
To appear in IEEE BTAS, Sept. 2013

Open Source Biometric Recognition

Joshua C. Klontz
Michigan State University
East Lansing, MI, U.S.A

klontzjo@msu.edu

Brendan F. Klare
Noblis

Falls Church, VA, U.S.A
brendan.klare@noblis.org

Scott Klum
Michigan State University
East Lansing, MI, U.S.A

klumscot@msu.edu

Anil K. Jain
Michigan State University
East Lansing, MI, U.S.A

jain@cse.msu.edu

Mark J. Burge

Falls Church, VA, U.S.A.
burge@ieee.org

Abstract

The biometrics community enjoys an active research
field that has produced algorithms for several modalities
suitable for real-world applications. Despite these devel-
opments, there exist few open source implementations of
complete algorithms that are maintained by the commu-
nity or deployed outside a laboratory environment. In this
paper we motivate the need for more community-driven
open source software in the field of biometrics and present
OpenBR as a candidate to address this deficiency. We
overview the OpenBR software architecture and consider
still-image frontal face recognition as a case study to il-
lustrate its strengths and capabilities. All of our work is
available at www.openbiometrics.org.

1. Introduction
Tools for collaborative software development have im-

proved markedly over recent years thanks to sites like
GitHub and Launchpad that provide free hosting services
for open source projects. Despite the prevalence of these
tools, we often observe a wide gap between methods pub-
lished in the literature and implementations available in
open source software. This increases the difficulty of re-
producing research findings, a problem especially evident
in computational fields like computer vision and machine
learning [20], where a specific algorithm tailored to solve
a particular dataset can constitute the primary technical
achievement of a paper.

Despite the prevalence of tools for collaborative software
development and the growing importance of biometrics to
address a variety of security and identity problems, there
currently does not exist a widely recognized open source
framework tailored explicitly to the needs of the biomet-

rics research community. In this work we present the Open
Source Biometric Recognition (OpenBR) collaboratory that
aspires to fill this gap. OpenBR provides tools to design and
evaluate new biometric algorithms and an interface to in-
corporate biometric technology into end-user applications.
While the software is designed with modality independence
in mind, our development has focused on facial recogni-
tion research as a starting point to illustrate the importance
and utility of this collaborative framework. As a result, this
paper will focus on still-image face recognition as a case
study to demonstrate existing capability and benefits to the
research community.

1.1. Related Work

Table 1 reviews some of the most prominent open source
face recognition software projects. Three criteria are ap-
plied that gauge if a project (i) implements modern algo-
rithms, (ii) is under active development, and (iii) is read-
ily deployable in applications. Two particularly notable
solutions from Colorado State University (CSU) [17] and
OpenCV [4] are discussed here further.

The CSU baseline algorithm suite includes two recently
published algorithms, local region PCA (LRPCA) [17]
and LDA with color spaces and cohort normalization (Co-
hortLDA) [16]. The framework is written in Python and
R with installation instructions provided for Mac and Win-
dows. Scripts are included to run the algorithms against the
GBU [17] and LFW [8] datasets, though programming lan-
guage requirements and the lack of a well defined API make
it difficult to incorporate their work into new applications.
Source code is released as a zipped archive and it is unclear
how developers should contribute back to the project.

The OpenCV library recently received a third-party
source code contribution that adds the Eigenface [22], Fish-
erface [2], and LBP [1] face recognition algorithms. The

1



Color Conversion
Enhancement
Filtering
Registration

Binary Patterns
Keypoint Descriptors
Orientation Histograms
Wavelets

Clustering
Normalization
Subspace Learning
Quantization

Eyes
Face
Keypoints
Landmarks

Classifiers
Density Estimation
Distance Metrics
Regressors

Detection Normalization Representation Extraction Matching+ + + :

CUFS
CUFSF
FERET
MEDS
FRGC
HFB
LFW
PCSO

Evaluation
CMC & ROC
Error Rates
Score Distributions

Data

OpenBR

Gallery Management
Clustering & Fusion
Parallelization
Persistent Storage

5%

10%

15%

20%

0 25 50 75 100
Rank

R
et

rie
va

l R
at

e

nec3
NEC3
NEC3Filtered

Design
Plugin Framework
Algorithm Description
Model Training

Figure 1: Overview of OpenBR capabilities.

