holistic facial appearance. 12 Holistic appearance-

ased techniques generate a compact representation of the en-

ire face region in the acquired image by mapping the high-

imensional (4096 dimensions for a 64 × 64 image) face image

nto a lower dimensional sub-space. This sub-space is defined by a

et of representative basis vectors, which are learned using a train-

ng set of images. The local feature analysis method of Penev and

tick [71] and the Fisherface method of Belhumeur et al. [7] are

ther examples of holistic appearance-based face recognition. 

The elastic bunch graph matching approach of Wiskott et al.

101] was a pioneering work in model-based face recognition.

odel-based techniques try to derive a pose-independent repre-

entation of the face images by building 2D or 3D face models.

hese schemes typically require the detection of several fiducial or

andmark points in the face (e.g., corners of eyes, tip of the nose,

orners of the mouth, and the chin), which leads to increased com-

lexity compared to appearance-based techniques. The morphable

odel proposed by Blanz and Vetter [11] advanced the use of 3D

odels in face recognition by exploiting both facial texture and

hape features. 

Since appearance-based schemes use the raw pixel intensity

alues, they are quite sensitive to changes in ambient lighting and
12 Earlier work by Sirovich and Kirby in 1987 had shown that faces could be rep- 

esented by principal component analysis [82] . c
acial expressions. Therefore, texture-based methods like Scale In-

ariant Feature Transform [48] and Local Binary Patterns (LBP)

66] were developed. These methods use more robust representa-

ions that characterize the texture of an image using the distribu-

ion of local pixel values. Sparse representation coding [102] and

ace recognition based on deep learning [86,88] are some of the

ore notable advances in the area of face recognition in the last

ecade. 

Most of the face recognition techniques assume that faces can

e aligned and properly normalized (both geometrically and pho-

ometrically). The alignment is typically based on the location of

he two eyes in the face. The face detection scheme developed by

iola and Jones [96] is considered a milestone because it enabled

aces to be detected in real-time even in the presence of back-

round clutter, a situation commonly encountered in applications

uch as surveillance. Even though the Viola–Jones face detector has

emonstrated excellent performance in real-time applications, it is

till challenged when confronted with non-frontal facial poses, il-

umination changes, occlusion, etc. 

While advancements in algorithms have contributed to im-

rovements in face recognition accuracy, practical face recogni-

ion systems have also benefited due to improvements in face ac-

uisition systems, be it 2D (intensity image), 3D (intensity and

epth/range image), infrared, or video cameras. 

One of the major turning points in the history of camera tech-

ology was the introduction of digital cameras 13 in the early 1990s.

ue to improvements in semiconductor technology, the frame rate,

patial resolution (pixel density), and quality (pixel sensitivity) of

mage sensors has improved significantly [87] and it has been

laimed that the performance of state-of-the-art digital cameras

an match that of the human eye [83] . At the same time, these

mage sensors have also become smaller and cheaper making it

ossible to embed them in many personal electronic devices such
13 Though Kodak invented the first digital camera in 1975, they did not become 

ommercially available until 1990. 
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Fig. 11. Major milestones in the history of automated iris recognition. While the events in the top row highlight the important landmarks in the evolution of iris recognition 

algorithms, those in the bottom row correspond to the turning points in the development of iris sensors. 
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as computers, tablets, and mobile phones. Today, it is possible to

capture good quality face images using smartphones or wearable

devices such as Google glass [29] . Furthermore, low cost cameras

that can capture 3D images in real-time are also becoming avail-

able now (e.g., Microsoft Kinect [42] ). Consequently, real-time face

recognition has been made feasible in a wide range of applica-

tions where the user is cooperative and the face image is acquired

in a controlled environment (e.g., access control, de-duplication of

driver licenses and passports). But, solutions to unconstrained face

recognition such as in surveillance applications are still elusive. 

Another important development has been the use of near in-

frared (NIR) face acquisition technology to mitigate problems re-

lated to uncontrolled ambient lighting. The acquisition device illu-

minates the face with active NIR light and the ensuing image is

reasonably invariant to illumination effects pertaining to the visi-

ble spectrum [109] 

3.3. Historical developments in iris recognition 

“For purposes of rapid and reliable person identification,...it is

hard to imagine one (unique identifier) better suited than a

protected, immutable, internal organ of the eye (iris), that is

readily visible externally and that reveals random morphogene-

sis of high statistical complexity.”

– John Daugman, IEEE Transactions on PAMI, 1993 

The iris of the eye contains rich textural information that can

be used for person recognition. Bertillon proposed the use of both

iris texture and color as a method for distinguishing people. In

1936, Frank Burch also proposed the idea of using iris patterns for

human identification. The first patent for an iris recognition sys-

tem was granted to Flom and Safir in 1985 [25] . While Flom and

Safir presented ideas for iris image capture, feature extraction, and

matching, the first working iris recognition system was developed

and implemented by John Daugman in the early 1990s [19] . In fact,

Daugman was the first to develop (a) a camera to capture the iris

images, (b) image processing algorithms to process the eye images

and extract the iris region, and (c) the well-known IrisCode repre-
entation to characterize the iris images in the form of a compact

inary code. 

One of the first major deployments of iris recognition was the

ne implemented by UAE for border control in 2001. This was

oon followed by the use of iris recognition to facilitate immigra-

ion control for frequent travelers at the Amsterdam Schipol air-

ort in 2003. An iris recognition based immigration system was

lso operational at major airports in the United Kingdom for nearly

 decade, before it was decommissioned in 2013. Iris-based bor-

er control systems are also being used to enable quicker immi-

ration clearance for pre-approved travelers between the United

tates and Canada. Iris recognition was also extensively used by

he United States military for field operations in Afghanistan and

raq. Recently, several large-scale national identification systems for

ivilians such as India’s Aadhaar project [72] , Mexico’s national ID

rogram, and Indonesia’s e-ktp program include iris as one of the

rimary biometric modalities. 

Iris recognition systems have also benefitted greatly from the

uge improvements in image sensors. The early iris cameras such

s the one developed by Daugman and other commercial cameras

eveloped in the 1990s were not only bulky and expensive, but

lso required high levels of cooperation from the user to provide

ood quality iris images (see Fig. 11 ). Typically, the textural de-

ails of the iris are imaged using a camera that is sensitive to near

nfra-red (NIR) illumination. NIR illumination is required to capture

he texture details of dark-colored irides (which are not clearly re-

olved under visible light) and to make the sensing less intrusive

NIR illumination cannot be perceived by the human eye). More-

ver, the user needs to be cooperative and hold his head in a rel-

tively stable position while looking directly into the camera so

hat the iris images are not degraded due to factors such as par-

ially closed eyelids, intruding eyelashes, extremely dilated or con-

tricted pupil, or off-axis acquisition. 

However, iris cameras developed in the last decade are more

ortable, compact, affordable, and easy to use. For example, Se-

uriMetrics introduced a portable iris scanner in 2004. Sarnoff de-

eloped the “iris-on-the-move” system in 2006 [85] , which could

apture iris images at a 3 m standoff distance and from subjects
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alking at 1 m/s. In 2013, companies such as A-Optix and Delta-ID

ave shown that it is possible to capture good quality iris images

sing smartphones. 

.4. Developments in other biometric traits 

1. Ear: The appearance, structure, and morphology of the hu-

man ear has been studied as a biometric cue for a number

of years [1] . While most face recognition systems extract the

attributes of the human face from frontal images, the vis-

ibility of the ear in non-frontal poses of the face (e.g., side

view) makes it a viable biometric in many scenarios. The hu-

man ear is observed to exhibit variations across individuals

as assessed by the curves, surfaces, and geometric measure-

ments pertaining to the visible portion of the ear, commonly

referred to as the pinna. As a biometric trait, the ear offers

several advantages: (a) the structure of the ear has been ob-

served to be stable despite aging, and ear growth is almost

linear after the age of four; (b) the ear, unlike other facial

features, is minimally impacted by changes in facial expres-

sion; and (c) image acquisition does not involve explicit con-

tact with the sensor. 

Although several algorithms for ear detection and matching

have been proposed in the literature, large-scale public eval-

uation of ear recognition algorithms has not been conducted.

Further, there are not many commercial biometric systems

at this time that explicitly utilize features of the ear for hu-

man recognition. 14 But the performance of ear recognition

algorithms has been tested on some standard ear datasets.

Experiments suggest that ear images obtained under con-

trolled conditions can result in good recognition accuracy.

However, the performance of ear recognition methods on

non-ideal images obtained under varying illumination and

occlusion conditions is yet to be established. Several chal-

lenges have to be overcome to make this possible. 

2. Gait: The demand for human identification at a distance has

gained considerable traction, particularly due to the need for

covertly recognizing individuals in unconstrained environ-

ments with uncooperative subjects. In such environments,

the person of interest may not be interacting with the bio-

metric system in a concerted manner. Further, the individual

might be moving in this environment characterized by vari-

able illumination and a non-uniform background. Biometric

modalities such as fingerprint and iris cannot be easily ac-

quired at large stand-off distances. On the contrary, the face

and gait modalities can easily be acquired at a distance, al-

though the smaller spatial resolution of the face at long dis-

tances can degrade accuracy of face recognition systems. As

a result, gait-based human recognition has received some in-

terest for biometric recognition at a distance [64] . Gait is de-

fined as the pattern of locomotion in animals. Human gait,

therefore, is the manner in which people walk. While the

formal definition of gait refers to human motion , practical

algorithms for gait recognition include both dynamic and

static features (such as body shape) of the moving human

body. It can be viewed as a behavioral trait that is impacted

by the musculo-skeletal structure of the human body. 

Gait recognition is perceived as an attractive solution for

distance-based identification for a number of reasons. First

and most importantly, human gait has been observed

to have some person-specific characteristics. Psychological 

studies by Cutting and Kozlowski showed that humans are
14 An example application can be found at http://www.descartesbiometrics.com/ 

rgo-app/ . 

 

 

 

capable of deducing gender and recognizing known indi-

viduals based on gait. Second, the gait biometric can be

acquired passively and, therefore, explicit subject interac-

tion is not required for data acquisition. Passive collection

is beneficial in an environment where subjects are being

observed covertly. Finally, discriminatory features of human

gait can be extracted in low resolution images. This suggests

that expensive camera systems may not be required for gait

recognition. 

The matching performance of gait recognition algorithms is

impacted by factors such as clothing, footwear, walking sur-

face, walking speed, walking direction (with respect to the

camera), etc. Further, the gait pattern of an individual can

change over time, especially with variations in body mass

The impact of these factors is difficult to mitigate and, there-

fore, evaluation of gait recognition algorithms has been pre-

dominantly conducted in controlled environments. This has

prevented the incorporation of gait recognition in commer-

cial biometric systems. 

3. Hand geometry: Hand geometry, as the name suggests, refers

to the geometric structure of the hand [23,40] . This structure

includes width of the fingers at various locations, width of

the palm, thickness of the palm, length of the fingers, con-

tour of the palm, etc. Although these metrics do not vary

significantly across the population, they can still be used to

verify the identity of an individual. Hand geometry measure-

ment is non-intrusive and the verification involves a simple

processing of the resulting features. Unlike palmprint [45] ,

this method does not involve extraction of detailed features

of the hand (e.g., wrinkles on the skin). 

Hand geometry-based verification systems have been com-

mercially available since the early 1970s. The earliest lit-

erature on the hand geometry biometric is in the form of

patents or application-oriented description. Hand geometry 

systems have been successfully deployed in several appli-

cations including nuclear power plants, border control sys-

tems (e.g., Ben Gurion airport in Tel Aviv), recreational cen-

ters and time-and-attendance systems. In these applications,

the biometric system typically operates in the verification

mode. Since the hand geometry of subsets of individuals can

be similar, the identification accuracy due to this biometric

modality can be low. Further, the shape of an individual’s

hand can change with time—a factor that is especially pro-

nounced in young children. More recent research has ex-

plored the use of hand geometry in conjunction with fin-

gerprints and low-resolution palmprints in a multibiometric

configuration for improved accuracy. 

