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a b s t r a c t

In this paper, we introduce a novel approach to grade prostate malignancy using digitized histopatholo-
gical specimens of the prostate tissue. Most of the approaches proposed in the literature to address this
problem utilize various textural features computed from the prostate tissue image. Our approach differs
in that we only focus on the tissue structure and the well-known Gleason grading system specification.
The color space representing the tissue image is investigated and basic components of the prostate tissue
are detected. The components and their structural relationship constitute a complete gland region. Tissue
structural features extracted from gland morphology are used to classify a tissue pattern into three major
categories: benign, grade 3 carcinoma and grade 4 carcinoma. Our experiments show that the proposed
method outperforms a texture-based method in the three-class classification problem and most of the
two-class classification problems except for the grade 3 vs grade 4 classification. Based on these results,
we propose a hierarchical (binary) classification scheme which utilizes the two methods and obtains
85.6% accuracy in classifying an input tissue pattern into one of the three classes.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction grading (Gleason, 1977, 1992), which assigns a numerical grade
Prostate cancer is a type of cancer that occurs in men’s repro-
ductive system. In the United States, it is the second most preva-
lent cancer in men and it is also one of the leading causes of
death by cancer (in 2006, prostate cancer developed in 203,415
men and killed 28,372 men) (US Cancer Statistics Working Group,
2010). Prostate cancer grows slowly with very few symptoms; it
develops mostly in men over the age of fifty. Prostate cancer is con-
sidered serious because of the threat of its invasion (metastasis)
into other organs such as bones, bladder and rectum. The prognosis
involves a screening (such as digital rectal examination or pros-
tate-specific antigen (PSA) test (Catalona et al., 1991)) and, if
necessary, a follow-up prostate biopsy. After an unsuspected can-
cer is revealed via the screening, a biopsy is used to confirm it. A
CT scan or a bone scan can be employed additionally to determine
the spread of the cancer.

The biopsy is conducted by a radiologist or a urologist. First, a
prostate tissue sample is removed from the patient for inspection
under a microscope. A grade is then reported for the tumor derived
from the tissue. The most widely used grading method is Gleason
ll rights reserved.
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from 2 to 10 to the tumor. The grade is based solely on structural
features of the tissue and excludes cytological features
(Mason, 1964). In this grading method, a pathologist finds the most
predominant and the second most predominant histological
carcinoma patterns in the tissue, assigns each of them a score
(from 1 to 5) and adds the two scores together to obtain the final
Gleason grade (2 to 10) for the tissue. The grade of each carcinoma
pattern is based on its differentiation (how much of its structure
resembles a normal pattern structure). A grade 1 carcinoma pat-
tern is very well differentiated and a grade 5 carcinoma pattern
is very poorly differentiated. The change in tissue structure is good
evidence for this differentiation. More specifically, in Gleason
grades 1 and 2, most of the glands appear as single units, separated
from each other, densely packed, and there is no infiltration of
these glands into benign tissue areas (this is very close to the struc-
ture of a normal tissue). Gleason Grade 3, the most common case of
carcinoma, is characterized by the invasion of small glands into the
muscle (stroma). In Gleason grade 4, glands are fused with each
other and poorly defined; glands are not well-separated by stroma
as in lower grades. Finally, in Gleason grade 5, there is no evidence
of the formation of gland units in the pattern. A visual summariza-
tion of these five grades can be found in Fig. 1. Pathologists face a
number of difficulties in manually diagnosing prostate cancer, i.e.
to look at the prostate tissue under a microscope is tedious and
time-consuming. Moreover, the diagnostic accuracy depends on
the personal skill and experience of a pathologist. These problems
motivate the research and development for automating the
diagnosis and prognosis processes.
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Fig. 1. Five grades of the Gleason grading applied to histological patterns of the prostate tissue.
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In most digital pathology studies on computer-aided prognosis
for prostate cancer, textural features of the image and structural
features of the tissue have been widely used. Diamond et al.
(2004) used co-occurrence texture features (Haralick et al., 1973)
to classify each 100 � 100 sub-region in a tissue image into either
stroma or prostatic carcinoma. In addition, lumen area was used
to discriminate benign tissue from the other two classes. They re-
ported 79.3% accuracy when evaluating the algorithm on sub-re-
gions of 8 tissue images (40� magnification). A cancer vs non-
cancer classification problem which used 594 features including
first-order statistics (average, median, standard deviation), co-
occurrence and wavelet features was addressed in Doyle et al.
(2006). The algorithm was implemented at three different scales
of the image. At each scale, a Bayes classifier was designed for each
feature individually, resulting in 594 base learners for AdaBoost.
The reported accuracy was 88% on a dataset of 22 images (40�mag-
nification). In Tai et al. (2010), fractal dimension features were cal-
culated for the tissue image and the low frequency sub-bands of the
image to discriminate the textural discrepancy between low grade
and high grade carcinoma. By using an SVM classifier with leave-
one-out technique, the method achieved 86.3% accuracy for the
classification of 1,000 prostatic biopsy images into normal, grade
3, grade 4 and grade 5 classes. A multiwavelet transform was used
as the main texture analysis tool in Khouzani and Zadeh (2003). The
features used for classification included entropy and energy derived
from the multiwavelet coefficients of the image. Ten different types
of multiwavelet were evaluated on a dataset of 100 prostate sample
images (100�magnification) of grades 2, 3, 4 and 5, resulting in the
best accuracy of 97%. In another study, Tabesh et al. (2007) em-
ployed both global features of the entire image and local features
of every object in the image. Global features included color histo-
gram, fractal features, texture and morphometry of the image. Local
features were computed for histological objects such as nuclei, stro-
ma and lumen, which were extracted by the MAGIC system (Teve-
rovskiy et al., 2004). They achieved 96.7% accuracy for tumor-
nontumor classification (fivefold cross validation with 367 images)
and 81% accuracy for low grade-high grade classification (fivefold
cross validation with 268 images). All images were at 20�magnifi-
cation. A segmentation-based method was presented in Naik et al.
(2008). They first used a Bayesian classifier to place every pixel in
the image into one of the three classes: lumen, nuclei and cyto-
plasm based on its color. Lumen pixels were first grouped together
and lumen objects were then identified as the groups satisfying the
gland size constraint. The inner boundary of the glands, which is the
border of the nuclei and the cytoplasm surrounding the lumen, was
detected using a level set formulation. Eight shape features for each
of the lumen and the gland inner boundary were calculated. A tis-
sue was classified into benign, a grade 3 carcinoma or a grade 4 car-
cinoma via an SVM classifier. However, by using a dataset that
included 44 images at 40� magnification, they only reported re-
sults of two-class classifications: 86.35% accuracy when classifying
grade 3 carcinoma and benign, 92.9% accuracy when classifying
grade 4 carcinoma and benign, and 95.19% accuracy when classify-
ing grade 3 carcinoma and grade 4 carcinoma. Three-class classifi-
cation result was not reported. Table 1 summarizes the related
studies discussed in this section.

