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ABSTRACT

Biometric recognition refers to the automated recognition of individuals based on their biological and
behavioral characteristics such as fingerprint, face, iris, and voice. The first scientific paper on auto-
mated fingerprint matching was published by Mitchell Trauring in the journal Nature in 1963. The
first objective of this paper is to document the significant progress that has been achieved in the field
of biometric recognition in the past 50 years since Trauring’s landmark paper. This progress has
enabled current state-of-the-art biometric systems to accurately recognize individuals based on bio-
metric trait(s) acquired under controlled environmental conditions from cooperative users. Despite
this progress, a number of challenging issues continue to inhibit the full potential of biometrics to
automatically recognize humans. The second objective of this paper is to enlist such challenges, an-
alyze the solutions proposed to overcome them, and highlight the research opportunities in this field.
One of the foremost challenges is the design of robust algorithms for representing and matching bio-
metric samples obtained from uncooperative subjects under unconstrained environmental conditions
(e.g., recognizing faces in a crowd). In addition, fundamental questions such as the distinctiveness
and persistence of biometric traits need greater attention. Problems related to the security of biomet-
ric data and robustness of the biometric system against spoofing and obfuscation attacks, also remain
unsolved. Finally, larger system-level issues like usability, user privacy concerns, integration with
the end application, and return on investment have not been adequately addressed. Unlocking the
full potential of biometrics through inter-disciplinary research in the above areas will not only lead to
widespread adoption of this promising technology, but will also result in wider user acceptance and
societal impact.

c© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

“It is the purpose of this article to present, together with some evi-
dence of its feasibility, a method by which decentralized automatic
identity verification, such as might be desired for credit, banking
or security purposes, can be accomplished through automatic com-
parison of the minutiae in finger-ridge patterns.”
– Mitchell Trauring, Nature, March 1963

In modern society, the ability to reliably identify individu-
als in real-time is a fundamental requirement in many appli-
cations including forensics, international border crossing, fi-
nancial transactions, and computer security. Traditionally, an
exclusive possession of a token, such as a passport or an ID

∗∗Corresponding author: Tel.: +1-517-355-9282; fax: +1-517-432-1061;
e-mail: jain@cse.msu.edu (Anil K. Jain)

card, has been extensively used for identifying individuals. In
the context of computer systems and applications, knowledge-
based schemes based on passwords and PINs are commonly
used for person authentication1. Since both token-based and
knowledge-based mechanisms have their own strengths and
limitations, the use of two-factor authentication schemes that
combine both these authentication mechanisms are also popu-
lar.

Biometric recognition, or simply biometrics, refers to the au-
tomated recognition of individuals based on their biological and
behavioral characteristics (Jain et al., 2011). Examples of bio-
metric traits that have been successfully used in practical ap-
plications include face, fingerprint, palmprint, iris, palm/finger

1Authentication involves verifying the claimed identity of a person.
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vein, and voice. The use of DNA, in the context of biometrics
(as opposed to just forensics), is also beginning to gain traction.
Since biometric traits are generally inherent to an individual,
there is a strong and reasonably permanent link between a per-
son and his/her biometric traits. Thus, biometric recognition
can be used to identify individuals in surveillance operations
where covert recognition2 is required or in scenarios where a
person may attempt to conceal their true identity (e.g., by us-
ing forged documents to claim social welfare benefits). Conse-
quently, the application domain of biometrics far exceeds that
of passwords and tokens. In applications such as border control,
forensics, surveillance, de-duplication3 and chain-of-custody4,
the use of biometric solutions has clear-cut advantages over
passwords or tokens.

However, the emergence of biometrics does not necessarily
supplant the use of passwords or tokens in authentication appli-
cations. While biometrics can mitigate some of the limitations
associated with the use of passwords, biometric systems them-
selves are vulnerable to spoof attacks, linkability attacks (link-
ing users across applications based on their biometric data), and
can incur additional hardware and software costs. Further, the
acquisition process introduces variations in the biometric data
of an individual (referred to as intra-subject variations) that may
lead to false non-matches and false matches. False matches can
lead to identity creep, where an adversary, after repeated at-
tempts, manages to take on the identity of a legitimate user of
the system. The lack of secrecy (e.g., face images on social
media sites) and distinctiveness (e.g., face images of identical
twins) of biometric traits pose additional problems to biometric-
based authentication schemes. Given the above limitations, a
multi-factor authentication mechanism that judiciously com-
bines biometrics with passwords and/or tokens may be a better
approach to security in many applications (O’Gorman, 2003).

1.1. Motivation and Objectives

The first known research publication on automated biomet-
ric recognition was the one published by Mitchell Trauring in
the journal Nature in 1963 on fingerprint matching (Trauring,
1963). The development of automated biometric systems based
on other traits such as voice (Pruzansky, 1963), face (Bledsoe,
1966), and signature (Mauceri, 1965) also started in the 1960s.
Subsequently, biometrics systems based on traits like hand ge-
ometry (Ernst, 1971) and iris (Daugman, 1993) were developed.
In this sense, 50 years have passed since the first paper on au-
tomated biometric recognition was published. Coincidentally,
modern computer vision5 also had its beginnings approximately
50 years ago, with Roberts’ PhD dissertation on machine vision
of 3D solids (Roberts, 1963).

2In a covert scenario, the subject’s biometric traits are acquired without the
subject’s explicit knowledge and surreptitiously used for recognition purposes

3De-duplication involves the removal of duplicate “identities”, where, for
example, a single individual may have multiple passports under different names

4This is to keep track of individuals who handle the physical evidence col-
lected during the course of a legal proceeding

5J. Malik, “The Three Rs of Vision,”
http://www.di.ens.fr/willow/events/cvml2013/materials/slides/wednesday/Malik-
paris-CVML-2013.pdf

In a 2007 article, Wayman (Wayman, 2007) tracked the ma-
jor developments in biometrics in the United States from the
1960’s to the 1990’s, and observed the following: “A quick
overview of biometric history shows that much of what we consider
to be “new” in biometrics was really considered decades ago. There
is much left to be done, but the most efficient route will be to consider
that which is really yet undiscovered, not wasting time repeating the
studies of years ago. Even in 2005, it is much too early to speculate
on what the first decade of the new millennium will ultimately hold for
biometrics. It seems clear, however, that the industry will continue to
grow and that technical and human improvements to the systems will
be made.”

In line with the above observation from Wayman, the ob-
jective of this paper is to summarize the progress in biometric
recognition so as to understand how this field emerged, where
we are now, and where we should go from here. We believe
that this assessment of biometrics research would shed light on
the cross-disciplinary nature of problems in biometric recogni-
tion, highlight the tremendous opportunities for both basic and
applied research in biometrics, and motivate budding scientists
and engineers to consider biometric recognition as their field of
study.

2. Biometric Recognition Framework

A typical biometric recognition system has two stages of op-
eration, namely, the enrollment stage and the recognition stage
(see Figure 1). In the enrollment stage, the biometric system ac-
quires the biometric trait of an individual, extracts a salient fea-
ture set from it and stores the extracted feature set in a database
(often referred to as a template), along with an identifier asso-
ciating the feature set with an individual. During the recogni-
tion stage, the system once again acquires the biometric trait
of an individual, extracts a feature set from it, and compares
this feature set against the templates in the database in order to
determine a match or to verify a claimed identity.

In the enrollment stage, a biometric sensor scans the bio-
metric trait (B) of a user (Y) to obtain a digital representation
(M). Since the scanned biometric trait may be affected by var-
ious sources of noise (ηηη) during the sensing process, a quality
check is generally performed to ensure that the acquired bio-
metric data can be reliably processed by successive modules.
In order to facilitate recognition, the raw biometric data is fur-
ther processed by a feature extractor (denoted by the function
fe) to generate a compact but expressive representation, called
a feature set, which is stored as a template (XE) in the sys-
tem database (D) for future comparison. During the recognition
stage, when the user needs to be authenticated or identified, a
new sample of the biometric trait is obtained. Features (XR) are
extracted from this query biometric sample and compared (de-
noted by the function fm) to the templates stored in the database
in order to determine the identity (Ŷ) associated with the query
(sometimes referred to as the probe) biometric sample.

If the objective is to verify the claimed identity of an individ-
ual, the query biometric sample needs to be compared only to
the template corresponding to the claimed identity (one-to-one
match). The identity claim is accepted if the resulting similarity
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Fig. 1. Operation of a typical biometric system. The two fundamental problems in biometric recognition involve finding an invariant feature representation
and designing a robust matcher for a given representation scheme.

value (also called the match score S) is above a preset thresh-
old. In this case, the biometric system is said to operate in the
verification or authentication mode. If the goal is to determine
the user’s identity without the user having to claim an iden-
tity, the query needs to be compared against all the templates in
the database (one-to-many match). This latter functionality is
commonly referred to as identification and the result of an iden-
tification operation will be one of the following two decisions:
(i) output the identity of one or more users whose templates
exhibit high similarity with the query biometric sample or (ii)
a response indicating that the query biometric sample does not
match with the templates of any of the users already enrolled in
the database. If the biometric identification system is forced to
output an identity, it is referred to as closed-set identification.
On the other hand, the option of having a reject response results
in an open-set identification system.

As shown in Figure 1, the measured biometric signal M may
exhibit intra-subject variations, i.e., the signal does not remain
stable across measurements. These sources of ira-subject vari-
ations can be broadly divided into five categories: (i) sensor
limitations (ηηηs), (ii) intrinsic aging of the biometric trait (ηηηa),
(iii) variations in user interaction (ηηηu), (iv) changes in the ac-
quisition environment (ηηηe), and (iv) all other factors affecting
the biometric trait (ηηηo). As an illustrative example, let us con-
sider a face recognition system where the face is captured using
a 2-dimensional (2D) camera operating in the visible spectrum.
In this context, sensor limitations (ηηηs) may include low spatial
resolution and frame rate of the camera, inability to capture the
full 3D structure of the human face, and inability to capture the
details of the face under low illumination conditions. Changes
in a person’s facial structure and appearance (ηηηa) can occur over
time due to the effects of biological aging. Variations in the per-
son’s facial pose and expression (ηηηu) can be introduced when
the user interacts with the sensor. This type of variation is more
pronounced in biometric applications where cooperation from
the users cannot be expected (e.g., covert surveillance). Illu-
mination changes (ηηηe) in the acquisition environment will also
affect the quality of the captured face images. Finally, other fac-
tors such as make-up and accessories (e.g., sunglass, hat, etc.)

worn by the person and occlusion of a person’s face by other ob-
jects or individuals (ηηηo) will also the potential adversely affect
the face image quality. Table 1 presents a summary of differ-
ent sources of intra-subject variations encountered in biometric
systems based on commonly used biometric traits such as fin-
gerprint, face, iris, and voice.

2.1. How to Choose a Biometric Trait?
A critical issue in biometric system design is the choice of

biometric trait. In theory, any anatomical, behavioral, or physi-
ological characteristic of an individual can be used as a biomet-
ric trait. However, the choice of a biometric trait for a particular
application usually depends on the degree to which the follow-
ing properties are satisfied: (i) uniqueness or distinctiveness,
(ii) permanence, (iii) universality, (iv) collectability, (v) per-
formance, (vi) user acceptance, (vii) invulnerability, and (viii)
integration (Jain et al., 2011). A biometric trait is said to be
unique to an individual only if every pair of individuals in the
target population can be differentiated based on this trait. Since
uniqueness is difficult to guarantee, the term distinctiveness is
often used. Ideally, a biometric trait or its representation (ex-
tracted features) should be permanent and should retain its dis-
criminatory power over the lifetime of an individual. Since the
distinctiveness and permanence of a biometric trait constitute
the fundamental premise of biometric recognition, they play a
major role in determining the value of biometric trait.

While a number of biometric traits have been proposed for
person recognition (see Figure 2), fingerprint, face, and iris are
the three most popular biometric traits in deployed systems.
One of the reasons for the popularity of fingerprint and face
is the availability of large legacy databases (e.g., driver license
and immigration databases), which have been collected by law
enforcement and other government agencies all over the world.
While iris is being increasingly adopted for large-scale identi-
fication (e.g., the iris recognition border crossing system in the
United Arab Emirates) due to its high accuracy in applications
requiring de-duplication, there are relatively fewer legacy iris
databases. Another major reason for the adoption of fingerprint,
face, and iris modalities is the periodic technology evaluations
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Table 1. Summary of various sources of intra-subject variations in the measured biometric signals for different biometric traits.