4. Periocular: The periocular region represents the region

around the eyes. It predominantly consists of the skin, eye-

brow, and eye. The use of the periocular region as a biomet-

ric cue represents a good trade-off between using the entire

face region or using only the iris for recognition [67] . When

the entire face is imaged from a distance, the iris informa-

tion is typically of low resolution; this means the matching

performance due to the iris modality will be poor. On the

other hand, when the iris is imaged at small standoff (typ-

ically, 1 m), the entire face may not be available, thereby

forcing the recognition system to rely only on the iris. How-

ever, the periocular biometric can be used for a wide range

of distances. Periocular images can also be captured in the

NIR spectrum to minimize illumination variation compared

to visible spectrum. 

Some of the other benefits in using the periocular biomet-

ric trait are as follows: 

(1) In images where the iris cannot be reliably obtained

(or used), the surrounding skin region may be used to

http://www.descartesbiometrics.com/ergo-app/
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Fig. 12. The current state of fingerprint recognition. Recognition based on two 

rolled or plain fingerprints captured using live-scan sensors (as shown in (a)) can 

be considered as an almost solved problem as demonstrated by the results of NIST 

FpVTE 2003 and FVC evaluations. However, the results of NIST ELFT evaluation indi- 

cate that fully automated latent identification (i.e., latent-to-rolled print matching), 

as shown in (b), is still an open problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Poor quality of the latent fingerprint images makes it difficult to reliably 

extract features from latents. The image on the left is a poor quality latent in which 

the ridge pattern of interest is smudged and occluded by the presence of struc- 

tured noise (text, lines, etc.). On the right is shown the ridge skeleton extracted by 

a commercial fingerprint SDK from the image on the left. Since the SDK used for 

extracting the above ridge skeleton is not specifically designed for processing latent 

prints, it fails to extract the correct fingerprint ridges from the latent. 
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15 Rank-1 accuracy denotes the fraction of probes in an identification system for 

which the correct identity is retrieved as the top rank from the gallery. 
16 Based on images in the NIST SD27 database. 
either confirm or refute an identity. Blinking or off-

angle poses are common sources of noise during iris

image acquisition. 

(2) The periocular region can offer information about eye

shape that may be useful as a soft biometric. 

(3) When portions of the face pertaining to the mouth

and nose are occluded, the periocular region may be

used to determine the identity. 

(4) The design of a newer sensor is not necessary as both

periocular and face regions can be obtained using a

single sensor. 

Recent studies on person identification using periocular

traits, both in visible and NIR spectra, show modest identi-

fication accuracies (over 80%). However, such an accuracy is

possible only when the images are of good quality and ex-

hibit low intra-class variations. It has also been shown that

the periocular trait can assist person identification when the

face is occluded. 

4. State-of-the-art in biometric recognition 

The evolution of biometric recognition is an on-going process

and biometric systems are experiencing continuous improvements

in performance and usability. However, a clear assessment of

the present state-of-the-art is required to appreciate the progress

made thus far and set the baseline for future improvements. Many

independent third-party technology evaluations have been con-

ducted primarily by NIST over the last 20 years for fingerprint, face,

iris, and voice modalities. These NIST evaluations serve as an excel-

lent resource to benchmark the current recognition performance of

various biometric systems. In general, the error rates of a biomet-

ric system depend on a number of test conditions. Consequently,

the NIST evaluations tend to be quite extensive and include results

obtained under a variety of test conditions. An in-depth discussion
f these results is beyond the scope of this paper and we restrict

urselves to highlighting only a few key results. 

In the case of fingerprint recognition, the challenges vary

epending on the type of fingerprint images. Therefore, NIST

valuations are also conducted separately for matching between

lain/rolled prints and latent-to-rolled print matching (see Fig. 12 ).

he Fingerprint Vendor Technology Evaluation (FpVTE) conducted

y NIST over a decade back (in 20 03) [10 0] shows that the best

ommercial fingerprint recognition system can achieve a true ac-

eptance rate (TAR) of 99.4% at a false acceptance rate (FAR) of

.01% for plain-to-plain matching based on fingerprint data col-

ected from various government sources in the United States. The

esults of FpVTE 2012 have not yet been released by NIST at the

ime of writing this paper. 

Multiple editions of the Fingerprint Verification Competition

FVC) [95] have also been conducted by the University of Bologna

ince 20 0 0 to benchmark the performance of different fingerprint

ecognition algorithms for plain-to-plain fingerprint matching. The

esults of FpVTE 2003 and the various editions of FVC indicate that

he technology for plain-to-plain (as well as rolled-to-rolled) fin-

erprint matching is fairly mature and very high accuracy can be

btained under typical conditions. However, there may be some

cope for improvement in accuracy when the user is uncoopera-

ive and provides distorted or partial fingerprint images or if the

mage quality is very poor due to finger skin conditions. 

The results of different phases of Evaluation of Latent Fin-

erprint Technologies (ELFT) conducted by NIST confirm that the

roblem of latent-to-rolled print matching is inherently more chal-

enging compared to plain-to-plain matching. The best rank-1 ac-

uracy 15 obtained in ELFT-EFS Phase 2 was only 63.4% [50] . The

argest public-domain latent fingerprint database is the NIST Spe-

ial Database-27 (NIST SD-27) and the best reported rank-1 ac-

uracy on this database is 72%. These numbers clearly show that

he problem of fully automated processing and matching of latent

rints to rolled impressions or other latent prints is still far from

eing solved. 

The major reason for the deterioration in identification accuracy

rom plain prints to latent prints is the poor quality of the latent

ngerprint images. Latent fingerprints typically contain ridge infor-

ation from only a partial area of a finger. While a typical rolled

ngerprint has around 106 minutiae, a latent print may contain

nly 21 usable minutiae. 16 Even this partial ridge information in a
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Fig. 14. Sample face images of one subject from the MEDS II database illustrating intra-user variations due to factors such as illumination, pose, expression, and aging. 
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Table 2 

Summary of true accept rate (TAR) at 0.1% false 

accept rate (FAR) when different face recog- 

nition algorithms were evaluated on the NIST 

Special Database-32, which is also known as 

the Multiple Encounter Dataset (MEDS II) a . 

Algorithm TAR at 0.1% FAR 

Eigenfaces 9% 

Fisherfaces 35% 

LBP 34% 

COTS-A 58% 

COTS-B 88% 

COTS-C 97% 

a True Accept Rate (TAR) is (1- FNMR). Also, 

False Accept Rate (FAR) is sometimes used syn- 

onymously with FMR; strictly speaking, there is 

a mild difference between FMR and FAR. 

Table 3 

Mean classification accuracy, along with standard er- 

ror, of some face recognition algorithms that were 

evaluated on the Labeled Faced in the Wild (LFW) 

dataset under the “Image-Restricted, No Outside Data 

Results” protocol. For an explanation of the acronyms 

and definition of classification accuracy, please see http: 

//vis-www.cs.umass.edu/lfw/results.html . 

Algorithm Accuracy 

Eigenfaces 0.6002 ± 0.0079 

Fisher vector faces 0.8747 ± 0.0149 

MRF-Fusion-CSKDA 0.9589 ± 0.0194 
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atent is often smudged, blurred, or occluded by background text

nd markings, and may exhibit large nonlinear distortion due to

ressure variations. When the fingerprint quality is very poor, it

ecomes very difficult to reliably extract the minutiae and ridge

eatures as shown in Fig. 13 . 

Evaluating the state-of-the-art in face recognition is more com-

lex because of the large scope for variability in face images due

o a number of factors such as aging, pose, expression, and illu-

ination. The NIST Face Recognition Vendor Test 2012 17 indicates

hat face recognition systems can achieve a TAR of approximately

6% at an FAR of 0.1% when matching mugshots of the face (frontal

ace images obtained under a controlled environment at the time a

uspect is booked at the police station). When presented with face

mages obtained during the visa application process, the TAR im-

roves to nearly 99% at the same FAR of 0.1%. This is because face

mages for visa processing have more stringent guidelines on illu-

ination, background, and occlusion. While the above results are

mpressive, they are applicable only to a small number of applica-

ions where such good quality face images can be captured from

ooperative subjects. 

As pointed out in Section 2 , the key differentiator for face

ecognition compared to fingerprint and iris is the ability to cap-

ure face images covertly. However, the face images captured

overtly tend to exhibit more intra-class variations. A reasonable

ndicator of the performance under mildly challenging conditions

s the accuracy of various face recognition algorithms on the NIST

pecial Database-32, which is also known as the Multiple En-

ounter Dataset (MEDS) [60] . This database contains face images

xhibiting relatively large intra-class variations such as pose and

llumination changes, compared to mugshots, as shown in Fig. 14 .

ome well-known face recognition algorithms such as Eigenfaces,

isherfaces, LBP, as well as three commercial-off-the-shelf (COTS)

ace matchers were evaluated on the MEDS II database and the TAR

t 0.1% FAR is summarized in Table 2 . 

The results in Table 2 show a wide gap between the perfor-

ance of the best COTS matcher and some of the most popu-

ar algorithms that are often considered in academic research. The

ifference in performance is also rather high among three of the

est COTS matchers. This indicates the need to carefully choose the

aseline system when developing new algorithms for face recogni-

ion. It may be very easy to demonstrate an improvement in per-

ormance by choosing an outdated baseline (say Eigenfaces). A new

ace recognition algorithm cannot be considered as an advance-

ent of the state-of-the-art unless one can demonstrate better

erformance compared to either state-of-the-art COTS face match-

rs or the best performing algorithms published in the literature. 
17 http://www.nist.gov/itl/iad/ig/frgc.cfm . 

t  

c  

a  

2  

c  
The Labeled Faces in the Wild database contains face pho-

ographs for studying the problem of unconstrained face recogni-

ion. This dataset contains more than 13,0 0 0 images of 5749 sub-

ects. A number of researchers have reported performance of their

lgorithms this dataset. Results on a specific protocol used on this

ataset can be seen in Table 3 . 

One of the largest independent technology evaluations of iris

ecognition is the NIST IREX III evaluation [32] . The database used

n this test contains approximately 6.1 million iris images acquired

rom nearly 4.3 million eyes. Among the 95 different algorithms

onsidered in this evaluation, the best algorithm had an FNIR of

pproximately 2.5% when a single eye was used per person and

he threshold was set such that there were no more than 25 false

ositives in every 10 13 iris comparisons. This ability to operate at

 very low probability of a false match is one of the key advan-

ages of iris recognition. It was observed that pupil dilation and

onstriction has a significant impact on the recognition accuracy,

nd the size of the iris templates ranged from 1 kilobyte (KB) to

0 KB. Some examples of iris images that could not be recognized

orrectly during IREX III evaluation are shown in Fig. 15 . These iris

http://www.nist.gov/itl/iad/ig/frgc.cfm
http://vis-www.cs.umass.edu/lfw/results.html
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Fig. 15. Examples of iris images from the NIST IREX III evaluation that could not be successfully recognized. It is difficult to extract reliable iris texture features from these 

images because the eyelids are fully or partially closed (first two images from the left), the images exhibit excessive blur (third image from the left), or the images are highly 

quantized (rightmost image). 

Fig. 16. Degradation in the recognition accuracy of biometric recognition algorithms as the quality of the biometric samples decreases due to unconstrained sensing con- 

ditions and/or uncooperative subjects. When good quality samples can be acquired from cooperative users under controlled conditions (as shown in the bottom left of the 

graph), biometric recognition can be considered as a solved problem from the accuracy perspective. However, biometric recognition is far from being a solved problem when 

poor quality samples such as those shown on the top right of this image are presented as inputs to the recognition system. 
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images are of very poor quality, mainly because the users did not

interact correctly with the iris sensor. 

Apart from fingerprint, face, and iris, significant progress has

also been achieved in the case of voice biometrics (also known as

speaker verification) over the last two decades. The results of 2012

NIST Speaker Recognition Evaluation (SRE) [30] show a TAR of ap-

proximately 93% at an FAR of 0.1%. This high level of accuracy was

achieved despite the challenging nature of the NIST SRE 2012 eval-

uation, which required the algorithms to detect if a target speaker

had spoken in a given test speech segment with significant back-

ground noise. 