In this study, we present a segmentation-based method to clas-
sify a tissue pattern into three common cases based on Gleason
grading: benign, grade 3 and grade 4 carcinoma. However, unlike
Naik et al. (2008), we incorporate nucleus and blue mucin informa-
tion into the glandular structures which are used for the classifica-
tion. It is apparent from the tissue pattern image that nucleus
distribution changes remarkably among various cancer stages (in
benign tissue, nuclei form a ring on the gland boundary and scatter
in other areas (Fig. 8(a)) while in grade 4 carcinoma, nuclei distrib-
ute more uniformly over the glandular regions (Fig. 8(c))) and mu-
cin appears commonly in cancerous glands (Fig. 8(b)). While a
gland region in Naik et al. (2008) solely consists of lumen and
internal cytoplasm region, our segmentation procedure leads to
complete glands which include their nucleus boundaries. More-
over, the structural features extracted in our method do not require
a very high magnification (like 40� in Naik et al., 2008) to achieve
state of the art classification results. The proposed algorithm is de-
signed to work for images created from the Hematoxylin and Eosin
(H&E) staining method (Kiernan, 2001). The outline of the method-
ology is delineated in the flowchart of Fig. 2. Given an input tissue
pattern, we first segment glands from the stroma area (this
comprises steps 1, 2, 3, 4 in the flowchart). Once gland regions



Table 1
Summary of major classification studies on prostate cancer.

Authors Features used Dataset size (magnification) Classes Accuracy

Diamond et al.
(2004)

Co-occurrence texture features and lumen area 100 � 100 sub-regions of 8 tissue
images (40� magnification)

Stroma, benign tissuea and
prostatic carcinomaa

79.3%

Doyle et al. (2006) First-order statistics (average, median, standard deviation),
co-occurrence and wavelet features

22 images (40� magnification) Cancera vs noncancera 88%

Tai et al. (2010) Fractal dimension features 1000 images Normala, grade 3, grade 4 and
grade 5

86.3%

Khouzani and
Zadeh (2003)

Entropy and energy of the multiwavelet coefficients 100 images (100� magnification) Grades 2, 3, 4 and 5
carcinoma

97%

Tabesh et al.
(2007)

Global features of the image and local features of
histological objects

268 images (20� magnification) Low grade vs high grade 81%

367 images (20 �magnification) Tumora vs non-tumora 96.7%
Naik et al. (2008) Shape features of the lumen and the gland inner boundary 44 images (40 �magnification) Grade 3 vs benign 86.35%

Grade 4 vs benign 92.9%
Grade 3 vs grade 4 95.19%

Proposed
hierarchical
scheme

Glandular structural features and co-occurrence texture
features

82 ROIs (10� magnification) Benign, grade 3 and grade 4
carcinoma

85.6%

a Different terminologies which have the same meaning were used in the related work. Cancer, tumor and carcinoma refer to the tissues which are detected to have
malignant properties of a cancer (cells grow aggressively, invade the surrounding tissues and spread to the non-adjacent tissues). Noncancer, normal, benign and nontumor
refer to the tissues which do not have the properties of cancer.