Project Modern Active Deployable

CSU [17] Yes No No
OpenCV [4] No Yes Yes
OpenBR Yes Yes Yes

Table 1: Existing open source face recognition software.
A project is considered modern if it incorporates peer-
reviewed methods published in the last five years, active if
it has source code changes made within the last six months,
and deployable if it exposes a public API.

library is written in C++ with installation instructions pro-
vided for Windows, Linux/Mac, Android, and iOS. Doc-
umentation and examples demonstrate how to interact with
the face recognition API, though it lacks modern face recog-
nition methods and fine-grained eye localization. While
the project enjoys daily source code improvements and
an extensive developer network, it lacks of-the-shelf func-
tionality useful to biometric researchers, including model
training, gallery management, algorithm evaluation, cross-
validation, and a concise syntax to express algorithms – all
features available in OpenBR.

1.2. Overview

OpenBR is introduced in Section 2 as a project to facil-
itate open source biometrics research, and its architecture
is detailed in Section 3. Section 4 describes the OpenBR
face recognition capability, and its performance is evalu-

ated on still-image frontal face datasets in Section 5. Novel
contributions include a free open source framework for bio-
metrics research, an embedded language for algorithm de-
sign, and a compact template representation and matching
strategy that demonstrates competitive performance on aca-
demic datasets and the Face Recognition Vendor Test 2012.

2. The OpenBR Collaboratory

OpenBR is a framework for investigating new biometric
modalities, improving existing algorithms, interfacing with
commercial systems, measuring recognition performance,
and deploying automated systems. The project is designed
to facilitate rapid algorithm prototyping, and features a ma-
ture core framework, flexible plugin system, and support
for open and closed source development. Figures 1 and 2
illustrate OpenBR functionality and software components.

OpenBR originated within The MITRE Corporation
from a need to streamline the process of prototyping and
evaluating algorithms. The project was later published as
open source software under the Apache 2 license and is free
for academic and commercial use.

2.1. Software Requirements

OpenBR is written in a portable subset of ISO C++
and is known to work with all popular modern C++ com-
pilers including Clang, GCC, ICC, MinGW-w64, and Vi-
sual Studio. The project is actively maintained on Win-
dows, Mac, and Linux, with ports to Android, iOS, and
other platforms known to be within reach. OpenBR requires



br

OpenBR Qt &
OpenCV

LBP

HOG

SVM

...

Commercial
Wrapper

Commercial
Application

Source Code

Shared Library

Application

Plugin

Commercial
Library

Open Source
Application

Core
Framework

PCA

LDA

Figure 2: The OpenBR solution stack. The two principal
software artifacts are the shared library openbr and com-
mand line application br.

the OpenCV computer vision library, Qt application frame-
work, and CMake cross-platform build system. Complete
build documentation is available online.

2.2. Language for Image Processing

Arguably the most important technical achievement of
this project is a new language for image recognition used
to express algorithms. Each word in the language corre-
sponds to a plugin that performs a specific transformation
on an image, allowing for highly decoupled development of
the individual steps in an algorithm. These words are com-
bined into an algorithm description that unambiguously de-
fines template enrollment and comparison. The language is
flexible enough to readily express most existing open source
face recognition algorithms without additional development
effort.

Embedding this language within the project realizes the
benefits of compilation-free algorithm design and parame-
ter exploration while simultaneously enjoying the efficiency
and deployability of native software. In practice, we have
also found that the language offers a concise, yet explicit,
way of describing an algorithm to other researchers familiar
with the project. The language will be introduced in further
detail by example over the remainder of this paper.

2.3. Command Line Interface

The primary means of leveraging OpenBR functionality
is the br command line application, an isomorphic wrap-
per to the openbr API. Entering a br command should
be thought of as writing a short program, arguments can be
specified in any quantity and are executed in the order they
are given.

$ br -algorithm ’Open+Cvt(Gray)+Cascade
(FrontalFace)+ASEFEyes+Affine
(128,128,0.33,0.45)+CvtFloat+PCA
(0.95):Dist(L2)’ -train BioID/img
Eigenfaces

Figure 3: Training Eigenfaces on the BioID dataset [10].
The algorithm description is wrapped in quotes to avoid un-
intended interpretation by the shell preprocessor.