Source of
intra-subject

variations
Fingerprint Face Iris Voice

Sensor
limitations (ηηηs)

Resolution (dots per
inch), signal to noise

ratio, sensor
cleanliness

Spatial resolution,
frame rate, acquisition
spectrum (visible vs.

infrared), distance
from camera, 2D vs 3D

Acquisition spectrum
(visible vs. near

infra-red), distance
from sensor

Signal to noise ratio

Intrinsic aging
(ηηηa)

Variations in ridge
thickness & height
due to changes in
skin elasticity &
sebaceous gland

activity

Geometric changes
during childhood &

adolescence, wrinkles
& saggy skin in old age

Myotic pupil (pupil
constricts)

Voice changes during
childhood &

adolescence, pitch
changes, voice

shakiness in old age

Variations in
user interactions

(ηηηu)

Rotation, translation,
finger pressure Pose, expression

Pupil dilation,
partially closed eyes

(blinking), gaze
angle

Speed, intensity, accent
variations

Environment
changes (ηηηe) Indoor vs. outdoor Illumination,

background scene Illumination Background noise

Other factors
(ηηηo)

Cuts, worn-out
fingers, dry/wet

fingers

Make-up, accessories,
occlusion

Eye diseases,
influence of alcohol Common cold

for these traits (along with voice) conducted by the National In-
stitute of Standards and Technology (NIST). These large scale
evaluations on operational biometric data have been responsible
for documenting the significant progress that has been made in
the matching accuracy of these biometric traits.

Leaving aside face, fingerprint and iris, the other biometric
traits that have been either deployed in biometric systems or
proposed in the research literature can be grouped under three
broad categories:

1. Traits such as palmprint and deoxyribonucleic acid (DNA)
are beginning to play a major role in law enforcement
and forensic applications, mainly because of their value
in large-scale identification. While DNA has a relatively
short history (first put into operational use in 1986 (New
England Innocence Project, 2011)) and a relatively small
database (current size of the National DNA Index in the
United States is about 12 million (The Federal Bureau of
Investigation, 2013a)), often this may be the only reliable
forensic evidence available at crime scenes. The role of
DNA in exonerating wrongly convicted and incarcerated
individuals through the efforts of the Innocence Project
(Innocence Project, 2013) is well known. While friction
ridge pattern on the surface of human palm, similar to a
finger ridge pattern, is claimed to be unique (Ashbaugh,
1999), fingerprints are easier to capture (due to their rela-
tively small size compared to palmprints) and provide ac-
ceptable solutions for person recognition. This explains
why fingerprints are more popular than palmprints in bio-
metric systems. However, given the fact that many fric-

tion ridge impressions left at crime scenes are those of
palms, law enforcement agencies have started to collect
palmprints of suspects at the time of booking. This is
the rationale behind the decision by the Federal Bureau
of Investigation (FBI) to include palmprint modality in the
Next Generation Identification (NGI) system.6

2. Biometric traits such as voice, signature, hand geometry,
and vascular patterns (palm vein, hand vein, or finger vein)
have been deployed in commercial applications, mostly as
a tool for verification or authentication, but their use so far
is rather limited.

3. Traits like gait, ear, retina/sclera, keystroke dynam-
ics, electrocardiogram (ECG), and electroencephalogram
(EEG) signals have been proposed by researchers for per-
son recognition in niche applications, but are yet to attain
sufficient level of technological maturity and acceptance.

Biometric traits discussed above have varying degrees of dis-
tinctiveness and permanence for person recognition in a target
population. Since the basic objective of a biometric system is to
correctly establish whether the two given samples of a biomet-
ric trait belong to the same user, the recognition performance
or matching accuracy is often used as the primary criterion for
selecting a biometric trait. However, it is important to realize
that accuracy is not the only factor that determines the utility
of a biometric trait or the biometric system itself in a particu-

6http://www.fbi.gov/about-us/cjis/fingerprints biometrics/

ngi
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Fig. 2. A large number of body traits have been proposed and used for
person recognition. Fingerprint, face, and iris modalities shown in the
first row are the three most popular biometric traits in deployed sys-
tems. Traits such as palmprint and DNA (depicted in the second row) have
legacy databases and are currently being used primarily in law enforce-
ment and forensics. The third row shows traits that have been deployed
in commercial applications, primarily for verification operation (one-to-
one matching). Finally, the last two rows show traits like gait, ear, sclera,
keystroke dynamics, ECG, and EEG signals, which have been proposed
by researchers for person recognition in niche applications, but are yet to
attain sufficient level of technological maturity for deployment.

lar application. Often, other practical issues such as through-
put, cost, return on investment (ROI), user experience, template
size, resistance to spoof and template attacks, and ease of sys-
tem integration must also be given due consideration during the
selection of a biometric trait.

Due to the diverse nature of biometric applications (e.g., mo-
bile phone unlocking to international border crossing), no sin-
gle biometric trait is likely to be optimal and satisfy the re-
quirements of all applications. In many cases, a combination
or fusion of multiple biometric traits may be required to attain
the desired level of performance; such systems are generally
referred to as multibiometric systems (Ross et al., 2006). One
such example is the Aadhaar system in India, where there is a
need to distinguish between individuals in a database involv-
ing hundreds of millions of identities7. Therefore, the Aadhaar
system uses all ten fingerprints and both irides of subjects for
de-duplication of identities.

It is important to emphasize that the design of a biometric
system generally involves a complex interplay of factors re-
lated to user interaction (with the biometric sensor), the end-
application, and the biometric recognition technology. For ex-
ample, consider a financial application like Internet banking,
where the overarching objective of using a biometric system is
to minimize the losses incurred due to fraudulent transactions
without causing too much inconvenience to the genuine cus-
tomers. In this scenario, the bank needs to decide whether a
particular transaction should be authorized or declined. Hence,
the level of authentication required will depend on the risk asso-
ciated with a transaction. A simple authentication scheme (e.g.,
account number and PIN) may be sufficient for an account bal-
ance inquiry, while a much higher level of identity assurance
(e.g., a strong biometric match) may be required to perform a
high-value funds transfer. It is also possible to combine the bio-
metric match score with other contextual information such as
customer’s past transaction history and current location of the
customer to generate an overall risk score, which can form the
basis for the authorization decision. Thus, designing a biomet-
ric system not only requires knowledge of biometric technol-
ogy, but also a good understanding of application requirements
and issues related to human factors, ergonomics, and environ-
mental variables.

2.2. Core Research Challenges in Biometrics

The main objective of a biometric system is to recognize in-
dividuals accurately. This in turn implies that a biometric sys-
tem must have low recognition error rates. While false match
rate (FMR) and false non-match rate (FNMR) quantify the er-
rors in a verification system, false positive identification rate
(FPIR) and false negative identification rate (FNIR) are used
as the error metrics in an identification system. The condi-
tional entropy8 H(Y |Ŷ), where Y and Ŷ are the true and pre-
dicted identities, respectively, is a function of the recognition

7As on 15th December 2014, more than 720 million Aadhaar numbers have
been issued.

8Intuitively, H(Y |X) measures the uncertainty in Y given X.
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error rates of the biometric system. In the case of biomet-
ric verification, H(Y |Ŷ) = (Hb(FMR) + Hb(FNMR))/2, where
Hb(p) = −(p log2 p + (1 − p) log2(1 − p)) is the binary en-
tropy function. For closed set identification, H(Y |Ŷ) = −((1 −
FNIR) log2(1 − FNIR) + FPIR log2(FPIR/(N − 1))). Since ev-
ery stage of processing in a biometric system from the sen-
sor to the matcher typically leads to loss of some discrimi-
natory information, the following relationship is usually true:
H(Y |Ŷ) ≥ H(Y |S) ≥ H(Y |X) ≥ H(Y |M) ≥ H(Y |B).

The primary challenge in a biometric recognition system
is to design a suitable sensor, feature representation scheme,
and similarity measure to minimize the recognition errors (or
H(Y |Ŷ)). This can be achieved by suppressing the effect of
various noise sources without degrading the inherent identity
information contained in a biometric trait. In particular, the
following two conditions must be satisfied: (i) the similarity
between different samples of the same biometric trait acquired
from the same subject (intra-subject similarity) should be very
high, and (ii) the similarity between different samples of a bio-
metric trait acquired from different individuals (inter-subject
similarity) should be very low. While advancements in sen-
sor design can certainly benefit a biometric system by mini-
mizing H(Y |M), such improvements heavily rely on scientific
and technological breakthroughs in related fields (e.g., optics).
Consequently, most of the research in biometric recognition has
rightly focused on the following two fundamental problems:

1. The challenge of identifying the best representation
scheme for a given biometric trait - The desired set of
features should retain all the discriminative information
that is distinctive to a person and remain invariant to intra-
subject variations. In other words, the feature extractor fe
must be designed such that it minimizes H(Y |X), which
is the conditional entropy of Y given the feature represen-
tation X. Note that H(Y |X) = H(Y) − H(X) + H(X|Y),
where H(X) is the entropy of the biometric template and
H(X|Y) quantifies the intra-subject variations. Thus, min-
imizing H(Y |X) requires maximization of biometric tem-
plate entropy and simultaneously minimizing intra-subject
variations. While it may be relatively easy to enhance the
entropy of the biometric template by extracting more fea-
tures from the sensed images, there is no guarantee that
these additional features will lead to better accuracy, un-
less these features also exhibit small intra-subject varia-
tions.

2. The challenge of designing a robust matcher for a given
representation scheme - The desired matching algorithm
must model the variations in the features belonging to the
same individual, while accounting for variations between
features of different individuals. Thus, the matcher fm
must minimize H(Y |XR,D), the conditional entropy of Y
given the query features XR as well as the templates in
database D.

It is important to point out that there is no representation
scheme or matcher that can be applied universally to all bio-
metric traits. In fact, the feature extraction and matching al-
gorithms must be carefully selected after taking into account

the characteristics of the underlying biometric trait, the prop-
erties of the biometric samples captured by the sensor, and the
requirements of the application (error rate, processor and mem-
ory constraints, throughput, etc.).

Since the inherent distinctiveness and permanence of a bio-
metric trait determine the recognition accuracy of a biometric
system to a large extent, analysis of these two properties for dif-
ferent biometric traits is also considered a core research prob-
lem in biometrics.

Genetic similarity between related individuals (e.g., twins,
father and son) may contribute to the lack of distinctiveness for
some biometric traits (e.g., facial appearance as shown in Fig-
ure 3). The iris texture and, to some extent, local fingerprint de-
tails, are known to be generated through random morphogene-
sis (phenotype characteristics). For this reason, fingerprints and
irides of identical twins have been empirically shown to satisfy
the distinctiveness property (Jain et al., 2002). The “distinc-
tiveness” of a biometric trait is a quantifiable measure of the
distinctiveness of the trait based on the selected feature repre-
sentation. It can be mathematically defined as the mutual in-
formation between the user identity Y and the feature represen-
tation X derived from the biometric trait (denoted as I(Y; X)).
Since I(Y; X) = H(Y) − H(Y|X), it is clear that the distinctive-
ness of a biometric trait is a useful theoretical measure, which
can indicate the best recognition accuracy achievable based on
the selected features X. A rigorous evaluation of distinctiveness
for different biometric traits and features derived from them is
still an open research problem.

The effects of body growth on common identifiers like face,
fingerprint, or iris (and the representations derived from them)
have not been systematically studied in the literature. The no-
tion of permanence (also referred as persistence) can be stud-
ied by modeling the variations caused by aging as a form of
time-varying noise ηηηa(t). Ideally, one would like to precisely
understand the effect of ηηηa(t) on H(Y|X) and design a feature
extractor fe such that the effect of aging on H(Y|X) is minimal.
However, this is challenging in practice because it is very diffi-
cult to isolate the effect of aging phenomenon from other types
of noise affecting a biometric measurement (Lui et al., 2009;
Beveridge et al., 2009; Klare et al., 2012).

3. Evolution of Biometric Recognition

One trigger for the systematic use of biometric traits to rec-
ognize a person was the enactment of the Habitual Criminals
Act in 1869 in the United Kingdom (Spearman, 1999). This
Act made it mandatory to maintain a register of all persons con-
victed of a crime in the United Kingdom along with appropriate
evidences of identity. This register was used to identify repeat
offenders, who were generally incarcerated with a higher degree
of punishment compared to first-time offenders. The need for
such an identification scheme was expressed by a Home Office
Committee as follows,

“What is wanted is a means of classifying the records of habitual
criminal, such that as soon as the particulars of the personality of any
prisoner (whether description, measurements, marks, or photographs)
are received, it may be possible to ascertain readily, and with certainty,
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(a) (b) (c) 

Fig. 3. Biometric samples obtained from identical twins. (a) Face, (b) fingerprint, and (c) iris images. While it is difficult to distinguish between these two
users based on face images, it is indeed possible to distinguish between them using fingerprint or iris.

whether his case is in the register, and if so, who he is” (in page 257 of
(Spearman, 1999), emphasis added).