Fig. 2. Methodology outline.

Fig. 3. A gland segmentation result obtained by a level set method in Naik et al.
(2008). The blue and black curves show the segmented gland which only includes
lumen and cytoplasm regions. The yellow lines delineate the gaps between the
nuclei layers. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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are identified, we extract fifteen features from the pattern based on
glandular structures (step 5 of the flowchart). Finally, these fea-
tures become inputs to different classifiers to determine the carci-
noma grade of the input pattern (step 6 in the flowchart).

The rest of the paper is organized as follows. Section 2 describes
the gland segmentation algorithm, Section 3 explains the features
extracted from the gland regions, Section 4 presents experimental
results using different classifiers and Section 5 concludes the
paper.
2. Segmentation of gland units

In a normal prostate tissue (Fig. 4(a)), stroma (pink2 regions)
serves as background and gland units are foreground objects. A gland
unit does not have any fixed shape or size; it can be oval, round or
branchy and it can be either small or very large. Hence, we cannot
utilize Active Shape Model (Cootes et al., 1995) or Active Appearance
2 For interpretation of color in Figs. 4 and 8, the reader is referred to the web
version of this article.
Model (Cootes et al., 2001) to detect gland objects. In Naik et al.
(2008), the authors used a level set approach to segment glands in
the tissue. However, the gland segments obtained in their approach
only include lumen and cytoplasm regions (Fig. 3) while we want to
capture the entire gland area which also includes nuclei on the gland
boundary. Since there are usually multiple layers of nuclei on the
gland boundary and there are gaps between these layers (the yellow
lines in Fig. 3 delineate these gaps), it is difficult to force the level set
curve to capture all of the nuclei on the gland boundary. In a stan-
dard energy minimization formulation of the level set, the curve is
attracted toward high gradient magnitude regions (Li et al., 2005).
These high gradient magnitude regions can be the edges of the nuclei
or can be the nuclei likelihood image as defined in Naik et al. (2008).
Since the gaps between nuclei layers must have low gradient magni-
tude, it is difficult for a level set curve to pass these gaps and em-
brace all the nuclei.

Consequently, we rely on the structure of glands to segment
them from the tissue background. Each gland unit has a boundary
of epithelial cells which include epithelial nuclei (blue dots) mixed
with epithelial cytoplasm (purple) and lumina (white) in the cen-
ter. In some cancer tissues, blue mucin may be found to invade
the lumina (Fig. 8(b)). In short, nuclei, cytoplasm, stroma, lumen
and mucin are five basic components which appear in different col-
ors in a prostate tissue image stained by the H&E method. As a



Fig. 4. Lab color space. (a) Prostate tissue image. (b) Sampled regions of the five tissue components whose pixels are used as training pixels. (c) Lab color space: black points
are Lab color points of tissue image pixels and other colored points are Lab color points of training pixels of the five tissue components.
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result, an analysis of the color space of the prostate tissue image
should help to identify different components of the tissue and pave
the way for the segmentation of glands.
2.1. Classification in the color space

We represent all pixels in the tissue image in the Lab (also
known as L⁄a⁄b⁄ or CIELAB) color space (Jain, 1989). The Lab color
space is preferred over RGB because it was designed to approxi-
mate the color perception in human visual system. Lab is specified
by the CIE (International Commission on Illumination) to separate
the lightness of the color (L channel) from the spectral properties of
color (negative values of a channel indicate green and positive val-
ues of a indicate red, while negative values of b channel indicate
blue and positive values of b indicate yellow). To convert the con-
ventional RGB space to the corresponding Lab space, we first con-
vert the RGB space to XYZ space by
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The elements of the transformation matrix were derived in Fairman
et al. (1997). Next, the XYZ space is converted to Lab space by

L ¼ 116f ðY=YnÞ � 16 ð2Þ
a ¼ 500½f ðX=XnÞ � f ðY=YnÞ� ð3Þ
b ¼ 200½f ðY=YnÞ � f ðZ=ZnÞ� ð4Þ

where

f ðtÞ ¼
t1=3 if t > 6

29

� �3

1
3

29
6

� �2
t þ 4

29 otherwise;

(
ð5Þ

and Xn, Yn, Zn are the white point tristimulus values in XYZ (Wikipe-
dia contributors, 2010). Each pixel p in the image domain is mapped
to a point c(p) in the Lab space, where c(p) is the three-dimensional
(L,a,b) color vector of pixel p. Notice that this is a many-to-one
mapping because several pixels can have the same (L,a,b) color vec-
tor. In Fig. 4(c), we demonstrate the Lab color space of the image in
Fig. 4(a). Our goal is to determine to which component of the tissue
each image pixel p belongs. Based on the fact that the number of
points in the Lab space is smaller than the number of pixels in the
image, we can (i) classify points in the Lab color space into five clas-
ses (representing the five components) and (ii) use the classification
results to assign each image pixel a label of the corresponding com-
ponent. This can be done due to the known mapping between pixels
in the image and points in the Lab space. To facilitate the classifica-
tion, we sample pixels in local regions (approximately 18 � 22 pix-
els) for each component (Fig. 4(b)) from a training tissue image. Let
Ci denote the class corresponding to the ith tissue component (we
refer to stroma, nuclei, cytoplasm, lumen, mucin as the 1st, 2nd,