A closer look at the performance of state-of-the-art fingerprint,

face, iris, and voice biometric systems indicates that it is possible

to achieve very low error rates when the respective biometric sam-

ples are acquired under controlled conditions with the cooperation

of the user. From the accuracy perspective, 18 biometric recogni-

tion can be considered as a solved problem in applications where
18 Note that even if a high matching accuracy can be achieved in a technological 

test, other requirements such as throughput, cost, and usability may need to be 

satisfied before a biometric system becomes suitable for a particular application. 

r  

s  

M

he acquisition of good quality biometric samples from coopera-

ive users is not an issue. However, the fundamental problems in

iometrics, namely, feature extraction and matching, become more

hallenging when the biometric samples are not captured in a con-

rolled environment or if the user is non-cooperative. As shown

n Fig. 16 , there is a huge gap between the accuracy of biometric

ystems evaluated on good quality biometric samples (bottom left

f Fig. 16 ) and that of systems evaluated on poor quality samples

top right of Fig. 16 ). This suggests that the development of better

eature extraction and matching algorithms to handle poor quality

iometric samples is a fertile ground for research. 

. Unsolved problems 

The unsolved problems in biometric recognition can be divided

nto two categories: (i) problems that involve fundamental issues

elated to design of recognition systems and (ii) problems that are

pecific to applications that will use biometric recognition. As dis-
oreover, a biometric system can still be very useful in an application, even though 

“zero error rate” may never be achieved under operational settings. 
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19 It has been reported that the birth rate of monozygotic (identical) twins is 

about three in every 10 0 0 births worldwide and this number is gradually increasing 

due to the rise in fertility treatments [98] . 
ussed in Section 2 , questions about the distinctiveness and per-

anence of a biometric trait have not been adequately addressed

y the biometrics research community. Moreover, feature extrac-

ion and matching schemes that can handle poor quality biomet-

ic samples (e.g., face images from a surveillance video or la-

ent fingerprint images) need to further developed. In the case of

pplication-specific problems, the two main unresolved issues are

i) techniques to shield a biometric system from adversarial at-

acks/threats and provide assurances on user privacy, and (ii) tech-

iques to assess usability of a biometric system and estimate the

eturn on investment. Finding viable solutions to these unresolved

roblems will not only strengthen the case for biometrics in exist-

ng applications, but also open up new applications for biometric

ecognition. 

.1. Distinctiveness of biometric traits 

The concept of quantifying the distinctiveness of a biometric

rait (in other words, estimating the individuality of a biomet-

ic trait) can be understood from the following simple analogy.

uppose that users in a person recognition system are identified

ased on a 10-digit personal identification number (PIN). The the-

retical limit on the number of users who can be uniquely identi-

ed by such a system is 10 billion. In other words, we can say the

robability that any two users in such a person recognition system

ill have the same PIN is 1 in 10 billion. However, it is not feasi-

le to achieve this theoretical limit in practice because the users

eldom choose a random PIN. 

Similar to the case of PIN, it is important to know how many

sers can be uniquely identified by a biometric system based on a

pecific biometric trait (e.g., right index fingerprint). This informa-

ion is needed when designing large-scale biometric identification

ystems involving tens or hundreds of million users in a biomet-

ic database. Understanding the distinctiveness of traits can help

n the design of biometric templates with sufficient capacity to dis-

inguish between these users. If a single biometric trait is not suf-

cient to meet the desired accuracy, it is essential to know how

any traits (multiple fingerprints, multiple irides, face, etc.) would

e required to identify all individuals in a target population with

he desired accuracy. For example, consider the Aadhaar system in

ndia where the goal is to achieve de-duplication of more than one

illion individuals. This system currently uses ten fingerprints and

wo irides to perform de-duplication. However, there is no rigor-

us scientific basis to either claim that these 12 traits are suffi-

ient to achieve complete de-duplication of a billion identities or

he same purpose can be met with a smaller number of traits. Fur-

her, in forensic applications it is necessary to provide an estimate

f the probability that any two or more individuals may have suffi-

iently similar biometric samples in a given target population. This

s needed, for example, to provide credence to latent fingerprint

vidence. 

One of the basic issues in estimating the individuality of a bio-

etric trait is determining the information level at which the in-

ividuality should be measured. It is possible to define individual-

ty based on (i) the biological trait ( I ( Y ; B )), (ii) the sensed sam-

les/images recorded from the body trait ( I ( Y ; M )), and (iii) the

eatures extracted from the sensed samples ( I ( Y ; X )). For example,

ne can analyze the distinctiveness of the 3D fingerprint pattern at

he tip of a finger, the 2D flat/plain fingerprint image obtained by

ressing the finger against a fingerprint scanner, or (iii) the minu-

iae features extracted from the 2D fingerprint image. 

In general, it is very difficult to directly measure the individ-

ality of the biological trait because only the sensed samples are

vailable for analysis. Since the sensed samples include different

ypes of noise in addition to the biometric information, estimat-

ng the individuality based on raw samples is also very challeng-
ng. Furthermore, individuality at the trait or sample level may be

f little use except as an upper bound on the individuality of a

iometric system. This is because the recognition will be eventu-

lly based on the features extracted from the sensed images. For

nstance, while human faces may be highly distinctive when ob-

erved at sufficient detail (e.g., 3D shape, scars, marks, etc.), indi-

iduality of appearance-based 2D face recognition systems may be

imited by the proportion of identical twins 19 in the target popula-

ion. Consequently, research on the individuality of biometric traits

as primarily focused on estimating the individuality based on the

xtracted features. 

The primary difficulty in estimating individuality of a biomet-

ic trait based on its feature representation is the lack of robust

tatistical models to accurately characterize the intra- and inter-

ubject variations. Consequently, estimating the entropy functions

 ( X ), H ( X | Y ), or H ( Y | X ) becomes a challenging task. Most of the

ttempts made thus far to estimate the individuality of biometric

raits had to make simplifying assumptions in order to keep the

roblem tractable [108] . 

Alternatively, attempts have been made to abandon the idea of

ccurately modeling the features and indirectly estimate individ-

ality based on the match score distributions [61] . The basic as-

umption underlying this approach is that H ( Y | S ), the conditional

ntropy of Y given the match score data S , is a good upper bound

or H ( Y | X ). The main limitation of this approach is the need to ac-

ount for the tails of the match score distributions, which in turn

equires a very large number of biometric samples. This is often

nfeasible due to time and cost considerations. 

A good example of analyzing biometric features based on match

core distributions is the analysis of impostor score distribution us-

ng IrisCodes extracted from 632, 500 different iris images [18] . In

20] , it was estimated that a 2048 bit IrisCode representation con-

ains approximately 249 degrees of freedom. However, this result

s based on a simple matching model that ignores the need to test

ultiple relative rotations of the IrisCode. Therefore, one cannot

irectly conclude that the entropy of an IrisCode template is 249

its. Moreover, it is not straightforward to obtain a precise estimate

f individuality of the IrisCode representation using the above re-

ult because it fails to take into account the genuine score distri-

ution (consequently, intra-subject variations are not modeled). 

Finally, one can argue that the ability of a biometric system

o achieve very low error rates can be considered as evidence of

igh individuality of the underlying biometric trait. This is because

(Y | ˆ Y ) can be considered as a upper bound on H ( Y | X ), where

(Y | ˆ Y ) is a function of the error rates of a biometric system. Es-

imating the individuality based on empirical error rates has two

ain limitations: (i) since the error rates are database-dependent,

t is not easy to extrapolate them when the population size in-

reases by orders of magnitude or when the population character-

stics change, and (ii) the resulting estimate is only a loose lower

ound on the true individuality. For example, if a biometric sys-

em is able to achieve an FMR of 1 in a trillion, it implies that

he entropy of the biometric template could be approximately 40

its. This is the equivalent to the guessing entropy of a randomly

hosen 6 character password chosen from an alphabet of 94 char-

cters [13] . Intuitively, one would expect the true individuality of

 biometric trait to be much higher than this value. 

.2. Persistence of biometric traits 

Persistence of a biometric trait is related to the notion of ag-

ng. Aging refers to changes in a biometric trait or the correspond-
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Fig. 17. Degradation in the accuracy of a face recognition system due to trait aging. This figure shows face images of the same person captured over a period of time 

extracted from a mugshot database provided by the Pinellas County Sheriff’s Office (PCSO). Suppose that we consider the first image on the left as the gallery seed and 

all the other images as probe images. One can easily observe that the match scores output by two state-of-the-art COTS face matchers (denoted as A and B) decrease 

significantly when the time lapse between the gallery and probe images increases. Note that COTS-B matcher appears to be more robust to aging than COTS-A matcher, 

indicating that the face template of COTS-B is better than that of COTS-A in compensating for biological aging. 

Fig. 18. Herschel’s fingerprints at age 7 (a), age 17 (b), and age 40 (c). The pairwise match scores of a state-of-the-art fingerprint matcher for these three fingerprints are: 

(a) vs. (b) 6217; (a) vs. (c) 5032; (b) vs. (c) 5997; the maximum impostor score of (a) against 10,0 0 0 fingerprints in NIST SD4 is 3,325 and that of (b) is 2935, implying that 

these three fingerprint images can be claimed to originate from the same finger with high confidence. 
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ing template over a time span, which can potentially impact the

accuracy of a biometric system. For the sake of clarity, we distin-

guish between two types of aging: trait aging and template aging.

Trait aging refers to the biological change in a trait over a person’s

lifetime. This change is inevitable and, unlike other types of intra-

subject variations, cannot be easily controlled by the individual. For

example, changes in a person’s facial structure and appearance can

occur over time due to the effects of biological aging. This can, in

turn, impact the accuracy of face matchers as shown in Fig. 17 . 

Template aging, on the other hand, refers to changes in a per-

son’s biometric template (i.e., the feature set extracted from the

biometric trait) over time. While template aging is certainly related

to trait aging, it must be noted that the extraction of invariant fea-

tures from a biometric trait can mitigate the impact of trait ag-

ing on template aging. In the case of fingerprints, it is well known

that the friction ridge pattern varies over time due to age-related

as well as occupation-related changes in the outer skin, sebaceous

gland activity, etc. However, these changes, for the most part, do

not significantly impact the distribution of minutiae points in the

fingerprint image (see Fig. 18 ). This explains the use of minutiae

points in defining fingerprint templates that have been successfully

used for over 100 years. Consequently, fingerprint trait aging does

not necessarily result in template aging. Furthermore, the persis-

tence of a biometric trait varies from person to person. 

Since every biological agent experiences aging, it would be face-

tious to assume that biometric traits are persistent over time. The

question that is yet to be answered by the biometric community

is the following: can the degree of permanence of a biometric

trait/template be computed? In other words, is it possible to mea-
ure and predict the degree of change ( ηa ) that a certain trait or

emplate is expected to encounter over an individual’s lifetime? An

nswer to this question would allow for the system to periodically,

nd systematically, update the biometric template of a user in or-

er to account for age related changes [94] . 

The impact of age on the performance of face recognition sys-

ems is well documented [75] . This is primarily because of the

vailability of datasets such as FG-NET [16] and MORPH [78] (also

ee [33] for a list of other face aging databases). Several algorithms

ave been proposed to handle the issue of age variation in face

ecognition [68] . Most of the proposed techniques are learning-

ased schemes in which the pairwise time-lapsed face images of a

arge number of subjects are used to deduce an aging model from

oth a texture and geometric perspective. The learned model is

hen used during the matching phase to account for potential dis-

arity in age between the gallery and the probe images. Account-

ng for this disparity has resulted in improvement in the match-

ng accuracy of face matchers. Additionally, methods for estimat-

ng the age of a face image have also been developed [27] , thereby

ubstantiating—from a computer vision perspective—the manifes-

ation of age on faces. 

While the issue of age disparity has been extensively addressed

or face biometrics, the issue has received less attention in the con-

ext of fingerprint biometrics. This is because the configuration of

pidermal ridges that constitute a fingerprint has been established

o be stable in postnatal life [4,28] . However, more recently, the is-

ue of fingerprint persistence was systematically studied by Yoon

nd Jain [106] . In their study, fingerprint match scores were an-

lyzed using multilevel statistical models. Longitudinal fingerprint
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i  
ecords of 15,597 subjects were sampled from an operational fin-

erprint database such that each individual had at least five 10-

rint records over a minimum time span of 5 years. Their anal-

sis showed that: (i) genuine match scores tend to significantly

ecrease when time interval between two fingerprints in com-

arison increases, whereas the change in impostor match scores

s negligible; and (ii) fingerprint recognition accuracy at opera-

ional settings, nevertheless, tends to be stable as the time in-

erval increases up to 12 years, the maximum time span in the

ataset. 

