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Prostate Cancer Grading: Use of Graph Cut and
Spatial Arrangement of Nuclei

Kien Nguyen, Anindya Sarkar, Anil K. Jain, Fellow, IEEE

Abstract—Tissue image grading is one of the most important
steps in prostate cancer diagnosis, where the pathologist relies
on the gland structure to assign a Gleason grade to the tissue
image. In this grading scheme, the discrimination between grade
3 and grade 4 is the most difficult, and receives the most
attention from researchers. In this study, we propose a novel
method (called nuclei-based method) that (i) utilizes graph theory
techniques to segment glands and (ii) computes a gland-score
(based on the spatial arrangement of nuclei) to estimate how
similar a segmented region is to a gland. Next, we create a
fusion method by combining this nuclei-based method with
the lumen-based method presented in our previous work to
improve the performance of grade 3 vs grade 4 classification
problem (the accuracy is now improved to 87.3% compared to
81.1% of the lumen-based method alone). To segment glands,
we build a graph of nuclei and lumina in the image, and use
the normalized cut method to partition the graph into different
components, each corresponding to a gland. Unlike most state-of-
the-art lumen-based gland segmentation method, the nuclei-based
method is able to segment glands without lumen or glands with
multiple lumina. Moreover, another important contribution in
this research is the development of a set of measures to exploit the
difference in nuclei spatial arrangement between grade 3 images
(where nuclei form closed chain structure on the gland boundary)
and grade 4 image (where nuclei distribute more randomly in the
gland). These measures are combined to generate a single gland-
score value, which estimates how similar a segmented region
(which is a set of nuclei and lumina) is to a gland.

Index Terms—Prostate cancer, Gleason grading, gland segmen-
tation, nuclei, lumen, stroma, normalized cut

I. INTRODUCTION

According to the American Cancer Society [1], prostate
cancer is the most prevalent type of cancer in men. In the year
2013, the estimated new cases of prostate cancer is 238,590,
accounting for 28% of all the new cancer cases. Furthermore,
the estimated number of deaths from this type of cancer is
29,720, which is the second highest (after lung and bronchus).

In prostate cancer diagnosis, one of the most important
stages is the examination and grading of the tissue slide using
Gleason grading method [2]. The tissue slide is obtained from
the prostate biopsy and is digitized for convenience in exam-
ination. The Gleason grading method defines five numerical
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grades, from least aggressive (1) to most aggressive (5), based
on the gland structures in the image (Fig. 2). Due to the
developments in digital pathology (e.g., high resolution tissue
slide scanners), the volume of image data being generated
has increased immensely. Moreover, the high cost and the
large interobserver variability [3] of the grading procedure are
also challenging problems in digital pathology. As a result, an
automatic image analysis based grading method is desired.

According to a recent study [4], grades 1 and 2 together
are considered as normal tissue. Moreover, grade 5 is not
commonly present in prostate tissue databases. Hence, for the
tissue image grading problem in this paper, we focus on the
three-class classification problem: normal, grade 3 and grade 4
prostate tissue types. Examples of these three grades are shown
in Fig. 1. The differences in glandular structures among these
three classes are as follows:
• In normal tissue images, glands are typically large with

arbitrary shape. These glands usually contain abundant
nuclei on the boundary. In contrast, grade 3 images
usually contain small glands, with circular shape and a
thin nuclei layer on the boundary. Finally, glands in grade
4 images are generally smaller, with fewer nuclei on the
boundary than those in grade 3 images.

• Compared to glands in normal images, glands in grade 3
and grade 4 images stay closer together, and neighboring
glands have similar shape and size.

• Glands in grade 4 tissue images tend to be fused together
rather than being isolated as those in grade 3 images.
Hence, the gland structures are poorly-defined in grade 4
images.

We first present a lumen-based method based on our previous
work to address different classification problems (normal vs
grade 3, normal vs grade 4, grade 3 vs grade 4, and complete
three-class classification). Among these problems, the grade 3
vs grade 4 classification is the most difficult problem because
the gland structures in grade 3 and 4 tissue images are not as
well-defined as those in normal tissue images (where glands
have clear, large lumen, clear boundary and are well separated
from each other). As a result, we propose the nuclei-based
method and its combination with the lumen-based method to
improve the grade 3 vs grade 4 classification result.

II. RELATED WORK

The published studies addressing the automatic prostate
cancer grading problem can be classified into three different
approaches: texture-based, nuclei-architecture-based, and
gland-segmentation-based approaches. It is important to
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Fig. 1. Three types of tissue classes of interest for the Gleason grading
problem: (a) Normal tissue, (b) Gleason grade 3 tissue and (c) Gleason grade
4 tissue. Yellow rectangles denote typical glands in these images.

Fig. 2. The five different grades in the Gleason grading method.

note that all these studies have used different tissue image
databases because of the lack of public databases. However,
in this paper, we compare different methods using the same
database.

1. Texture-based approach: This is the most popular
approach in the literature. Different types of texture features
in the image were used for tissue classification. In [5],
features computed from the gray level co-occurrence matrix
(GLCM) were combined with lumen area to classify an image
region into normal, cancer, and stroma. An accuracy of 79%
was achieved for the classification of the image regions in
8 tissue images. In [6], the authors applied a multiwavelet
transform on the images and computed the entropy and
energy of the multiwavelet coefficients. They reported 97%
accuracy when classifying 100 images into grades 2, 3, 4 and
5. A similar technique, cardinal multiridgelet transform, was
proposed in [7] to classify an image into grade 3 vs grade 4.
By evaluating the method on 42 images, the authors reported
93.75% accuracy. In [8], Khurd et al. applied the popular
bag-of-words (BoW) model to the tissue image grading
problem to classify an image into grade 3 vs grade 4. In this
method, the filter responses obtained by applying a bank of
invariant filters on the images were clustered into 16 clusters
(called textons). The image pixels were assigned to different
textons and the image was represented by a histogram of
texton. Using this method, they reported 94% accuracy on
a database of 75 images. Tai et al. [9] computed the fractal
dimension features for the images and the sub-bands of the
images to classify them into normal, grade 3, 4 and 5. They
performed the evaluation on a database of 1,000 images and
reported 86.3% accuracy.

The texture features used in the published studies are
generic features computed from the “low level” image
information (local information derived from neighboring
image pixels). No domain knowledge about prostate tissue
image and glandular structures is utilized in this approach. As
a result, it is unclear how these features are able to capture
the gland structure differences of different Gleason grades
(which pathologists use for the grading). Moreover, these
texture features are computed from all pixels in the image,
while only the glandular regions in the image are necessary
in determining the Gleason grade. Hence, the information
from the non-glandular regions may introduce noise in the
feature extraction stage.

2. Nuclei-architecture-based approach: The features
used in this approach are computed from the distribution
of all nuclei in the image. In [10], Khurd et al. first built
a network of all nuclei in the image. Next, network cycle
features were computed from the statistics about the cycles
in the network. These features resulted in 91.5% accuracy
when evaluated for grade 3 vs grade 4 classification on 75
images. In [11], Doyle et al. computed nuclei architecture
features from the nuclei density, Voronoi diagram, Delaunay
triangulation and minimum spanning tree formed by all the
nuclei. Further, they combined these features with texture
features (first-order statistics, co-occurrence features, and



steerable filters) to classify prostate tissue images into seven
classes, including: PIN, epithelium, stroma, atrophy, Gleason
grades 3, 4 and 5. They reported accuracies in identifying
grade 3 and grade 4 images among all image types of 77%
and 76%, respectively.

Since these features were computed from all nuclei in the
image but not only from the glands, the intuition on how
these features describe the structural differences between
glands of different grades is not apparent. Further, tissue
images always contain stromal nuclei (nuclei in the stroma
background) that are not correlated with the gland structures.
Hence, using these nuclei to extract features may generate
noisy information.

