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Abstract. A novel gland segmentation and classification scheme ap-
plied to an H&E histology image of the prostate tissue is proposed. For
gland segmentation, we associate appropriate nuclei objects with each
lumen object to create a gland segment. We further extract 22 features
to describe the structural information and contextual information for
each segment. These features are used to classify a gland segment into
one of the three classes: artifact, normal gland and cancer gland. On a
dataset of 48 images at 5× magnification (which includes 525 artifacts,
931 normal glands and 1,375 cancer glands), we achieved the following
classification accuracies: 93% for artifacts v. true glands; 79% for nor-
mal v. cancer glands, and 77% for discriminating all three classes. The
proposed method outperforms state of the art methods in terms of seg-
mentation and classification accuracies and computational efficiency.

1 Introduction

In detecting prostate cancer on a digitized tissue slide, the pathologist relies
on: (i) structural information; glands in a cancer region (cancer glands) appear
to have structural properties (e.g. nuclei abundance, lumen size) different from
glands in a normal region (normal glands) and (ii) contextual information; cancer
glands typically cluster into groups and are of similar shape and size1, while
shape and size of normal glands vary widely. These two sources of information
can be observed in Fig. 1b. Hence, a reasonable approach to assist a pathologist
in finding cancer regions includes segmenting out glandular regions, examining
their structural and contextual information and finally classifying them.

The cancer detection problem in prostate tissue images has been studied in
the literature. Monaco et al. [2] (Table 1) segmented glands and classified indi-
vidual glands into normal or cancer by (i) using gland size feature to assign initial
gland labels and (ii) applying a probabilistic pairwise Markov model (PPMM)
to update gland labels. On the other hand, Nguyen et al. [3] and Doyle et al. [4]
detected cancer regions by classifying individual image patches and image pix-
els, respectively, by using a combination of cytological and textural features [3],

1 It was also mentioned in [1] that cancer glands tend to appear close to other cancer
glands, which is a biological motivation for this contextual information.
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or textural features alone [4]. Unlike [2,3,4], other studies focused on the tis-
sue image classification problem, i.e. they classified every prostatic tissue image
(which is a region in the whole slide tissue) into normal or cancer or into dif-
ferent cancer grades. This problem was addressed by either segmentation-based
approaches [5,6] (Table 1) or texture-based approaches [7,8,9].

Table 1. Studies on gland segmentation and gland feature extraction reported in the
literature. Note that each study used a different database.

Study Segmentation al-
gorithm

Gland feature Use of
context

Final goal Dataset

Monaco et
al. [2]

Region growing Gland size PPMM
method

Detect cancer
regions

40 images
at 1.23×

Peng et al.
[5]

Region growing Gland size No Classify tissue
images

62 images
at 100×

Naik et al.
[6]

Level set Shape features of
lumen and gland

No Classify tissue
images

44 images
at 40×

Proposed
method

Nuclei lumen as-
sociation

Structural fea-
tures

Contextual
features

Classify
glands

48 images
at 5×

Similar to [6], we also address artifacts2 (Fig. 1c) in this paper by includ-
ing them into the gland classification step, leading to a three-class classification
problem: artifact, normal gland and cancer gland. The contributions of the pa-
per include: (i) The proposed segmentation algorithm is computationally efficient
and is able to successfully segment out appropriate gland regions, (ii) we explore
features related to nuclei which are distinctive for classification, (iii) we introduce
robust features to capture contextual information of a gland.

2 Gland Segmentation

Gland Structure: A gland consists of nuclei, cytoplasm and lumen (Fig. 1c, [6],
[9]). Hence, a gland segmentation algorithm should capture these components in
the results. We achieve this goal by employing the following two steps.

Tissue Component Identification: For each image, we perform k-means clus-
tering algorithm (k = 4) in the RGB color space of 10,000 randomly selected
pixels (Fig. 1d) to find 4 cluster centers. By finding the nearest cluster center,
each pixel in the image is assigned a label corresponding to one of the 4 tis-
sue components (stroma, nuclei, cytoplasm and lumen). We apply a connected
component algorithm [10] on nuclei pixels and lumen pixels to generate nuclei
objects and lumen objects, respectively, which are used for segmentation. Since
the colors of nuclei and lumen are quite salient, the k-means algorithm on RGB
space is sufficient to identify them despite the intensity variation among images.