Recent literature in iris recognition has provided support for

emplate aging [31] . Several researchers have observed a decrease

n TAR when iris templates separated over a long period of time

more than 3 years) were compared [5] . However, none of these

tudies was able to directly relate the degradation in genuine

atch scores with explicit changes in the iris texture itself. Con-

equently, the notion of iris template aging has remained a contro-

ersial issue at the time of writing this paper. 

.3. Unconstrained biometric sensing environment 

There are some person recognition applications where it is very

ifficult to impose constraints on how the biometric trait should be

cquired. One well-known example is latent fingerprints acquired

rom crime scenes. For iris recognition, one of the major issue has

een the usability of iris sensors. Most available iris sensors re-

uire the subject’s eye to be in close proximity to the camera and

xpect the subject to remain still during the acquisition process.

ser acceptance of iris recognition technology can be greatly en-

anced if iris sensors can be designed to capture the iris pattern

t a distance and when the subject is on the move (e.g., Sarnoff’s

ris-on-the-move system [85] ). However, the iris images obtained

n this scenario are unlikely to record the texture details on the iris

urface with high fidelity and may also exhibit large intra-subject

ariations (e.g., rotation and occlusion). Hence, more robust algo-

ithms are required to process such iris images. 

Another classic example of unconstrained sensing environment

s video surveillance, where face images are acquired using closed

ircuit television (CCTV) cameras that monitor public places. Con-

tant video surveillance is deemed to be a successful deterrent

gainst crime and consequently surveillance cameras have rapidly

roliferated around the world, especially in urban areas. As an ex-

mple, it has been estimated that there are more than 1 million

CTV cameras in the city of London alone and around 4.9 mil-

ions of them are spread across the United Kingdom [6] . Almost all

xisting CCTV cameras are passive in the sense that they merely

ecord the video and the stored video is analyzed by human oper-

tors only after an abnormal incident has taken place and reported.

eal-time video processing is seldom carried out to predict or de-

ect an abnormal incident, or to identify a perpetrator. 

The primary challenge in automated video surveillance is how

o detect “persons of interest” in a video and then identify them

sing face recognition systems. 20 Here, we focus only on the prob-

em of identifying the “person of interest” in a surveillance video

sing the face modality. 21 Face recognition in surveillance appli-

ations is a very challenging problem due to the following two

easons: 
20 It is interesting to note that the concept of automatically detecting a person of 

nterest from surveillance video forms the core idea of a television show named 

erson of Interest that is being currently featured on the CBS network. 
21 Note that it is also possible to identify the person using other cues such as 

ait, ear, and soft biometric traits (e.g., tattoos). Another related problem is person 

e-identification, where the objective is to track the same person as he/she passes 

hrough a network of multiple CCTV cameras. 

g  

l  

n  

e  

v  

o  

p  

t  
1. The poor quality of face images captured using CCTV cam-

eras. Factors leading to this degradation in quality may in-

clude low spatial resolution of the camera, large distance be-

tween the subject and the camera, speed at which the sub-

ject is moving, illumination variations at the monitored lo-

cation, and occlusion caused by other objects and people in

the scene. 

2. Since the subject is not expected to be cooperative (not pos-

ing for face capture as in a mugshot scenario), there may be

large pose and expression changes as well as occlusion of fa-

cial features due to the wearing of accessories like caps and

eye-glasses. In some cases, the subject may also intention-

ally hide his face from the camera to avoid detection. 

Apart from the above two issues, surveillance videos typically

rovide a sequence of face images of the same subject, which

eeds to be matched against a gallery of still/mugshot images.

enerally, it is difficult to establish a priori which image in the

ideo sequence is likely to give the correct result. Thus, face recog-

ition in video introduces an additional layer of complexity as well

s opportunity because of the availability of evidence provided by

ultiple probe images that can be combined. 

Despite the above challenges, significant progress has been

chieved in unconstrained face recognition. This was demonstrated

y Klontz and Jain [44] , where the authors simulated the scenario

f using face recognition to identify the suspects in the Boston

arathon bombings (see Fig. 19 ). This was achieved by adding

hree images each of the two suspects (the Tsarnaev brothers) to

 background database of 1 million mugshot images provided by

he Pinellas County Sheriff’s Office. The six images added to the

allery included mugshots as well as face images of the brothers

btained from the social media. The images of the suspects ex-

racted from surveillance cameras and released by the FBI were

sed as probe images to search the gallery using two state-of-

he-art COTS face matchers. It was observed that one of the probe

mages of the younger brother (Dzhokhar Tsarnaev) matched cor-

ectly with his high school graduation photograph included in the

allery (see Fig. 19 ). While this example highlights the potential of

utomated face recognition technology, it also throws light on the

imitations of the state-of-the-art face recognition systems. Firstly,

ue to issues such as pose, low resolution, and occlusion (e.g., cap

nd sunglasses), the elder brother (Tamerlan Tsarnaev) could not

e successfully identified using both the face matchers. Even in the

ase of the younger brother, one can argue that the correct match

as possible only due to the availability of a graduation photo-

raph with a similar pose. Note that the mugshot image of the

ounger brother, which is typically the only image available to the

aw enforcement officials during preliminary investigation, did not

esult in a successful match. This shows that large improvements

n unconstrained face recognition accuracy would be required be-

ore fully automated (“lights-out”) face recognition systems can be

eployed in challenging applications like surveillance. 

.4. System security and user privacy 

While the main motivation for deploying a biometric system

s to protect an application from unauthorized access, there is no

uarantee that a biometric system will be completely secure. Just

ike any other security system, the biometric system may be vul-

erable to a number of security threats (see Fig. 20 ), which may

ventually affect the security of the end application. These security

ulnerabilities may lead to adverse consequences such as denial-

f-service to legitimate users, intrusion by unauthorized users, re-

udiation claims by corrupt users, and erosion of user privacy due

o function creep. A number of studies have comprehensively an-
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Fig. 19. A simulated example to illustrate how face recognition systems could have been used to identify the suspects in the April 2013 Boston marathon bombings [99] . (a) 

The five face images of the suspects obtained from surveillance videos and released by the FBI. (b) A gallery database constructed by adding three portrait images each of 

the two suspects (the Tsarnaev brothers) to a background database of 1 million mugshots provided by the Pinellas County Sheriff’s Office (PCSO). Note that the six images 

added to the gallery included mugshots as well as face images of the brothers obtained from the social media. (c) The top retrieval ranks (after demographic filtering) output 

by a COTS face matcher when the images in (a) are used as probes to search against the gallery in (b). It was observed that one of the probe images of the younger brother 

(Dzhokhar Tsarnaev) matched correctly (at rank 1) with his high school graduation photograph included in the gallery. 
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alyzed the security threats faced by a biometric system and sug-

gested remedial measures [37,79] . 

While many of the adversarial attacks on a biometric sys-

tem such as Trojan horse, replay, and man-in-the-middle attacks

are common to any authentication system and can be addressed

by borrowing ideas from secure password-based authentication

schemes, there are two vulnerabilities that are more specific to

biometric systems. One of them is the problem of spoofing [53] ,
here the biometric sensor is presented with a counterfeit biomet-

ic trait [15,54,107] . Spoof detection is a critical requirement, espe-

ially in unsupervised applications (e.g., authentication on a smart-

hone) where the presence of a user is not being monitored. The

ther major threat is the system security and user privacy issues

rising from the leakage of biometric template information due to

ttacks on the template database. Intentional alteration of biomet-

ic traits in order to avoid identification [105] is also an emerging
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Fig. 20. A summary of possible attacks on a biometric system. While a majority of the security threats are common to any authentication system, the problem of spoofing 

(presentation of fake biometric traits) and attacks on the template database (either to reverse engineer the original biometric data or perform cross-matching) are specific 

to biometric systems. 

t  

m  

v  

p  

u

 

m  

h  

f  

i  

i  

d  

r  

t  

p  

p  

m  

t  

i  

a  

T  

w  

w  

c  

a  

c  

v  

b  

g  

(  

e  

p  

t

 

v  

m  

c  

c  

v  

n  

a  

p  

f  

t  

g  

i  

n  

e  

r  

s  

t

 

b  

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

hreat in some applications (e.g., international border crossing). It

ust be emphasized that biometric system security and user pri-

acy concerns are important public perception issues, which can

otentially derail the success of a biometric system deployment

nless they are addressed comprehensively. 

Spoof detection typically involves checking for signs of hu-

an vitality or liveness (e.g., blood pulse, eye blinking, etc.) and

ence, it is also referred to as liveness detection [52] . To be use-

ul in practice, liveness detection schemes must recognize spoof-

ng attempts in real-time and with high accuracy without caus-

ng too much inconvenience to legitimate users. Though spoof

etection techniques are generally designed for specific biomet-

ic modalities [2,46,47,63,69] , they can be broadly classified into

hree main categories. The first approach involves measuring the

hysiological properties of a live person, which includes blood

ulse/pressure, perspiration, spectral/optical properties of the hu-

an skin/tissues, electrical/thermal characteristics, and deforma-

ion of the muscles/skin. The second approach is based on identify-

ng voluntary or involuntary human behavioral actions like fluctu-

tions in pupil size, blinking, and pupil/eye/head/body movements.

he third category is known as the challenge-response mechanism,

here the system presents a challenge to the user and measures

hether the user responds to the challenge correctly. Examples of

hallenges include prompting a user to recite a randomly gener-

ted phrase/text in speaker verification systems, asking the user to

hange his or her facial expression (e.g., smile or frown) in face

erification systems, or requesting the user to present multiple

iometric traits (e.g., different sequence of fingers) in a randomly

enerated sequence. The key design issues in spoof detection are:

i) how to systematically evaluate the risk of spoofing in a given

nd application? and (ii) how to select one or more of above ap-

roaches to achieve an acceptable tradeoff between spoof detec-

ion accuracy and user convenience? 

One of the critical steps in minimizing the security and pri-

acy risks associated with biometric systems is to protect the bio-

etric templates stored in the system database. While the risks
an be mitigated to some extent by storing the templates in a de-

entralized fashion (e.g., templates can be stored in individual de-

ices such as smart cards carried by the user), such solutions are

ot always feasible in many large-scale applications that require

 central template database. The ideal solution for biometric tem-

late protection is to eliminate the need to store any biometric in-

ormation in the database. This can be achieved by transforming

he biometric trait into a pseudo-random key, which can be re-

enerated every time a new sample of the same biometric trait

s presented [93] . Note that to preserve the recognition accuracy,

on-mate samples (from different subjects) must result in differ-

nt keys. However, the above concept of biometric key generation

epresents the holy grail of biometrics because it requires a repre-

entation scheme that is invariant to intra-user variations, but at

he same time unique to each user. 

A more practical and feasible solution is to transform the raw

iometric template into a “secure” template, which satisfies the

ollowing three requirements. 

1. Non-invertibility: It must be computationally hard to recover

the biometric features from the stored template. This pre-

vents the adversary from replaying the biometric features

gleaned from the template or creating physical spoofs of the

biometric trait. Non-invertibility is quantified by H(X E | ̂ X E ) ,

where ̂ X E is the secure template generated from the raw

template X E . 

2. Non-linkability: It should be possible to create multiple se-

cure templates from the same biometric data that are not

linkable. This property not only enables the biometric sys-

tem to revoke and re-issue new biometric templates when

the template database is compromised, but also ensures that

cross-matching across databases is not possible, thereby pre-

serving the user’s privacy. Non-linkability can be measured

by H(Y | ̂ X 

1 
E 
, ̂ X 

2 
E 
, . . . ) , where ̂ X 

1 
E 
, ̂ X 

2 
E 
, . . . are multiple secure

templates generated based on biometric features extracted

from the same user Y . 
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3. Discriminability: The secure template should not degrade

the recognition accuracy of the biometric system. In other

words, H(Y | X R , 
̂ X E ) should be as close as possible to

H ( Y | X R , X E ). 

