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Abstract. A computer assisted system for histological prostate cancer diagnosis
can assist pathologists in two stages: (i) to locate cancer regions in a large digitized
tissue biopsy, and (ii) to assign Gleason grades to the regions detected in stage 1.
Most previous studies on this topic have primarily addressed the second stage by
classifying the pre-selected tissue regions. In this paper, we address the first stage
by presenting a cancer detection approach for the whole slide tissue image. We
propose a novel method to extract a cytological feature, namely the presence of
cancer nuclei (nuclei with prominent nucleoli) in the tissue, and apply this feature
to detect the cancer regions. Additionally, conventional image texture features
which have been widely used in the literature are also considered. The performance
comparison between the proposed cytological-textural feature combination method
with the texture only based method demonstrates the robustness of the extracted
cytological feature. At a false positive rate of 4.6%, the proposed method is able
to achieve a sensitivity of 71% on a dataset including 6 training images (each
of which has approximately 4,000×7,000 pixels) and 11 whole slide test images
(each of which has approximately 5,000×23,000 pixels). All images are at 20×
magnification.

1 Introduction

In a typical procedure of histological prostate cancer diagnosis, a pathologist obtains a
tissue sample from a prostate biopsy and treats it by a staining protocol to highlight the
histological structures (e.g. H&E staining [1]). State of the art slide scanners can capture
the content of the entire sample slide and create one whole slide image at any magnifica-
tion. However, with a high magnification slide image (which may contain approximately
10,000×50,000 pixels at 40×), it is time-consuming for pathologists to investigate the tis-
sue structures and diagnose the cancer. Thus, there is a need to build a computer-aided
system to assist pathologists in detecting and grading the cancer.

Gleason grading [2] is a well-known method to determine the severity of prostate can-
cer. In this method, only the gland structures and morphology are considered to assign a
grade from 1 to 5 to the cancer region. Grade 1 is the least severe and grade 5 is the most
severe. Gleason grading method is appropriate for a low magnification image (≤ 10×),
where the details of the tissue elements (nuclei, cytoplasm) are not available. Nguyen
et al. [3] obtained good classification results based on the glandular structural features
to classify the 10× magnification images. However, for a more detailed examination, a
pathologist would like to examine the tissue at a higher magnification (20× or 40×) and
utilize cytological features [4] of the tissue (Figures 1a,1b). Cytological features refer to
shape, quantity, and arrangement of the basic elements of the tissue such as cell, cyto-
plasm, and nucleus.

Most of the studies on automated prostate cancer diagnosis utilize various textural
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and structural features to classify a small region of interest (ROI) into benign (normal)
or malignant (cancer) region, or into different grades. These studies are summarized in
Table 1. Only a few studies in the literature have addressed the cancer detection problem
in the whole slide image. In [5], the authors performed cancer detection on a whole-mount
histological section of size 2×1.75 cm2 at a low resolution (8µm per pixel), which created
a 2,500×2,200 image. Glands were segmented by a region growing algorithm initialized
at the lumina. Gland size was the only feature used to assign an initial label (cancer or
normal) to the gland. Next, a probabilistic pairwise Markov model was proposed to refine
the initial gland labels using the labels of neighboring glands. They obtained 87% sensi-
tivity and 90% specificity on a dataset of 40 images. However, it is necessary to notice
that lumina are not always present in the cancer regions (for example, lumina can be
occluded by mucin or cytoplasm in some cases). As a consequence, gland segmentation
algorithm using lumina is not always applicable. Doyle et al. [6] developed a boosted
Bayesian system to identify prostate cancer in 40× whole slide images (10,000×50,000
pixels) at multiple resolutions. On a dataset of 100 images at three different resolutions,
they obtained the following results (with resolution from low to high): 69%, 70%, and
68% for accuracy, and 0.84, 0.83, 0.76 for area under the ROC curve. As can be seen
from these results, the accuracy dropped when the authors used higher resolution images.
The reason is that, when creating ground truth for cancer regions of histology images,
pathologists commonly annotate a heterogeneous region comprising multiple neighboring
cancer glands and intervening normal structures like stroma. At a high resolution, the
intervening normal structures (which are annotated as a part of cancer regions) become
more salient and are easily classified as normal regions. This can somewhat explain why
the accuracies in [5] are higher than the accuracies in [6] although different datasets were
used for their experiments. Finally, the whole slide analysis is significantly more complex
than the ROI analysis because of the scale of operations that needs to be done. The data
sizes are 2 to 3 orders of magnitude more for a whole slide as compared to a ROI. In sum-
mary, cancer detection in high magnification whole slide tissue image is still a challenging
problem. By observing the cancer detection procedure adopted by pathologists, we es-
tablish that an important cytological feature, the presence of cancer nuclei (nuclei with
prominent nucleoli) (Figure 2a), is an important clue in deciding if a region is cancerous
[7, 8]. In this study, we propose an efficient algorithm to extract cancer nuclei and use
them in detecting cancer regions in high magnification (20×) whole slide images (Figure
5). To the best of our knowledge, cytological features have not yet been exploited in the
reported studies on automated cancer detection and grading in prostate histology.