In order to identify repeat offenders, a French police offi-
cer named Alphonse Bertillon introduced a system of person
identification based on a set of anthropometric measurements
(Bertillon, 1896). Additionally, he utilized multiple descriptive
attributes such as eye color, scars and marks (referred to as soft
biometrics in contemporary literature) in order to recognize an
individual (see Figure 4). But the Bertillon system lacked au-
tomation, was cumbersome to administer uniformly (making it
prone to error), and could not guarantee variations across indi-
viduals. Therefore, it was quickly abandoned in favor of a sim-
pler and more accurate approach involving manual comparison
of human fingerprints. This was made possible by the pioneer-
ing works of Henry Faulds, William Herschel, and Sir Francis
Galton, who established the uniqueness of certain features in a
fingerprint ridge pattern such as minutia points (Galton, 1892).

3.1. Historical Developments in Fingerprint Recognition
“Perhaps the most beautiful and characteristic of all superficial
marks (on human body) are the small furrows with the interven-
ing ridges and their pores that are disposed in a singularly complex
yet even order on the under surfaces of the hands and feet.”
–Sir Francis Galton, Nature, June 28, 1888

Traditionally, fingerprint images have been broadly classi-
fied into three categories, namely, (i) rolled/full, (ii) plain/flat
and (iii) latent (see Figure 5). Typically, rolled and plain fin-
gerprint images obtained using live-scan fingerprint sensors are
of good quality (especially if the user is cooperative). In con-
trast, latent fingerprints are lifted from surfaces of objects that
are inadvertently touched or handled by a person through a va-
riety of means ranging from simply photographing the print to
more complex dusting or chemical processing. While foren-
sic applications typically require latent-to-rolled print compar-
ison, most of the other applications involve comparisons be-
tween plain/rolled prints (Maltoni et al., 2009).

Fingerprint features can generally be categorized into three
levels as shown in Figure 6. Level 1 features capture macro-
scopic details of the fingerprint such as ridge flow, ridge fre-
quency, pattern type, and singular points (e.g., core and delta).
Level 2 features refer to minutiae, such as ridge bifurcations
and endings. Level 3 features capture the dimensional attributes

of the ridge and include extended features such as ridge path
deviation, width, shape, pores, edge contour, incipient ridges,
breaks, creases, scars, and other permanent details. Level 1
and Level 2 friction ridge details are the most commonly used
features by all deployed fingerprint recognition systems. Gen-
erally, Level 1 features are first extracted, followed by Level 2
features with the guidance of Level 1 features.

Numerous solutions have been proposed in the literature to
tackle the problem of matching features extracted from two fin-
gerprint images to determine if they were acquired from the
same finger (Maltoni et al., 2009). Most of these solutions
adopt one of the following three approaches: image correlation,
matching of ridge features, and minutiae matching. Minutiae-
based matching is the most commonly used approach, primar-
ily due to the following reasons: (i) minutiae have been used
successfully for fingerprint comparison by forensic examiners
over the past 100 years and (ii) minutiae-based representation
is storage efficient.

Some of the major milestones in the history of fingerprint
recognition are summarized in Figure 7. In 1891, Argen-
tine police officials initiated the fingerprinting of criminals and
used fingerprint as an evidence in a homicide case in 1892
(Hawthorne, 2009). This is believed to be the first use of fin-
gerprints in criminal proceedings. In 1901, the Scotland Yard
in the United Kingdom began using fingerprint in law enforce-
ment applications9. Fingerprints were accepted as an evidence
of identity in a British criminal case for the first time in 1905. In
1924, the United States Congress authorized the Department of
Justice to collect fingerprints along with the arrest information.
This paved the way for the establishment of a fingerprint iden-
tification system by the Federal Bureau of Investigation (FBI),
which started collecting fingerprints using tenprint cards (see
Figure 8).

The FBI initiated the implementation of automated finger-
print identification system (AFIS) in the 1970s. Though this
system is referred to as AFIS, it must be emphasized that the
automation was not fully completed in the initial years of de-
ployment. Human experts were still required to process the fin-

9http://onin.com/fp/fphistory.html
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(a) (b) 

Fig. 4. The Bertillon system, so named after its inventor Alphonse Bertillon (Bertillon, 1896), relied on the precise measurement of various attributes of
the body for identifying recidivists. These measurements included, among others, the height of the individual, the length of the arm, geometry of the head,
and the length of the foot. Some of the steps in the measurement process are depicted in (a) and the results were marked on a card as shown in (b).

(a) (b) (c)

Fig. 5. Three different types of impressions of the same finger. (a) Rolled
fingerprint, (b) plain fingerprint, and (c) latent fingerprint.

gerprint cards and identify the basic features such as minutia
points, which were then matched automatically by the AFIS to
retrieve a short-list of most similar matches from the database.
The final match decision continued to remain in the hands
of human experts. More recent large-scale deployments of
fingerprint recognition systems such as the US-VISIT10 pro-
gram by the Department of Homeland Security (Department
of Homeland Security, 2013), FBI’s Next Generation Identifi-
cation (NGI) program, and India’s Aadhaar project (Planning
Commission, Government of India, 2012) tend to be fully au-
tomated systems that use all ten fingers of the human hand as
well as other modalities such as face, iris, and palmprint.

10In March 2013, the United States Visitor and Immigration Status Indica-
tor Technology (US-VISIT) was replaced by the Office of Biometric Identity
Management (OBIM).

The growth in application areas for fingerprint recognition
has coincided with the development of new sensors to capture
the fingerprint (friction ridge) patterns (see Figure 9). In 1892,
Juan Vucetich pioneered the use of inked fingerprint images,
which are acquired by first applying ink to the subject’s fin-
gertip and then rolling or pressing the finger on paper, thereby
creating an impression of the fingerprint ridges on paper. Later,
the development of flatbed document scanners enabled the dig-
itization of the inked fingerprints into images on a computer.
Live-scan fingerprint sensors, which produce the digital image
directly from a subject’s fingertip via digital imaging technolo-
gies (e.g., optical, capacitive, and ultrasound) were developed
in the 1990s (Xia and O’Gorman, 2003). Some of the recent
advances in fingerprint sensing include the development of sen-
sors that allow rapid ten-print capture (Department of Home-
land Security, 2013), sensors that can record the 3-dimensional
information of the ridge-valley patterns present on a fingertip
(Parziale and Diaz-Santana, 2006), touchless fingerprint acqui-
sition (e.g., Morpho’s Finger-on-the-Fly) and imaging of fin-
gerprints in multiple spectral bands (e.g., Lumidigm’s Multi-
Spectral Imaging (MSI) sensors).

With the advancements in the semiconductor industry, live-
scan fingerprint scanners continue to become more compact and
efficient, thereby enabling new applications in consumer elec-
tronic devices. For example, the Touch-ID fingerprint recog-
nition system in iPhone-6 enables phone unlocking capability
as well as mobile payments via the Apple Pay service. In the
near future, it may be possible to capture face, fingerprint, iris,
and voice biometric modalities using a commodity smartphone.
The ability to securely authenticate a smartphone user using
multibiometrics can be expected to open up a number of new
applications involving mobile commerce and transactions.
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(a) (b) (c) (d)

Fig. 6. Feature representation for fingerprint recognition. (a) A grayscale fingerprint image, (b) Level 1 features (orientation field or ridge flow and singular
points), (c) Level 2 feature (ridge skeleton and minutiae), and (d) Level 3 features (ridge contour, pore, and dot).
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Fig. 8. A tenprint card used in law enforcement. The top two rows show
fingerprints acquired by rolling each finger from one side to the other (so
called rolled fingerprints). The bottom row shows plain or slap finger-
prints: slap impressions of four fingers (little to index finger) of the left
hand acquired simultaneously are shown on the left part of the bottom row,
two thumb prints are shown in the middle, and the slap impressions of four
fingers (index to little finger) of the right hand acquired simultaneously are
shown on the right.

3.2. Historical Developments in Face Recognition
“This (face) recognition problem is made difficult by the great vari-
ability in head rotation and tilt, lighting intensity and angle, facial
expression, aging, etc.”
– Woodrow Bledsoe, 1966

Although human beings have been using faces to recognize
one another since time immemorial, the work on enabling com-
puters to recognize human faces was started in the mid-1960s
by Woodrow W. Bledsoe and his colleagues at Panoramic Re-
search (Bledsoe, 1966). Bledsoe qualified his face recognition
system as a “man-machine” system, because it required human
experts to first manually locate some facial landmarks on a pho-
tograph. The matching was then done automatically based on
20 normalized distances derived from these facial landmarks
(e.g., width of the mouth, width of eyes, etc.). A system to auto-
matically extract such facial landmarks was proposed in Takeo
Kanade’s Ph.D. thesis (Kanade, 1973) published in 1973, which
can be considered to have presented the first fully automated
face recognition system. Figure 10 presents a brief summary
of the milestones in the development of face recognition algo-
rithms.

While the earliest face recognition systems were based on
geometric features (distances between pre-defined landmarks),
the Eigenface approach popularized by Turk and Pentland in
1991 (Turk and Pentland, 1991) was based on holistic facial
appearance.11 Holistic appearance-based techniques generate
a compact representation of the entire face region in the ac-
quired image by mapping the high-dimensional (4,096 dimen-
sions for a 64 × 64 image) face image into a lower dimensional
sub-space. This sub-space is defined by a set of representative
basis vectors, which are learned using a training set of images.
The local feature analysis method of Penev and Atick (Penev

11Earlier work by Sirovich and Kirby in 1987 had shown that faces could be
represented by Principal Component Analysis (Sirovich and Kirby, 1987)

and Atick, 1996) and the Fisherface method of Belhumeur et
al. (Belhumeur et al., 1997) are other examples of holistic
appearance-based face recognition.

The elastic bunch graph matching approach of Wiskott et al.
(Wiskott et al., 1997) was a pioneering work in model-based
face recognition. Model-based techniques try to derive a pose-
independent representation of the face images by building 2D or
3D face models. These schemes typically require the detection
of several fiducial or landmark points in the face (e.g., corners
of eyes, tip of the nose, corners of the mouth, and the chin),
which leads to increased complexity compared to appearance-
based techniques. The morphable model proposed by Blanz and
Vetter (Blanz and Vetter, 2003) advanced the use of 3D models
in face recognition by exploiting both facial texture and shape
features.

Since appearance-based schemes use the raw pixel intensity
values, they are quite sensitive to changes in ambient lighting
and facial expressions. Therefore, texture-based methods like
Scale Invariant Feature Transform (SIFT) (Lowe, 2004) and
Local Binary Patterns (LBP) (Ojala et al., 2002) were devel-
oped. These methods use more robust representations that char-
acterize the texture of an image using the distribution of local
pixel values. Sparse representation coding (SRC) (Wright et al.,
2009) and face recognition based on deep learning (Sun et al.,
2014; Taigman et al., 2014) are some of the more notable ad-
vances in the area of face recognition in the last decade.

Most of the face recognition techniques assume that faces
can be aligned and properly normalized (both geometrically and
photometrically). The alignment is typically based on the loca-
tion of the two eyes in the face. The face detection scheme
developed by Viola and Jones (Viola and Jones, 2004) is con-
sidered a milestone because it enabled faces to be detected in
real-time even in the presence of background clutter, a situ-
ation commonly encountered in applications such as surveil-
lance. Even though the Viola-Jones face detector has demon-
strated excellent performance in real-time applications, it is still
challenged when confronted with non-frontal facial poses, illu-
mination changes, occlusion, etc.

While advancements in algorithms have contributed to im-
provements in face recognition accuracy, practical face recog-
nition systems have also benefited due to improvements in face
acquisition systems, be it 2-D (intensity image), 3-D (intensity
and depth/range image), infrared, or video cameras.