The main challenge in biometric template protection is to de-

sign a scheme that generates non-invertible and non-linkable tem-

plates without compromising on the matching accuracy. This boils

down to designing a template protection scheme such that H(X E |
 X E ) and H(Y | ̂ X 

1 
E , 

̂ X 

2 
E , . . . ) are maximized, while minimizing H(Y |

X R , 
̂ X E ) . While several approaches such as feature transformation

[77] and biometric cryptosystems [22] have been proposed in the

literature, the search for a secure biometric template satisfying

all the three requirements has proved to be elusive thus far. The

emerging homomorphic encryption technology 22 appears to be

promising solution for securing biometric templates because it en-

ables matching in the encrypted domain. 

Another issue that has gained considerable attention is the con-

cept of public self-disclosures through online social networks. A

large number of face photos are being posted online through so-

cial networks such as Facebook. Recent research has established

the possibility of deducing potentially sensitive personal data by

combining online social network data with off-the-shelf face recog-

nition technology and cloud computing power. 23 In order to ad-

dress this problem, techniques such as Visual Cryptography [81]

and Privacy-preserving Photo Sharing [74] have been proposed.

However, this continues to be an important area of research as in-

dividuals begin to share large amounts of biometric data (viz., face

and voice data) through online social networks. 

Finally, the ease with which face and voice data can be surrepti-

tiously recorded using devices such as Google Glass has also raised

privacy concerns. 24 The recorded data can potentially be used to

deduce an individual’s identity and personal information. In order

to counter this possibility, researchers have developed ‘Anti-Google

Glass’ technology—a pair of glasses outfitted with LEDs that emit

near-infrared light into Google Glass cameras thereby preventing

face recognition techniques from detecting a face [104] . The use of

facial cosmetics has also been shown to degrade the accuracy of

face recognition techniques [17] . 

6. The future of biometric recognition 

While improvements in biometric algorithms (feature extrac-

tion, matching, and security fixes) will continue to play a major

role in shaping the future of biometric recognition, it is also im-

portant to keep in mind that changes in enabling technologies and

products will also have a significant influence on how biometric

recognition systems will evolve in the future. For instance, expo-

nential improvements in the performance and cost of processors

and memory have already played a dominant role in the develop-

ment of better biometric sensors. Similarly, advancements in the

field of bioelectronics have created new products like lab-on-a-

chip. This in turn has enabled rapid DNA analysis and opened up

new frontiers for the use of DNA as a biometric identifier. Rapid

improvements in communication technologies and proliferation of

consumer electronic devices (e.g., smartphones) have also created

new avenues for the deployment of biometrics. In applications

such as device personalization (e.g., entertainment systems, au-

tomobiles), financial transactions (e.g., ATM machines, credit card

purchase), facility access (e.g., fitness gyms, private apartments)
22 http://www.fujitsu.com/global/news/pr/archives/month/2013/20130828-01.html . 
23 http://www.blackhat.com/docs/webcast/acquisti-face-BH-Webinar-2012-out. 

pdf . 
24 http://www.telegraph.co.uk/technology/google/10494231/The- places- where- 

Google- Glass- is- banned.html . 

a  

e  

h  

a  
nd online social networks (e.g., messaging over FaceBook), people

re likely to avail of biometric technology on a daily basis. 

.1. New sensors and computing platforms 

In 1965, Gordon Moore [58] predicted that the number of com-

onents (transistors) in an integrated circuit (IC) is likely to dou-

le approximately every two years for the next 10 years, while the

nit cost of each component is likely to fall. Remarkably, this pre-

iction (also called the Moore’s Law) has held true for nearly half-

-century. In the case of biometric recognition, the direct impact

f the rapid improvements in ICs is the development of smaller,

heaper, and higher quality biometric sensors as discussed ear-

ier in Section 3 . Improvement in sensors has mitigated the intra-

ubject variations caused to sensor limitations to a large extent. It

s expected that the performance of ICs will continue to improve

t the same rates in the near future. 25 This will act as a catalyst

or the development of novel sensors, which can be expected to

urther push the limits on quality, usability, and cost. Sensors that

an capture multiple biometric traits of the user simultaneously

e.g., all biometric modalities in the human face or human hand)

re also likely to developed. It is also necessary to develop a user-

riendly ergonomic interface that can still permit the acquisition of

epeatable biometric samples from a subject, i.e., reduce the varia-

ions caused due to user interactions. 

As a direct consequence of this improvement in ICs, the per-

ormance of microprocessors has been doubling every two years,

hile the cost of computing is decreasing at the same rate (see

ig. 21 (a)). A similar trend has also been occurring in the case of

andom access memory (RAM) (see Fig. 21 (b)) and other storage

evices. These exponential improvements in computing and stor-

ge have enabled the deployment of more powerful algorithms to

rocess the captured biometric data. For instance, even though the

oncept of neural networks had been known for more than 30

ears, the availability of powerful processors and the ability to ef-

ciently handle large amounts of data has played a key role in the

evelopment of deep learning algorithms, which are powerful tools

n many pattern recognition applications. 

The availability of cloud computing has also presented new op-

ortunities. Firstly, a cloud architecture can be used to store and

ccess biometric data across different entities (e.g., organizations

r countries) under differential policies (e.g., policies defining level

f access and data usage). Secondly, a cloud framework can be

sed by clients to access biometric software development kits (e.g.,

ace matcher) on a need-to-use basis or based on anticipated work-

oad. In such a scenario, biometric recognition can be viewed as

 service. Thirdly, cloud-based biometrics can facilitate rapid ana-

ytics (e.g., recognizing a face using a smartphone camera, where

he phone accesses the cloud) due to the availability of a large

umber of parallel nodes (i.e., computational/software resources).

owever, appropriately harnessing the power of cloud computing,

hile preserving the privacy and security of biometric data, re-

ains an open-problem in the context of biometrics. 

.2. Ubiquitous biometrics 

The notion of ubiquitous biometrics may refer to the identifi-

ation of an individual at any time and at any place by utilizing

ll the pieces of information—both biometric and non-biometric—

vailable about the person. An ubiquitous biometric system will

xploit other identity cues such as a person’s location [57] , be-

avior, and recent interaction history [76] in conjunction with the

vailable biometric data (including soft biometric characteristics
25 http://www.itrs.net/Links/2012ITRS/Home2012.htm . 

http://www.fujitsu.com/global/news/pr/archives/month/2013/20130828-01.html
http://www.blackhat.com/docs/webcast/acquisti-face-BH-Webinar-2012-out.pdf
http://www.telegraph.co.uk/technology/google/10494231/The-places-where-Google-Glass-is-banned.html
http://www.itrs.net/Links/2012ITRS/Home2012.htm
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Fig. 21. Dramatic improvements in (a) processor performance and (b) random ac- 

cess memory (RAM) capacity due to the doubling of transistors in integrated cir- 

cuits (ICs) every two years (Moore’s Law) [56,59] . While the processor performance 

(measured in millions of instructions per second (MIPS)) and RAM capacity (mea- 

sured in megabytes) have improved by more than six orders of magnitude (as indi- 

cated by the blue lines) over the last 40 years, the per unit costs of these compo- 

nents have been falling exponentially (as indicated by the green lines). These im- 

provements have directly impacted the evolution of biometric sensors enabling the 

creation of smaller, cheaper, and higher quality biometric sensors. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 

[  

l  

t  

t  

s  

s  

i  

I  

a  

a  

t  

e  

a

 

b  

a  

i  

r  

M  

p  

d  

e  

o

 

d  

p  

s  

o  

i  

s  

c  

i  

a  

b  

a

6

 

t  

n  

s  

a  

w  

a  

o  

p  

a  

n  

a  

p  

i

 

f  

c  

c  

k  

d  

n  

d  

t  

d  

p  

h  

r  

m  

a  

h

6

 

m  

p  

m  

a  

a  

u  

k  

n  

26 It is estimated that over 1.7 billion mobile phones were sold worldwide in 2012 

alone. Source: http://www.gartner.com/newsroom/id/2335616 . 
27 http://vaxtrac.com/about . 
110] ) to establish the person’s identity with a high degree of re-

iability. This concept can be understood from the following illus-

rative example. Suppose that a user wishes to perform a banking

ransaction using his smartphone equipped with a face recognition

ystem. Apart from capturing the person’s face, the authentication

ystem can also obtain information about the user’s location us-

ng the Global Positioning System sensors available on the phone.

t is also possible to obtain information on the user’s recent inter-

ctions with the phone (e.g., the applications that were accessed)

s well as the transaction history of the user with the bank (e.g.,

ransaction type, amount involved, beneficiaries). All these bits of

vidence about the user can be integrated to obtain a strong assur-

nce of identity. 

An alternate perspective on ubiquitous biometrics is to venture

eyond the task of establishing the identity of a person and gather

dditional information about the person. For instance, apart from

dentifying an individual using the face image, the system can also

ecognize the person’s mood based on his facial expressions [9] .

oving one step further, it may be possible to find out the person’s
references and behavioral characteristics by mining his social me-

ia profile [76] . This additional knowledge about the user would be

xtremely useful in applications that require personalized delivery

f services. 

It must be emphasized that caution must be exercised when

esigning such ubiquitous biometric systems. Issues such as ap-

lication context and user privacy concerns must be carefully as-

essed and appropriate checks and balances must be in place in

rder to prevent abuse of biometric recognition systems for un-

ntended purposes. For example, buying a meal from a restaurant

hould not require the same level of identity assurance as in the

ase of performing a high-value financial transaction. Similarly, the

ssues related to the ownership of personal data and appropri-

te usage rights should be resolved before designing an ubiquitous

iometric system that is capable of inferring the complete person-

lity profile of a person. 

.3. Biometrics for social good 

Biometric systems are being increasingly deployed in applica-

ions where societal benefits, and not security alone, is the domi-

ant motivating factor. As discussed in Section 1 , many national ID

ystems around the world are basically focused on giving the poor

nd illiterate people primarily in rural areas an identity, which

ill allow them to taste the benefits of social welfare schemes

nd health-care services provided by government and non-profit

rganizations. The rapid proliferation of mobile phones 26 has also

layed a major role in accelerating this trend. While mobile phones

re generally considered only as a convenient tool for commu-

ication and entertainment, they are being increasingly used as

 mechanism to deliver services and benefits to segments of the

opulation, who were hitherto unreachable due to lack of physical

nfrastructure. 

A good example of the usage of mobile phones and biometrics

or delivering health-care services is the mobile-phone based vac-

ination registry developed by VaxTrac, 27 which is used in African

ountries like Benin. The primary purpose of this registry is to

eep track of the vaccine doses given to children so that redundant

oses can be avoided, while simultaneously improving the immu-

ization coverage. Since the children undergoing immunization sel-

om have proper identity documents and are often known only by

heir first name, it has been very difficult to keep track of vaccine

oses administered to them. The VaxTrac system utilizes finger-

rint biometrics to address this problem. An unsolved problem is

ow to acquire fingerprint images (or for that matter other biomet-

ic traits) of newborns and infants that are of sufficient quality for

atching over a two-year time span [36] . Similarly, the youngest

ge at which an infant’s fingerprint can be successfully captured

as not been established ( Fig. 22 ). 