$ br -algorithm Eigenfaces -path MEDS/
img -compare MEDS/sigset/
MEDS_frontal_target.xml MEDS/sigset/
MEDS_frontal_query.xml scores.mtx

Figure 4: Computing a similarity matrix on the MEDS
dataset [6] using the algorithm trained in Figure 3.

The capability of br is best illustrated through exam-
ples. In the interest of brevity, we omit many supported
operations including clustering, cross-validation, gallery
management, and score level fusion, though details of all
OpenBR operations can be found online. Instead, we
demonstrate a typical OpenBR work flow by training, ex-
ecuting, and evaluating the classic Eigenfaces [22] algo-
rithm. This example is available in the repository as
scripts/helloWorld.sh.

Figure 3 shows how to train a face recognition algorithm.
An algorithm is a method for enrolling a template associ-
ated with a method for comparing two templates. Training
requires specifying what data to train on and where to save
the learned model. By convention, model files have no ex-
tension.

Figure 4 uses the trained Eigenfaces model to enroll
and compare images. The path informs the system where
images can be found. Compare requires three parameters,
target gallery, query gallery, and output, where target and
query galleries form the columns and rows of the output
score matrix. This particular example uses file formats de-
fined in the NIST Face Recognition Grand Challenge [18].
The .xml files are Signature Sets that specify the input im-
ages, and .mtx is a binary Similarity Matrix.

Figure 5 evaluates the accuracy of Eigenfaces using
the scores from scores.mtx. Eval takes two parameters,
a score matrix as input and a .csv file of statistics as out-
put. Plot takes one or more computed statistics files and
produces a multi-page report with figures including ROCs,
CMCs, and score distributions.



$ br -eval scores.mtx results.csv -plot
results.csv results.pdf

Figure 5: Generating ROC, CMC, and other figures from
the similarity matrix produced in Figure 4.

3. Architecture
This section introduces the main software abstractions

intended for developers interested in extending OpenBR.
There are two primary data structures in the framework and
six abstract interfaces which constitute the plugin system.
With the exception of a small core library, all OpenBR
functionality is provided by plugins, classes that imple-
ment an abstract interface and declare themselves with the
BR REGISTER macro.

3.1. Data Structures

The OpenBR API is written at a high level, where in-
put and output arguments are generally files on disk. The
File struct is used to represent these arguments, storing
the file path and a key/value table of associated metadata.
A file’s extension plays a particularly important role; it is
used to identify which plugin should interpret the file. For
example, during enrollment an .xml file is parsed by the
xmlGallery plugin that treats the file as a NIST XML
signature set.

A Template is biometric data, represented using
OpenCV matrices, with an associated File. While tem-
plates tend to have only one matrix, experience has shown
that it is convenient for a template to own a list of matrices
in order to implement certain image processing transforma-
tions that either expect or produce multiple matrices.

In summary, files generally constitute the inputs and out-
puts of the API, and the plugin system relies on a file’s ex-
tension to determine how to parse it. Templates represent
the file and its data as it is enrolled and compared, and serve
as the inputs and outputs of OpenBR’s embedded image
recognition language. FileList and TemplateList
are provided as convenience classes for operating on lists of
files and templates.

3.2. Plugins

Plugins are the preferred means of adding new func-
tionality to OpenBR. For most researchers, they are likely
the only classes that need to be designed in order to
implement and evaluate a new algorithm. Extending
OpenBR is simply a matter of adding plugin source code
to openbr/plugins and recompiling. One particular
virtue of the framework is that plugin classes need not pro-
vide header files, as every plugin implementation inherits
from a carefully designed abstract interface.

There are six abstract interfaces in total, allowing
OpenBR capability to be extended in a variety of ways.
The Format, Gallery, and Output interfaces are
used to implement new file formats. Transform and
Distance plugins are the mechanism for inventing new
techniques for template enrollment and comparison. Lastly,
the Initializer interface enables allocation and deal-
location of static resources at the beginning and the end of
program execution.