One of the major turning points in the history of camera tech-
nology was the introduction of digital cameras12 in the early
1990s. Due to improvements in semiconductor technology,
the frame rate, spatial resolution (pixel density), and quality
(pixel sensitivity) of image sensors has improved significantly
(Suzuki, 2010) and it has been claimed that the performance of
state-of-the-art digital cameras can match that of the human eye
(Skorka and Joseph, 2011). At the same time, these image sen-
sors have also become smaller and cheaper making it possible to
embed them in many personal electronic devices such as com-
puters, tablets, and mobile phones. Today, it is possible to cap-

12Though Kodak invented the first digital camera in 1975, they did not be-
come commercially available until 1990.
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ture good quality face images using smartphones or wearable
devices such as Google glass (Google, Inc., 2013). Further-
more, low cost cameras that can capture 3-dimensional images
in real-time are also becoming available now (e.g., Microsoft
Kinect (Khoshelham and Elberink, 2012)). Consequently, real-
time face recognition has been made feasible in a wide range of
applications where the user is cooperative and the face image is
acquired in a controlled environment (e.g., access control, de-
duplication of driver licenses and passports). But, solutions to
unconstrained face recognition such as in surveillance applica-
tions are still elusive.

3.3. Historical Developments in Iris Recognition
“For purposes of rapid and reliable person identification,...it is hard
to imagine one (unique identifier) better suited than a protected,
immutable, internal organ of the eye (iris), that is readily visible
externally and that reveals random morphogenesis of high statisti-
cal complexity.”
– John Daugman, IEEE Transactions on PAMI, 1993

The iris of the eye contains rich textural information that
can be used for person recognition. The idea of using iris
patterns for human identification was first proposed by Frank
Burch in 1936 and the first patent for an iris recognition system
was granted to Flom and Safir in 1985 (Flom and Safir, 1987).
While Flom and Safir presented ideas for iris image capture,
feature extraction, and matching, the first working iris recogni-
tion system was developed and implemented by John Daugman
in the early 1990s (Daugman, 1993). In fact, Daugman was the
first to develop (a) a camera to capture the iris images, (b) im-
age processing algorithms to process the eye images and extract
the iris region, and (c) the well-known IrisCode representation
to characterize the iris images in the form of a compact binary
code.

One of the first major deployments of iris recognition was
the one implemented by United Arab Emirates (UAE) for bor-
der control in 2001. This was soon followed by the use of
iris recognition to facilitate immigration control for frequent
travelers at the Amsterdam Schipol airport in 2003. An iris
recognition based immigration system was also operational at
major airports in the United Kingdom for nearly a decade, be-
fore it was decommissioned in 2013. Iris-based border con-
trol systems are also being used to enable quicker immigration
clearance for pre-approved travelers between the United States
and Canada. Iris recognition was also extensively used by the
United States military for field operations in Afghanistan and
Iraq. Recently, several large-scale national identification sys-
tems for civilians such as India’s Aadhaar project (Planning
Commission, Government of India, 2012), Mexico’s national
ID program, and Indonesia’s e-ktp program include iris as one
of the primary biometric modalities.

Iris recognition systems have also benefitted greatly from the
huge improvements in image sensors. The early iris cameras
such as the one developed by Daugman and other commercial
cameras developed in the 1990s were not only bulky and expen-
sive, but also required high levels of cooperation from the user
to provide good quality iris images (see Figure 11). Typically,
the textural details of the iris are imaged using a camera that is
sensitive to near infra-red (NIR) illumination. NIR illumination

is required to capture the texture details of dark-colored irides
(which are not clearly resolved under visible light) and to make
the sensing less intrusive (NIR illumination cannot be perceived
by the human eye). Moreover, the user needs to be cooperative
and hold his head in a relatively stable position while looking
directly into the camera so that the iris images are not degraded
due to factors such as partially closed eyelids, intruding eye-
lashes, extremely dilated or constricted pupil, or off-axis acqui-
sition.

However, iris cameras developed in the last decade are more
portable, compact, affordable, and easy to use. For exam-
ple, SecuriMetrics introduced a portable iris scanner in 2004.
Sarnoff developed the “iris-on-the-move” system in 2006 (SRI
International, 2013), which could capture iris images at a three
meter standoff distance and from subjects walking at 1 meter
per second. In 2013, companies such as A-Optix and Delta-ID
have shown that it is possible to capture good quality iris images
using smartphones.

3.4. Developments in Other Biometric Traits
1. Ear: The appearance, structure, and morphology of the hu-

man ear has been studied as a biometric cue for a number
of years (Abaza et al., 2013). While most face recogni-
tion systems extract the attributes of the human face from
frontal images, the visibility of the ear in non-frontal poses
of the face (e.g., side view) makes it a viable biometric
in many scenarios. The human ear is observed to exhibit
variations across individuals as assessed by the curves, sur-
faces, and geometric measurements pertaining to the visi-
ble portion of the ear, commonly referred to as the pinna.
As a biometric trait, the ear offers several advantages: (a)
the structure of the ear has been observed to be stable de-
spite aging, and ear growth is almost linear after the age of
four; (b) the ear, unlike other facial features, is minimally
impacted by changes in facial expression; and (c) image
acquisition does not involve explicit contact with the sen-
sor.
Although several algorithms for ear detection and match-
ing have been proposed in the literature, large-scale public
evaluation of ear recognition algorithms has not been con-
ducted. Further, there are not many commercial biometric
systems at this time that explicitly utilize features of the
ear for human recognition.13 But the performance of ear
recognition algorithms has been tested on some standard
ear datasets. Experiments suggest that ear images obtained
under controlled conditions can result in good recognition
accuracy. However, the performance of ear recognition
methods on non-ideal images obtained under varying illu-
mination and occlusion conditions is yet to be established.
Several challenges have to be overcome to make this pos-
sible.

2. Gait: The demand for human identification at a distance
has gained considerable traction, particularly due to the
need for covertly recognizing individuals in unconstrained

13An example application can be found at http://

www.descartesbiometrics.com/ergo-app/.
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Fig. 11. Major milestones in the history of automated iris recognition. While the events in the top row highlight the important landmarks in the evolution
of iris recognition algorithms, those in the bottom row correspond to the turning points in the development of iris sensors.

environments with uncooperative subjects. In such envi-
ronments, the person of interest may not be interacting
with the biometric system in a concerted manner. Fur-
ther, the individual might be moving in this environment
characterized by variable illumination and a non-uniform
background. Biometric modalities such as fingerprint and
iris cannot be easily acquired at large stand-off distances.
On the contrary, the face and gait modalities can easily be
acquired at a distance, although the smaller spatial reso-
lution of the face at long distances can degrade accuracy
of face recognition systems. As a result, gait-based hu-
man recognition has received some interest for biometric
recognition at a distance (Nixon et al., 2006). Gait is de-
fined as the pattern of locomotion in animals. Human gait,
therefore, is the manner in which people walk. While the
formal definition of gait refers to human motion, practical
algorithms for gait recognition include both dynamic and
static features (such as body shape) of the moving human
body. It can be viewed as a behavioral trait that is impacted
by the musculo-skeletal structure of the human body.
Gait recognition is perceived as an attractive solution for
distance-based identification for a number of reasons. First
and most importantly, human gait has been observed to
have some person-specific characteristics. Psychological
studies by Cutting and Kozlowski showed that humans are
capable of deducing gender and recognizing known indi-
viduals based on gait. Second, the gait biometric can be
acquired passively and, therefore, explicit subject inter-
action is not required for data acquisition. Passive col-
lection is beneficial in an environment where subjects are
being observed covertly. Finally, discriminatory features
of human gait can be extracted in low resolution images.
This suggests that expensive camera systems may not be
required for gait recognition.
The matching performance of gait recognition algorithms

is impacted by factors such as clothing, footwear, walking
surface, walking speed, walking direction (with respect to
the camera), etc. Further, the gait pattern of an individual
can change over time, especially with variations in body
mass The impact of these factors is difficult to mitigate
and, therefore, evaluation of gait recognition algorithms
has been predominantly conducted in controlled environ-
ments. This has prevented the incorporation of gait recog-
nition in commercial biometric systems.

3. Hand Geometry: Hand geometry, as the name suggests,
refers to the geometric structure of the hand (Jain et al.,
1999; Duta, 2009). This structure includes width of the
fingers at various locations, width of the palm, thickness
of the palm, length of the fingers, contour of the palm, etc.
Although these metrics do not vary significantly across
the population, they can still be used to verify the iden-
tity of an individual. Hand geometry measurement is non-
intrusive and the verification involves a simple processing
of the resulting features. Unlike palmprint (Kong et al.,
2009), this method does not involve extraction of detailed
features of the hand (for example, wrinkles on the skin).
Hand geometry-based verification systems have been com-
mercially available since the early 1970s. The earliest lit-
erature on the hand geometry biometric is in the form of
patents or application-oriented description. Hand geom-
etry systems have been successfully deployed in several
applications including nuclear power plants, border con-
trol systems (e.g., Ben Gurion airport in Tel Aviv), recre-
ational centers and time-and-attendance systems. In these
applications, the biometric system typically operates in the
verification mode. Since the hand geometry of subsets of
individuals can be similar, the identification accuracy due
to this biometric modality can be low. Further, the shape
of an individual’s hand can change with time - a factor that
is especially pronounced in young children. More recent
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research has explored the use of hand geometry in con-
junction with fingerprints and low-resolution palmprints in
a multibiometric configuration for improved accuracy.

4. Periocular: The periocular region represents the region
around the eyes. It predominantly consists of the skin,
eyebrow, and eye. The use of the periocular region as a
biometric cue represents a good trade-off between using
the entire face region or using only the iris for recognition
(Park et al., 2011). When the entire face is imaged from
a distance, the iris information is typically of low resolu-
tion; this means the matching performance due to the iris
modality will be poor. On the other hand, when the iris
is imaged at small standoff (typically, 1 meter), the entire
face may not be available, thereby forcing the recognition
system to rely only on the iris. However, the periocular
biometric can be used for a wide range of distances. Peri-
ocular images can also be captured in the NIR spectrum to
minimize illumination variation compared to visible spec-
trum.
Some of the other benefits in using the periocular biomet-
ric trait are as follows: 1) In images where the iris cannot
be reliably obtained (or used), the surrounding skin region
may be used to either confirm or refute an identity. Blink-
ing or off-angle poses are common sources of noise during
iris image acquisition. 2) The periocular region can offer
information about eye shape that may be useful as a soft
biometric. 3) When portions of the face pertaining to the
mouth and nose are occluded, the periocular region may be
used to determine the identity. 4) The design of a newer
sensor is not necessary as both periocular and face regions
can be obtained using a single sensor.
Recent studies on person identification using periocular
traits, both in visible and NIR spectra, show modest iden-
tification accuracies (over 80%). However, such an accu-
racy is possible only when the images are of good qual-
ity and exhibit low intra-class variations. It has also been
shown that the periocular trait can assist person identifica-
tion when the face is occluded.

4. State-of-The-Art in Biometric Recognition

The evolution of biometric recognition is an on-going pro-
cess and biometric systems are experiencing continuous im-
provements in performance and usability. However, a clear as-
sessment of the present state-of-the-art is required to appreci-
ate the progress made thus far and set the baseline for future
improvements. Many independent third-party technology eval-
uations have been conducted primarily by NIST over the last
20 years for fingerprint, face, iris, and voice modalities. These
NIST evaluations serve as an excellent resource to benchmark
the current recognition performance of various biometric sys-
tems. In general, the error rates of a biometric system depend
on a number of test conditions. Consequently, the NIST eval-
uations tend to be quite extensive and include results obtained
under a variety of test conditions. An in-depth discussion of
these results is beyond the scope of this paper and we restrict
ourselves to highlighting only a few key results.

(a)

(b)

Fig. 12. The current state of fingerprint recognition. Recognition based on
two rolled or plain fingerprints captured using live-scan sensors (as shown
in (a)) can be considered as an almost solved problem as demonstrated
by the results of NIST FpVTE 2003 and FVC evaluations. However, the
results of NIST ELFT evaluation indicate that fully automated latent iden-
tification (i.e., latent-to-rolled print matching), as shown in (b), is still an
open problem.

In the case of fingerprint recognition, the challenges vary de-
pending on the type of fingerprint images. Therefore, NIST
evaluations are also conducted separately for matching be-
tween plain/rolled prints and latent-to-rolled print matching
(see Figure 12). The Fingerprint Vendor Technology Eval-
uation (FpVTE) conducted by NIST over a decade back (in
2003) (Wilson, 2004) shows that the best commercial finger-
print recognition system can achieve a True Acceptance Rate
(TAR) of 99.4% at a False Acceptance Rate (FAR) of 0.01%
for plain-to-plain matching based on fingerprint data collected
from various government sources in the United States. The re-
sults of FpVTE 2012 have not yet been released by NIST at the
time of writing this paper.