2 The term “artifact” denotes broken tissue areas, and has been used in [9].
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Fig. 1. The proposed method for gland segmentation and classification. (a) Flowchart.
(b) Input image showing the cancer glands in a cancer region annotated by a pathologist
(green contour); normal glands are present in the region outside the green contour.
(c) A gland with basic components (nuclei, cytoplasm and lumen) and an artifact. (d)
Clustering result of the image pixels in the RGB color space. (e) The gland segmen-
tation process, where the segmentation result is depicted by a convex hull enclosing
the detected nuclei. (f) Glands are assigned into a group (dotted contour) to compute
contextual features. Segmentation results for three classes of interest: (g) Artifact, (h)
normal gland and (i) cancer gland. Green and yellow circles in (g), (h) denote the
neighborhood of a lumen point and a nuclei point, respectively.



118 K. Nguyen, A. Sarkar, and A.K. Jain

Segmentation Algorithm. The proposed algorithm (Fig. 1e), which is re-
ferred to as nuclei-lumen association (NLA) algorithm, associates appropriate
nuclei with each lumen to create a gland segment. Nuclei are searched along the
normal direction of the lumen boundary contour. The algorithm has three steps:

1. Given n points on the lumen boundary (n may vary from 30 to 3000 de-
pending on the lumen size), by considering the trade-off between a sparse (for
computational efficiency) and dense set (adequate search coverage), we sample
n/3 points uniformly, and refer to them as lumen points.
2. A search region, of a conical shape, centered at each lumen point, is expanded
to find nuclei. A circle mask is used to limit nuclei regions to be merged to the
gland. This step is repeated for all lumen points.
3. A pruning procedure, based on the median absolute deviation (MAD), is
applied to remove outlier nuclei and generate smoother segmentation boundary3.
Besides gland segments, the algorithm also produces a set of points located at
the detected nuclei, referred to as the nuclei point set. The nuclei point set
and lumen point set are used for feature extraction. Although some non-gland
segments created by artifacts are present (Fig. 1g), we do not detect them at
this step. Instead, we will identify them in the classification procedure.

3 Gland Classification

The differences in structures of the three classes (artifact, normal gland, cancer
gland) are as follows. An artifact (Fig. 1g) does not have cytoplasm surrounding
the lumen and has very few associated nuclei. Nuclei on the boundary of a
normal gland (Fig. 1h) are more abundant and have darker blue color than a
cancer gland (Fig. 1i). Lumina of cancer glands commonly appear more circular
and smaller than normal glands (Fig. 1b). Based on these differences, we extract
the following four sets of structural features, including 19 features, for each gland:

1. Set 1 (8 nuclei features): For each nuclei point (NP), we compute the mean
(μ) and standard deviation (σ) of L, a, b color bands4 in the neighborhood of NP
(ΩNP ). In addition, we compute μ and σ of percentage of ΩNP that contains
nuclei pixels, i.e. nuclei abundance on the gland boundary and its variation. ΩNP

is a circular region centered at NP (yellow circle in Fig. 1g, 1h), and has a radius
RNP . Since cancer glands usually have one nuclei layer (NL) on the boundary,
while normal glands have more than one NL (mostly 2 NL), we choose RNP =
10 pixels, which corresponds to the 2-NL thickness (the diameter of a nucleus is

3 MAD = mediani(|di - medianj(dj)|), where d is the distance between a lumen point
and a nuclei point. A nuclei point k with dk > 3σ + mean(d) (σ = 1.48MAD) is
considered an outlier and being discarded. All pixel distances (used in the paper)
can be converted to physical distances when the magnification is known.

4 The Lab color space, which separates luminance and chrominance, is suitable to
describe the color intensity of the tissue components.
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approximately 5 pixels in 5× images). Hence, ΩNP is sufficient to capture most
nuclei of the gland, while excluding nuclei of neighbor glands.

2. Set 2 (6 cytoplasm features): For each lumen point (LP), we compute μ
and σ of L, a, b color bands in the neighborhood of LP (ΩLP ). ΩLP is a circular
region (green circle in Fig. 1g, 1h), which is centered at LP and excludes lumen
area. The radius of ΩLP is the distance between LP and the corresponding NP.
Hence, in a true gland segment, ΩLP mostly contains cytoplasm.