3rd, 4th and 5th components, respectively) and Di ¼ xi
j

n oni

j¼1
denote

the set of ni training pixels of class Ci. The Lab color points of these
training pixels (we call training points for short), denoted by

cðDiÞ ¼ c xi
j

� �n oni

j¼1

� �5

i¼1
, are shown in color in Fig. 4(c) while the

Lab color points of the tissue image pixels are shown in black in
the same figure.

The training points create a Voronoi tessellation (Franz, 1991) of

the Lab space (each training point c xi
j

� �
is associated with one con-

vex polygon which includes all points closer to it than any other
training point). Each unclassified point c(p) (black points in
Fig. 4(c)) is assigned to the same class associated with the training
Fig. 5. Classification in the Lab space (a) and tissue pixel labeling (b). The same color is
image; cytoplasm, nuclei, lumen, stroma and blue mucin are denoted by green, blue, pink
are invisible because they are occluded by points of other classes and (ii) multiple pixels i
the references to colour in this figure legend, the reader is referred to the web version o
point of the polygon to which it belongs. Once the points in the
Lab space are classified (Fig. 5(a)), each pixel in the tissue image is
assigned one of the five labels in L = {LS,LN,LC,LL,LM} corresponding
to the five components (stroma, nuclei, cytoplasm, lumen, mucin)
(Fig. 5(b)) via the mapping of points in the Lab color space and pixels
in the image. Formally, a pixel p is assigned a label Li 2 L, l(p) = Li such

that lðpÞ ¼ arg minLi
min
j2½1;ni �

dðcðpÞ; c xi
j

� �
Þ

� 	
, where d cðpÞ; c xi

j

� �� �
is

the Euclidean distance between c(p) and c xi
j

� �
in the Lab space.
2.2. Identify glandular components

Once all the pixels have been classified, we identify nuclei and
lumina, the two most important components of the gland. A binary
image indicating nucleus pixels is derived from pixel labels
(Fig. 6(a)) and a connected component algorithm is applied to this
binary image to form the nucleus objects. The four-connectivity
property, which only considers the top, left, bottom, and right
neighbors of each pixel, is employed. Lumen objects (commonly lo-
cated in the center of glands) are also created in the same manner
(Fig. 7(a)). Nucleus objects and lumen objects are sequentially uti-
lized in the following two procedures.
2.3. Construct gland boundary

In the anatomical structure of a prostate tissue, epithelial cell
layers comprising nuclei and cytoplasm constitute the gland
boundary. Moreover, as we can see in Fig. 4(a) both nuclei and
cytoplasm gather densely around the gland but scatter sparsely
in other areas (for example, stroma). This motivates us to develop
a two-step algorithm for constructing gland boundary.

In the first step, nucleus objects (obtained from Section 2.2) are
enlarged by combining them with cytoplasm pixels. An enlarged
instance N0i of a nucleus object Ni is defined as: N0i ¼ fpjp 2 Ni or
(l(p) = LC and kp,centroid(Ni)k2 6 dn)}, where p is a pixel in the im-
age, LC is the label of the cytoplasm pixel (defined in the previous
part) and parameter dn is empirically estimated by half the average
distance between neighboring nuclei in the gland boundary and
centroid(Ni) is the centroid of the object Ni. The goal of this step
is to facilitate the grouping of neighboring nuclei in the second
step.
used for a classified point in the Lab space and the associated labeled pixel in the
, red, cyan, respectively in both (a) and (b). Note that (i) several points of each class

n the image can be mapped to one point in the Lab color space. (For interpretation of
f this article.)



Fig. 6. Gland boundary segments are generated from nucleus objects.
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In the second step, we group enlarged nuclei which intersect
each other to construct gland boundary segments. Each segment
may contain only one isolated enlarged nucleus or several enlarged
nuclei, depending on the nucleus density in the area. More con-
cretely, a gland boundary segment GB can be (i) a single enlarged
nucleus N0i if 8N0j – N0i; N0i \ N0j ¼ ; or (ii) a group of enlarged nuclei
N0k; . . . ;N0kþm

� �
, where 8N0i ðk 6 i 6 kþmÞ; 9N0j ðk 6 j 6 kþmÞ such

that i – j and N0i \ N0j –;.
As nuclei are not uniformly dense everywhere on the boundary,

we may not obtain a complete boundary segment for each gland.
Thus, this stage can generate multiple segments for each gland
boundary. Fig. 6(b) demonstrates the output of gland boundary
Fig. 7. Expansion procedure of the lumen to unify glan
construction applied to the image of Fig. 4(a). The next procedure
combines these segments into the final gland regions.