In the proposed approach, we first find all the cancer nuclei in the tissue. Then, we
divide the image into a grid of patches. For each patch, we compute two types of features
(cytological and textural features; Figures 1c,1d), and combine them to classify the patch
as normal or cancerous. Finally, neighboring cancer patches are unified into continuous
cancer regions.

(a) (b) (c) (d)

Fig. 1. A tissue image region at (a) 20× and (b) 5× magnifications. In the high magnification
region, the tissue elements (nuclei, cytoplasm) are clearly visible. Two types of features considered
in a tissue region are: (c) cytological feature, which is the presence of cancer nuclei in the region;
(d) textural features extracted from the grayscale intensity distribution of the region.
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Approach Dataset Accuracy

Lumen area and co-occurrence features; classify 100×100
sub-regions into prostatic carcinoma, stroma, and benign
tissue [9]

Sub-regions of
8 tissue images
(40×)

79.3%

Multiwavelet features; classify images of tissue portions into
grade 2, 3, 4, and 5 carcinoma [10]

100 images (100×) 97%

Global and local features; classify 1,600×1,200 images into
tumor-nontumor [11]

367 images (20×) 96.7%

Glandular structural features; classify 500×500 images into
benign, grade 3, and grade 4 carcinoma [3]

78 images (10×) 88.8%

Table 1. Summary of major studies on ROI classification in automated prostate cancer diagnosis.
Since different authors used different datasets, their results cannot be directly compared.

2 Nucleus Segmentation and Classification

2.1 Nucleus Segmentation

To segment nuclei from the tissue area, we propose a maximum object likelihood bina-
rization algorithm. Our goal is to segment an object O with feature vector f(O) in a
grayscale image I. We first assume that f(O) follows a density g with parameter vector

θ. An estimate θ̂ is obtained from a training set. A threshold t0 to binarize I is obtained
such that the average object likelihood of the foreground blobs is maximized. Formally,
let Bt

i , i = 1, . . . , nt, denote the nt foreground blobs generated by binarizing I with a
threshold t ∈ [tmin, tmax] (note that Bt

i and nt depend on t). We choose t0 such that:

t0 = argmaxt
1

nt

nt∑
i=1

g(f(Bt
i )|θ̂) (1)

where f(Bt
i ) is the feature vector of blob Bt

i and g(f(Bt
i )|θ̂) is the object likelihood of

blob Bt
i since it estimates how similar the features of Bt

i are to the features of the object

of interest O (which have density g with parameter θ̂).
In this procedure, after binarizing I using a threshold t ∈ [tmin, tmax], we apply a

4-connectivity connected component algorithm to group foreground pixels (pixels whose
intensities are greater than t) into blobs Bt

i , i = 1, . . . , nt. This is followed by computa-
tion of blob features, f(Bt

i ) (area and circularity), and their average object likelihood,

1

nt

nt∑
i=1

g(f(Bt
i )|θ̂). The optimal threshold t0, computed in Equation (1), is the threshold

resulting in the maximum average object likelihood. The blobs obtained by binarizing I
with t0 are the outputs of the algorithm.