Multiple editions of the Fingerprint Verification Competi-
tion (FVC) (University of Bologna, 2006) have also been con-
ducted by the University of Bologna since 2000 to benchmark
the performance of different fingerprint recognition algorithms
for plain-to-plain fingerprint matching. The results of FpVTE
2003 and the various editions of FVC indicate that the technol-
ogy for plain-to-plain (as well as rolled-to-rolled) fingerprint
matching is fairly mature and very high accuracy can be ob-
tained under typical conditions. However, there may be some
scope for improvement in accuracy when the user is uncooper-
ative and provides distorted or partial fingerprint images or if
the image quality is very poor due to finger skin conditions.

The results of different phases of Evaluation of Latent Fin-
gerprint Technologies (ELFT) conducted by NIST confirm that
the problem of latent-to-rolled print matching is inherently
more challenging compared to plain-to-plain matching. The
best rank-1 accuracy obtained in ELFT-EFS Phase 2 was only



15

Fig. 13. Poor quality of the latent fingerprint images makes it difficult to
reliably extract features from latents. The image on the left is a poor qual-
ity latent in which the ridge pattern of interest is smudged and occluded by
the presence of structured noise (text, lines, etc.). On the right is shown the
ridge skeleton extracted by a commercial fingerprint SDK from the image
on the left. Since the SDK used for extracting the above ridge skeleton is
not specifically designed for processing latent prints, it fails to extract the
correct fingerprint ridges from the latent.

63.4% (M. Indovina et al., 2009). The largest public-domain
latent fingerprint database is the NIST Special Database-27
(NIST SD-27) and the best reported rank-1 accuracy on this
database is 72%. These numbers clearly show that the problem
of fully automated processing and matching of latent prints to
rolled impressions or other latent prints is still far from being
solved.

The major reason for the deterioration in identification accu-
racy from plain prints to latent prints is the poor quality of the
latent fingerprint images. Latent fingerprints typically contain
ridge information from only a partial area of a finger. While a
typical rolled fingerprint has around 106 minutiae, a latent print
may contain only 21 usable minutiae.14 Even this partial ridge
information in a latent is often smudged, blurred, or occluded
by background text and markings, and may exhibit large nonlin-
ear distortion due to pressure variations. When the fingerprint
quality is very poor, it becomes very difficult to reliably extract
the minutiae and ridge features as shown in Figure 13.

Evaluating the state-of-the-art in face recognition is more
complex because of the large scope for variability in face im-
ages due to a number of factors such as aging, pose, expres-
sion, and illumination. The NIST Face Recognition Vendor
Test (FRVT) 201215 indicates that face recognition systems can
achieve a TAR of approximately 96% at a FAR of 0.1% when
matching mugshots of the face (frontal face images obtained
under a controlled environment at the time a suspect is booked
at the police station). When presented with face images ob-
tained during the visa application process, the TAR improves
to nearly 99% at the same FAR of 0.1%. This is because face
images for visa processing have more stringent guidelines on
illumination, background, and occlusion. While the above re-
sults are impressive, they are applicable only to a small num-
ber of applications where such good quality face images can be
captured from cooperative subjects.

14Based on images in the NIST SD27 database
15http://www.nist.gov/itl/iad/ig/frgc.cfm

Table 2. Summary of True Accept Rate (TAR) at 0.1% False Accept Rate
(FAR) when different face recognition algorithms were evaluated on the
NIST Special Database-32, which is also known as the Multiple Encounter
Dataset (MEDS II).

Algorithm TAR at 0.1% FAR
Eigenfaces 9%
Fisherfaces 35%

LBP 34%
COTS-A 58%
COTS-B 88%
COTS-C 97%

As pointed out in section 2, the key differentiator for face
recognition compared to fingerprint and iris is the ability to
capture face images covertly. However, the face images cap-
tured covertly tend to exhibit more intra-class variations. A
reasonable indicator of the performance under mildly challeng-
ing conditions is the accuracy of various face recognition algo-
rithms on the NIST Special Database-32, which is also known
as the Multiple Encounter Dataset (MEDS) (National Institute
of Standards and Technology - Information Technology Lab-
oratory, 2010). This database contains face images exhibiting
relatively large intra-class variations such as pose and illumi-
nation changes, compared to mugshots, as shown in Figure 14.
Some well-known face recognition algorithms such as Eigen-
faces, Fisherfaces, Local Binary Patterns (LBP), as well as three
commercial-off-the-shelf (COTS) face matchers were evaluated
on the MEDS II database and the TAR at 0.1% FAR is summa-
rized in Table 2.

The results in Table 2 show a wide gap between the perfor-
mance of the best COTS matcher and some of the most popu-
lar algorithms that are often considered in academic research.
The difference in performance is also rather high among three
of the best COTS matchers. This indicates the need to care-
fully choose the baseline system when developing new algo-
rithms for face recognition. It may be very easy to demonstrate
an improvement in performance by choosing an outdated base-
line (say Eigenfaces). A new face recognition algorithm can-
not be considered as an advancement of the state-of-the-art un-
less one can demonstrate better performance compared to either
state-of-the-art COTS face matchers or the best performing al-
gorithms published in the literature.

The Labeled Faces in the Wild (LFW) database contains face
photographs for studying the problem of unconstrained face
recognition. This dataset contains more than 13,000 images of
5,749 subjects. A number of researchers have reported perfor-
mance of their algorithms on this dataset. Results on a specific
protocol used on this dataset can be seen in Table 3.

One of the largest independent technology evaluations of iris
recognition is the NIST IREX III evaluation (Grother et al.,
2012). The database used in this test contains approximately
6.1 million iris images acquired from nearly 4.3 million eyes.
Among the 95 different algorithms considered in this evalua-
tion, the best algorithm had a false negative identification rate
of approximately 2.5% when a single eye was used per person
and the threshold was set such that there were no more than 25
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Fig. 14. Sample face images of one subject from the MEDS II database illustrating intra-user variations due to factors such as illumination, pose, expression,
and aging.

Table 3. Mean classification accuracy, along with standard error, of some
face recognition algorithms that were evaluated on the Labeled Faced in
the Wild (LFW) dataset under the “Image-Restricted, No Outside Data Re-
sults” protocol. For an explanation of the acronyms, please see http://vis-
www.cs.umass.edu/lfw/results.html

Algorithm Accuracy
Eigenfaces 0.6002 ± 0.0079

Fisher vector faces 0.8747 ± 0.0149
MRF-Fusion-CSKDA 0.9589 ± 0.0194

false positives in every 1013 iris comparisons. This ability to
operate at a very low probability of a false match is one of the
key advantages of iris recognition. It was observed that pupil
dilation and constriction has a significant impact on the recog-
nition accuracy, and the size of the iris templates ranged from
1 kilobyte (KB) to 20 KB. Some examples of iris images that
could not be recognized correctly during IREX III evaluation
are shown in Figure 15. These iris images are of very poor
quality, mainly because the users did not interact correctly with
the iris sensor.

Apart from fingerprint, face, and iris, significant progress has
also been achieved in the case of voice biometrics (also known
as speaker verification) over the last two decades. The results
of 2012 NIST Speaker Recognition Evaluation (SRE) (Green-
berg et al., 2012) show a TAR of approximately 93% at a FAR
of 0.1%. This high level of accuracy was achieved despite the
challenging nature of the NIST SRE 2012 evaluation, which re-
quired the algorithms to detect if a target speaker had spoken in
a given test speech segment with significant background noise.

A closer look at the performance of state-of-the-art finger-
print, face, iris, and voice biometric systems indicates that it is
possible to achieve very low error rates when the respective bio-
metric samples are acquired under controlled conditions with
the cooperation of the user. From the accuracy perspective16,
biometric recognition can be considered as a solved problem
in applications where the acquisition of good quality biometric

16Note that even if a high matching accuracy can be achieved in a technolog-
ical test, other requirements such as throughput, cost, and usability may need to
be satisfied before a biometric system becomes suitable for a particular appli-
cation. Moreover, a biometric system can still be very useful in an application,
even though “zero error rate” may never be achieved under operational settings.

samples from cooperative users is not an issue. However, the
fundamental problems in biometrics, namely, feature extraction
and matching, become more challenging when the biometric
samples are not captured in a controlled environment or if the
user is non-cooperative. As shown in Figure 16, there is a huge
gap between the accuracy of biometric systems evaluated on
good quality biometric samples (bottom left of Figure 16) and
that of systems evaluated on poor quality samples (top right of
Figure 16). This suggests that the development of better fea-
ture extraction and matching algorithms to handle poor quality
biometric samples is a fertile ground for research.

5. Unsolved Problems

The unsolved problems in biometric recognition can be di-
vided into two categories: (i) problems that involve fundamen-
tal issues related to design of recognition systems and (ii) prob-
lems that are specific to applications that will use biometric
recognition. As discussed in section 2, questions about the
distinctiveness and permanence of a biometric trait have not
been adequately addressed by the biometrics research commu-
nity. Moreover, feature extraction and matching schemes that
can handle poor quality biometric samples (e.g., face images
from a surveillance video or latent fingerprint images) need to
further developed. In the case of application-specific problems,
the two main unresolved issues are (i) techniques to shield a
biometric system from adversarial attacks/threats and provide
assurances on user privacy, and (ii) techniques to assess usabil-
ity of a biometric system and estimate the return on investment.
Finding viable solutions to these unresolved problems will not
only strengthen the case for biometrics in existing applications,
but also open up new applications for biometric recognition.

5.1. Distinctiveness of Biometric Traits
The concept of quantifying the distinctiveness of a biometric

trait (in other words, estimating the individuality of a biomet-
ric trait) can be understood from the following simple analogy.
Suppose that users in a person recognition system are identified
based on a 10-digit personal identification number (PIN). The
theoretical limit on the number of users who can be uniquely
identified by such a system is 10 billion. In other words, we can
say the probability that any two users in such a person recogni-
tion system will have the same PIN is 1 in 10 billion. However,
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Fig. 15. Examples of iris images from the NIST IREX III evaluation that could not be successfully recognized. It is difficult to extract reliable iris texture
features from these images because the eyelids are fully or partially closed (first two images from the left), the images exhibit excessive blur (third image
from the left), or the images are highly quantized (rightmost image).
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it is not feasible to achieve this theoretical limit in practice be-
cause the users seldom choose a random PIN.

Similar to the case of PIN, it is important to know how many
users can be uniquely identified by a biometric system based on
a specific biometric trait (e.g., right index fingerprint). This in-
formation is needed when designing large-scale biometric iden-
tification systems involving tens or hundreds of million users in
a biometric database. Understanding the distinctiveness of traits
can help in the design of biometric templates with sufficient ca-
pacity to distinguish between these users. If a single biometric
trait is not sufficient to meet the desired accuracy, it is essential
to know how many traits (multiple fingerprints, multiple irides,
face, etc.) would be required to identify all individuals in a
target population with the desired accuracy. For example, con-
sider the Aadhaar system in India where the goal is to achieve
de-duplication of more than one billion individuals. This sys-
tem currently uses ten fingerprints and two irides to perform
de-duplication. However, there is no rigorous scientific basis
to either claim that these twelve traits are sufficient to achieve
complete de-duplication of a billion identities or the same pur-
pose can be met with a smaller number of traits. Further, in
forensic applications it is necessary to provide an estimate of
the probability that any two or more individuals may have suf-
ficiently similar biometric samples in a given target population.
This is needed, for example, to provide credence to latent fin-
gerprint evidence.

One of the basic issues in estimating the individuality of a
biometric trait is determining the information level at which
the individuality should be measured. It is possible to de-
fine individuality based on (i) the biological trait (I(Y; B)),
(ii) the sensed samples/images recorded from the body trait
(I(Y; M)), and (iii) the features extracted from the sensed sam-
ples (I(Y; X)). For example, one can analyze the distinctiveness
of the 3-dimensional fingerprint pattern at the tip of a finger, the
2-dimensional flat/plain fingerprint image obtained by pressing
the finger against a fingerprint scanner, or (iii) the minutiae fea-
tures extracted from the 2-D fingerprint image.