2.4. Segment complete gland units

Again, we rely on the glandular structure (lumina lie in the cen-
ter of glands and are embraced by gland boundary) to implement
an algorithm for unifying lumen objects (obtained from Section 2.2)
with gland boundary segments (obtained from Section 2.3) to form
complete gland units. The non-tissue areas (which appear white
near the image boundary, e.g. in Fig. 8(a) and (c)) are discriminated
from lumen objects by their contacts with the image boundary. The
dular components and form complete gland units.
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algorithm is based on an expansion procedure of lumen objects
(this is a different procedure from conventional morphological
operations), which is described in Algorithm 1.

Algorithm 1: Glandular component unification by lumen
expanding

Input: A set of N gland boundary segments fGBigN
i¼1. A set of M

lumen objects fLUigM
i¼1. Label for pixel (x,y) in the tissue

image is l(x,y) 2 (LS,LN,LC,LL,LM)

Output: M complete gland units fGUigM
i¼1

for i = 1 to M do
2: GUi LUi (initialize gland unit by the lumen object)

Compute the centroid (x0,y0) of lumen object LUi

4: Find the set of boundary points of LUi; denote this set by

B fðxi; yiÞg
b
i¼1

Initialize the estimated gland size
Sg  a max

ðxi ;yiÞ2B
kðxi; yiÞ; ðx0; y0Þk2

6: (a > 1 indicates the estimated ratio between gland size
and lumen size)

Initialize the scale factor for the expanding process sf 1
8: while B – ; do

Initialize the remove set R (containing the points to be
removed): R ;

10: sf sf + t0 (increase the scale factor by a step-size
t0 < 1)

for each (xi,yi) in B do
12: Calculate the expansion version ðx0i; y0iÞ of (xi,yi):

x0i  ðxi � x0Þ� sf, y0i  ðyi � y0Þ � sf
14: Create a window W of size SW � SW (SW is

proportional to the step-size t0) centered at ðx0i; y0iÞ
if $(x,y) 2W such that l(x,y) = LS then

16: R R [ (xi,yi) (remove the point reaching stroma
background)

end if
18: if $(x,y) 2W such that l(x,y) = LC then

GUi GUi [ (x,y) (merge internal cytoplasm with
gland)

20: end if
if $GBj such that GBj \W – ; then

22: GUi GUi [ GBj (merge gland boundary segment
with gland)

if Sg < kðx0i; y0iÞ; ðx0; y0Þk2 then
24: Sg  kðx0i; y0iÞ; ðx0; y0Þk2 (update the gland size

estimation)
end if

26: R R [ (xi,yi) (remove the point reaching gland
boundary)

end if
28: if kðx0i; y0iÞ; ðx0; y0Þk2 > Sg then

R R [ (xi,yi) (remove the point exceeding
estimated gland size)

30: end if
end for

32: B BnR
end while

34: end for

Fig. 7(b) illustrates the algorithm. Since the tissue may contain

artifacts (non-lumen white regions which can be formed due to
small broken areas in the tissue), the algorithm creates some small
regions as well. A minimum size constraint is applied on the seg-
mented gland regions to eliminate such artifacts. The final gland
segmentation output of Fig. 4(a) is shown in Fig. 7(c).
3. Glandular structural features

We observe the following characteristics of glandular structure
of benign, Gleason grade 3 and Gleason grade 4 patterns.

i. A benign pattern has large, densely-packed and separated
gland units. Each gland has large lumen regions and a thick
boundary with prominent nuclei (due to multi-layer epithe-
lial cells). Nuclei form a chain on the gland boundary. There
is a lot of variation in lumen shape, from circular to oval or
branchy. Fig. 8(a) describes these benign structures.

ii. A Gleason grade 3 pattern has small, circular lumina and
thin gland boundaries (because there is only one layer of
epithelial cells circumscribing the lumen). Glands are also
smaller and more circular than in a benign pattern. Blue
mucin is commonly found to mix with lumina. Fig. 8(b) illus-
trates these properties.

iii. In a Gleason grade 4 pattern, glandular structures are
observed to be altered dramatically due to the fusion of
glands. Glands are poorly-defined (we cannot see individual
gland units separated by stroma, with their own lumina and
well defined epithelial cell layers on the boundary). Multiple
glands are mixed together and nuclei distribute almost uni-
formly in the gland region instead of forming well-formed
rings as in benign patterns. These properties can be seen in
Fig. 8(c).

Given these observed properties, we extracted fifteen features
from each gland region.

i. Ten lumen features consisting of area statistics (average,
variance, maximum), perimeter statistics (average, variance,
maximum), circularity statistics (average and variance); per-
centage of the entire gland area to be lumen area and num-
ber of lumina in the gland.

ii. Two nucleus features consisting of nucleus density and per-
centage of total gland area to be nucleus area.

iii. Two gland morphology features consisting of average and
variance of gland radius (gland radius is estimated by the
distance between lumen centroids and gland boundary)

iv. One feature related to blue mucin, which is the percentage of
gland area covered by blue mucin.