3. Gland-segmentation-based approach: In this approach,
glands are first segmented followed by gland feature
extraction. Naik et al. [12] used the level set method [13] to
segment glands and then extracted different shape features
of the glands and lumen. Using a database of 44 images,
they reported the following results for different two-class
classification problems: 86.35% for normal vs grade 3, 92.9%
for normal vs grade 4, and 95.19% for grade 3 vs grade 4. In
[14], the authors used the region growing method to perform
gland segmentation. Gland area was the only feature used
for the normal vs cancer tissue image classification problem.
The method was evaluated on a database of 62 images and
the authors reported an AUC (area under the ROC curve) of
0.92. Gland segmentation using level set and region growing
methods was also used in many other studies [15]–[17],
although the objectives of these studies are not to classify
tissue images based on Gleason grading. In our previous work
[18], we also introduced a method for gland segmentation
called nuclei-lumen association. The features we extracted
for the glands include structural and contextual features.
However, in this problem, we performed gland classification
instead of tissue image grading.

The shortcoming of state-of-the-art gland segmentation
methods is that they rely on the presence of lumen, i.e., they
fail to detect glands without lumen or glands with multiple
lumina.

The method proposed in this paper can be considered as
the combination of the approaches 2 and 3 mentioned above,
i.e., both the nuclei spatial arrangement (a type of nuclei
architecture information) and gland structure information are
used. Gland structure information describes properties of the
gland components (lumen, cytoplasm, nuclei) such as color
intensity, size, and shape, which are salient for glands with
clear lumen. On the other hand, nuclei spatial arrangement
describes how the nuclei distribute in the glands, which is
very useful for glands with no lumen (these glands are not
found based on lumen, so gland structure information cannot
be computed).

Contributions of the paper:

1) We propose a lumen-based method for tissue image
grading that is built on top of our previous work on
gland segmentation and gland feature extraction [18].

This method leads to comparable classification accuracies
to the state-of-the-art grading method [11].

2) We propose a novel nuclei-based gland segmentation
method by formalizing the gland segmentation problem
in a graph cut framework. This method is able to detect
glands without lumen and glands with multiple lumina,
which overcomes the limitation of state-of-the-art gland
segmentation methods.

3) We propose different shape measures to extract the nuclei
spatial arrangement from the segments; this information
is useful to discriminate between grade 3 and grade 4
tissue images. Unlike nuclei-architecture-based methods
[10], [11], we extract nuclei arrangement information
from the glands instead of from all nuclei in the tissue.
This way, we are able to (i) discard the stromal nuclei and
(ii) design features that intuitively describe the differences
in nuclei spatial arrangement between glands of these
grades.

4) Since the lumen-based and nuclei-based methods com-
plement each other, we combine them to improve the
grade 3 vs grade 4 classification results (an improvement
of 5% accuracy over the state-of-the-art grading method
[11] is obtained). Grade 3 vs grade 4 classification
is an important and a very challenging task even for
pathologists.

The remainder of the paper is organized as follows. In Sec. III,
we describe the lumen-based method and show its performance
for the three-class Gleason grading problem. The nuclei-based
gland segmentation method is presented in Sec. IV, where
we discuss: tissue component detection (Sec. IV-A), nuclei-
lumina graph construction (Sec. IV-B), normalized cut for
gland segmentation and gland-score definition (Sec. IV-C and
IV-D), and the use of gland-score for grade 3 vs grade 4 image
classification (Sec. IV-E and IV-F). In Sec. V, we present the
fusion method and its classification result. Several discussions
are presented in Sec. VI before we conclude the paper in Sec.
VII.

III. LUMEN-BASED GRADING METHOD

Since lumen is the central component of the gland, we aim
to rely on lumen to perform gland segmentation. To achieve
this, we utilize the nuclei-lumen association (NLA) method1

and the structural-contextual features proposed in our previous
work [18] (see Fig. 3):

i. Extract discriminative features: We segment glands
from the tissue image and extract 22 structural-contextual
features from each gland. Among these features, there are
19 structural features (color information of the cytoplasm
and nuclei, nuclei density, lumen size and shape, and
gland morphology), and 3 contextual features (neighbor-
hood crowdedness, size similarity, and shape similarity)
[18].

ii. Remove artifacts: We identify artifacts (noisy regions)
from these extracted glands2. In order to identify artifacts,

1Since the NLA method segments glands by first detecting the lumen
followed by finding nuclei associated with the lumen, we call it a lumen-
based gland segmentation method.

2Artifact removal was also mentioned in [12] and [19]



TABLE I
GLOSSARY OF MAIN NOTATIONS USED IN THE PAPER.

Notation Description
NLA method Nuclei-lumen association gland segmentation method [18]
CV Cross-validation
G = (V,E) A generic graph with vertex set V and edge set E
G = (V, E) The nuclei-lumina graph for the entire image (V: vertices, E : edges)
N = {n1, . . . , nN} The set of nuclei detected in the image
L = {l1, . . . , lL} The set of lumina detected in the image
S The mask of detected stroma region
NNLink, NLLink Nucleus-nucleus-link, nucleus-lumen-link
Ωj Conical search region (used to search for nuclei in NNLink and NLLink creation procedures)
(rn, θn), (rl, θl) Radius and angle of Ωj used for NNLink creation (Alg. 1) and NLLink creation (Alg. 2), respectively
plj Lumen-points (the points sampled on the lumen boundary) used to perform NLLink creation
Ncut The normalized cut value: the fraction of the total connection between two components (resulted from the cut) to the total

connection between the components and the entire graph (Eq. 1)
δc The cut threshold, used to determine when to stop the normalized cut process (Sec. IV-C)
MST Minimum spanning tree of a graph (Sec. IV-D)
P ∗ Backbone of the MST, i.e., the path with most vertices in the MST (Sec. IV-D)
M1

MD,M
1
V ,M

1
L,M

1
CI Closed chain structure measures: mean degree, fraction of backbone in the MST, closeness index (Sec. IV-D)

M2
E ,M

2
I ,M

2
CI Ellipse measures: fitting error, percentage of inliers, coverage index (Sec. IV-D)

{pi} The set of points (nuclei) whose closed chain structure and ellipse measures are computed
g(C) The gland-measure vector (containing all close chain structure and ellipse measures) of a graph component C (Eq. 4)
ψ The gland-score function (or gland-score value of a component) (Sec. IV-D)
ψI The image-gland-score (Sec. IV-F)
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Fig. 3. Flowchart of the lumen-based grading method, which utilizes the gland segmentation and gland feature extraction methods proposed in [18].

we obtain an independent gland dataset, each of which is
associated with a label (artifact or true gland), and learn
a SVM classifier to discriminate them. The artifacts are
discarded from subsequent processing.

iii. Perform the grading: We compute the averages of
the gland features to create a 22-dim feature vector to
represent the image, and use the SVM classifier (RBF
kernel) to classify the image into normal, grade 3 or grade
4.

A flowchart of the lumen-based method is shown in Fig. 3.

Evaluation of the Lumen-based Grading Method

A. Database and Evaluation Strategy

The database used in our experiment includes 317 tissue
images at 20× magnification with an average size of 1,400 ×

1,380 pixels. These tissue images are taken from 29 patients.
Among these 317 images, there are 113 normal, 134 grade 3
and 70 grade 4 images. The grade of each image was deter-
mined by a pathologist. Examples of the images are shown in
Fig. 1. Using SVM classifier (RBF kernel), we perform 10-fold
cross-validation (CV) and compute the average classification
accuracy and the standard deviation to evaluate the proposed
method. In each iteration of the 10-fold CV, the database
is divided into training data Ti and test data ti. We use a
different 5-fold CV on Ti to find the best parameters for
SVM (c and gamma). These parameters are applied on ti
for prediction. The same evaluation strategy is applied to all
other methods evaluated in this paper. Note that this strategy
is adopted as an effort to avoid the overfitting problem due
to the small size of the dataset. A large independent test
dataset (which is not available), however, is a better solution



TABLE II
AVERAGE CLASSIFICATION ACCURACY (%) AND STANDARD DEVIATION

OBTAINED BY DIFFERENT METHODS FOR FOUR DIFFERENT
CLASSIFICATION PROBLEMS. THE ACCURACIES OF THE TWO LEADING

METHODS ARE SHOWN IN BOLD.