A Format represents a template on disk either before or
after enrollment. For example, images, videos, MATLAB
matricies, and many other extensions can be interpreted by
format plugins.

A Gallery represents a template list on disk either be-
fore or after enrollment. The NIST .xml signature set and
OpenBR binary .gal are the standard plugins for storing
template lists before and after enrollment, though many oth-
ers exist including Weka .arff.

An Output represents the result of comparing two gal-
leries. The NIST .mtx binary similarity matrix is the pre-
ferred output, though many others exist including .rr rank
retrieval and .csv plain text score matrix.

A Transform is a single step in a template generation
algorithm, it applies the same image processing or numeri-
cal analysis algorithm to every template it receives. Trans-
forms can be either trainable (e.g., LDA) or untrainable (e.g.,
LBP). Time-varying transforms also exist to support object
tracking in video.

A Distance is capable of comparing two templates
and returning a similarity score. OpenBR supports many
common similarity metrics including norm-based, cosine,
Chi-squared, and Bhattacharyya. Section 4.5 discusses a
particular distance metric novel to OpenBR.

Commercial algorithms can also be added to OpenBR
by wrapping them in Transform and Distance plug-
ins. To date, six commercial systems have been leveraged
through the OpenBR API.

4. Face Recognition
While algorithms implemented within the OpenBR

project are applicable to many biometric disciplines, partic-
ular effort has been devoted to the scenario of facial recog-
nition. The default face recognition algorithm in OpenBR
is based on the Spectrally Sampled Structural Subspaces
Features (4SF) algorithm [11]. 4SF is a statistical learning-
based algorithm used previously to study the impact of de-
mographics [12] and aging [13] on face recognition perfor-
mance.

The 4SF algorithm is not claimed to be superior to
other techniques in the literature, instead it is representa-
tive of modern face recognition algorithms in its use of
face representations and feature extraction. As will be
shown, OpenBR’s implementation of 4SF yields accura-



cies comparable to some commercial face recognition sys-
tems. Furthermore, the 4SF algorithm demonstrates strong
accuracy improvements through statistical learning, allow-
ing OpenBR to differentiate itself from commercial systems
in its ability to be trained on specific matching problems
like heterogeneous face recognition. This section discusses
the 4SF algorithm in OpenBR, following the principal steps
outlined in Figure 1.

4.1. Detection

OpenBR wraps the OpenCV Viola-Jones object detec-
tor [23] and offers frontal face detection with the syntax
Cascade(FrontalFace). For eye detection, a cus-
tom C++ port of the ASEF eye detector [3] is included in
OpenBR as ASEFEyes.

4.2. Normalization

Faces are registered using the detected eye locations to
perform a rigid rotation and scaling via the Affine(...)
transform. For experiments in this paper, faces are cropped
to 128x128 pixels, with the eyes inset 35% from the sides
and 25% from the top.

The face recognition algorithm follows the illumina-
tion preprocessing steps suggested by Tan and Triggs [21]
when extracting local binary patterns. Namely, a Gaussian
blur Blur(σ), a difference of Gaussians DoG(σ1,σ2),
gamma correction Gamma(γ), and Contrast Equalization
ContrastEq(α,τ).

4.3. Representation

The face recognition algorithm uses both LBPu2
8,1 [1] and

SIFT [15] descriptors sampled in a dense grid across the
face. Histograms of local binary patterns are extracted in
an 8x8 pixel sliding window with a 6 pixel step. One hun-
dred SIFT descriptors are sampled from a 10x10 grid with a
descriptor radius of 12 pixels. A PCA decomposition re-
taining 95% of the variance is learned for each local re-
gion, with descriptors then projected into their correspond-
ing Eigenspace and normalized to unit L2-norm.

4.4. Extraction

The next step is weighted spectral sampling, whereby
all per-region feature vectors are concatenated and random
sampling is performed weighted on the variance of each di-
mension. For this paper, twelve samples were extracted,
each with dimensionality equal to 5% of the entire feature
space. LDA is then applied on each random sample to learn
subspace embeddings that improve the discriminability of
the facial feature vectors.