Since nuclei appear as blue in H&E stained images, we apply this algorithm on the
b channel (which is normalized to [0,1]) of the Lab color space (which best represents
the blue color). Here, objects O to be segmented are the nuclei. The feature vector of
the nucleus is defined as f(O) = (a, c), where a and c denote the area and circularity of
a nucleus, respectively. The circularity is defined as c = (4πa)/p2, where p denotes the
perimeter of the nucleus. In this problem, we assume that the feature density is bivariate
Gaussian f(O) ∼ N (µ̂, Σ̂), where µ̂ and Σ̂ are estimated from a training set of manually
segmented nuclei.
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(a) (b)

Fig. 2. Nucleus segmentation and classification. (a) Cancer and normal nuclei in a 20× tissue
region. (b) Results of the nucleus segmentation and classification. Cyan regions are cancer nuclei
and blue regions are normal nuclei. The blank areas inside each nucleus region are the segmented
dark spots obtained by the algorithm in section 2.2. In cyan regions, these spots are round and
small in size, which are considered nucleoli. In blue regions, these spots are either elongated or
much larger in size, which are not considered nucleoli.

2.2 Nucleus Classification

Nuclei in cancer glands ([7, 8]) usually appear light blue and contain prominent nucleoli
which appear as small dark spots. On the other hand, nuclei in normal glands usually
appear uniformly dark or uniformly light over its entire area without the nucleoli (Figure
2a). We utilize this observation to classify the segmented nuclei into normal or cancer
nuclei. First, we segment the dark spots from each nucleus, then the features of these
spots are used to determine if the nucleus is a cancer nucleus. These two operations are
performed as follows.
(i) Maximum Object Boundary Binarization

By observing that boundaries of the salient objects (dark spots) within a region of in-
terest (nucleus region) typically have strong gradient magnitude, we find a threshold t0
to binarize the ROI (in a grayscale image) in such a way that it generates the fore-
ground object which has the maximum gradient magnitude on the boundary. Formally,
let Ot

i , i = 1, . . . , nt, denote the nt foreground objects obtained in the ROI, R, when
binarizing R with a threshold t ∈ [tmin, tmax] (note that Ot

i and nt depend on t). We
choose t0 such that:

t0 = argmaxt( max
i∈[1,nt]

bound mag(Ot
i)), (2)

where bound mag(Ot
i) denotes the average gradient magnitude of the pixels on the bound-

ary of Ot
i .

In this procedure, after binarizing R using a threshold t ∈ [tmin, tmax], we use the
4-connectivity property to group foreground pixels (pixels whose intensities are greater
than t) into objects Ot

i , i = 1, . . . , nt. Then we compute the average gradient magnitude
on the boundary of each object and get the maximum value of these average magnitudes
( max
i∈[1,nt]

bound mag(Ot
i)). The best threshold t0, which is computed in Equation (2), is

the threshold that maximizes the object boundary gradient magnitude. This is a local
binarization method since in each ROI, we find a different threshold t0 to binarize and
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detect the local objects in that ROI.
Since the difference in intensity of the nucleolus and the rest of the nucleus area is most

salient in the luminance channel of the image, we apply the algorithm in this channel to
segment the dark spots. However, we obtain several spots in each nucleus because some
noisy dark regions resulting from the poor tissue staining procedure may also generate
spots. Figure 3 shows the result of this binarization.
(ii) Feature-based Object Identification

We need to identify an object of interest O∗ (nucleolus) among a pool of objects {Oi}ni=1

(dark spots). Similar to the formulation in section 2.1, we estimate the parameters

θ̂ of the density g of the feature vector f(O∗) from a training set of manually seg-
mented nucleoli. Then, we choose the object Om which has the maximum likelihood:
Om = argmaxig(f(Oi)|θ̂). The object Om is considered the object of interest if fmin

j <

fj(Om) < fmax
j ∀j, where the constraints for each feature, i.e. fmin

j and fmax
j are esti-

mated from the training set. We again use area and circularity as the features to identify
the nucleoli. By using this algorithm, if a nucleolus is found within a nucleus, that nucleus
is classified as a cancer nucleus. Otherwise, it is considered a normal nucleus. Figure 2b
depicts the results of the nucleus segmentation and classification. For cancer detection
purposes, we only keep cancer nuclei and disregard normal nuclei.

Fig. 3. A cancer nucleus (left) and the segmented dark spots (right). There are two spots detected
by the proposed algorithm, one is a true nucleolus and the other is a noisy spot.