To calculate the nucleus density (ND) of a gland region, we first
divide the region into a grid of patches (the size of each patch is
Sc � Sc pixels) and calculate the ratio of nucleus pixels to total
number of pixels in each patch. A patch is called an N-patch if this
ratio exceeds an empirically pre-defined threshold tN. Then the nu-
cleus density is defined as (Number of N-patches)/(Total number of
patches). The choice of parameters Sc and tN will have influence
on the ND feature but the final classification result is not dramati-
cally affected because the classification also depends on the other
14 features. In regions where nuclei are uniformly distributed, ND
is large. On the other hand, in a region where nuclei focus on a spe-
cific area (gland boundary) and are very sparse in other areas
(internal area of glands), ND is small.

The feature vector of a tissue pattern I is denoted by
FðIÞ ¼ fFiðIÞg15

i¼1. This is obtained by averaging features of all the
gland regions in I, i.e.

FiðIÞ ¼
1
N

XN

j¼1

fiðjÞ;

where fi(j) is the feature i of gland region j in I and N is the number
of gland regions in I, i = 1, 2, . . . , 15.



Fig. 8. Three classes of tissue patterns of interest.
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An over-segmentation of glands does not have much influence
on the feature extraction accuracy because there are only two fea-
tures that depend on the gland morphology. As a consequence, in
grade 4 carcinoma, where gland units are ill-defined and each
gland region is not necessarily a gland unit but can be a combina-
tion of multiple glands fused with each other, the extracted fea-
tures still provide good discriminating power.
4. Experimental results

4.1. Dataset of tissue patterns

From 26 digitized tissue specimens at 20� magnification
(approximate size is 90,000 � 45,000 pixels) of 17 patients ob-
tained from Lakewood Pathology and Ventana Medical Systems,
Inc., we manually selected 82 regions of interest (ROI) at 10�mag-
nification to form the dataset. A 10� magnification is sufficient for
the proposed structural-based method (higher magnifications
(20� or 40�) may be required when computing cytological fea-
tures). The average size of each ROI is approximately 620 � 550
pixels. Each ROI represents one tissue pattern belonging to one of
the three classes of interest. Among 82 ROIs, there are 34 benign
regions, 28 grade 3 regions and 20 grade 4 regions. The grade of
each ROI is determined by an expert pathologist. Examples of these
ROIs with corresponding classes are shown in Fig. 8(a)–(c).
4.2. Classification results

In the first experiment, we address the three-class classification
problem. We use the classifiers which were widely utilized in the
literature, i.e. SVM (Naik et al., 2008; Tabesh et al., 2007; Tai
et al., 2010), Nearest Neighbor (Tabesh et al., 2007; Khouzani and
Zadeh, 2003), Adaboost (Doyle et al., 2006), Bayes (Tabesh et al.,
2007; Naik et al., 2008) and two other popular classifiers which
are feedforward Neural Network (FNN) and Decision Tree. We used
their implementations provided in Weka (Hall et al., 2009), a pop-
ular data mining software. To evaluate the performance of all the
classifiers, we use stratified K-fold cross-validation technique
(stratified folds indicate folds which have similar class distribution
with the dataset). Two cross-validation (CV) techniques, which are
ROI-based CV and specimen-based CV, are employed. In ROI-based
CV, assuming that all ROIs in the dataset are independent, we ran-
domly divide the dataset into 10 stratified folds. However, in spec-
imen-based CV, we want all ROIs of the same specimen to lie
within one fold. By doing this, no specimen can be present in both
the training and the testing data. Due to the constraint, the dataset
can only be divided into 4 stratified folds. The classification results
using both CV techniques are shown in Table 2. Because there is a
high variation in image intensity (due to the variation in staining
procedure) and high variation in tissue structures of different spec-
imens, the accuracy of the specimen-based CV is lower than the
ROI-based CV.

In both CV techniques, FNN and SVM give the best results. The
one-vs-one approach is implemented in SVM to deal with the
three-class problem. The FNN is trained by the backpropagation
method using sigmoid activation functions for all nodes. It has
three output units corresponding to three class labels. An input x
is assigned the class label of the output unit which has the largest
output value. Based on the number of features and classes, we test
the FNN with a wide-range of number of hidden nodes (from 8 to
20) and obtained the best classification result when this number is
16. Since the dataset is small, one misclassified image can make a
large difference in the final accuracy. This explains the large differ-
ence in the performance of the best and the worst classifiers as
well as the large standard deviation of the CV accuracies.