Lastly, descriptors are once again concatenated together
and normalized to unit L1-norm. Consistent with observa-
tions in [5], we have found that a simple normalization of
the feature vectors to unit L1 or L2-norm after subspace

Distance
Metric

Template
Size (KB)

Comparisons
/ Second

Accuracy (%)
@ FAR = 0.1%

L1 3.00 3.4× 105 88± 1

Lbyte
1 0.75 4.3× 105 88± 1

Lbyte
1 SSE 0.75 2.6× 106 88± 1

Table 2: Comparison of LByte
1 against the conventional L1

distance. Quantizing feature vector dimensions to 8-bit in-
tegers reduces the template size four-fold with no loss in
accuracy. Implementing with SSE instructions further im-
proves the comparison speed.

projection can substantially improve accuracy in many pat-
tern recognition scenarios.

4.5. Matching

OpenBR supports a purportedly novel matching strategy
that achieves state of the art matching speeds with negligi-
ble impact on matching accuracy. Here, we introduce the
Lbyte
1 distance metric which, given an algorithm that com-

pares feature vectors using the L1 distance, quantizes the
vectors to 8-bit unsigned integers as the last step in template
generation.

Implementing Lbyte
1 requires computing the global max-

imum vmax and minimum vmin scalar values across all di-
mensions of the final training feature vectors. Then, dur-
ing enrollment, a feature vector fv is scaled to the interval
[0, 255] and casted to an unsigned 8-bit integer:

fv′ = uint8 t
(
255 · fv − vmin

vmax − vmin

)
(1)

This quantization step reduces template size four-fold by
exploiting the observation that the IEEE floating point for-
mat provides more precision than necessary to represent a
feature vector. We note that the strategy is likely only ap-
plicable to the L1 distance, as other metrics generally re-
quire multiplication steps that are not representable with 8-
bit precision.

OpenBR further improves matching speed by using the
mm sad epu8 Streaming SIMD Extensions (SSE) in-

struction [9] available on modern x86/x64 CPUs, which
computes the sum of the absolute difference of two 16-
dimension 8-bit vectors. Using this instruction in conjunc-
tion with the aforementioned quantization step improves the
template comparison speed of our matcher by nearly an or-
der of magnitude, allowing us to achieve several million
comparisons per CPU thread per second (Table 2).

4.6. The Complete Algorithm

Combining all the steps introduced above yields the
complete algorithm shown in Figure 6. The design of new



Open+Cvt(Gray)+Cascade(FrontalFace)+
ASEFEyes+Affine(128,128,0.33,0.45)+(
Grid(10,10)+SIFTDescriptor(12)+ByRow
)/(Blur(1.1)+Gamma(0.2)+DoG(1,2)+
ContrastEq(0.1,10)+LBP(1,2)+
RectRegions(8,8,6,6)+Hist(59))+PCA
(0.95)+Normalize(L2)+Dup(12)+
RndSubspace(0.05,1)+LDA(0.98)+Cat+
PCA(0.95)+Normalize(L1)+Quantize:
NegativeLogPlusOne(ByteL1)

Figure 6: The complete and unambigious definition of the
4SF face recognition algorithm in OpenBR, expressed in the
algorithm description language.

facial representations is one of the most active areas of face
recognition research, and helps illustrate one of the many
ways OpenBR and its algorithm description language can
be used as a time saving resource by researchers. By design-
ing new representations as OpenBR plugins, researchers
can immediately compare them against common represen-
tations (e.g., LBP, SIFT, Gabor), combine them with vari-
ous learning algorithms, plot different accuracy metrics, and
perform all of these tasks in a reproducible and deployable
manner.

5. Experiments

This section provides results from experiments on twelve
benchmark face datasets designed to span a wide range
of applications and image characteristics. Template size
and accuracy of the OpenBR 4SF algorithm are compared
against three commercial off-the-shelf face recognition sys-
tems.

5.1. Datasets

In the interest of brevity we have omitted descriptions
of each individual dataset considered in this paper. Instead,
references for the datasets are provided in Table 3, example
images are shown in Table 4, and aggregate dataset statistics
are available in Table 5.