3 Textural Features

Similar to [6], the textural features computed for an image patch include first-order statis-
tics, second-order statistics, and Gabor filter features. There are four first-order statistical
features comprising mean, standard deviation, median, and gradient magnitude of pixel
intensity in the patch. For the second-order statistical features, we form the co-occurrence
matrix for all the pixels in the patch and compute 13 features from this matrix [12] which
include energy, correlation, inertia, entropy, inverse difference moment, sum average, sum
variance, sum entropy, difference average, difference variance, difference entropy, and two
information measures of correlation. For the Gabor filter based texture features [13], we
create a bank of 10 filters by using two different scales and five different orientations. The
mean and variance of the filter response are used as features. Thus, a total of 20 features
are extracted by using Gabor filters. We obtain 37 features using these three feature
types (4 first-order statistics features, 13 co-occurrence features and 20 Gabor features).
By considering texture in each of the three normalized channels of the Lab color space of
the image separately, we have a total of 3× 37 = 111 textural features for each patch.

4 Detection algorithm

Since we do not have any prior information (size, shape and boundary) about the cancer
regions, we utilize a patch-based approach using a feature set combination method to
detect the cancer regions. A grid of patches, each with S × S pixels, is superimposed
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on the image. Let {xi}ni=1 denote the n sets of features associated with each patch P .
Each set xi may contain one or more features. We train n classifiers {fi}ni=1, one for each
feature set. A patch P is classified as a cancer patch if:

n∏
i

p(fi(xi) = 1) >
n∏
i

p(fi(xi) = 0), (3)

where p(fi(xi) = 0) and p(fi(xi) = 1) denote the probability that classifier fi classifies
the feature set xi as normal or cancer, respectively. Otherwise, P is considered a normal
patch. We apply this algorithm in our problem with two different feature sets (n = 2),
i.e. cytological feature set and textural feature set. The cytological feature set contains a
single feature which is the number of pixels belonging to cancer nuclei in the patch. Both
classifiers (f1 and f2) used for these two feature sets are Support Vector Machine (SVM)
with RBF kernel and c = 1. The grid size and placement are chosen based on the method
discussed in [6], where the authors superimposed the image with a uniform grid so that
the image is divided into 30×30 regions. The reported result using this grid was better
than the pixel-based method proposed in the same paper. In a similar manner, we divide
the image into 40×40 patches (S = 40) and perform patch classification.

Once cancer patches are identified, we create continuous cancer regions by grouping
neighboring cancer patches. We divide cancer patches in the image into groups, where
each group O contains a set of cancer patches {Pi}mi=1 such that ∀Pi ∈ O, ∃Pj ∈ O, where
d(Pi, Pj) ≤ td. Groups with small number of patches are discarded. For each remaining
group, we create one continuous cancer region by generating a convex hull of all the
patches and set all pixels in this convex hull as cancer pixels. Cancerous tumors are
characterized by uncontrolled growth, which makes the spread and shape of the tumor
extremely difficult to model. We, therefore, take the most reasonable simplification, i.e.
capture the convex hull to get all the cancer regions that may correspond to a single
tumor. The grouping process and the removal of small groups (groups with small number
of patches) follow the annotation strategy of the pathologist. We can observe in the
ground truth that the pathologist only annotates large cancerous regions, including several
neighboring cancerous glands but not individual glands. Hence, the minimum size of a
group is chosen to be larger than the average size of a cancerous gland.
Many of the assessments made by pathologists are based on a gestalt of the entire
region using years of training and experience in evaluating many tissues with cancer. For
pathologists, this constitutes their “self evident truth”or heuristics that is usually not
documented. The case when a pathologist identifies two neighboring regions as a single
region and when he considers them two independent regions is very subjective. With the
automated detection and grading research we are engaged in, we hope that some of the
subjectivity will be codified and we will have a more consistent review and analysis of
cancerous tissues.