Fig. 9 presents examples of the classification results obtained by
FNN classifier. The grade 3 pattern in Fig. 9(a) is misclassified as
benign due to the presence of a benign gland (the gland whose
structure resembles gland structure in benign patterns) and the
large lumen of the gland in the center. The grade 3 pattern in
Fig. 9(b) is misclassified as grade 4 because some glands at the
top are starting to merge with each other and change their regular
structure. In this region, the cancer is evolving from grade 3 to
grade 4. Finally, the reasons for the misclassification of the tissue
pattern in Fig. 9(c) are as follows: although glands are mixed up,
(i) lumen objects are skinny and elongated (lumen circularity is
lower than in other grade 4 patterns) (ii) nuclei form a thick ring
structure which resembles gland boundaries of benign glands
and (iii) the presence of an individual gland on the right side of
the pattern.

We also compare the performance of the proposed method with
a texture-based method. The co-occurrence features which were
widely used in the literature (Diamond et al., 2004; Doyle et al.,
2006) are adopted. We compute 13 co-occurrence features for each
of the L, a, b channel of the image and concatenate them to create a
39-dimensional feature vector for each image. We use the same
classifiers and the same CV techniques to evaluate the performance
of this method, which is also shown in Table 2. As can be seen, the
proposed method outperforms the texture-based method in all the
tests.

Similar to Naik et al. (2008), two-class classification is also con-
sidered. By using two CV techniques, a total of 8 classification
problems need to be solved. In these problems, we use the two



Table 2
Accuracy (%) and standard deviation of three-class classification for the proposed
method and texture-based method evaluated by ROI-based CV and specimen-based
CV. Bold values are the best accuracies in each column.

Classifier ROI-based CV Specimen-based CV

Proposed
method

Texture-
based
method

Proposed
method

Texture-
based
method

Adaboost (with decision
stump as weak
classifier)

75.3
(12.7)

56.1 (10.9) 68.3
(06.7)

52.2 (04.3)

Nearest Neighbor 80.3
(14.0)

72.9 (13.7) 69.5
(11.4)

57.5 (19.5)

Decision Tree (C4.5) 79.0
(11.2)

72.1 (16.3) 68.4
(11.4)

62.4 (18.9)

Naive Bayes 81.5
(08.6)

70.4 (18.1) 71.9
(09.3)

59.9 (21.7)

SVM (squared
exponential kernel)

87.8
(09.6)

81.7 (10.9) 75.1
(10.6)

69.9 (15.7)

Feedforward Neural
Network with one
hidden layer

87.8
(13.7)

83.0 (13.8) 74.5
(07.8)

71.4 (15.5)

Table 3
Best accuracies achieved for 8 different two-class classification problems of the two
methods (proposed and texture-based) evaluated by two cross-validation (CV)
techniques. For the proposed method, SVM is better than FNN for all the 8 problems.
For the texture-based method, the best classifier and its accuracy are shown for each
problem. Bold values indicate the method with higher accuracy for each classification
problem.

Classification
problem

ROI-based CV Specimen-based CV

Proposed
method

Texture-based
method

Proposed
method

Texture-based
method

Benign vs
grade 3

98.3 (05.0) 86.9 (14.5)
(by FNN)

93.2 (05.5) 74.9 (08.3)
(by FNN)

Benign vs
grade 4

96.0 (12.0) 93.0 (11.4)
(by SVM)

89.5 (15.0) 87.8 (13.7)
(by FNN)

Grade 3 vs
grade 4

85.5 (13.1) 86.0 (12.8)
(by SVM)

70.7 (22.5) 84.4 (12.3)
(by SVM)

Benign vs
carcinoma

97.5 (05.0) 86.5 (12.8)
(by SVM)

94.2 (07.4) 80.3 (08.3)
(by FNN)
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classifiers which performed the best in the three-class problem
(SVM and FNN). We also compare the proposed method and the
texture-based method on these problems. For the proposed meth-
od, SVM gives better results than FNN in all two-class classification
Fig. 9. Examples of classification results. Misclassifications: (a) Grade 3 pattern misclass
misclassified as benign; Correct classifications: (d) Benign pattern, (e) grade 3 pattern a
problems. The accuracy of FNN is approximately 4% lower than
SVM, on average. However, in the texture-based method, SVM out-
performs FNN in some classification problems and FNN outper-
forms SVM in other problems. The best classification results of
the two methods in 8 different classification problems are reported
in Table 3. As can be seen, the proposed method is better than the
texture-based method in all problems except for the grade 3 vs
grade 4 classification problem. Since the dataset contains several
ified as benign, (b) Grade 3 pattern misclassified as grade 4 and (c) Grade 4 pattern
nd (f) grade 4 pattern.
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images in which cancer is evolving from grade 3 to grade 4, i.e.
some glands still appear as single units while other glands are
merging with each other, the structural features of these ROIs are
ambiguous which can degrades the performance of the proposed
method. Moreover, due to the appearance of crystallized protein
or due to the cutting direction when a tissue is sampled, the lumina
of some glands in a tissue may be partially or totally occluded.
These occluded lumina also affect the performance of our system
because both the segmentation and the classification stages utilize
lumen information. In our dataset, there are three cases in which
grade 3 ROIs are misclassified as grade 4 because some of the lumi-
na are occluded and also because the cancer in those ROIs are in
the transition stage from grade 3 to grade 4. We do not see the af-
fect of occluded lumina in other benign or grade 4 ROIs in our
dataset.