5.2. Algorithms

Two versions of the previously described 4SF algo-
rithm are considered, one using open source face alignment
(OpenBR) and the other using commercial alignment (BR-
A). Accuracy is compared against three commercial sys-
tems (A, B, C). We intentionally choose not to tune algo-
rithm parameters for each dataset, instead the algorithm is
trained on all datasets exactly as stated in Figure 6.

Key Dataset

CUFS CUHK Face Sketch Database [24]
CUFSF CUHK Face Sketch FERET Database [25]
FB FERET fa vs. fb partitions [19]
FC FERET fa vs. fc partitions [19]
Dup1 FERET fa vs. dup1 partitions [19]
Dup2 FERET fa vs. dup2 partitions [19]
FRGC-1 Face Rec. Grand Challenge Exp. 1 [18]
FRGC-4 Face Rec. Grand Challenge Exp. 4 [18]
HFB CASIA Heterogeneous Face Biometrics [14]
LFW Labeled Faces in the Wild [8]
MEDS The Multiple Encounter Dataset [6]
PCSO Pinellas County Sheriffs Office mugshots

Table 3: Abbreviations used for each dataset.

Dataset Subjects Gallery Images Probe Images

CUFS 606 606 606
CUFSF 1,194 1,194 1,194
FB 1,196 1,196 1,195
FC 1,196 1,196 194
Dup1 1,196 1,196 772
Dup2 1,196 1,196 234
FRGC-1 466 16,028 *
FRGC-4 466 16,028 8,014
HFB 100 400 400
LFW 5749 13,233 *
MEDS 518 1,216 *
PCSO 5,000 10,000 *

Table 5: Dataset statistics. *Gallery set used as probes with
self-matches removed.

5.3. Results

One challenging aspect of reporting on this wide vari-
ety of datasets is the lack of a common training and test-
ing protocol. In the interest of allowing comparison across
datasets, we opt to use 5-fold cross validation and report
true accept rates at a false accept rate of 0.1%.

Table 6 compares the template size generated for each
algorithm. OpenBR has the smallest templates, though tem-
plates from commercial system B are of similar size. BR-A
template size is not listed as it is not statistically different
than OpenBR.

Table 7 compares the true accept rates of each algorithm.
The commercial systems tend to outperform OpenBR on the
classic face recognition datasets like FERET and FRGC.
There is less of a discrepancy in performance on some of



CUFS CUFSF FB FC Dup1 Dup2 FRGC-1 FRGC-4 HFB LFW MEDS PCSO

Table 4: Example genuine match pairs from each dataset.

Template Size (KB)
Dataset OpenBR A B C

CUFS 0.55± 0.01 67± 17 2.8± 0.0 5.0± 0.0

CUFSF 1.10± 0.01 70± 20 2.8± 0.0 5.0± 0.0

FB 0.98± 0.01 70± 20 2.8± 0.0 5.0± 0.0

FC 0.48± 0.01 70± 20 2.8± 0.0 5.0± 0.0

Dup1 0.72± 0.04 70± 20 2.8± 0.0 5.0± 0.0

Dup2 0.52± 0.02 70± 20 2.8± 0.0 5.0± 0.0

FRGC-1 1.58± 0.03 65± 13 2.8± 0.0 5.0± 0.0

FRGC-4 1.65± 0.02 65± 13 2.8± 0.0 5.0± 0.0

HFB 0.19± 0.02 64± 11 2.8± 0.0 5.0± 0.0

LFW 2.09± 0.01 96± 28 2.8± 0.0 5.0± 0.0

MEDS 0.60± 0.04 78± 26 2.8± 0.0 5.0± 0.0

PCSO 2.02± 0.02 72± 22 2.8± 0.0 5.0± 0.0

Table 6: Average gallery template size (KB) across different
face recognition algorithms and datasets. Five-fold cross
validation uncertainty reported at one standard deviation.

the heterogeneous datasets like CUFS and CUFSF, which
demonstrates the benefit of a system that can be retrained
on a new problem. Nevertheless, algorithm C performs par-
ticularly well across all of the datasets. If these results are
found to hold up on sequestered datasets, it would suggest
that methods popular in the academic literature lag consid-
erably behind the best proprietary algorithms.