5 Experiments

Our dataset contains independent training and test sets. The training set includes 6 images
(approximate size is 4,000×7,000 pixels at 20× magnification). In each training image,
all the cancer glands were marked by a pathologist. In the remaining non-cancerous area,
we manually selected a number of training normal regions which contain various benign
structures of the tissue (stroma, normal glands with different sizes, normal nuclei). Figure
4a shows part of a training image. The independent test set consists of 11 whole slide
images at 20× magnification (approximate size is 5,000×23,000 pixels). The difference in
size of the training and testing images is not an important issue because what we need
for training is the local information of the patches but not the global information of the
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(a) (b)

Fig. 4. Experimental results. (a) A region of a training image in which all cancer glands are
highlighted in blue and selected normal regions are highlighted in yellow. (b) ROC curves, which
plot the average FPR vs TPR over all test images, for the proposed method and the texture
only based method obtained by varying the neighboring threshold td from 0 pixels to 320 pixels.
Note that the scales for TPR and FPR are different.

entire image. The ground truth for the test images (all cancer regions) were also manually
labeled by a pathologist. All the non-labeled regions are considered normal. While in the
ground truth of the test set, the pathologist annotated the entire cancer region (including
neighboring cancer glands and the intervening normal structures such as stroma), only
pixels belonging to the cancer glands are annotated as cancer in the training set. In other
words, the training data are more reliable.

To evaluate the robustness of the cytological feature, we compare the performance of
the proposed feature set combination method with the texture only based method. In the
texture only based method, we only use the textural feature set (section 4) and a single
classifier (SVM with RBF kernel and c = 1) for the detection. For a quantitative com-
parison, we compute the true positive rate TPR = TP/(TP + FN) and the false positive
rate FPR = FP/(TN + FP), where TP, FP, TN, and FN denote the true positive, false
positive, true negative, and false negative, respectively, for every test image. The TPR
and FPR are then averaged over all test images.

The value of the threshold td has a significant influence on both TPR and FPR. Since
the training set only includes annotations of cancer glands separately and not the en-
tire cancer region, it is difficult to estimate td. Further, it is difficult for a pathologist
to tell which value he uses to annotate the cancer region. Hence, it is necessary to test
our method with different values of td. Figure 4b depicts the ROC curves illustrating the
relationship between TPR and FPR obtained by the two methods when td is varied from
0 pixels to 320 pixels (a relatively large distance in the image). When td increases, both
TPR and FPR increase, i.e. there are more true cancer regions being detected while at the
same time, more normal regions get incorrectly classified as cancer. For the same FPR,
the proposed method always gets a higher TPR than the texture only based method.
Since the test set is not large, we choose the best trade-off between TPR and FPR by a
qualitative observation of the detection outputs. We determine that for td = 90 pixels, the
proposed method provides the most satisfactory detection results (TPR = 71% at FPR
= 4.6%). Figure 5 shows the detection results of the two methods on a whole slide image
when td = 90 pixels and Figure 6 shows a close-up region of the same image for better
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(a)

(b)

(c)

Fig. 5. Detection results on a test image. (a) Input image with cancer regions highlighted in blue
by a pathologist (ground truth); (b) result of the proposed method overlaid on the ground truth
image (with detected cancer regions highlighted in green); (c) result of the texture only based
method overlaid on the ground truth image (with detected cancer regions highlighted in green).
td = 90 pixels is used for both the methods.

details. In this image, both the methods can find most of the cancer regions. However,
the proposed method has fewer false detections than the texture only based method.

To save computation time, we perform background removal by using a simple thresh-
olding operation on the L channel of the Lab color space. By doing this, the white area
(non-tissue area) is discarded prior to the patch feature extraction. However, to be able
to compare our results with [5] and [6] in which the authors did not perform background
removal, we use all the image pixels when computing the TPR and the FPR. Although
different datasets were used, we can still have an indirect comparison among the three
studies. At a TPR of 87% (which was the most satisfactory result in [5]), the FPR ob-
tained by their method was roughly 10%, in [6] it was roughly 28% and in the proposed
method it is roughly 8.4%. In the context of this paper, since we use background removal
for both the proposed method and the texture only based method and compute the TPR
and the FPR for them in the same way, the comparison between these two methods is
still valid.

We do not compare our selected features with morphological features because, to com-
pute morphological features, we need to segment complete glands, which is not a trivial
task. Since we do not have ground truth for the nucleus segmentation (it is indeed a labor
intensive task for pathologists to mark every single nucleus), we only qualitatively evaluate



9

(a) (b)

Fig. 6. Detection results of the proposed method (a) and the texture only based method (b) in
a close-up region sampled from the image in Figure 5a. The blue contour depicts the annotated
cancer region by the pathologist and the green contours depict the outputs by the algorithm.