Grading
Method

All three
classes

Normal vs
Grade 3

Normal vs
Grade 4

Grade 3 vs
Grade 4

Proposed
lumen-based
method

84.2 (5.5) 96.3 (4.0) 97.2 (3.9) 81.1 (9.3)

Texture-Nuclei
architecture
[11]

84.2 (6.2) 96.7 (3.2) 98.4 (4.2) 82.3 (10.1)

Method in [20] 79.0 (7.2) 92.0 (7.5) 93.2 (5.2) 77.5 (8.5)
GLCM [21] 75.4 (8.1) 90.3 (4.7) 90.8 (5.6) 74.9 (9.1)
Multiwavelet
[6]

74.2 (7.0) 86.4 (9.4) 89.1 (4.3) 74.9 (12.2)

BoW-filter [8] 78.6 (6.7) 88.9 (8.2) 94.0 (6.1) 75.2 (11.6)
BoW-SIFT [22] 78.1 (6.6) 91.0 (7.4) 92.9 (6.4) 78.9 (8.7)
Spatial pyramid
matching [23]

77.6 (6.6) 89.8 (6.6) 88.7 (5.6) 74.4 (7.2)

to evaluate all the methods mentioned in this paper.

B. Tissue Image Grading Evaluation

To show the robustness of the proposed lumen-based
method, we compare it with seven different methods:

i. Method in [20]: Our previous method for tissue image
classification.

ii. GLCM: features computed from the gray-level co-
occurrence matrix [21].

iii. Multiwavelet: features computed using multiwavelet
transform (similar to [6]). See Sec. II.

iv. BoW-filter: bag-of-words (BoW) model and the maximum
response filters (similar to [8]). See Sec. II.

v. BoW-SIFT: bag-of-words model and the scale-invariant
feature transform (SIFT) algorithm [22].

vi. The spatial pyramid matching method [23] (which also
uses SIFT to compute the features).

vii. Texture-Nuclei architecture: the combination of texture
features and nuclei architecture features (similar to [11]).
See Sec. II.

Methods (ii) and (iii) are popular texture analysis methods
for histological images. Methods (iv-vi) are popular methods
for image classification (or recognition) in computer vision.
Finally, method (vii) is the most recent published study on
automatic Gleason grading. We have already shown in [18]
that the proposed lumen-based method outperformed other
gland-segmentation-based methods.

Besides the three-class classification problem, we also
report results of the following three two-class classification
problems: normal vs grade 3, normal vs grade 4, and grade
3 vs grade 4 (Table II). Note that for the grade 3 vs grade 4
classification problem, we only use the 19 structural features
and exclude the 3 contextual features because in these images,
glands have similar contextual properties (multiple glands
staying close together). Based on the results in Table II, we
make the following observations:
• The proposed lumen-based method obtains comparable

results to the state-of-the-art method (texture-nuclei archi-

(a) 

(b) 

Fig. 4. Limitation of the lumen-based method. Many glands are not detected
by the lumen-based method in both grade 3 image (a) and grade 4 image (b)
(yellow arrows). The structural features do not capture the nuclei arrangement
difference between grade 3 and grade 4 images. In grade 3 image, nuclei
arrange as closed chain structure on the gland boundary (yellow and black
arrows in (a)). In grade 4 image, nuclei are more randomly distributed since
glands fuse together and are poorly defined (yellow arrows in (b)).

tecture [11]). These two methods obtain the best results
among all the methods.

• The normal vs cancer (grade 3 and grade 4) classification
is easier than the grade 3 vs grade 4 classification because
the differences in gland structures between normal and
cancer images are larger than those between grade 3 and
grade 4 images.

In the next section, we propose a nuclei-based method to
improve the grade 3 vs grade 4 classification result.

IV. NUCLEI-BASED GRADING METHOD

The lumen-based method presented in Sec. III has the
following limitations (Fig. 4):

i. In some of the grade 3 and grade 4 images, lumen is not
present inside the glands (yellow arrows). As a result, the
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Fig. 5. A different perspective for gland segmentation.

lumen-based method cannot detect these glands3.
ii. The structural features [18] do not capture the difference

in nuclei arrangement between grade 3 and grade 4
images.

To overcome these limitations, we propose a nuclei-based
gland segmentation method, and a method to extract the nuclei
arrangement information in the image.
The nuclei-based method relies on a different perspective for
gland segmentation (Fig. 5):

i. Each gland is considered as a group of epithelial nuclei
4 that are close together, which may or may not contain
lumen in the center. Nuclei usually form a closed chain
structure, or an ellipse on the gland boundary.

ii. Stroma rarely appears inside the gland area but mostly
in between different glands. However, glands are not
perfectly separated by stroma, i.e., we may see non-stroma
area in between neighboring glands, or glands can be
connected.

In the nuclei-based method, we aim to seek a strategy to
group the nuclei and lumina (if lumina are available) belonging
to the same gland together. We achieve this goal by using
graph theoretic techniques: we model the relationship between
nuclei and lumina in the image by a nuclei-lumina graph G,
where each nucleus or lumen is considered as a vertex in

3This is also the limitation of state-of-the-art gland segmentation methods
[12], [14]–[17] since they also rely on lumen.

4Epithelial nuclei are nuclei on the gland boundary, while stromal nuclei
are nuclei scattered in the stroma region.

G. Each edge in G is created as a “link” between a nucleus
and a nucleus or between a nucleus and a lumen. The links
indicate which nuclei and lumina are likely to belong to
the same gland. Finally, the normalized cut method [24] is
applied on this graph to find and remove the weakest sets of
links (the links that are likely to connect different glands) to
partition them into different connected components, each of
which corresponds to a gland. Once glands are segmented, we
compute a set of measures to evaluate how much the segment
resembles a gland (nuclei forming a closed chain structure),
and derive a gland-score as a discriminative feature for grade
3 vs grade 4 classification.

A flowchart of the nuclei-based method is illustrated in Fig.
6. Note that the gland-score is used for two purposes: (i)
to find the best gland segment obtained during the recursive
normalized cut process, and (ii) to use as an image feature for
classification (after the segmentation is complete). A segmen-
tation example of the nuclei-based method and a qualitative
comparison with the lumen-based segmentation method are
shown in Fig. 7. Here, the nuclei-based method is able to
find glands without detected lumen, and it does not generate
multiple segments for glands with multiple detected lumina5

as is the case with the lumen-based method.

A. Tissue Component Detection

We first detect the tissue components in the image, namely,
lumen, nuclei, and stroma.

1. Detect Nuclei:
Since most nuclei have circular shapes and are of similar
size, we use the radial-symmetry-based method [25] to detect
the nuclei. The goal of the method is to detect the centers of
the circular regions by using a voting scheme. To perform the
voting, pixels with strong gradient magnitude in the image
are selected (referred to as voting pixels) to cast the votes for
its neighborhood region (voting region). Pixels with strong
gradient magnitude are chosen because they are likely to be
the pixels on the nuclei boundary, which can effectively vote
for the nuclei centers. The advantage of this method is that it
can detect the clumped nuclei [25].