.4. Biometrics and forensics 

Although forensics was one of the earliest applications of bio-

etric recognition, biometric systems are yet to live up to their full

otential in solving the problems faced by forensic experts. Bio-

etric recognition can be used in forensics in two distinct ways: (i)

s a tool to assist in investigation by identifying suspects and (ii)

s an evidence in a court of law. It is worth noting that these two

se-cases have very different requirements. In the first case, the

ey requirements are the speed and accuracy of biometric recog-

ition under challenging imaging conditions. However, errors are

http://www.gartner.com/newsroom/id/2335616
http://vaxtrac.com/about
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Fig. 22. Capturing an infant’s fingerprints using an optical sensor. (a) Image acquisition setup. (b) and (c) Two fingerprint impressions of a four-month-old girl’s left thumb; 

minutiae in these images were extracted using a commercial fingerprint SDK. The match score between these two fingerprints is 216 which indicates a high similarity (the 

threshold at FAR = 0% for this matcher on FVC2002 DB1-A is 51). In this example, the infant’s fingerprints were successfully acquired and matched. However, this may not be 

the case for all infants across different sensors, demographic and age groups. 
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tolerable to some extent in this scenario because the investigat-

ing officers can make use of other contextual information (e.g.,

demographic filtering) to eliminate some of the false matches. In

the second scenario, the primary requirement is a convincing pre-

sentation of biometric evidence with strong statistical basis to the

judge and the jury. This in turn involves obtaining a reliable es-

timate of the individuality of a biometric trait. Based on the dis-

cussion in Section 5 , it should be clear that both the above re-

quirements (recognition accuracy and individuality estimation) are

not fully solved problems. Furthermore, Champod [14] argues that

traditional performance metrics like FMR and FNMR are not suit-

able for evidence presentation in a court of law and new metrics

such as Rate of Misleading Evidence in favor of the Defense and

Rate of Misleading Evidence in favor of the Prosecution are needed

to describe the performance of biometric systems in the forensics

domain. 

One of the interesting developments in the intersection of

forensics and biometrics is the advancements in matching of DNA

samples. The current standard procedures for DNA testing, namely

polymerase chain reaction and short tandem repeat (STR) analysis,

have been in place for around two decades now [62] . Since these

procedures typically involve laboratory analysis by human opera-

tors, it may take several hours to several days to obtain an STR

profile from a buccal swab. However, prototype devices are now

available for rapid DNA analysis [90] . These devices fully automate

the process of developing an STR profile from a reference buccal

swab and have a response time of less than two hours. In the near

future, it may be possible to further speed up this process to a

few minutes, thereby making DNA as a feasible biometric modality

even in applications other than forensics. However, one needs to be

extremely cautious about the privacy issues associated with DNA-

based biometric systems because the DNA samples (or templates)

may contain a wealth of personal information (e.g., susceptibility

to diseases). 

The use of forensic evidence in U.S. Federal courts (and in sev-

eral State courts) is guided by the Federal Rules of Evidence. In

particular, Rule 702 states that testimony provided by an expert

witness must be “based on sufficient facts or data”. The Daubert

standard, which largely stemmed from Rule 702, further defined

the criteria for the admissibility of scientific evidence. In Daubert

v. Merrell Dow Pharmaceuticals, 509 U.S. 579, the Court ruled that

the validity of scientific testimony has to satisfy relevancy and reli-

ability standards, i.e., the expert’s testimony should be “relevant to
the task at hand and should rest” on a reliable foundation. Care- s  
ully answering the related questions will play a critical role not

nly in legal proceedings, but also in bolstering the scientific ba-

is for biometric methods used in forensic investigations (e.g., la-

ent fingerprint matching). In particular, it will be the first step

n assuaging criticism leveled by the 2009 National Academy of

ciences’ report, Strengthening Forensic Science in the United States:

 Path Forward , which concluded that claims about the eviden-

ial value of forensic data are not supported by rigorous scientific

tudy. 

. Summary 

To counter growing security threats and financial fraud, and to

acilitate personalization and convenience, the importance of bio-

etrics as a reliable tool for person recognition has been estab-

ished beyond doubt. It is indeed fascinating that a system can rec-

gnize a person with extremely high accuracy within a fraction of

 second based on the friction ridge pattern on the tip of his finger,

r the textural patterns on the stroma of his iris, using a commod-

ty processor such as a laptop or a mobile phone. This is a signifi-

ant achievement given that the first paper in automated biometric

ecognition was published only 50 years ago. 

In this paper, we have attempted to summarize the state of the

rt in biometrics recognition and have identified key challenges

hat deserve attention. The biometrics community has indeed

ome a long way over the past 50 years. On one hand, tremendous

rogress has been made in designing large-scale biometric systems

hat can rapidly search through biometric databases in order to re-

rieve a matching identity (e.g., the IrisGuard system deployed in

he UAE). On the other hand, the advent of smartphones and other

onsumer devices has led to enhanced interest in designing bio-

etric solutions for resource-constrained devices (e.g., the Touch

D fingerprint system in iPhones). Modern biometric systems are

eing increasingly tuned to deal with poor quality data, including

hose encountered in traditional forensics applications. These ad-

ancements have been facilitated by attendant progress in comput-

ng power, signal processing, computer vision, pattern recognition

nd machine learning. 

Despite the challenges that remain, the biometrics community

an celebrate its accomplishments over the past 50 years. The tech-

ology has indeed redefined the landscape of personal authentica-

ion. In order to take biometrics technology to the next level, so

hat it is pervasive (a la the movie Minority Report ), biometric re-

earchers need to be aware of the application requirements while
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ot ignoring the algorithmic and privacy models necessary to reli-

bly extract and match traits. 
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ppendix A. Image sources 

The following illustrations in this paper have been generated

sing images downloaded from the Internet. The corresponding

mage links are listed below. 

• Fig. 4 

• http://upload.wikimedia.org/wikipedia/commons/7/74/ 

Bertillon _ - _ Signalement _ Anthropometrique.png 

• http://nutrias.org/ ∼nopl/monthly/sept2002/bcdhowell.jpg 

• Fig. 7 

• http://galton.org/fingerprints/images/ 

faulds- 1920- 08- 27- thumb.gif 

• http://upload.wikimedia.org/wikipedia/commons/e/ec/ 

Francis _ Galton _ 1850s.jpg 

• http://criminaljustice.state.ny.us/ojis/history/images/henry. 

jpg 

• http://www.thehindu.com/multimedia/dynamic/00835/ 

IN13 _ AADHAR _ CARD _ 835657f.jpg 

• Fig. 10 

• http://groups.csail.mit.edu/medg/people/doyle/gallery/ 

bledsoe/bledsoe.gif 

• http://photodoto.com/wp-content/uploads/2011/10/ 

history-photo-camera-9.jpg 

• http://photodoto.com/wp-content/uploads/2011/10/ 

history-photo-camera-14.jpg 

• http://commons.wikimedia.org/wiki/File:Three _ Surveillance _ 

cameras.jpg 

• http://siliconcowboy.files.wordpress.com/2010/11/jphone.jpg 

• http://upload.wikimedia.org/wikipedia/commons/6/67/ 

Xbox- 360- Kinect- Standalone.png 

• http://static7.businessinsider.com/image/ 

4d013ea7cadcbb7033010 0 0 0/looxcie- video- camera.jpg 

• http://cdn.techinasia.com/wp-content/uploads/2013/03/ 

samsung- galaxy- s4- white.jpg 

• Fig. 11 

• http://www.icb12.iiitd.ac.in/images/daugman.jpg 

• http://upload.wikimedia.org/wikipedia/commons/1/1b/ 

IriScan _ model _ 2100 _ iris _ scanner _ 1.jpg 

• https://www.fbo.gov/index?s=opportunity&mode=form&tab= 

core&id=1d31acd78d7a20b1fe598bf4b4661d6b 

• http://www.sri.com/engage/products-solutions/ 

iom- passport- portal- system 

• http://i2.cdn.turner.com/cnn/dam/assets/130411103216- 

biometric- scanning- iphone- tool- horizontal- gallery.jpg 

• http://www.geekalerts.com/u/fingerprint-mouse.jpg 

eferences 

[1] A. Abaza , A. Ross , C. Herbert , M.A.F. Harrison , M. Nixon , A survey on ear bio-

metrics, ACM Comput. Surv. 45 (2) (2013) 22:01–22:35 . 
[2] A. Antonelli , R. Cappelli , D. Maio , D. Maltoni , Fake finger detection by skin
distortion analysis, IEEE Trans. Inform. Forensics Secur. 1 (3) (2006) 360–373 .

[3] D.R. Ashbaugh , Quantitative-Qualitative Friction Ridge Analysis: An Introduc-
tion to Basic and Advanced Ridgeology, CRC Press, 1999 . 

[4] W.J. Babler , Embryologic development of epidermal ridges and their configu-
rations, Birth Defects—Orig. 27 (2) (1991) 95–112 . 

[5] S. Baker , K.W. Bowyer , P.J. Flynn , Empirical evidence for correct Iris match
score degradation with increased time-lapse between gallery and probe

matches, in: Proceedings of IEEE International Conference on Biometrics, Al-

ghero, Italy, 2009, pp. 1170–1179 . 
[6] D. Barrett, One surveillance camera for every 11 people in Britain, says

cctv survey, (The Telegraph) (2013) . http://www.telegraph.co.uk/technology/ 
10172298/One- surveillance- camera- for- every- 11- people- in- Britain- says- 

CCTV-survey.html (accessed 24.03.16). 
[7] P.N. Belhumeur , J.P. Hespanha , D.J. Kriegman , Eigenfaces vs. fisherfaces:

Recognition using class specific linear projection, IEEE Trans. Pattern Anal.

Mach. Intell. 19 (7) (1997) 711–720 . 
[8] A. Bertillon , Signaletic Instructions including the Theory and Practice of An-

thropometrical Identification, R.W. McClaughry Translation, The Werner Com-
pany, 1896 . 

[9] V. Bettadapura, Face expression recognition and analysis: The state of the
art(2012), preprint arxiv:1203.6722 . 

[10] J.R. Beveridge , G.H. Givens , P.J. Phillips , B.A. Draper , Factors that influence al-

gorithm performance in the face recognition grand challenge, Comput. Vis.
Image Understand. 113 (6) (2009) 750–762 . 

[11] V. Blanz , T. Vetter , Face recognition based on fitting a 3d morphable model,
IEEE Trans. Pattern Anal. Mach. Intell. 25(9) (2003) 1063–1074 . 

[12] W.W. Bledsoe , Man-machine Facial Recognition, Technical Report, PRI 22,
Panoramic Research, Inc., 1966 . 

[13] W.E. Burr , D.F. Dodson , W.T. Polk , Information Security: Electronic Authenti-

cation Guideline, Technical Report Special Report 800–63, NIST, 2006 . 
[14] C. Champod , Introducing a LR-based identification system in forensic practice:

opportunities and challenges, in: Proceedings of International Workshop on
Biometrics and Forensics (IWBF), Lisbon, Portugal, 2013 . 

[15] I. Chingovska , A. Anjos , S. Marcel , On the effectiveness of local binary patterns
in face anti-spoofing, in: IEEE BIOSIG’12, IEEE, 2012, pp. 1–7 . 

[16] J.L. Crowley, The FG-NET aging database. http://www-prima.inrialpes.fr/

FGnet/ (accessed 24.03.16), 2004. 
[17] A. Dantcheva , C. Chen , A. Ross , Can facial cosmetics affect the matching accu-

racy of face recognition systems? in: Proceedings of 5th IEEE International
Conference on Biometrics: Theory, Applications and Systems (BTAS), IEEE,

2012, pp. 1–8 . 
[18] J. Daugman , Probing the uniqueness and randomness of IrisCodes: Re-

sults from 200 billion iris pair comparisons, Proc. IEEE 94 (11) (2006) 

1927–1935 . 
[19] J.G. Daugman , High confidence visual recognition of persons by a test of sta-

tistical independence, IEEE Trans. Pattern Anal. Mach. Intell. 15 (11) (1993)
1148–1160 . 

[20] J.G. Daugman , The importance of being random: Statistical principles of iris
recognition, Pattern Recogn. 36 (2) (2003) 279–291 . 

[21] Department of Homeland Security, Office of Biometric Identity Management.
https://www.dhs.gov/obim (accessed 24.03.16), 2013. 

[22] Y. Dodis , R. Ostrovsky , L. Reyzin , A. Smith , Fuzzy Extractors: How to Generate

Strong Keys from Biometrics and Other Noisy Data, SIAM Journal on Comput-
ing 38 (1) (2008) 97–139 . 

[23] N. Duta , A survey of biometric technology based on hand shape, Pattern
Recogn. 42 (11) (2009) 2797–2806 . 

[24] R.H. Ernst, Hand ID system. United States patent number US 3576537; 1971. 
[25] L. Flom, A. Safir, Iris recognition system. United States patent number US

4641349; 1987. 