the proposed nucleus segmentation method by comparing with the popular Otsu’s method
[14] and a Bayesian classification method which was used in [15]. The Otsu’s method is an
adaptive thresholding method which is used to create a binary image Ib from a grayscale
image Ig. This method assumes that each image pixel belongs to one of the two classes,
i.e. foreground and background. Then, it searches for an optimal threshold t0 ∈ [a, b],
where [a, b] is the intensity range of Ig, to binarize Ig such that the inter-class variance is
maximized. The inter-class variance corresponding to a threshold t is computed by

σ2
b (t) = ω1(t)ω2(t)[µ1(t)− µ2(t)]

2, (4)

where ω1, ω2 denote the probabilities and µ1, µ2 denote the intensity means of the two
classes. We apply Otsu’s method on the b channel of the Lab color space to obtain pixels
belonging to the nuclei (foreground pixels). In their Bayesian method, Naik et al. [15]
obtained training pixels of three different tissue classes which are lumen, nucleus and
cytoplasm. For each class ωv, they learned a probability density function p(c, f(c)|ωv)
for a pixel c with color f(c). By using Bayes Theorem, they computed the posterior
probability P (ωv|c, f(c)) that each pixel c belongs to each class ωv in the image. A pixel
c is classified as nucleus if P (ωN |c, f(c)) > TN where ωN denotes the nucleus class and
TN denotes a pre-defined threshold. Since we cannot estimate the threshold TN being
used in their method, we classify a pixel c as nucleus if P (ωN |c, f(c)) > P (ωC |c, f(c)) and
P (ωN |c, f(c)) > P (ωL|c, f(c)), where ωC and ωL denote the cytoplasm and lumen classes,
respectively. Similar to their work, we use 600 pixels per class for training. The results
of the three methods are presented in Figure 7. It can be seen from these results that
the proposed method gives more satisfactory outputs than the other two methods. While
the Otsu method does not employ any domain knowledge and the Bayesian method may
suffer from the high color variation of the tissue structures among images, the proposed
method uses prior knowledge about nucleus features (which are mostly stable among
images) and does not depend on color of some training pixels.
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(a) (b)

(c) (d)

Fig. 7. Comparison of the three nucleus segmentation methods. (a) A sampled region of a whole
slide image. (b) Result of the Otsu method. (c) Result of the Bayesian method. (d) Result of the
proposed method.

We also analyze the computational complexity of the proposed nucleus segmentation
algorithm by calculating the number of operations to be performed. There are three steps
in the proposed algorithm: (i) thresholding the grayscale image with a threshold t, (ii)
performing the connected component labeling using all image pixels and (iii) computing
features of the objects (connected components). These three steps are repeated for all T
threshold values in [tmin, tmax]. In the thresholding step, there are n comparisons for an
image with n pixels, yielding a complexity of Θ(n). In the connected component labeling,
by using a two-pass algorithm (every pixel is visited twice) with 4-connectivity at every
pixel, 2×4×n operations are needed, which corresponds to a complexity of Θ(n). To
compute features (area and circularity) of each segmented object Oi with ni points, we
need to visit all the points and consider the 4 neighbors at every point to find the object
perimeter, which results in 4ni operations. The total number of operations for this step is∑

i 4ni, which corresponds to a complexity of Θ(
∑

i 4ni) = Θ(4n) = Θ(n) (since
∑

i ni <
n). In summary, the final complexity of the algorithm is T×(Θ(n)+Θ(n)+Θ(n)) = Θ(n),
which is linear in terms of the number of pixels in the image.
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6 Conclusions

We have introduced a novel cytological feature for automated prostate cancer detection,
which is different from the structural features used in the Gleason grading method. An
efficient adaptive binarization approach is proposed to extract this cytological feature,
namely the cancer nucleus feature. Though the Gleason grading method is widely used in
grading prostate cancer, there is still a need to examine the tissue at a high magnification
and utilize the cytological features to enhance the diagnosis results. For a computer aided
system, besides the use of well-known textural features, we can also include the cancer
nucleus feature in particular and cytological features in general to boost the performance
of the system. The results achieved on the test images reported here demonstrate the
contribution of the cancer nucleus feature in detecting prostate cancer. In future work,
we intend to obtain a larger dataset and explore additional cytological features. Moreover,
we plan to perform gland segmentation and use the outputs to facilitate cancer detection.
This means we can process cancer detection at a higher level (glandular level) instead of
patch-based classification which relies mainly on image pixels.
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