2. Identify Epithelial Nuclei:
We classify the nuclei into epithelial nuclei (e-nuclei) and
stromal nuclei (s-nuclei). To perform the classification, we
compute textural features in the nuclei neighborhood of size
s × s pixels (s = 40 is used here)6. These textural features
capture the information about the neighborhood of the
nuclei, which can be either stroma regions (for s-nuclei) or
cytoplasm regions (for e-nuclei). Hence, they can be used in
discriminating the two nuclei types. We use an SVM classifier
(RBF kernel) to perform the classification7. The e-nuclei

5The multiple lumina observed in a gland are the result of the 2D projection
of a branched lumen within a glandular epithelial mass in 3D.

6The features we used include color histogram and those computed from
the GLCM [21].

7We apply the cross-validation technique on a set of training nuclei to find
the best SVM parameters (c and gamma). The best CV accuracy obtained in
this learning process is 99%.
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Fig. 6. Flowchart of the nuclei-based method (Sec. IV) to segment glands and compute their gland-scores, which are useful for grade 3 vs grade 4 classification.
The subsection describing each module is indicated.

(a) (b) (c)
Fig. 7. Qualitative comparison between the proposed nuclei-based and lumen-based gland segmentation methods. (a) Input tissue image. (b) Segmentation result
of the lumen-based method, where detected lumina are shown as blue contours. (c) Segmentation result of the nuclei-based method. The black arrows indicate
glands with multiple lumina, while the green arrows indicate glands with no detected lumen. The nuclei-based method segments these glands successfully
while the lumen-based method does not.

(a) (b)
Fig. 8. Results of tissue component detection. (a) Input image. (b) Detection result where yellow and green dots denote epithelial and stromal nuclei,
respectively. Blue dots denote the lumen centers. Cyan regions denote stroma.



detected from the image are used for further processing while
the s-nuclei are discarded. For simplicity, we will use the
term “nuclei” to indicate the e-nuclei in the remainder of the
paper.

Finally, stroma and lumina are detected using the k-means
clustering procedure described in [18]. An example of tissue
component detection is shown in Fig. 8.

B. Nuclei-Lumina Graph Construction

The nuclei-lumina graph demonstrates the relationship be-
tween (i) nuclei and nuclei and (ii) lumina and nuclei in the
image, i.e., which nuclei and lumina should belong to the same
gland. We formalize the problem as following.

i. Let G = (V, E) denotes the nuclei-lumina graph, where V
denotes the vertex set and E denotes the edge set of the
graph.

ii. Let N = {n1, n2, . . . , nN} and L = {l1, l2, . . . , lL}
denote the sets of N nuclei and L lumina detected from
the image, respectively.

iii. Define V = N ∪ L. V can also be described as V =
{vn1 , vn2 , . . . , vnN , vl1, vl2, . . . , vlL}, where {vn1 , vn2 , . . . , vnN}
are the N vertices corresponding to the nuclei set N , and
{vl1, vl2, . . . , vlL} are the L vertices corresponding to the
lumina set L.

iv. Construct the edge set E (E ← ∅ in the beginning) so that
if ∃vivj ∈ E , the two vertices vi, vj (vi, vj can be either a
nucleus or a lumen) have potential to belong to the same
gland8. To construct E , we use two procedures: nucleus-
nucleus-link creation and nucleus-lumen-link creation.

1. Nucleus-Nucleus-Link Creation
Because nuclei belonging to the same glands stay close
together, we aim to create links between the neighboring
nuclei to segment the glands.

We define a link between two nuclei ni and nj if they
are likely to belong to the same gland. We develop an
algorithm, termed as NNLink (Algorithm 1), to find all the
nuclei that link to a nucleus of interest ni. See Fig. 9. Since
the objective of the nucleus-nucleus-link creation is to find
glands without lumen (mostly small-sized and average-sized
glands), we choose the radius rn = 100 pixels (at 20×),
which corresponds to the size of an average-sized gland. For
the conical angle θn, we select θn = π/12 by estimating the
density of nuclei on the boundary of the glands.

The reason for choosing the closest nucleus in each conical
search region (line 6 in Algorithm 1) is that this nucleus is
most likely to belong to the same gland as ni. For example,
there are some nuclei in Fig. 9c that fall within the conical
search regions, yet do not belong to the same gland as ni
(e.g., the nuclei indicated by red arrows).

Although there are some bad links (links between ni and
the nuclei not belonging to the same gland as ni) created
(e.g., the links indicated by black arrows in Fig. 9d), these
links are generally outnumbered by the good links (links

8We use the term “potential” since the final decision that the two vertices
belong to the same gland or not will be decided by the normalized cut
procedure applied on the graph (Sec. IV-C).

Algorithm 1 Nucleus-Nucleus-Link Creation
Input: Nuclei set N = {n1, n2, . . . , nN}, with corresponding

coordinates {(xn1 , yn1 ), (xn2 , y
n
2 ), . . . , (xnN , y

n
N )}. Nucleus

of interest ni = (xni , y
n
i ). Stroma mask S. Parameters

rn, θn.
Output: The set of nuclei that link to ni, denoted by Γn

i

1: Γn
i ← ∅

2: Θ ← [0, θn, 2θn, . . . , 2π] (angles corresponding to the
conical search regions)

3: Generate |Θ| − 1 conical search regions, Ωj :
4: ∀j ∈ [1, |Θ| − 1],Ωj = {(x, y)|‖(x − xni , y − yni )‖2 <
rn and ∠(x−xni , y− yni ) > Θj and ∠(x−xni , y− yni ) <
Θj+1}

5: for each Ωj do
6: Find the closest nucleus to ni in Ωj , n∗

7: n∗ = (xn∗, yn∗) ∈ Ωj ∩N such that ‖(xn∗−xni , yn∗−
yni )‖2 ≤ ‖(xn − xni , y

n − yni )‖2, ∀n = (xn, yn) ∈
Ωj ∩N

8: Let l(n∗, ni) denote the line connecting n∗ and ni
9: if l(n∗, ni) ∩ S = ∅ then

10: (there is no stroma in between the two nuclei)
11: Γn

i ← Γn
i ∪ {n∗}

12: end if
13: end for

between ni and the nuclei belonging to the same gland as ni),
due to the assumption about stroma (stroma mostly appears
in between glands rather than inside the glands). Hence, by
applying a global method like normalized cut (Sec. IV-C),
the bad links are likely to be removed.

2. Nucleus-Lumen-Link Creation

Algorithm 2 Nucleus-Lumen-Link Creation
Input: Nuclei set N = {n1, n2, . . . , nN}. Stroma mask S.

Lumen of interest li. Parameters rl, θl.
Output: The set of nuclei that link to li, denoted by Γl

i

1: Γl
i ← ∅

2: Select the lumen-points {plj} by sampling at interval rl
from the boundary of li

3: for each plj do
4: Apply Algorithm 1 on plj , with parameters rl and θl

(which means (xni , y
n
i ) ← plj and (rn, θn) ← (rl, θl))

to find the set of nuclei that link to plj , denoted by Γp

5: Γl
i ← Γl

i ∪ Γp

6: end for

As has been mentioned, the goal of the nucleus-nucleus-links
is to deal with small-sized and average-sized glands without
lumen. For glands with large size, lumen is commonly
present. Hence, we utilize lumen to enhance the connection
(the density of links) between nuclei within the gland.

Given a lumen of interest li, we develop an algorithm,
termed as NLLink (Algorithm 2), to find the nuclei that link
to li (Fig. 10). The radius rl of the neighborhood region that
we apply on the lumen-point plj (the yellow circle in Fig.
10b) is chosen as 50 pixels (at 20×), which is the estimated



(a) (b) (c) (d)
Fig. 9. The nucleus-nucleus-link creation procedure. (a) A tissue image where the nucleus of interest ni is indicated in red and the remaining nuclei are
indicated in green. (b) The conical search regions, shown in yellow. The closest nucleus to ni in each conical search region is shown as a green star in the
region. The red arrows denote nuclei falling in the search regions but not belonging to the same gland as ni. (c) The detected stroma regions, shown in cyan
and the lines connecting ni to the closest nuclei, shown in red. The lines intersecting stroma are indicated by black arrows. (d) The final nuclei connected to
ni. The black arrows indicate some of the bad links.