Based on this observation, we propose a hierarchical (binary)
classification scheme (Fig. 10) to classify a ROI I using both meth-
ods. In the first stage, we classify I as benign or carcinoma by using
the proposed method because it performs better for this classifica-
tion problem. If the result is benign, we stop. Otherwise, we con-
tinue to determine whether it is grade 3 or grade 4 carcinoma in
the second stage by applying the texture-based method which is
dominant for this problem.

We utilize the two-class classification results obtained in Table 3
to calculate the accuracy of the hierarchical scheme (HS), which
gives the same results if performing separate experiments on the
HS because the two classification stages are independent. Let
p(xi) denote the prior probability of class xi, which is estimated
from the dataset. Let p(correctjxi) denote the probability that we
correctly classify I when I belongs to class xi. Since the probability
that I is correctly classified, p(correct), depends on whether I is a
benign, grade 3 or grade 4 region, we can calculate the overall
accuracy as follows:

pðcorrectÞ ¼
X3

i¼1

pðcorrectjxiÞpðxiÞ; ð6Þ

where x1, x2 and x3 denote the benign, grade 3, and grade 4 clas-
ses, respectively. While p(correctjx1) is the accuracy of the first clas-
sification stage only, p(correctjx2) and p(correctjx3) involve the
accuracies of both the stages since they require both to be correct.
Let aBC and a34 denote the accuracies of benign vs. carcinoma and
grade 3 vs. grade 4 classification problems obtained from Table 3,
respectively. We have p(correctjx1) = aBC and p(correctjx2) =
p(correctjx3) = aBCa34.

Based on the distribution of three classes in the dataset, we have
p(x1) = 34/82, p(x2) = 28/82 and p(x3) = 20/82. Using the ROI-
based CV technique (aBC = 0.975 and a34 = 0.86), we have p(cor-
rectjx1) = 0.975 and p(correctjx2) = p(correctjx3) = 0.975⁄0.86 =
0.838. So p(correct) = 89.5% which is higher than the best accuracy
Fig. 10. The proposed hierarchical classification scheme based on binary
classifications.
obtained by direct three-class classification, 87.8%. Using the speci-
men-based CV technique (aBC = 0.942 and a34 = 0.844), we have
p(correctjx1) = 0.942 and p(correctjx2) = p(correctjx3) = 0.942⁄0.844 =
0.795. So p(correct) = 85.6% which is higher than the best accuracy
obtained by direct three-class classification, 75.1%. Hence, to classify
a ROI into one of the three classes, it is better to use a HS which em-
ploys both the proposed method and the texture-based method.

Now, we show that using the two-class classification accuracies
aBC and a34 to compute the accuracy of the HS by Eq. (6) is valid as
following. First, the input to the HS which is also the input to stage
1 of the HS can be benign or carcinoma. Hence, using aBC as the
accuracy of this stage is valid. Second, the input to stage 2 of the
HS can also be benign or carcinoma since in stage 1, we may mis-
classify a benign sample as carcinoma. However, in this case, this
benign sample is already counted as a misclassification of the HS
from stage 1 and this misclassification is already included in the
accuracy aBC. So, all benign samples which are misclassified in
stage 1 should be disregarded when considering the accuracy of
stage 2. As a result, the accuracy of stage 2 is still a34.
5. Summary and conclusions

We have proposed a novel method to analyze the glandular
structure of a prostate tissue pattern in order to grade it as benign,
grade 3 or grade 4 carcinoma. Basic underlying components of the
tissue (nuclei, lumina, cytoplasm, blue mucin, stroma) and eventu-
ally gland units are segmented. Fifteen structural features are ex-
tracted to classify the tissue pattern, achieving state of the art
classification results. Our algorithm utilizes nucleus and blue mu-
cin components which were not used in the previous segmenta-
tion-based studies. Nucleus information not only facilitates the
pattern grading but can also be helpful in detecting other struc-
tures of the prostate tissue such as seminal vesicles, paraganglia,
eosinophilic crystalloids, perineural indentation or PIN (Prostatic
Intraepithelial Neoplasia). Gland regions, which are not available
in non-segmentation based approaches, can be used as landmarks
for registering images of tissue slides in the same prostate region
that are generated by different staining methods (H&E and IHC)
to enhance the grading results. Gland regions can also be used to
retrieve glands from a tissue image dataset, which may be of inter-
est to pathologists. We plan to further improve the accuracy of
grade 3 vs grade 4 classification by analyzing distinctive cytologi-
cal features at a higher magnification scale. Finally, we are address-
ing the problem of detecting adenocarcinoma from a digitized
tissue specimen, which requires processing a very large image
(with an approximate size of 90,000 � 45,000 pixels).
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