In general, it is very difficult to directly measure the individu-
ality of the biological trait because only the sensed samples are
available for analysis. Since the sensed samples include dif-
ferent types of noise in addition to the biometric information,
estimating the individuality based on raw samples is also very
challenging. Furthermore, individuality at the trait or sample
level may be of little use except as an upper bound on the in-
dividuality of a biometric system. This is because the recogni-
tion will be eventually based on the features extracted from the
sensed images. For instance, while human faces may be highly
distinctive when observed at sufficient detail (e.g., 3-D shape,
scars, marks, etc.), individuality of appearance-based 2-D face
recognition systems may be limited by the proportion of iden-
tical twins17 in the target population. Consequently, research
on the individuality of biometric traits has primarily focused on
estimating the individuality based on the extracted features.

17It has been reported that the birth rate of monozygotic (identical) twins
is about three in every 1,000 births worldwide and this number is gradually
increasing due to the rise in fertility treatments (Wikipedia, 2002)

The primary difficulty in estimating individuality of a bio-
metric trait based on its feature representation is the lack of
robust statistical models to accurately characterize the intra-
and inter-subject variations. Consequently, estimating the en-
tropy functions H(X), H(X|Y), or H(Y |X) becomes a challeng-
ing task. Most of the attempts made thus far to estimate the
individuality of biometric traits had to make simplifying as-
sumptions in order to keep the problem tractable (Zhu et al.,
2007).

Alternatively, attempts have been made to abandon the idea
of accurately modeling the features and indirectly estimate in-
dividuality based on the match score distributions (Neumann
et al., 2007). The basic assumption underlying this approach is
that H(Y |S), the conditional entropy of Y given the match score
data S, is a good upper bound for H(Y |X). The main limitation
of this approach is the need to account for the tails of the match
score distributions, which in turn requires a very large number
of biometric samples. This is often infeasible due to time and
cost considerations.

A good example of analyzing biometric features based on
match score distributions is the analysis of impostor score dis-
tribution using IrisCodes extracted from 632, 500 different iris
images (Daugman, 2006). In (Daugman, 2003), it was esti-
mated that a 2, 048 bit IrisCode representation contains approx-
imately 249 degrees of freedom. However, this result is based
on a simple matching model that ignores the need to test mul-
tiple relative rotations of the IrisCode. Therefore, one cannot
directly conclude that the entropy of an IrisCode template is
249 bits. Moreover, it is not straightforward to obtain a precise
estimate of individuality of the IrisCode representation using
the above result because it fails to take into account the genuine
score distribution (consequently, intra-subject variations are not
modeled).

Finally, one can argue that the ability of a biometric system
to achieve very low error rates can be considered as evidence
of high individuality of the underlying biometric trait. This is
because H(Y |Ŷ) can be considered as a upper bound on H(Y |X),
where H(Y |Ŷ) is a function of the error rates of a biometric sys-
tem. Estimating the individuality based on empirical error rates
has two main limitations: (i) since the error rates are database-
dependent, it is not easy to extrapolate them when the popula-
tion size increases by orders of magnitude or when the popu-
lation characteristics change, and (ii) the resulting estimate is
only a loose lower bound on the true individuality. For exam-
ple, if a biometric system is able to achieve an FMR of 1 in
a trillion, it implies that the entropy of the biometric template
could be approximately 40 bits. This is the equivalent to the
guessing entropy of a randomly chosen 6 character password
chosen from an alphabet of 94 characters (Burr et al., 2006).
Intuitively, one would expect the true individuality of a biomet-
ric trait to be much higher than this value.

5.2. Persistence of Biometric Traits
Persistence of a biometric trait is related to the notion of ag-

ing. Aging refers to changes in a biometric trait or the cor-
responding template over a time span, which can potentially
impact the accuracy of a biometric system. For the sake of clar-
ity, we distinguish between two types of aging: trait aging and
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template aging. Trait aging refers to the biological change in
a trait over a person’s lifetime. This change is inevitable and,
unlike other types of intra-subject variations, cannot be easily
controlled by the individual. For example, changes in a per-
son’s facial structure and appearance can occur over time due
to the effects of biological aging. This can, in turn, impact the
accuracy of face matchers as shown in Figure 17.

Template aging, on the other hand, refers to changes in a per-
son’s biometric template (i.e., the feature set extracted from the
biometric trait) over time. While template aging is certainly
related to trait aging, it must be noted that the extraction of in-
variant features from a biometric trait can mitigate the impact
of trait aging on template aging. In the case of fingerprints, it is
well known that the friction ridge pattern varies over time due
to age-related as well as occupation-related changes in the outer
skin, sebaceous gland activity, etc. However, these changes, for
the most part, do not significantly impact the distribution of
minutiae points in the fingerprint image (see Figure 18). This
explains the use of minutiae points in defining fingerprint tem-
plates that have been successfully used for over 100 years. Con-
sequently, fingerprint trait aging does not necessarily result in
template aging. Furthermore, the persistence of a biometric trait
varies from person to person.

Since every biological agent experiences aging, it would be
facetious to assume that biometric traits are persistent over time.
The question that is yet to be answered by the biometric com-
munity is the following: can the degree of permanence of a
biometric trait/template be computed? In other words, is it pos-
sible to measure and predict the degree of change (ηηηa) that a
certain trait or template is expected to encounter over an indi-
vidual’s lifetime? An answer to this question would allow for
the system to periodically, and systematically, update the bio-
metric template of a user in order to account for age related
changes (Uludag et al., 2004b).

The impact of age on the performance of face recognition
systems is well documented (Ramanathan et al., 2009). This is
primarily because of the availability of datasets such as FG-
NET (Crowley, 2004) and MORPH (Ricanek and Tesafaye,
2006) (also see (Hager, 2013) for a list of other face aging
databases). Several algorithms have been proposed to handle
the issue of age variation in face recognition (Park et al., 2010).
Most of the proposed techniques are learning-based schemes in
which the pairwise time-lapsed face images of a large number
of subjects are used to deduce an aging model from both a tex-
ture and geometric perspective. The learned model is then used
during the matching phase to account for potential disparity in
age between the gallery and the probe images. Accounting for
this disparity has resulted in improvement in the matching accu-
racy of face matchers. Additionally, methods for estimating the
age of a face image have also been developed (Fu et al., 2010),
thereby substantiating - from a computer vision perspective -
the manifestation of age on faces.

While the issue of age disparity has been extensively ad-
dressed for face biometrics, the issue has received less atten-
tion in the context of fingerprint biometrics. This is because
the configuration of epidermal ridges that constitute a finger-
print has been established to be stable in postnatal life (Gal-

ton, 1892; Babler, 1991). However, more recently, the issue of
fingerprint persistence was systematically studied by Yoon and
Jain (Yoon and Jain, 2015). In their study, fingerprint match
scores were analyzed using multilevel statistical models. Lon-
gitudinal fingerprint records of 15,597 subjects were sampled
from an operational fingerprint database such that each individ-
ual had at least five 10-print records over a minimum time span
of 5 years. Their analysis showed that: (i) genuine match scores
tend to significantly decrease when time interval between two
fingerprints in comparison increases, whereas the change in im-
postor match scores is negligible; and (ii) fingerprint recogni-
tion accuracy at operational settings, nevertheless, tends to be
stable as the time interval increases up to 12 years, the maxi-
mum time span in the dataset.

Recent literature in iris recognition has provided support for
template aging (Grother et al., 2013). Several researchers have
observed a decrease in True Accept Rate (TAR) when iris tem-
plates separated over a long period of time (more than 3 years)
were compared (Baker et al., 2009). However, none of these
studies was able to directly relate the degradation in genuine
match scores with explicit changes in the iris texture itself.
Consequently, the notion of iris template aging has remained
a controversial issue at the time of writing this paper.

5.3. Unconstrained Biometric Sensing Environment
There are some person recognition applications where it is

very difficult to impose constraints on how the biometric trait
should be acquired. One well-known example is latent finger-
prints acquired from crime scenes. For iris recognition, one
of the major issue has been the usability of iris sensors. Most
available iris sensors require the subject’s eye to be in close
proximity to the camera and expect the subject to remain still
during the acquisition process. User acceptance of iris recogni-
tion technology can be greatly enhanced if iris sensors can be
designed to capture the iris pattern at a distance and when the
subject is on the move (e.g., Sarnoff’s iris-on-the-move system
(SRI International, 2013)). However, the iris images obtained
in this scenario are unlikely to record the texture details on the
iris surface with high fidelity and may also exhibit large intra-
subject variations (e.g., rotation and occlusion). Hence, more
robust algorithms are required to process such iris images.

Another classic example of unconstrained sensing environ-
ment is video surveillance, where face images are acquired us-
ing closed circuit television (CCTV) cameras that monitor pub-
lic places. Constant video surveillance is deemed to be a suc-
cessful deterrent against crime and consequently surveillance
cameras have rapidly proliferated around the world, especially
in urban areas. As an example, it has been estimated that there
are more than 1 million CCTV cameras in the city of London
alone and around 4.9 million of them are spread across the
United Kingdom (Barrett, 2013). Almost all existing CCTV
cameras are passive in the sense that they merely record the
video and the stored video is analyzed by human operators only
after an abnormal incident has taken place and reported. Real-
time video processing is seldom carried out to predict or detect
an abnormal incident, or to identify a perpetrator.

The primary challenge in automated video surveillance is
how to detect “persons of interest” in a video and then iden-
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Fig. 17. Degradation in the accuracy of a face recognition system due to trait aging. This figure shows face images of the same person captured over a
period of time extracted from a mugshot database provided by the Pinellas County Sheriff’s Office (PCSO). Suppose that we consider the first image on
the left as the gallery seed and all the other images as probe images. One can easily observe that the match scores output by two state-of-the-art COTS face
matchers (denoted as A and B) decrease significantly when the time lapse between the gallery and probe images increases. Note that COTS-B matcher
appears to be more robust to aging than COTS-A matcher, indicating that the face template of COTS-B is better than that of COTS-A in compensating
for biological aging.

(a) (b) (c) 

Fig. 18. Herschel’s fingerprints at age 7 (a), age 17 (b), and age 40 (c). The
pairwise match scores of a state-of-the-art fingerprint matcher for these
three fingerprints are: (a) vs. (b) 6,217; (a) vs. (c) 5,032; (b) vs. (c) 5,997;
the maximum impostor score of (a) against 10,000 fingerprints in NIST
SD4 is 3,325 and that of (b) is 2,935, implying that these three fingerprint
images can be claimed to originate from the same finger with high confi-
dence.

tify them using face recognition systems18. Here, we focus
only on the problem of identifying the “person of interest” in
a surveillance video using the face modality19. Face recogni-
tion in surveillance applications is a very challenging problem
due to the following two reasons:

1. The poor quality of face images captured using CCTV
cameras. Factors leading to this degradation in quality
may include low spatial resolution of the camera, large dis-
tance between the subject and the camera, speed at which
the subject is moving, illumination variations at the moni-
tored location, and occlusion caused by other objects and
people in the scene.

18It is interesting to note that the concept of automatically detecting a person
of interest from surveillance video forms the core idea of a television show
named Person of Interest that is being currently featured on the CBS network.

19Note that it is also possible to identify the person using other cues such
as gait, ear, and soft biometric traits (e.g., tatoos). Another related problem
is person re-identification, where the objective is to track the same person as
he/she passes through a network of multiple CCTV cameras.

2. Since the subject is not expected to be cooperative (not
posing for face capture as in a mugshot scenario), there
may be large pose and expression changes as well as oc-
clusion of facial features due to the wearing of accessories
like caps and eye-glasses. In some cases, the subject may
also intentionally hide his face from the camera to avoid
detection.

Apart from the above two issues, surveillance videos typically
provide a sequence of face images of the same subject, which
needs to be matched against a gallery of still/mugshot images.
Generally, it is difficult to establish a priori which image in the
video sequence is likely to give the correct result. Thus, face
recognition in video introduces an additional layer of complex-
ity as well as opportunity because of the availability of evidence
provided by multiple probe images that can be combined.