(a) (b) (c)
Fig. 10. The nucleus-lumen-link creation procedure. (a) A tissue image where the cyan region denotes the lumen of interest, the white dots denote the
lumen-points sampled on the lumen boundary, and the green dots denote the detected nuclei. (b) A selected lumen-point (blue dot) and nuclei that link to this
lumen-point (green stars). (c) All the detected nuclei (green stars) that link to the lumen.

maximum distance between lumen and nuclei on the gland
boundary. The interval to sample the lumen-points on the
lumen boundary is also chosen as the same value of rl so that
we can efficiently cover the region surrounding the lumen
when finding nuclei.

3. Constructing the Edge Set E of the Nuclei-Lumina
Graph

By applying the two algorithms NNLink and NLLink to all
the nuclei and lumina in the image, we are able to create all
the links. Note that, if two nuclei ni and nj have links to a
lumen li, we also create a link for ni and nj ; this strengthens
the connection between the distant nuclei of the same gland.
Each link in the image corresponds to an edge in E .

C. Normalized Cut for Gland Segmentation

Recall that the nucleus-nucleus-links and nucleus-lumen-
links created are based on the local information at the nuclei
and lumina, without considering the global structure of the
glands in the image. As a result, besides the good links, we
may get some bad links that connect nuclei of different glands
together. Therefore, the nuclei-lumina graph created for an
image is likely to contain different connected components,
each of which may correspond to a single gland or a group
of multiple connected glands. See Fig. 11 for an example. To
segment individual glands, we need to find a way to partition
each connected component into glands. The normalized cut

method [24] is a suitable solution for this task. Normalized cut
is a global method, which takes into account all the links in the
image and finds the weakest set of links for the partitioning.
Intuitively, the weakest set of links mostly contains the
bad links since the bad links are less dense than the good
ones. Formally, the normalized cut method aims to partition
the graph G = (V,E) into two components A and B such that

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(B,A)

assoc(B, V )
(1)

is minimized. In this equation,

cut(A,B) =
∑

u∈A,v∈B
w(u, v); assoc(A,V) =

∑
u∈A,v∈V

w(u, v).

(2)
We assign all edges in the nuclei-lumina graph the same

weight. More precisely, ∀(vi, vj) ∈ V , wij = 1 if vivj ∈ E ,
otherwise wij = 0. Moreover, we perform the normalized
cut in a recursive manner, i.e., we partition each connected
component in the graph into two sub-components, and recur-
sively partition the sub-components. One possible method to
stop the process is to examine the Ncut value (Equation 1)
and stop the process if this value is higher than a predefined
threshold δc. The final components obtained are considered
the segmentation results.

An example of the recursive cut process is shown in Fig.
12. Given the graph in Fig. 12a, denoted as C0, we apply
normalized cut on C0 and obtain two components: C1 (yellow
dots) and C2 (green dots) in Fig. 12b. The Ncut value for



(a) (b)
Fig. 11. The nuclei-lumina graph constructed for an image. (a) Input tissue image. (b) The nuclei-lumina graph in which nuclei are denoted by red dots,
lumina are denoted by blue dots, and the edges (links) are denoted by green lines. Three different connected components in the graph, on which the normalized
cut is applied are indicated by yellow arrows.

(a) (b) (c) (d)

Fig. 12. The recursive normalized cut process. (a) A connected component in the nuclei-lumina graph (C0), whose edges are shown as green lines. (b) The
two components, C1 (yellow dots) and C2 (green dots) obtained by applying normalized cut on C0 (with Ncut = 0.15). (c) Results of the normalized cut
applied on C1 and C2: C1 is partitioned into C11 (yellow dots) and C12 (cyan stars) with Ncut = 0.68, while C2 is partitioned into C21 (green dots) and
C22 (red stars) with Ncut = 0.72. (d) The final result showing the two gland segments (C1 and C2), when the threshold δc = 0.5 is used.

(a) (b) (c) (d)
Fig. 13. Computing closed chain structure measures for a set of points (nuclei). (a) and (b) The MSTs and the MST backbones computed for two sets of
points, one not forming the chain structure (a) and one forming the chain structure (b). The MST is shown as the green and black lines connecting the points
(red dots). The green path is the MST backbone, while the black edges denote the branches in the MST. (c) and (d) Computing the closeness index. A path
(green line) with a large value of closeness index (c) and a path with a small value of closeness index (d). The center of the point set is shown as the blue
dot. The dotted lines separate the angular bins, where yellow lines denote the presence of points in the bin on its right (clockwise order), while the black
lines denote the absence of points in the bin on its right (clockwise order).



this cut is 0.15. If we further partition C1 and C2, we will
obtain the components C11, C12, C21, and C22, denoted by
yellow dots, cyan stars, green dots and red stars in Fig. 12c,
respectively. The Ncut value for C1 and C2 are 0.68 and 0.72,
respectively. For this example, if we choose the cut threshold
δc = 0.5, no further splitting of C1 and C2 is done and the two
components C1 and C2 are chosen as the final segmentation
results. In Fig. 12d, we show the convex hull of these two
components. This appears to be the best solution for this
example.

In general, we do not know the suitable value of δc to stop
the recursive cut to obtain a good segmentation result for an
arbitrary graph. Hence, we aim to use a large value of δc (e.g.,
δc = 0.9) to obtain multiple levels of recursive partitioning so
that the good components (components corresponding to the
complete glands) are likely to be created during the process. To
determine good components, we rely on the nuclei arrange-
ment information, i.e., we compare the nuclei arrangement
between these components and the gland. Intuitively, the nuclei
arrangement in a gland is similar to a closed chain structure, or
in some cases, also similar to an ellipse. Fig. 12b illustrates this
intuition. Hence, we aim to find different measures to estimate
the similarity between the components9 to these structures.
Next, we combine these measures into a single number, called
the gland-score, to estimate the likelihood that the component
being a gland.

D. Normalized Cut Using Gland-Scores

As have been discussed, we need to compute a gland-score
for the graph component by first computing the closed chain
structure and ellipse measures. For generalization purposes,
given a set of points {pi}, we are interested in developing
different measures to estimate how similar the arrangement
of {pi} is to (i) a closed chain structure and (ii) an ellipse.

1. Closed Chain Structure Measures
To compute the closed chain structure measures for a point
set {pi = (xi, yi)}, we:

i. Construct a graph G = {V,E}, where V = {pi} and
E = {e = vivj} ∀vi, vj ∈ V .

ii. Compute the weight (or length) of the edge as wij =
‖(xi − xj , yi − yj)‖2.

iii. Compute the minimum spanning tree (MST) of G [26].
iv. By denoting the path between two vertices vi, vj in the

MST as Pij = (vi−vj), the path length (total edge length)
as |Pij |l, and the number of vertices in the path as |Pij |v ,
we find the path with most vertices, P ∗, i.e., |P ∗|v ≥
|P |v , ∀P ∈ MST10, and refer to this path as the MST
backbone.

In Figs. 13a and 13b, we show the MSTs computed for
the components C0 and C1 mentioned earlier. The MST
backbones and the branches (the edges not belonging to
the backbone) are shown as green lines and black lines,

9We also denote the component as the nuclei-group since we only use
nuclei, but not lumen in the component for subsequent computations.

10There may be several such paths, but we select only one of them
randomly.