5.4. FRVT 2012

The OpenBR algorithm was also submitted to NIST’s
Face Recognition Vendor Test (FRVT) 2012 [7] for inde-
pendent evaluation. OpenBR is believed to be the first open
source system to formally compete in the series. Though
the 2012 test has at least five academic participants, to our
knowledge the source code for these systems has not been
made publicly available. In the NIST reports, the OpenBR
submission is denoted with the letter ‘K’.

As of the end of Phase 1 in March 2013, amongst 17

Accuracy (%) @ FAR = 0.1%
Dataset OpenBR BR-A A B C

CUFS 67± 5 86± 2 83± 3 72± 3 89± 4

CUFSF 33± 3 41± 3 32± 2 19± 3 42± 2

FB 94± 1 100± 1 100± 1 100± 0 100± 0

FC 94± 4 99± 2 100± 0 100± 0 100± 0

Dup1 76± 4 86± 2 93± 3 98± 1 100± 0

Dup2 67± 7 85± 7 95± 4 98± 3 99± 1

FRGC-1 89± 2 91± 1 96± 1 100± 0 100± 0

FRGC-4 38± 4 49± 4 58± 7 98± 1 99± 0

HFB 22± 5 29± 5 25± 8 68± 5 92± 3

LFW 12± 2 23± 4 45± 4 39± 5 54± 2

MEDS 56± 6 60± 7 59± 9 88± 3 97± 3

PCSO 82± 1 90± 1 81± 2 96± 1 98± 0

Table 7: Average true accept rate at a false accept rate of
one-in-one-thousand across different face recognition algo-
rithms and datasets. Five-fold cross validation uncertainty
reported at one standard deviation.

competitors in the Class A verification task, OpenBR ranks
13th with a TAR of 64.8% on mugshots and 14th with a
TAR of 76.1% on visas, each at a FAR of 0.1%. OpenBR
ranks 2nd in template generation speed with a median en-
rollment time below 0.1 seconds, and 3rd in template size
at 0.75 KB. Template comparison speed is not available.

OpenBR 4SF features were also used to train a support
vector machine to compete in the Class D gender and age
estimation tasks. For gender estimation, amongst 7 com-
petitors OpenBR ranked 2nd on mugshots with 92.8% ac-
curacy and 2nd on visas with 85.0% accuracy. For age
estimation, amongst 6 competitors OpenBR ranked 4th on
mugshots with a RMS error of 9.9 years for males and 11.2
years for females, and 4th on visas with a RMS error of 12.8
years for males and 14.8 years for females.



6. Conclusion
In this paper we introduced the OpenBR collaboratory

for biometrics research and algorithm development. We
then discussed the 4SF face recognition algorithm imple-
mented in OpenBR, which offers a competitive baseline
for researchers when a commercial system is unavailable.
OpenBR offers the ability to isolate components of a bio-
metric recognition process, allowing researchers to focus
on particular steps in an algorithm within the context of a
reproducible and deployable system.

Acknowledgments
The authors would like to thank The MITRE Corpora-

tion for releasing OpenBR as free open source software,
and recognize Emma Taborsky and Charles Otto for their
ongoing commitment to the collaboratory. Software devel-
opment at MITRE was funded by the MITRE Sponsored
Research (MSR) program, and B. Klare’s research was sup-
ported by the Noblis Sponsored Research (NSR) program.

References
[1] T. Ahonen, A. Hadid, and M. Pietikainen. Face description

with local binary patterns: Application to face recognition.
IEEE Trans. on Pattern Analysis and Machine Intelligence,
28(12):2037–2041, 2006.

[2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman. Eigen-
faces vs. fisherfaces: Recognition using class specific linear
projection. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 19(7):711–720, 1997.

[3] D. S. Bolme, B. A. Draper, and J. R. Beveridge. Average
of synthetic exact filters. In IEEE Conf. on Computer Vision
and Pattern Recognition, 2009, pages 2105–2112.

[4] G. Bradski. The opencv library. Doctor Dobbs Journal,
25(11):120–126, 2000.

[5] Z. Cao, Q. Yin, X. Tang, and J. Sun. Face recognition with
learning-based descriptor. In IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), 2010, pages 2707–2714.