Despite the above challenges, significant progress has been
achieved in unconstrained face recognition. This was demon-
strated by Klontz and Jain in (Klontz and Jain, 2013), where the
authors simulated the scenario of using face recognition to iden-
tify the suspects in the Boston marathon bombings (see Figure
19). This was achieved by adding three images each of the
two suspects (the Tsarnaev brothers) to a background database
of 1 million mugshot images provided by the Pinellas County
Sheriff’s Office (PCSO). The six images added to the gallery in-
cluded mugshots as well as face images of the brothers obtained
from the social media. The images of the suspects extracted
from surveillance cameras and released by the FBI were used
as probe images to search the gallery using two state-of-the-art
COTS face matchers. It was observed that one of the probe
images of the younger brother (Dzhokhar Tsarnaev) matched
correctly with his high school graduation photograph included
in the gallery (see Figure 19). While this example highlights
the potential of automated face recognition technology, it also
throws light on the limitations of the state-of-the-art face recog-
nition systems. Firstly, due to issues such as pose, low resolu-
tion, and occlusion (e.g., cap and sunglasses), the elder brother
(Tamerlan Tsarnaev) could not be successfully identified us-
ing both the face matchers. Even in the case of the younger
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(a) (b) 

(c) 

Fig. 19. A simulated example to illustrate how face recognition systems could have been used to identify the suspects in the April 2013 Boston marathon
bombings (Wikipedia, 2013). (a) The five face images of the suspects obtained from surveillance videos and released by the FBI. (b) A gallery database
constructed by adding three portrait images each of the two suspects (the Tsarnaev brothers) to a background database of 1 million mugshots provided
by the Pinellas County Sheriff’s Office (PCSO). Note that the six images added to the gallery included mugshots as well as face images of the brothers
obtained from the social media. (c) The top retrieval ranks (after demographic filtering) output by a COTS face matcher when the images in (a) are used
as probes to search against the gallery in (b). It was observed that one of the probe images of the younger brother (Dzhokhar Tsarnaev) matched correctly
(at rank 1) with his high school graduation photograph included in the gallery.
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brother, one can argue that the correct match was possible only
due to the availability of a graduation photograph with a simi-
lar pose. Note that the mugshot image of the younger brother,
which is typically the only image available to the law enforce-
ment officials during preliminary investigation, did not result in
a successful match. This shows that large improvements in un-
constrained face recognition accuracy would be required before
fully automated (“lights-out”) face recognition systems can be
deployed in challenging applications like surveillance.

5.4. System Security & User Privacy

While the main motivation for deploying a biometric system
is to protect an application from unauthorized access, there is
no guarantee that a biometric system will be completely secure.
Just like any other security system, the biometric system may
be vulnerable to a number of security threats (see Figure 20),
which may eventually affect the security of the end applica-
tion. These security vulnerabilities may lead to adverse conse-
quences such as denial-of-service to legitimate users, intrusion
by unauthorized users, repudiation claims by corrupt users, and
erosion of user privacy due to function creep. A number of stud-
ies have comprehensively analyzed the security threats faced by
a biometric system and suggested remedial measures (Roberts,
2007; Jain et al., 2008).

While many of the adversarial attacks on a biometric sys-
tem such as Trojan horse, replay, and man-in-the-middle attacks
are common to any authentication system and can be addressed
by borrowing ideas from secure password-based authentication
schemes, there are two vulnerabilities that are more specific to
biometric systems. One of them is the problem of spoofing
(Marcel et al., 2014), where the biometric sensor is presented
with a counterfeit biometric trait (Matsumoto et al., 2002; Chin-
govska et al., 2012; Zhang et al., 2012). Spoof detection is
a critical requirement, especially in unsupervised applications
(e.g., authentication on a smartphone) where the presence of a
user is not being monitored. The other major threat is the sys-
tem security and user privacy issues arising from the leakage
of biometric template information due to attacks on the tem-
plate database. Intentional alteration of biometric traits in order
to avoid identification (Yoon et al., 2012) is also an emerging
threat in some applications (e.g., international border crossing).
It must be emphasized that biometric system security and user
privacy concerns are important public perception issues, which
can potentially derail the success of a biometric system deploy-
ment unless they are addressed comprehensively.

Spoof detection typically involves checking for signs of hu-
man vitality or liveness (e.g., blood pulse, eye blinking, etc.)
and hence, it is also referred to as liveness detection (Marasco
and Ross, 2015). To be useful in practice, liveness detection
schemes must recognize spoofing attempts in real-time and with
high accuracy without causing too much inconvenience to le-
gitimate users. Though spoof detection techniques are gener-
ally designed for specific biometric modalities (Parthasaradhi
et al., 2005; Antonelli et al., 2006; Nixon and Rowe, 2005; Li
et al., 2004; Lee et al., 2006), they can be broadly classified
into three main categories. The first approach involves mea-
suring the physiological properties of a live person, which in-

cludes blood pulse/pressure, perspiration, spectral/optical prop-
erties of the human skin/tissues, electrical/thermal character-
istics, and deformation of the muscles/skin. The second ap-
proach is based on identifying voluntary or involuntary hu-
man behavioral actions like fluctuations in pupil size, blink-
ing, and pupil/eye/head/body movements. The third category
is known as the challenge-response mechanism, where the sys-
tem presents a challenge to the user and measures whether the
user responds to the challenge correctly. Examples of chal-
lenges include prompting a user to recite a randomly generated
phrase/text in speaker verification systems, asking the user to
change his or her facial expression (e.g., smile or frown) in face
verification systems, or requesting the user to present multiple
biometric traits (e.g., different sequence of fingers) in a ran-
domly generated sequence. The key design issues in spoof de-
tection are: (i) how to systematically evaluate the risk of spoof-
ing in a given end application? and (ii) how to select one or
more of above approaches to achieve an acceptable tradeoff be-
tween spoof detection accuracy and user convenience?

One of the critical steps in minimizing the security and pri-
vacy risks associated with biometric systems is to protect the
biometric templates stored in the system database. While the
risks can be mitigated to some extent by storing the templates
in a decentralized fashion (e.g., templates can be stored in indi-
vidual devices such as smart cards carried by the user), such so-
lutions are not always feasible in many large-scale applications
that require a central template database. The ideal solution for
biometric template protection is to eliminate the need to store
any biometric information in the database. This can be achieved
by transforming the biometric trait into a pseudo-random key,
which can be regenerated every time a new sample of the same
biometric trait is presented (Uludag et al., 2004a). Note that
to preserve the recognition accuracy, non-mate samples (from
different subjects) must result in different keys. However, the
above concept of biometric key generation represents the holy
grail of biometrics because it requires a representation scheme
that is invariant to intra-user variations, but at the same time
unique to each user.

A more practical and feasible solution is to transform the raw
biometric template into a “secure” template, which satisfies the
following three requirements.

1. Non-invertibility: It must be computationally hard to re-
cover the biometric features from the stored template. This
prevents the adversary from replaying the biometric fea-
tures gleaned from the template or creating physical spoofs
of the biometric trait. Non-invertibility is quantified by
H(XE |X̂E), where X̂E is the secure template generated
from the raw template XE .

2. Non-linkability: It should be possible to create multiple
secure templates from the same biometric data that are
not linkable. This property not only enables the biomet-
ric system to revoke and re-issue new biometric templates
when the template database is compromised, but also en-
sures that cross-matching across databases is not possible,
thereby preserving the user’s privacy. Non-linkability can
be measured by H(Y |X̂

1
E , X̂

2
E , · · · ), where X̂

1
E , X̂

2
E , · · · are

multiple secure templates generated based on biometric
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Fig. 20. A summary of possible attacks on a biometric system. While a majority of the security threats are common to any authentication system, the
problem of spoofing (presentation of fake biometric traits) and attacks on the template database (either to reverse engineer the original biometric data or
perform cross-matching) are specific to biometric systems.

features extracted from the same user Y .
3. Discriminability: The secure template should not degrade

the recognition accuracy of the biometric system. In other
words, H(Y |XR, X̂E) should be as close as possible to
H(Y |XR,XE).

The main challenge in biometric template protection is to de-
sign a scheme that generates non-invertible and non-linkable
templates without compromising on the matching accuracy.
This boils down to designing a template protection scheme such
that H(XE |X̂E) and H(Y |X̂

1
E , X̂

2
E , · · · ) are maximized, while

minimizing H(Y |XR, X̂E). While several approaches such as
feature transformation (Ratha et al., 2001) and biometric cryp-
tosystems (Dodis et al., 2006) have been proposed in the litera-
ture, the search for a secure biometric template satisfying all the
three requirements has proved to be elusive thus far. The emer-
gence of homomorphic encryption technology20 appears to be
promising.

Another issue that has gained considerable attention is the
concept of public self-disclosures through online social net-
works. A large number of face photos are being posted online
through social networks such as Facebook. Recent research
has established the possibility of deducing potentially sensi-
tive personal data by combining online social network data with
off-the-shelf face recognition technology and cloud computing
power.21 In order to address this problem, techniques such as
Visual Cryptography (Ross and Othman, 2011) and Privacy-
preserving Photo Sharing (Ra et al., 2013) have been proposed.

20http://www.fujitsu.com/global/news/pr/archives/month/2013/20130828-
01.html

21http://www.blackhat.com/docs/webcast/acquisti-face-BH-
Webinar-2012-out.pdf

However, this continues to be an important area of research as
individuals begin to share large amounts of biometric data (viz.,
face and voice data) through online social networks.

Finally, the ease with which face and voice data can be sur-
reptitiously recorded using devices such as Google Glass has
also raised privacy concerns.22 The recorded data can poten-
tially be used to deduce an individual’s identity and personal in-
formation. In order to counter this possibility, researchers have
developed ‘Anti-Google Glass’ technology - a pair of glasses
outfitted with LEDs that emit near-infrared light into Google
Glass cameras thereby preventing face recognition techniques
from detecting a face (Yamada et al., 2013). The use of facial
cosmetics has also been shown to degrade the accuracy of face
recognition techniques (Dantcheva et al., 2012).

6. The Future of Biometric Recognition

While improvements in biometric algorithms (feature extrac-
tion, matching, and security fixes) will continue to play a major
role in shaping the future of biometric recognition, it is also
important to keep in mind that changes in enabling technolo-
gies and products will also have a significant influence on how
biometric recognition systems will evolve in the future. For in-
stance, exponential improvements in the performance and cost
of processors and memory have already played a dominant role
in the development of better biometric sensors. Similarly, ad-
vancements in the field of bioelectronics have created new prod-
ucts like lab-on-a-chip. This in turn has enabled rapid DNA
analysis and opened up new frontiers for the use of DNA as
a biometric identifier. Rapid improvements in communication

22http://www.telegraph.co.uk/technology/google/10494231/The-places-
where-Google-Glass-is-banned.html
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technologies and proliferation of consumer electronic devices
(e.g., smartphones) have also created new avenues for the de-
ployment of biometrics. In applications such as device person-
alization (e.g., entertainment systems, automobiles), financial
transactions (e.g., ATM machines, credit card purchase), facil-
ity access (e.g., fitness gyms, private apartments) and online
social networks (e.g., messaging over FaceBook), people are
likely to avail of biometric technology on a daily basis.

6.1. New Sensors & Computing Platforms

In 1965, Gordon Moore (Moore, 1965) predicted that the
number of components (transistors) in an integrated circuit (IC)
is likely to double approximately every two years for the next
10 years, while the unit cost of each component is likely to
fall. Remarkably, this prediction (also called the Moore’s Law)
has held true for nearly half-a-century. In the case of biometric
recognition, the direct impact of the rapid improvements in ICs
is the development of smaller, cheaper, and higher quality bio-
metric sensors as discussed earlier in Section 3. Improvement
in sensors have mitigated the intra-subject variations caused to
sensor limitations to a large extent. It is expected that the per-
formance of integrated circuits will continue to improve at the
same rates in the near future23. This will act as a catalyst for
the development of novel sensors, which can be expected to
further push the limits on quality, usability, and cost. Sensors
that can capture multiple biometric traits of the user simultane-
ously (e.g., all biometric modalities in the human face or hu-
man hand) are also likely to developed. It is also necessary to
develop a user-friendly ergonomic interface that can still permit
the acquisition of repeatable biometric samples from a subject,
i.e., reduce the variations caused due to user interactions.

As a direct consequence of this improvement in ICs, the
performance of microprocessors has been doubling every two
years, while the cost of computing is decreasing at the same
rate (see Fig. 21(a)). A similar trend has also been occurring
in the case of random access memory (RAM) (see Fig. 21(b))
and other storage devices. These exponential improvements in
computing and storage have enabled the deployment of more
powerful algorithms to process the captured biometric data. For
instance, even though the concept of neural networks had been
known for more than 30 years, the availability of powerful pro-
cessors and the ability to efficiently handle large amounts of
data has played a key role in the development of deep learning
algorithms, which are powerful tools in many pattern recogni-
tion applications.