(a) (b)
Fig. 14. The ellipse fitting results on different point sets. The fitted ellipses
are shown in green, while the fractions not covered by the points are shown
in black. Inlier points are shown as red dots while outlier points are shown
as yellow stars. The point set in (a) are arranged more similar to an ellipse
than the one in (b).

respectively.
We compute the following measures to estimate how similar
the MST is to a closed chain structure (refer to Figs. 13a and
for 13b).

i. Mean degree (M1
MD): the average degree of non-leaf

vertices (vertices with degree greater than 1) in the tree.
ii. The ratio of the number of vertices in P ∗ to the total

number of vertices, M1
V =

|P ∗|v
|V |

.

iii. The ratio of the length of P ∗ to the total length of all the

edges in the MST, M1
L =

|P ∗|l∑
e∈MST |e|

.

iv. The closeness index, M1
CI , which determines the close-

ness of P ∗ (see Figs. 13c, 13d). To compute this measure,
we first compute the center of P ∗, C0 = (x0, y0), with
x0 = mean(xj) and y0 = mean(yj), where vj = (xj , yj) ∈
P ∗. Next, we partition the region surrounding C0 into b
angular bins, {Ωi}bi=1, each with an angle of π/12 (which
means b = 24). We compute M1

CI as the ratio of the
number of bins that contain vertices in P ∗ (the bins with
yellow lines on the left border (clockwise order)) to the
total number of bins, i.e.,

M1
CI =

|{Ωi|∃v ∈ P ∗ ∩ Ωi}|
b

For a nuclei-group similar to a closed chain structure, we
expect that M1

MD is close to 2, while M1
V ,M

1
L,M

1
CI are close

to 1.
2. Ellipse Measures
To estimate how similar the arrangement of a point set {pi} is
to an ellipse, we first fit an ellipse to {pi}. The conic equation
of an ellipse is

E = ax2 + bxy + cy2 + dx+ ey + f = 0. (3)

We use the least square method to fit this ellipse model [27],
i.e., estimating the parameters a, b, c, d, e using {pi}. To make
the fitting more robust to noise, the random sample consensus
(RANSAC) algorithm [28] is employed.

According to the RANSAC algorithm, when applying the
ellipse fitting procedure to {pi}, we may or may not find an
ellipse. If an ellipse M∗ is found, we compute the following
measures11 (see Fig. 14 for an illustration).

11If an ellipse is not found, we assign zero values to all these measures.



Fig. 15. Examples of the training data used for learning the gland-score
function ψ. The segments indicated by blue arrows are used as gland segments,
while the remaining segments are used as non-gland segments. The cut
threshold δc = 0.5 is used for the recursive cut segmentation.

i. The average fitting error M2
E . To compute this mea-

sure, we sample m points on the ellipse M∗ =
{q1, q2, . . . , qm}. The fitting error for a point pi is com-
puted as εi = minqj‖pi − qj‖2, ∀qj ∈ M∗. We average
the errors for all the points in {pi} to generate M2

E .
ii. The percentage of inliers M2

I , i.e., ratio of the number of
inliers to the total number of points. A point pi ∈ {pi} is
considered an inlier if ∃q∗ ∈M∗ such that ‖pi−q∗‖ < δe.
We use δe = 13 pixels (which is based on the estimated
deviation of nuclei from the nuclei chain in the gland
boundary).

iii. The coverage index M2
CI , i.e., the fraction of the ellipse

that is covered by {pi}. A point qi ∈ M∗ is considered
covered by {pi} if ∃p∗ ∈ {pi} so that ‖p∗ − qi‖2 < δe.
We compute the coverage index as the ratio of the number
of points in M∗ that are covered to the total number of
points in M∗. In Fig. 14, the fraction of the ellipse that
is not covered by {pi} is shown in black.

For a nuclei-group that is similar to an ellipse, we expect that
the M2

E is small, M2
I is high and M2

CI is high.

3. Computing the Gland-Score for a Nuclei-Group
We aim at combining all the closed chain structure and

ellipse measures computed for a nuclei-group12 (a component
generated during the normalized cut process) to generate a
single gland-score to estimate how similar the arrangement
of the nuclei-group is to the arrangement of nuclei in a gland.
For convenience, we define the gland-measure vector of a
nuclei-group C, denoted by g(C), as the seven-dimensional
vector constructed by concatenating all the closed chain
structure and ellipse measures, i.e.,

g(C) = {M1
MD,M

1
V ,M

1
L,M

1
CI ,M

2
E ,M

2
I ,M

2
CI}. (4)

To compute the gland-score s of a nuclei-group C with
gland-measure g(C), we need a function ψ(g(C)) = s. We
build this function using a learning framework as follows: (i)
obtain a training set of gland nuclei-groups (nuclei-groups
corresponding to the complete glands) and non-gland nuclei-
groups (nuclei-groups corresponding to parts of the gland, or

12The point set {pi} is the nuclei-group in this case.

nuclei-groups with random nuclei arrangement), (ii) compute
the gland-measure vectors from them, and (iii) learn an SVM
classifier (RBF kernel) to separate the two types of groups.
This SVM classifier serves as the function ψ. To compute
gland-score of a test sample, we compute the distance from
the sample to the decision boundary, and convert this distance
to a probability output (with value in [0, 1]), i.e., the closer
the output to 1, the higher the confidence that the sample is
a gland nuclei-group13.

To obtain the training set in step (i), we first perform
segmentation on the training images by using a fixed value
of δc (we use δc = 0.5) as the stopping criterion. The final
segments (nuclei-groups) obtained are manually labeled
as gland and non-gland segments (we use 130 non-gland
segments and 100 gland segments with a large variation
in their shape and size, obtained from 30 training images).
Examples of the training data are shown in Fig. 15.

4. Using Gland-Score for Segmentation

Algorithm 3 Normalized cut gland segmentation using gland-
score
Input: Nuclei-lumina graph G. Gland-score function ψ. Cut

threshold δc.
Output: The set of components (the sub-graphs generated

during normalized cut) with the highest gland-scores, Λ∗

1: Λ1 ← G (components to be partitioned)
2: Λ2 ← ∅ (all components being generated)
3: while Λ1 6= ∅ do
4: Select an arbitrary element C ∈ Λ1

5: Λ2 ← Λ2 ∪ {C} (save C in Λ2)
6: Λ1 ← Λ1\{C} (remove C from Λ1 before partitioning

it)
7: Perform normalized cut on C to obtain C1, C2, and

Ncut value
8: if Ncut < δc then
9: Λ1 ← Λ1 ∪ {C1, C2} (include new components for

later partitioning)
10: end if
11: end while
12: Λ∗ ← ∅
13: while Λ2 6= ∅ do
14: Select C∗ = argmaxC∈Λ2

ψ(g(C)) (component with
highest gland-score)

15: Λ2 ← Λ2\{C∗} (C∗ will not be considered again)
16: if ∀C ∈ Λ∗, C∗ ∩ C = ∅ then
17: Λ∗ ← Λ∗ ∪ {C∗} (save C∗ in the result list)
18: end if
19: end while

We now present the use of gland-score function ψ in the
recursive normalized cut process for gland segmentation
(Algorithm 3). We first compute gland-scores for all of
the components created in this process. Using these gland-
scores, we determine the final segmentation results as the

13We have also tried to use the kernel logistic regression method to estimate
the probability output of the classification. However, the performance of this
method is worse than that of the SVM classifier.



(a)

(b)

(c)

(d)
Fig. 16. The nuclei-based gland segmentation results for a grade 3 and a grade
4 image. (a) A grade 3 image. (c) A grade 4 image. (b) and (d) Segmentation
results of the images in (a) and (c), respectively. Representative segments in
each image are indicated by red dots (nuclei in the segments), with gland-
scores shown in cyan boxes. The gland-scores for the segments in the grade
3 image are higher than those in the grade 4 image.