[6] A. Founds, N. Orlans, G. Whiddon, and C. Watson. NIST
Special Database 32 - Multiple Encounter Dataset II (MEDS-
II). www.nist.gov/itl/iad/ig/sd32.cfm, 2011.

[7] P. Grother, G. Quinn, and M. Ngan. Face Recognition Ven-
dor Test (FRVT) 2012. http://www.nist.gov/itl/iad/ig/frvt-
2012.cfm, mar 2013.

[8] G. B. Huang, M. Mattar, T. Berg, E. Learned-Miller, et al.
Labeled faces in the wild: A database forstudying face recog-
nition in unconstrained environments. In Workshop on Faces
in ’Real-Life’ Images: Detection, Alignment, and Recogni-
tion, 2008.

[9] Intel. Intel architecture instruction set exten-
sions programming reference. http://download-
software.intel.com/sites/default/files/319433-014.pdf,
2012.

[10] O. Jesorsky, K. J. Kirchberg, and R. W. Frischholz. Robust
face detection using the hausdorff distance. In Audio-and

video-based biometric person authentication, pages 90–95.
Springer, 2001.

[11] B. Klare. Spectrally sampled structural subspace features
(4SF). In Michigan State University Technical Report, MSU-
CSE-11-16, 2011.

[12] B. Klare, M. Burge, J. Klontz, R. Vorder Bruegge, and
A. Jain. Face recognition performance: Role of demographic
information. IEEE Trans. on Information Forensics and Se-
curity, 7(6):1789–1801, 2012.

[13] B. Klare and A. K. Jain. Face recognition across time lapse:
On learning feature subspaces. In IEEE International Joint
Conf. on Biometrics (IJCB), 2011, pages 1–8.

[14] S. Z. Li, Z. Lei, and M. Ao. The HFB face database for
heterogeneous face biometrics research. In IEEE Conf. on
Computer Vision and Pattern Recognition Workshops, 2009,
pages 1–8.

[15] D. G. Lowe. Distinctive image features from scale-
invariant keypoints. International journal of computer vi-
sion, 60(2):91–110, 2004.

[16] Y. M. Lui, D. Bolme, P. Phillips, J. Beveridge, and B. Draper.
Preliminary studies on the good, the bad, and the ugly face
recognition challenge problem. In IEEE Computer Society
Conf. on Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2012, pages 9–16.

[17] P. J. Phillips, J. R. Beveridge, B. A. Draper, G. Givens, A. J.
O’Toole, D. S. Bolme, J. Dunlop, Y. M. Lui, H. Sahibzada,
and S. Weimer. An introduction to the good, the bad, & the
ugly face recognition challenge problem. In IEEE Interna-
tional Conf. on Automatic Face & Gesture Recognition (FG)
Workshops, 2011, pages 346–353.

[18] P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang,
K. Hoffman, J. Marques, J. Min, and W. Worek. Overview
of the face recognition grand challenge. In IEEE Conf. on
Computer Vision and Pattern Recognition, 2005, volume 1,
pages 947–954.

[19] P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss. The
FERET evaluation methodology for face-recognition algo-
rithms. IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 22(10):1090–1104, 2000.

[20] S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bot-
tou, G. Holmes, Y. LeCun, F. Pereira, and C. E. Rasmussen.
The need for open source software in machine learning.
Journal of Machine Learning Research, 8:2443–2466, 2007.

[21] X. Tan and B. Triggs. Enhanced local texture feature sets
for face recognition under difficult lighting conditions. IEEE
Trans. on Image Processing, 19(6):1635–1650, 2010.

[22] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nal of Cognitive Neuroscience, 3(1):71–86, 1991.

[23] P. Viola and M. J. Jones. Robust real-time face detection.
International Journal of Computer Vision, 57(2):137–154,
2004.

[24] X. Wang and X. Tang. Face photo-sketch synthesis and
recognition. IEEE Trans. on Pattern Analysis and Machine
Intelligence, 31(11):1955–1967, 2009.

[25] W. Zhang, X. Wang, and X. Tang. Coupled information-
theoretic encoding for face photo-sketch recognition. In
IEEE Conf. on Computer Vision and Pattern Recognition,
2011, pages 513–520.