The availability of cloud computing has also presented new
opportunities. Firstly, a cloud architecture can be used to store
and access biometric data across different entities (e.g., organi-
zations or countries) under differential policies (e.g., policies
defining level of access and data usage). Secondly, a cloud
framework can be used by clients to access biometric software
development kits (e.g., face matcher) on a need-to-use basis or
based on anticipated workload. In such a scenario, biomet-
ric recognition can be viewed as a service. Thirdly, cloud-

23http://www.itrs.net/Links/2012ITRS/Home2012.htm

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
10

−2

10
0

10
2

10
4

10
6

Year

P
r
o
c
e
s
s
o
r
 
P
e
r
f
o
r
m
a
n
c
e
 
(
M
I
P
S
)

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
10

−2

10
0

10
2

10
4

10
6

C
o
s
t
 
(
$
)
 
p
e
r
 
M
I
P
S

(a)

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
10

0

10
1

10
2

10
3

10
4

Year

M
e
m
o
r
y
 
S
i
z
e
 
(
M
B
y
t
e
s
)

 

 

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
10

−2

10
0

10
2

10
4

10
6

C
o
s
t
 
(
$
)
 
p
e
r
 
M
B
y
t
e

 

 

(b)

Fig. 21. Dramatic improvements in (a) processor performance and (b) ran-
dom access memory (RAM) capacity due to the doubling of transistors in
integrated circuits (ICs) every two years (Moore’s Law) (Moravec, 1997;
McCallum, 2013). While the processor performance (measured in mil-
lions of instructions per second (MIPS)) and RAM capacity (measured in
Megabytes) have improved by more than six orders of magnitude (as indi-
cated by the blue lines) over the last 40 years, the per unit costs of these
components have been falling exponentially (as indicated by the green
lines). These improvements have directly impacted the evolution of bio-
metric sensors enabling the creation of smaller, cheaper, and higher quality
biometric sensors.



25

based biometrics can facilitate rapid analytics (e.g., recogniz-
ing a face using a smartphone camera, where the phone ac-
cesses the cloud) due to the availability of a large number of
parallel nodes (i.e., computational/software resources). How-
ever, appropriately harnessing the power of cloud computing,
while preserving the privacy and security of biometric data, re-
mains an open-problem in the context of biometrics.

6.2. Ubiquitous Biometrics

The notion of ubiquitous biometrics may refer to the iden-
tification of an individual at any time and at any place by uti-
lizing all the pieces of information - both biometric and non-
biometric - available about the person. An ubiquitous biomet-
ric system will exploit other identity cues such as a person’s
location (de Montjoye et al., 2013), behavior, and recent in-
teraction history (Rashid et al., 2013) in conjunction with the
available biometric data (including soft biometric characteris-
tics) to establish the person’s identity with a high degree of re-
liability. This concept can be understood from the following
illustrative example. Suppose that a user wishes to perform a
banking transaction using his smartphone equipped with a face
recognition system. Apart from capturing the person’s face,
the authentication system can also obtain information about the
user’s location using the Global Positioning System (GPS) sen-
sors available on the phone. It is also possible to obtain infor-
mation on the user’s recent interactions with the phone (e.g.,
the applications that were accessed) as well as the transaction
history of the user with the bank (e.g., transaction type, amount
involved, beneficiaries). All these bits of evidence about the
user can be integrated to obtain a strong assurance of identity.

An alternate perspective on ubiquitous biometrics is to ven-
ture beyond the task of establishing the identity of a person and
gather additional information about the person. For instance,
apart from identifying an individual using the face image, the
system can also recognize the person’s mood based on his facial
expressions (Bettadapura, 2012). Moving one step further, it
may be possible to find out the person’s preferences and behav-
ioral characteristics by mining his social media profile (Rashid
et al., 2013). This additional knowledge about the user would
be extremely useful in applications that require personalized de-
livery of services.

It must be emphasized that caution must be exercised when
designing such ubiquitous biometric systems. Issues such as
application context and user privacy concerns must be care-
fully assessed and appropriate checks and balances must be in
place in order to prevent abuse of biometric recognition sys-
tems for unintended purposes. For example, buying a meal
from a restaurant should not require the same level of identity
assurance as in the case of performing a high-value financial
transaction. Similarly, the issues related to the ownership of
personal data and appropriate usage rights should be resolved
before designing an ubiquitous biometric system that is capa-
ble of inferring the complete personality profile of a person.

6.3. Biometrics For Social Good

Biometric systems are being increasingly deployed in appli-
cations where societal benefits, and not security alone, is the

dominant motivating factor. As discussed in Section 1, many
national ID systems around the world are basically focused on
giving the poor and illiterate people primarily in rural areas an
identity, which will allow them to taste the benefits of social
welfare schemes and health-care services provided by govern-
ment and non-profit organizations. The rapid proliferation of
mobile phones24 has also played a major role in accelerating
this trend. While mobile phones are generally considered only
as a convenient tool for communication and entertainment, they
are being increasingly used as a mechanism to deliver services
and benefits to segments of the population, who were hitherto
unreachable due to lack of physical infrastructure.

A good example of the usage of mobile phones and bio-
metrics for delivering health-care services is the mobile-phone
based vaccination registry developed by VaxTrac25, which is
used in African countries like Benin. The primary purpose of
this registry is to keep track of the vaccine doses given to chil-
dren so that redundant doses can be avoided, while simultane-
ously improving the immunization coverage. Since the children
undergoing immunization seldom have proper identity docu-
ments and are often known only by their first name, it has been
very difficult to keep track of vaccine doses administered to
them. The VaxTrac system utilizes fingerprint biometrics to
address this problem. An unsolved problem is how to acquire
fingerprint images (or for that matter other biometric traits) of
newborns and infants that are of sufficient quality for match-
ing over a two-year time span (Jain et al., 2014). Similarly, the
youngest age at which an infant’s fingerprint can be success-
fully captured has not been established (Figure 22).

6.4. Biometrics & Forensics

Although forensics was one of the earliest applications of
biometric recognition, biometric systems are yet to live up to
their full potential in solving the problems faced by forensic
experts. Biometric recognition can be used in forensics in two
distinct ways: (i) as a tool to assist in investigation by identi-
fying suspects and (ii) as an evidence in a court of law. It is
worth noting that these two use-cases have very different re-
quirements. In the first case, the key requirements are the speed
and accuracy of biometric recognition under challenging imag-
ing conditions. However, errors are tolerable to some extent
in this scenario because the investigating officers can make use
of other contextual information (e.g., demographic filtering) to
eliminate some of the false matches. In the second scenario,
the primary requirement is a convincing presentation of bio-
metric evidence with strong statistical basis to the judge and
the jury. This in turn involves obtaining a reliable estimate of
the individuality of a biometric trait. Based on the discussion
in Section 5, it should be clear that both the above requirements
(recognition accuracy and individuality estimation) are not fully
solved problems. Furthermore, Champod (Champod, 2013) ar-
gues that traditional performance metrics like False Match Rate
(FMR) and False Non-Match Rate are not suitable for evidence

24It is estimated that over 1.7 billion mobile phones were sold worldwide in
2012 alone. Source: http://www.gartner.com/newsroom/id/2335616

25http://vaxtrac.com/about
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(a) (b) (c) 

Fig. 22. Capturing an infant’s fingerprints using an optical sensor. (a) Image acquisition setup. (b) and (c) Two fingerprint impressions of a four-month-old
girl’s left thumb; minutiae in these images were extracted using a commercial fingerprint SDK. The match score between these two fingerprints is 216
which indicates a high similarity (the threshold at FAR=0% for this matcher on FVC2002 DB1-A is 51). In this example, the infant’s fingerprints were
successfully acquired and matched. However, this may not be the case for all infants across different sensors, demographic and age groups.

presentation in a court of law and new metrics such as Rate of
Misleading Evidence in favor of the Defense (RMED) and Rate
of Misleading Evidence in favor of the Prosecution (RMEP) are
needed to describe the performance of biometric systems in the
forensics domain.

One of the interesting developments in the intersection of
forensics and biometrics is the advancements in matching of
DNA samples. The current standard procedures for DNA test-
ing, namely Polymerase Chain Reaction (PCR) and Short Tan-
dem Repeat (STR) analysis, have been in place for around two
decades now (New England Innocence Project, 2011). Since
these procedures typically involve laboratory analysis by hu-
man operators, it may take several hours to several days to ob-
tain an STR profile from a buccal swab. However, prototype
devices are now available for rapid DNA analysis (The Federal
Bureau of Investigation, 2013b). These devices fully automate
the process of developing a STR profile from a reference buccal
swab and have a response time of less than two hours. In the
near future, it may be possible to further speed up this process
to a few minutes, thereby making DNA as a feasible biometric
modality even in applications other than forensics. However,
one needs to be extremely cautious about the privacy issues as-
sociated with DNA-based biometric systems because the DNA
samples (or templates) may contain a wealth of personal infor-
mation (e.g., susceptibility to diseases).

The use of forensic evidence in U.S. Federal courts (and in
several State courts) is guided by the Federal Rules of Evi-
dence. In particular, Rule 702 states that testimony provided
by an expert witness must be “based on sufficient facts or data.
The Daubert standard, which largely stemmed from Rule 702,
further defined the criteria for the admissibility of scientific ev-
idence. In Daubert v. Merrell Dow Pharmaceuticals, 509 U.S.
579, the Court ruled that the validity of scientific testimony has
to satisfy relevancy and reliability standards, i.e., the experts
testimony should be “relevant to the task at hand and should rest
“on a reliable foundation. Carefully answering the related ques-
tions will play a critical role not only in legal proceedings, but
also in bolstering the scientific basis for biometric methods used
in forensic investigations (e.g., latent fingerprint matching). In
particular, it will be the first step in assuaging criticism leveled

by the 2009 National Academy of Sciences’ report, Strength-
ening Forensic Science in the United States: A Path Forward,
which concluded that claims about the evidential value of foren-
sic data are not supported by rigorous scientific study.

7. Summary

To counter growing security threats and financial fraud, and
to facilitate personalization and convenience, the importance of
biometrics as a reliable tool for person recognition has been es-
tablished beyond doubt. It is indeed fascinating that a system
can recognize a person with extremely high accuracy within a
fraction of a second based on the friction ridge pattern on the
tip of his finger, or the textural patterns on the stroma of his
iris, using a commodity processor such as a laptop or a mobile
phone. This is a significant achievement given that the first pa-
per in automated biometric recognition was published only 50
years ago.

In this paper, we have attempted to summarize the state of the
art in biometrics recognition and have identified key challenges
that deserve attention. The biometrics community has indeed
come a long way over the past 50 years. On one hand, tremen-
dous progress has been made in designing large-scale biometric
systems that can rapidly search through biometric databases in
order to retrieve a matching identity (e.g., the IrisGuard system
deployed in the United Arab Emirates). On the other hand, the
advent of smartphones and other consumer devices has led to
enhanced interest in designing biometric solutions for resource-
constrained devices (e.g., the Touch ID fingerprint system in
iPhones). Modern biometric systems are being increasingly
tuned to deal with poor quality data, including those encoun-
tered in traditional forensics applications. These advancements
have been facilitated by attendant progress in computing power,
signal processing, computer vision, pattern recognition and ma-
chine learning. Despite the challenges that remain, the biomet-
rics community can celebrate its accomplishments over the past
50 years. The technology has indeed redefined the landscape of
personal authentication. In order to take biometrics technology
to the next level, so that it is pervasive (a la the movie Minor-
ity Report), biometric researchers need to be aware of the ap-
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plication requirements whilst not ignoring the algorithmic and
privacy models necessary to reliably extract and match traits.
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Appendix: Image Sources

The following illustrations in this paper have been generated using
images downloaded from the Internet. The corresponding image links
are listed below.

• Figure 4

– http://upload.wikimedia.org/

wikipedia/commons/7/74/Bertillon -

Signalement Anthropometrique.png

– http://nutrias.org/~nopl/monthly/sept2002/

bcdhowell.jpg

• Figure 7

– http://galton.org/fingerprints/images/
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– http://upload.wikimedia.org/wikipedia/
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• Figure 10
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2011/10/history-photo-camera-9.jpg

– http://photodoto.com/wp-content/uploads/

2011/10/history-photo-camera-14.jpg

– http://commons.wikimedia.org/wiki/File:

Three Surveillance cameras.jpg

– http://siliconcowboy.files.wordpress.com/2010/

11/jphone.jpg

– http://upload.wikimedia.org/wikipedia/

commons/6/67/Xbox-360-Kinect-Standalone.png

– http://static7.businessinsider.com/image/

4d013ea7cadcbb7033010000/looxcie-video-

camera.jpg

– http://cdn.techinasia.com/wp-content/uploads/

2013/03/samsung-galaxy-s4-white.jpg

• Figure 11
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