Fig. 17. The distribution of image-gland-score (ψI value) of grade 3 and
grade 4 images in the database.

components that (i) have the highest gland-scores, (ii) are
mutually exclusive, and (iii) their union is equal to the
original component. Recall that in this algorithm, we use
δc = 0.9, which is a sufficiently high value to ensure that we
will find the complete glands in the resulting components.

To explain Algorithm 3, we reuse the example in
Fig. 1214 with δc = 0.9. Since the Ncut values for the
partitioning of C11, C12, C21, C22 are all greater than 0.9,
these are the final components being obtained. We denote
Λ = {C0, C1, C2, C11, C12, C21, C22} as the set of all
resulting components (note that these components are not
mutually exclusive). Next, we compute the gland-scores for
these components and sort the components based on the
gland-scores (from high to low), which results in the ordered
sequence C1, C2, C21, C11, C12, C0, C22, with corresponding
gland-scores 0.96, 0.87, 0.77, 0.55, 0.17, 0.04, and 0.01,
respectively. We iteratively choose the component with the
highest score in Λ to include it into the final result Λ∗ (which
is initialized as ∅), such that it does not overlap the current
components in Λ∗. We stop the iteration when all nuclei in
the original component C0 are included in Λ∗. As a result,
the components chosen in this example are first C1 followed
by C2.

An example of segmentation output by the nuclei-based
method was shown previously in Fig. 7.

E. Using Gland-Score for Grade 3 vs Grade 4 Tissue Classi-
fication

In grade 3 images, nuclei in the segments are more likely
to form a closed chain structure than those in grade 4 images
(nuclei in the segments of grade 4 images are more randomly
distributed because glands tend to fuse together). Hence, we
are interested in analyzing the gland-scores of the segments
obtained for grade 3 and grade 4 images. Fig. 16 shows a
comparison between the gland segmentation results for a grade

14When denoting the gland-score value s of a component C, instead of
writing ψ(g(C)) = s, we can simply write ψ = s.



(a)

(b)
Fig. 18. Limitation of the nuclei-based method. (a) A grade 3 image with
detected stroma regions, shown in red. Stroma is incorrectly detected within
the gland regions (indicated by black arrows). The lumen-based method does
not rely on stroma, thus, can still obtain good segmentation results (cyan
contours). (b) Nuclei-based segmentation result, which is not good due to its
dependence on stroma. The segments with ψ values (gland-score) in the top
20% are indicated by red dots. The ψ values of these segments are shown in
cyan boxes, yielding the image-gland-score ψI = 0.12.
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Fig. 19. Summary of grade 3 vs grade 4 classification results (cross-validation
accuracies and standard deviations) for the best grading methods (from Table
II).

3 and a grade 4 image. It is reasonable to expect that the gland-
scores for the segments in the grade 3 image are higher than
those in the grade 4 image.

F. Image-gland-score

We aim to average the gland-scores of the individual seg-
ments in the image to derive a single score to represent the
image, referred to as the image-gland-score and denoted as

ψI . Due to inevitable noise in the segmentation results (e.g.,
the blue arrows in Fig. 16b indicate some noisy segments in
the image), we only use 20% of the segments with the highest
ψ values to compute ψI , i.e., given m segments sorted by
gland-scores, ψ1 > ψ2 > · · · > ψm,

ψI =

∑k
i=1 ψi

k
,where k = d0.2me. (5)

In Fig. 17, we plot the histogram of the image-gland-score
(ψI ) values for all grade 3 and grade 4 images. Although
there is a certain overlap between the two distributions of the
ψI values of the grade 3 and grade 4 images, we can still see
some separation between the two distributions. This suggests
that the ψI values could be helpful for the grade 3 vs grade
4 tissue image classification.

Limitation of the nuclei-based method: The limitation of
the nuclei-based method is its dependence on stroma detection
result. In Fig. 18, due to the incorrectly detected stroma within
the gland regions (black arrows in Fig. 18a), the connection
between nuclei of the same glands is weak (sparse links).
Hence, the segments obtained do not capture the complete
gland area but only some of the nuclei in the gland, resulting
in low ψ values (Fig. 18b). The lumen-based method, in
contrast, does not depend on stroma, thus, it still provides
good segmentation result for this image (cyan contours in Fig.
18a). Hence, we combine the nuclei-based and lumen-based
methods to enhance the grade 3 vs grade 4 classification result.

V. A FUSION METHOD FOR GRADE 3 VS GRADE 4 TISSUE
IMAGE CLASSIFICATION

To improve the grade 3 vs grade 4 tissue classification, we
combine:

i. the lumen-based method which involves segmenting
glands using the NLA method and computing the 19
structural features for the image (Sec. III), denoted by
F19, and

ii. the nuclei-based method which involves segmenting
glands using the nuclei-based gland segmentation method
and computing the image-gland-score ψI .

A 20-dimensional feature vector F20 = {F19, ψ
I} is now

used for the grade 3 vs grade 4 tissue image classification
problem.

Evaluation of the Fusion Method

We use the same database of all grade 3 and grade 4
images and the same evaluation strategy as discussed in Sec.
III-A to evaluate this fusion method. We compare it with the
lumen-based and the texture-nuclei architecture [11] methods
(the best methods in Table II) in Fig. 19. Apart from the
classification accuracies, we also compute the “area under the
receptive operation characteristics (ROC) curves” to better
evaluate the methods.

To further demonstrate the advantage of the fusion method
over the lumen-based method, we re-evaluate these methods
on images with small numbers of lumina. We select 81 grade
3 images and 40 grade 4 images which contain less than 38



lumina (this is the average number of lumina contained in
each image in the original grade 3 and grade 4 image dataset).
The classification accuracies for this case are also included
in Fig. 19. The large difference in accuracies between the
lumen-based and fusion methods in this case demonstrates
the effectiveness of the fusion method on images with only a
few lumina detected.

It is important to note that our final goal is to classify a
given tissue image, not necessarily to obtain perfect gland
segmentation results. In fact, the nuclei-based method does
not require a perfect segmentation result for every gland since
it only uses the glands with the top ψI values for feature
computation. As a result, we only quantitatively evaluated
the classification performance but not the segmentation
performance of the proposed method.

In Fig. 20, we show a grade 3 image that is misclassified
as grade 4 when only the lumen-based method is used. The
reason is that glands are not well-detected by the lumen-based
method since only a few lumina are detected (Fig. 20b).
Moreover, the lumina in this image are very small, similar
to what is observed in grade 4 images. However, when using
the fusion method, we obtain the correct classification result
because the nuclei-based method is able to detect the glands
without lumen, and obtain high ψI value for this image (Fig.
20c).

Finally, the fusion method is tested for the full three-class
classification problem, obtaining an average CV accuracy of
0.88 (with a standard deviation of 0.06), which is also an
improvement over both the lumen-based method (with an
accuracy of 0.84 (0.05)) and the texture-nuclei architecture
method (with an accuracy of 0.84 (0.06)) (Table II).

VI. DISCUSSION

1. Closed chain structure vs ellipse measures: To evaluate
the contributions of these measures, we compute the gland-
scores and then perform grade 3 vs grade 4 classification using
only closed chain structure or ellipse measures alone. The
classification accuracies obtained for close chain structure and
ellipse measures are 85.1% and 86%, respectively. Since we
do not see significance difference between their performance, a
combination of these measures is a reasonable solution, which
also leads to a better result.