[26] J.-Y. Fourre, S. Picard, F. Rieul, J.-C. Fondeur, Device for acquiring images of
patterns formed by furrows in the skin of fingers or the palm of the hand.

United States patent number US 7912250; 2011. 
[27] Y. Fu , G. Guo , T.S. Huang , Age synthesis and estimation via faces: A survey,

IEEE Trans. Pattern Anal. Mach. Intell. 32 (11) (2010) 1955–1976 . 
[28] F. Galton , Finger Prints, McMillan & Co, London, UK, 1892 . 

[29] Google, Inc., Google Glass. http://www.google.com/glass/start/ (accessed

01.01.13), 2013. 
[30] C. Greenberg, V. Stanford, A. Martin, M. Yadagiri, G. Doddington, The

2012 NIST Speaker Recognition Evaluation. http://www.nist.gov/itl/iad/mig/ 
sre12results.cfm (accessed 24.03.16), 2012. 

[31] P. Grother , J.R. Matey , E. Tabassi , G.W. Quinn , M. Chumakov , IREX VI: Tempo-
ral Stability of Iris Recognition Accuracy, Technical Report NISTIR 7948, NIST,

2013 . 

[32] P. Grother , G.W. Quinn , J.R. Matey , M. Ngan , W. Salamon , G. Fiumara , C. Wat-
son , IREX III: Performance of Iris Identification Algorithms, Technical Report

NISTIR 7836, NIST, 2012 . 
[33] J.C. Hager, Aging of the face. http://face- and- emotion.com/dataface/facets/

aging.jsp (accessed 01.01.13), 2013. 
[34] M.R. Hawthorne , Fingerprints: Analysis and Understanding, CRC Press, 2009 . 

[35] Innocence Project, DNA Exonerations Nationwide. http://www. 

innocenceproject.org/free-innocent/improve- the- law/fact- sheets/ 
dna- exonerations- nationwide (accessed 24.03.16), 2013. 

[36] A.K. Jain , K. Cao , S.S. Arora , Recognizing infants and toddlers using finger-
prints: Increasing the vaccination coverage, in: Proceedings of International

Joint Conference on Biometrics, IEEE, 2014, pp. 1–8 . 

http://upload.wikimedia.org/wikipedia/commons/7/74/Bertillon_-_Signalement_Anthropometrique.png
http://nutrias.org/~nopl/monthly/sept2002/bcdhowell.jpg
http://galton.org/fingerprints/images/faulds-1920-08-27-thumb.gif
http://upload.wikimedia.org/wikipedia/commons/e/ec/Francis_Galton_1850s.jpg
http://criminaljustice.state.ny.us/ojis/history/images/henry.jpg
http://www.thehindu.com/multimedia/dynamic/00835/IN13_AADHAR_CARD_835657f.jpg
http://groups.csail.mit.edu/medg/people/doyle/gallery/bledsoe/bledsoe.gif
http://photodoto.com/wp-content/uploads/2011/10/history-photo-camera-9.jpg
http://photodoto.com/wp-content/uploads/2011/10/history-photo-camera-14.jpg
http://commons.wikimedia.org/wiki/File:Three_Surveillance_cameras.jpg
http://siliconcowboy.files.wordpress.com/2010/11/jphone.jpg
http://upload.wikimedia.org/wikipedia/commons/6/67/Xbox-360-Kinect-Standalone.png
http://static7.businessinsider.com/image/4d013ea7cadcbb7033010000/looxcie-video-camera.jpg
http://cdn.techinasia.com/wp-content/uploads/2013/03/samsung-galaxy-s4-white.jpg
http://www.icb12.iiitd.ac.in/images/daugman.jpg
http://upload.wikimedia.org/wikipedia/commons/1/1b/IriScan_model_2100_iris_scanner_1.jpg
https://www.fbo.gov/index?s=opportunity&mode=form&tab=core&id=1d31acd78d7a20b1fe598bf4b4661d6b
http://www.sri.com/engage/products-solutions/iom-passport-portal-system
http://i2.cdn.turner.com/cnn/dam/assets/130411103216-biometric-scanning-iphone-tool-horizontal-gallery.jpg
http://www.geekalerts.com/u/fingerprint-mouse.jpg
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0001
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0002
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0002
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0002
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0002
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0002
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0003
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0003
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0004
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0004
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0005
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0005
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0005
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0005
http://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0007
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0007
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0007
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0007
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0008
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0008
arxiv:/1203.6722
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0009
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0009
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0009
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0009
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0009
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0010
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0010
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0010
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0011
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0011
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0012
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0012
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0012
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0012
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0013
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0013
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0014
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0014
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0014
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0014
http://www-prima.inrialpes.fr/FGnet/
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0015
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0015
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0015
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0015
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0016
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0016
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0017
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0017
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0018
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0018
https://www.dhs.gov/obim
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0019
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0019
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0019
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0019
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0019
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0020
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0020
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0021
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0021
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0021
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0021
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0022
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0022
http://www.google.com/glass/start/
http://www.nist.gov/itl/iad/mig/sre12results.cfm
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0023
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0024
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0024
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0024
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0024
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0024
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0024
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0024
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0024
http://face-and-emotion.com/dataface/facets/aging.jsp
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0025
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0025
http://www.innocenceproject.org/free-innocent/improve-the-law/fact-sheets/dna-exonerations-nationwide
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0026
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0026
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0026
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0026


104 A.K. Jain et al. / Pattern Recognition Letters 79 (2016) 80–105 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

 

 

 

[37] A.K. Jain, K. Nandakumar, A. Nagar, Biometric template security, EURASIP J.
Adv. Signal Process. 20 08 (20 08) 1–17. Article ID 579416, doi: 10.1155/2008/

579416 . 
[38] A.K. Jain , S. Prabhakar , S. Pankanti , On the similarity of identical twin finger-

prints, Pattern Recogn. 35 (11) (2002) 2653–2663 . 
[39] A.K. Jain , A. Ross , K. Nandakumar , Introduction to Biometrics, Springer, 2011 . 

[40] A .K. Jain , A . Ross , S. Pankanti , A prototype hand geometry-based verification
system, in: 2nd International Conference on Audio- and Video-based Biomet-

ric Person Authentication (AVBPA), Washington D.C., 1999, pp. 166–171 . 

[41] T. Kanade , Picture processing system by computer complex and recognition
of human faces, (Ph.D. thesis) Kyoto University, 1973 . 

[42] K. Khoshelham , S.O. Elberink , Accuracy and resolution of kinect depth data
for indoor mapping applications, Sensors 12 (2) (2012) 1437–1454 . 

[43] B. Klare , M. Burge , J. Klontz , R. Vorder Bruegge , A. Jain , Face recognition per-
formance: Role of demographic information, IEEE Trans. Inform. Forensics. Se-

cur. 7 (6) (2012) 1789–1801 . 

[44] J.C. Klontz , A.K. Jain , A Case Study on Unconstrained Facial Recognition Us-
ing the Boston Marathon Bombings Suspects, Technical Report MSU-CSE-13-4,

Michigan State University, 2013 . 
[45] A. Kong , D. Zhang , M. Kamel , A survey of palmprint recognition, Pattern

Recogn. 42 (7) (2009) 1408–1418 . 
[46] E.C. Lee , K.R. Park , J. Kim , Fake iris detection by using Purkinje image, in:

Proceedings of International Conference on Biometrics, Hong Kong, China, in:

LNCS, vol. 3832, 2006, pp. 397–403 . 
[47] J. Li , Y. Wang , T. Tan , A. Jain , Live face detection based on the analysis of

Fourier spectra, in: Proceedings of SPIE Conference on Biometric Technology
for Human Identification, Orlando, USA, vol. 5404, 2004, pp. 296–303 . 

[48] D. Lowe , Distinctive image features from scale-invariant key points, Int. J.
Comput. Vis. 60 (2) (2004) 91–110 . 

[49] Y.M. Lui , D. Bolme , B. Draper , J. Beveridge , G. Givens , P. Phillips , A meta-

analysis of face recognition covariates, in: IEEE 3rd International Conference
on Biometrics: Theory, Applications, and Systems (BTAS), IEEE, 2009, pp. 1–8 .

[50] M. Indovina , V. Dvornychenko , E. Tabassi , G. Quinn , P. Grother , S. Meagher ,
M. Garris , ELFT Phase II—An Evaluation of Automated Latent Fingerprint Iden-

tification Technologies, Technical Report NISTIR 7577, NIST, 2009 . 
[51] D. Maltoni , D. Maio , A.K. Jain , S. Prabhakar , Handbook of Fingerprint Recogni-

tion, 2nd ed., Springer Verlag, 2009 . 

[52] E. Marasco , A. Ross , A survey on antispoofing schemes for fingerprint recog-
nition systems, ACM Comput. Surv. 47 (2) (2015) A:1–A:36 . 

[53] S. Marcel , M. Nixon , S.Z. Li , Handbook of Biometric Anti-Spoofing, Springer,
2014 . 

[54] T. Matsumoto , H. Matsumoto , K. Yamada , S. Hoshino , Impact of artificial
gummy fingers on fingerprint systems, in: Optical Security and Counterfeit

Deterrence Techniques IV, Proceedings of SPIE, San Jose, USA, vol. 4677, 2002,

pp. 275–289 . 
[55] A.J. Mauceri , Feasibility Study of Personal Identification by Signature Verifica-

tion, Technical Report SID65-24, North American Aviation, 1965 . 
[56] J.C. McCallum, Memory Prices (1957–2013). http://www.jcmit.com/

memoryprice.htm (accessed 24.03.16), 2013. 
[57] Y.-A . de Montjoye , C.A . Hidalgo , M. Verleysen , V.D. Blondel , Unique in the

Crowd: The privacy bounds of human mobility, Sci. Rep. 3 (1376) (2013) 1–5 .
[58] G.E. Moore , Cramming more components onto integrated circuits, Electronics

38 (8) (1965) 82–85 . 

[59] H. Moravec, List of Microprocessors. https://www.frc.ri.cmu.edu/ ∼hpm/
book97/ch3/processor.list.txt (accessed 24.03.16), 1997. 

[60] National Institute of Standards and Technology —Information Technology Lab-
oratory, NIST Special Database 32—Multiple Encounter Dataset (MEDS). http:

//www.nist.gov/itl/iad/ig/sd32.cfm (accessed 24.03.16), 2010. 
[61] C. Neumann , C. Champod , R. Puch-Solis , N. Egli , A. Anthonioz , A. Bromage-

Griffiths , Computation of likelihood ratios in fingerprint identification for con-

figurations of any number of minutiae, J. Forensic Sci. 52 (1) (2007) 54–63 . 
[62] New England Innocence Project, A Brief History of DNA Testing. http:

//www.newenglandinnocence.org/knowledge-center/resources/dna/ (accessed
24.03.16), 2011. 

[63] K.A. Nixon , R.K. Rowe , Multispectral fingerprint imaging for spoof detection,
in: Proceedings of SPIE Conference on Biometric Technology for Human Iden-

tification, Orlando, USA, vol. 5779, 2005, pp. 214–225 . 

[64] M. Nixon , T. Tan , R. Chellappa , Human Identification Based on Gait, Springer,
2006 . 

[65] L. O’Gorman , Comparing passwords, tokens, and biometrics for user authen-
tication, Proc. IEEE 91 (12) (2003) 2019–2040 . 

[66] T. Ojala , M. Pietikainen , T. Maenpaa , Multiresolution gray-scale and rotation
invariant texture classification with local binary patterns, IEEE Trans. Pattern

Anal. Mach. Intell. 24 (7) (2002) 971–987 . 

[67] U. Park , R. Jillela , A. Ross , A. Jain , Periocular biometrics in the visible spec-
trum, IEEE Trans. Inform. Forensics Secur. 6 (1) (2011) 96–106 . 

[68] U. Park , Y. Tong , A.K. Jain , Age invariant face recognition, IEEE Trans. Pattern
Anal. Mach. Intell. 32 (5) (2010) 947–954 . 

[69] S. Parthasaradhi , R. Derakhshani , L.A. Hornak , S.A.C. Schuckers , Time-series
detection of perspiration as a liveness test in fingerprint devices, IEEE Trans.

Syst. Man Cybern. C: Appl. Rev. 35 (3) (2005) 335–343 . 