2. Computation cost: The computational complexity of
each individual step of the proposed nuclei-based method is
presented in Table III. Both the proposed nuclei-based method
and the methods in [10] and [11] need to detect nuclei and
build a graph of nuclei (or graph of nuclei and lumina).
However, the proposed nuclei-based method spends additional
computation on texture feature extraction for nuclei classifi-
cation (to discard irrelevant stroma nuclei), and computation
on the gland segmentation by normalized cut (from which
more meaningful features can be extracted). By empirical
experiments in Matlab programming language, we observe
that most of the computation time is spent on the nuclei
classification (step 2 in Table III) due to the heavy computation
of the GLCM features, followed by the gland segmentation by
normalized cut (step 6 in Table III). Possible solutions to speed

up the proposed method are: (i) explore simpler alternative
texture features (to replace the GLCM features) for nuclei clas-
sification, (ii) use parallel computing for nuclei classification
(the feature extraction for each nucleus is independent, thus,
can be parallelized) and gland segmentation (the recursive cut
on each connected component in G is independent and can
be parallelized), and (iii) find better stopping criteria for early
termination of the recursive cut.

3. Classification of Gleason scores 3+4 vs 4+3: Although
some of our images contain both Gleason grade 3 and grade
4 glands, we do not have the ground truth for 3+4 and 4+3
scoring. Hence, we are unable to evaluate the performance of
the proposed method on this problem. However, if we apply
the nuclei-based method on this problem, we expect that the
image-gland-scores of the images of score 3+4 are higher than
those of images of score 4+3, since there are more grade
3 glands in the images of score 3+4 compared to those of
score 4+3. Moreover, to the best of our knowledge, there is
no previous work that performs the 3+4 vs 4+3 discrimination
automatically.

4. Cribriform Pattern: Since cribriform pattern is a common
pattern in grade 4 images (according to a recent study [4], all
cribriform regions should be assigned grade 4), we discuss
the effect of the nuclei-based method when applying to the
cribriform pattern. A cribriform pattern resembles a group
of multiple small glands connected together without stroma
lying between them (e.g., Figs. 21a, 21c, 21e). In case the
cribriform contains clear lumina surrounded by well-defined
nuclei-chain structure, the nuclei-based method may generate
segments similar to glands and assign high gland-scores to
these segments (the segments indicated by the cyan boxes
Fig. 21b). Hence, the image can be misclassified as grade 3
due to the high ψI value. However, in case the cribriform
does not contain clear lumina (Fig. 21c), or nuclei do not
form solid chain structure around each lumen (Fig. 21e), the
segmented regions commonly do not receive high gland-scores
(red boxes in Figs. 21d, 21f). In such cases, the images are
correctly classified as grade 4. Moreover, we further observe
that among 41 grade 4 images containing cribriform pattern in
the database, only nine are mis-classified using the proposed
fusion method. These observations suggest that the nuclei-
based method is useful in classifying several images with
cribriform pattern, although additional techniques (or features)
maybe necessary to improve the identification of this pattern.
One potential strategy to address this pattern in the future
work is to consider the “fusion zone”, i.e., the area in between
the neighboring lumina. See Fig. 22. Since the cribriform
pattern resembles a group of glands fused together, the fusion
zone created inside this pattern does not contain stroma, and
contains randomly distributed nuclei. This is not the case for
the fusion zone in a grade 3 image, where glands are separated.
We anticipate that useful features can be computed from this
zone to identify cribriform pattern.

5. Summary of the proposed methods: As discussed earlier,
the limitation of the proposed lumen-based method is that it
is not able to detect glands without lumen, while the proposed
nuclei-based method is able to do so. On the other hand, the
nuclei-based method has its own limitation that it relies on the



TABLE III
COMPUTATIONAL COMPLEXITY OF DIFFERENT STEPS IN THE NUCLEI-BASED METHOD. REFER TO TABLE I FOR THE DESCRIPTION OF THE NOTATIONS

USED HERE. A MORE DETAILED DISCUSSION (E.G., USE PARALLEL COMPUTING TO IMPROVE COMPUTATION TIME) IS INCLUDED IN SEC. VI.2.

Step Computational complexity
1. Nuclei detection by radial-symmetry-
based method

O(m) (compute gradient at all m pixels in the image) + O(mv) (perform the radial symmetry voting
at mv voting pixels)

2. Nuclei classification O(|N |) (extract texture features, i.e., GLCM and color histogram, from a fixed-size neighborhood area
of each nucleus)

3. Stroma and lumen segmentation using k-
means clustering

O(m×i), where m and i denote the number of pixels in the image and number of iterations, respectively

4. Nucleus-nucleus-link creation O(|N |) (search in a fixed-size neighborhood area of each nucleus)
5. Nucleus-lumen-link creation O(|L| × |{plj}|) (search in a fixed-size neighborhood area of each lumen-point plj )
6. Segmentation by normalized cut O(|CC| × |Λ| × cN × (x1 + x2)), where |CC| denotes the number of connected components (CC)

in G (Sec. IV-C and Fig. 11), |Λ| denotes the number of sub-components generated during the recursive
cut process applied on each CC, cN denotes the cost of a normalized cut operation (described in [24]),
and x1, x2 are mentioned in the following.

6.1. Compute close-chain structure mea-
sures of a graph component G =
(V,E)(x1)

O(|E|log|E|) (compute the MST by Kruskal algorithm) + O(|V | × |E|) (find the MST backbone by
applying the depth-first search algorithm from each node)

6.2. Compute ellipse measures of a graph
component G = (V,E)(x2)

O(r × |V |2) (fit the ellipse to the vertices), where r denotes the number of iterations in RANSAC
algorithm

7. Compute image-gland-score O(|Λ∗| × (x1 + x2)), where |Λ∗| denotes the number of segmented glands in the image (the best
components being selected)

(a) (b) (c)
Fig. 20. Contribution of the nuclei-based method in grade 3 vs grade 4 image classification. (a) A grade 3 image. (b) Gland segmentation result of the lumen-
based method (cyan contours), where detected lumina are shown as blue contours and detected artifacts are shown as black contours. (c) Gland segmentation
result of the nuclei-based method, in which the segments with ψ values in the top 20% are indicated by red dots (nuclei in the segments), yielding ψI = 0.9.

segmentation result of stroma, while the lumen-based method
does not. As a result, we combine these two methods into
a fusion method to solve the tissue image grading problem,
which leads to an improvement of the classification accuracies.

VII. CONCLUSION

In this paper, we first presented a lumen-based method to
address the prostate tissue image classification problem, and
obtained comparable accuracies with state-of-the-art methods.
Next we focus on developing a nuclei-based method as an
attempt to improve the grade 3 vs grade 4 classification result.
The nuclei-based method segments glands by utilizing both the
local information at the nuclei and lumina level (to construct
the nuclei-lumina graph), and the global information in the

image (to find the weakest set of links in the graph using
the normalized cut method). This method is able to segment
glands without lumen and glands with multiple lumina, which
are the limitations of the current gland segmentation methods.
We further develop a novel method to exploit the difference
in nuclei spatial arrangement between grade 3 and grade 4
images. This is done by computing a set of closed chain struc-
ture and ellipse measures, leading to a gland-score to estimate
how similar the segment is to a gland. Finally, we combine the
lumen-based and nuclei-based methods to improve the grade
3 vs grade 4 classification accuracy, compared to the state-of-
the-art method. For future work, we plan to further improve
the classification accuracy by focusing on cribriform pattern.
Moreover, we also plan to reduce the computation time of the
method.



(a) (b)

(c) (d)

(e) (f)
Fig. 21. Effect of the nuclei-based method on grade 4 images that contain
cribriform pattern. (a), (b) The case where gland-scores are high and (c)-(f)
the case where gland-scores are low.

(a) (b)
Fig. 22. Extracting information from fusion zones, a potential method to
identify cribriform in grade 4 images. Fusion zones (regions inside yellow
contours), created as regions in between the neighboring lumina (blue dots),
in a grade 3 image (a) and in a cribriform pattern in a grade 4 image (b).
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