[70] G. Parziale , E. Diaz-Santana , The surround imager: A multi-camera touchless
device to acquire 3D rolled-equivalent fingerprints, in: Proceedings of Inter-

national Conference on Biometrics, Springer, 2006, pp. 244–250 . 
[71] P.S. Penev , J.J. Atick , Local feature analysis: A general statistical theory for ob-

ject representation, Netw.: Comput. Neural Syst. 7 (3) (1996) 477–500 . 
[72] Planning Commission, Government of India, Unique Identification Authority
of India. https://uidai.gov.in/ (accessed 24.03.16), 2012. 

[73] S. Pruzansky , Pattern-matching procedure for automatic talker recognition, J.
Acoust. Soc. Am. 35 (1963) 354–358 . 

[74] M.-R. Ra , R. Govindan , A. Ortega , P3: Toward privacy-preserving photo shar-
ing, in: Proceedings of the 10th USENIX Symposium on Networked Systems

Design and Implementation, USENIX Open Access, 2013, pp. 1–14 . 
[75] N. Ramanathan , R. Chellappa , S. Biswas , Age progression in human faces: A

survey, J. Visual Lang. Comput. 15 (2009) 3349–3361 . 

[76] A . Rashid , A . Baron , P. Rayson , C. May-Chahal , P. Greenwood , J. Walkerdine ,
Who am I? Analyzing digital personas in cybercrime investigations, Computer

46 (4) (2013) 54–61 . 
[77] N.K. Ratha , J.H. Connell , R.M. Bolle , Enhancing security and privacy in biomet-

ric authentication systems, IBM Syst. J. 40 (3) (2001) 614–634 . 
[78] K. Ricanek , T. Tesafaye , MORPH: A longitudinal image database of nor-

mal adult age-progression, in: IEEE 7th International Conference on Au-

tomatic Face and Gesture Recognition, Southampton, UK, April 2006, pp. 
341–345 . 

[79] C. Roberts , Biometric attack vectors and defences, Comput. Secur. 26 (1)
(2007) 14–25 . 

[80] A. Ross , K. Nandakumar , A.K. Jain , Handbook of Multibiometrics, Springer,
2006 . 

[81] A . Ross , A . Othman , Visual cryptography for biometric privacy, IEEE Trans. In-

form. Forensics Secur. 6 (1) (2011) 70–81 . 
[82] L. Sirovich , M. Kirby , Low-dimensional procedure for the characterization of

human faces, J. Opt. Soc. Am. 4 (1987) 519–524 . 
[83] O. Skorka , D. Joseph , Toward a digital camera to rival the human eye, J. Electr.

Imag. 20 (3) (2011) 1–18 . 
[84] E. Spearman, Crime and Punishment in England: A Sourcebook, Routledge,

London, UK, pp. 256–257. 

[85] SRI International, IOM Walk-Through System. https://www.sri.com/engage/
products- solutions/iom- portal- system (accessed 24.03.16), 2013. 

[86] Y. Sun , X. Wang , X. Tang , Deep learning face representation from predicting
10,0 0 0 classes, in: Proceedings of IEEE Conference on Computer Vision and

Pattern Recognition, IEEE, 2014, pp. 1891–1898 . 
[87] T. Suzuki , Challenges of image-sensor development, in: Proceedings of Inter-

national Solid-State Circuits Conference, IEEE, 2010, pp. 27–30 . 

[88] Y. Taigman , M. Yang , M. Ranzato , L. Wolf , DeepFace: Closing the gap
to human-level performance in face verification, in: Proceedings of IEEE

Conference on Computer Vision and Pattern Recognition, IEEE, 2014, pp. 
1701–1708 . 

[89] The Federal Bureau of Investigation, CODISNDIS statistics. https://www.fbi.
gov/about- us/lab/biometric- analysis/codis/ndis- statistics (accessed 24.03.16),

2013. 

[90] The Federal Bureau of Investigation, Frequently asked questions (FAQs) on
the CODIS program and the National DNA index system. https://www.fbi.gov/

about- us/lab/biometric- analysis/codis/codis- and- ndis- fact- sheet (accessed
24.03.16), 2013. 

[91] M. Trauring , Automatic comparison of finger ridge patterns, Nature 197
(1963) 938–940 . 

[92] M. Turk , A. Pentland , Eigenfaces for recognition, Cogn. Neurosci. 3 (1991) 72–
86 . 

[93] U. Uludag , S. Pankanti , S. Prabhakar , A.K. Jain , Biometric cryptosystems: Is-

sues and challenges, Proc. IEEE, Spec. Issue Multimedia Secur. Digital Rights
Manag. 92 (6) (2004) 948–960 . 

[94] U. Uludag , A. Ross , A.K. Jain , Biometric template selection and update: A case
study in fingerprints, Pattern Recogn. 37 (7) (2004) 1533–1542 . 

[95] University of Bologna, FVC2006: The Fourth International Fingerprint Verifi-
cation Competition. http://bias.csr.unibo.it/fvc2006/ (accessed 24.03.16), 2006.

[96] P.A. Viola , M.J. Jones , Robust real-time face detection, Int. J. Comput. Vis. 57

(2) (2004) 137–154 . 
[97] J.L. Wayman, The scientific development of biometrics over the last 40 years,

in: The History of Information Security: A Comprehensive Handbook, Elsevier,
Amsterdam. 263–274. 

[98] Wikipedia, Twin. https://en.wikipedia.org/wiki/Twin (accessed 24.03.16),
2002. 

[99] Wikipedia, Boston Marathon Bombings. https://en.wikipedia.org/wiki/Boston _

Marathon _ bombing (accessed 24.03.16), 2013. 
100] C.L. Wilson , Fingerprint Vendor Technology Evaluation 2003: Summary of Re-

sults and Analysis Report, Technical Report NISTIR 7123, NIST, 2004 . 
[101] L. Wiskott , J.-M. Fellous , N. Kuiger , C. von der Malsburg , Face recognition by

elastic bunch graph matching, IEEE Trans. Pattern Anal. Mach. Intell. 19 (7)
(1997) 775–779 . 

[102] J. Wright , A . Yang , A . Ganesh , S. Sastry , Y. Ma , Robust face recognition via

sparse representation, IEEE Trans. Pattern Anal. Mach. Intell. 31 (2) (2009)
210–227 . 

[103] X. Xia , L. O’Gorman , Innovations in fingerprint capture devices, Pattern
Recogn. 36 (2) (2003) 361–369 . 

[104] T. Yamada , S. Gohshi , I. Echizen , Privacy visor: Method for preventing face im-
age detection by using differences in human and device sensitivity, in: Pro-

ceedings of the 14th Joint IFIP TC6 and TC11 Conference on Communications

and Multimedia Security (CMS’13), Springer, 2013, pp. 152–161 . 
[105] S. Yoon , J. Feng , A.K. Jain , Altered fingerprints: Analysis and detection, IEEE

Trans. Pattern Anal. Mach. Intell. 34 (3) (2012) 451–464 . 
[106] S. Yoon , A.K. Jain , Longitudinal study of fingerprint recognition, Proc. Natl.

Acad. Sci. 112 (28) (2015) 8555–8560 . 

http://dx.doi.org/10.1155/2008/579416
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0028
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0028
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0028
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0028
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0029
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0029
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0029
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0029
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0030
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0030
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0030
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0030
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0031
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0031
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0032
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0032
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0032
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0033
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0033
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0033
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0033
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0033
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0033
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0034
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0034
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0034
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0035
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0035
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0035
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0035
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0036
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0036
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0036
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0036
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0037
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0037
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0037
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0037
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0037
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0038
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0038
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0039
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0039
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0039
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0039
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0039
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0039
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0039
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0040
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0040
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0040
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0040
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0040
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0040
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0040
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0040
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0041
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0041
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0041
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0041
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0041
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0042
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0042
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0042
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0043
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0043
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0043
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0043
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0044
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0044
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0044
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0044
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0044
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0045
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0045
http://www.jcmit.com/memoryprice.htm
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0046
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0046
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0046
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0046
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0046
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0047
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0047
https://www.frc.ri.cmu.edu/~hpm/book97/ch3/processor.list.txt
http://www.nist.gov/itl/iad/ig/sd32.cfm
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0048
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0048
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0048
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0048
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0048
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0048
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0048
http://www.newenglandinnocence.org/knowledge-center/resources/dna/
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0049
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0049
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0049
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0050
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0050
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0050
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0050
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0051
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0051
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0052
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0052
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0052
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0052
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0053
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0053
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0053
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0053
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0053
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0054
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0054
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0054
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0054
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0055
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0055
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0055
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0055
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0055
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0056
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0056
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0056
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0057
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0057
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0057
https://uidai.gov.in/
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0058
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0058
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0059
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0059
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0059
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0059
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0060
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0060
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0060
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0060
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0061
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0061
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0061
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0061
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0061
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0061
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0061
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0062
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0062
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0062
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0062
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref00078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref00078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref00078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0063
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0063
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0064
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0064
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0064
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0064
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0065
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0065
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0065
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0066
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0066
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0066
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0067
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0067
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0067
https://www.sri.com/engage/products-solutions/iom-portal-system
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0068
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0068
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0068
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0068
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0069
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0069
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0070
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0070
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0070
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0070
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0070
https://www.fbi.gov/about-us/lab/biometric-analysis/codis/ndis-statistics
https://www.fbi.gov/about-us/lab/biometric-analysis/codis/codis-and-ndis-fact-sheet
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0071
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0071
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0072
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0072
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0072
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0073
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0073
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0073
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0073
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0073
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0074
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0074
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0074
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0074
http://bias.csr.unibo.it/fvc2006/
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0075
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0075
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0075
https://en.wikipedia.org/wiki/Twin
https://en.wikipedia.org/wiki/Boston_Marathon_bombing
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0076
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0076
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0077
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0077
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0077
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0077
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0077
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0078
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0079
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0079
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0079
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0080
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0080
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0080
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0080
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0081
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0081
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0081
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0081
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0082
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0082
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0082


A.K. Jain et al. / Pattern Recognition Letters 79 (2016) 80–105 105 

 

 

 

 

 

 

 

[107] Z. Zhang , J. Yan , S. Liu , Z. Lei , D. Yi , S.Z. Li , A face antispoofing database with
diverse attacks, in: Proceedings of 5th IAPR International Conference on Bio-

metrics, IEEE, 2012, pp. 26–31 . 
[108] Y. Zhu , S.C. Dass , Jain , Statistical models for assessing the individuality of fin-

gerprints, IEEE Trans. Inform. Forensics Secur. 2 (3) (2007) 391–401 . 
[109] S.Z. Li , R. Chu , S. Liao , L. Zhang , Illumination invariant face recognition us-
ing near-infrared images, IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI) 29 (4) (2007) 627–639 . 
[110] A. Dantcheva , P. Elia , A. Ross , What else does your biometrics data reveal?

A survey on soft biometrics, IEEE Transactions on Information Forensics and
Security (TIFS) 11 (3) (2016) 441–467 . 

http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0083
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0083
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0083
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0083
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0083
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0083
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0083
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref0084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref084
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref085
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref085
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref085
http://refhub.elsevier.com/S0167-8655(15)00436-5/sbref085

	50 years of biometric research: Accomplishments, challenges, and opportunities
	1 Introduction
	1.1 Motivation and objectives

	2 Biometric recognition framework
	2.1 How to choose a biometric trait?
	2.2 Core research challenges in biometrics

	3 Evolution of biometric recognition
	3.1 Historical developments in fingerprint recognition
	3.2 Historical developments in face recognition
	3.3 Historical developments in iris recognition
	3.4 Developments in other biometric traits

	4 State-of-the-art in biometric recognition
	5 Unsolved problems
	5.1 Distinctiveness of biometric traits
	5.2 Persistence of biometric traits
	5.3 Unconstrained biometric sensing environment
	5.4 System security and user privacy

	6 The future of biometric recognition
	6.1 New sensors and computing platforms
	6.2 Ubiquitous biometrics
	6.3 Biometrics for social good
	6.4 Biometrics and forensics

	7 Summary
	 Acknowledgments
	Appendix A Image sources
	 References