3. Set 3 (3 lumen shape features): Area, solidity (ratio of the lumen area to
its convex hull area) and circularity ((4πarea)/perimeter2) of the lumen.

4. Set 4 (2 global features): μ and σ of the distance between a LP and a NP.

To explore contextual information, we first assign gland segments into groups
(Fig. 1f) by using the connected component (CC) algorithm in graph theory. Let
{Lui}ni=1 denote the n lumen objects used to represent n gland segments, and
let (Lui

xo
, Lui

yo
) denote the centroid of Lui. A graph is built where each node

is a gland. If ‖(Lui
xo

− Luj
xo
, Lui

yo
− Luj

yo
)‖ < td,

5 there is an edge connecting

Lui and Luj. Each CC is considered a group of gland. So groups are disjoint
and the grouping is unique. Once groups are formed, we compute the following
3 contextual features for each gland segment Lui (which belongs to group O):

1. Neighborhood crowdedness: |O| or the no. of elements in O.

2. Shape similarity: 1
|O|

∑|O|
j=1 ‖LVi−LVj‖, where LV denotes the 3-dimensional

lumen shape feature vector described above.

3. Size similarity: 1
|O|

∑|O|
j=1

min(|Lui|,|Luj|)
max(|Lui|,|Luj|) , where |Lu| denotes the lumen size.

Finally, each gland segment can be represented by a full feature vector of dimen-
sionality 22 (19 + 3). We use a SVM classifier (linear kernel, C = 1) with this
feature vector to classify the gland segment6.

4 Experiments

a. Data Set: The dataset includes 48 images at 5× magnification (average im-
age size is 900 × 1,500 pixels), which come from 20 patients. Glands in images of
the same patient still have very large variability in structures. Given the pathol-
ogist’s annotation on each image, we manually label 525 artifacts, 931 normal
glands and 1,375 cancer glands to form the (ground truth) gland dataset. We
also implemented the methods in [2] and [6] to compare them with the proposed
method. Since all three methods perform segmentation by starting at the same

5 We choose td = 65, which minimizes the cross validation error in classifying the 3 dif-
ferent gland types. However, when minimizing the training error on an independent
training set, we also obtain td = 65.

6 The code for gland segmentation and feature extraction, along with the details of the
experiments can be found at www.cse.msu.edu/~nguye231/GlandSegClass.html

www.cse.msu.edu/~nguye231/GlandSegClass.html
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Fig. 2. Comparison of the NLA algorithm with [2] and [6] for gland segmentation.
Glands are segmented more completely by the NLA algorithm

Table 2. Gland classification accuracies (s.d.) for the method in [6], method in [2],
SVM-SF, PPMM-SF, PPMM-SCF, and SVM-SCF by cross validation

Classification Method Method SVM-SF PPMM- PPMM- SVM-SCF
problem in [6] in [2] SF SCF

Artifact v. 0.78 (0.09) - 0.93 (0.03) 0.93 (0.06) 0.93 (0.04) 0.93 (0.04)
true gland

Normal v. cancer 0.67 (0.13) 0.68 (0.13) 0.75 (0.07) 0.73 (0.11) 0.75 (0.11) 0.79 (0.08)

All three classes 0.54 (0.12) - 0.74 (0.06) 0.75 (0.10) 0.73 (0.08) 0.77 (0.07)

lumen objects (identified in section 2), and use the same ground truth (which is
not affected by lumen objects), the comparison is unbiased.

b. Gland Segmentation Evaluation: We manually select 309 glands whose
boundaries are well-defined, and create segmentation ground truth for each
gland (G0

i ) by outlining its area. We use the Jaccard Index (JI) to evaluate
the output of a segmentation algorithm. Given a gland segment Gm

i produced
by the algorithm m for the ith gland (with ground truth G0

i ), JI is computed as
J(G0

i , G
m
i ) = |G0

i ∩Gm
i |/|G0

i ∪Gm
i |. Higher JI values (range is [0,1]) indicate bet-

ter segmentation results. The average JI value per gland segment obtained by the
algorithms in [2], [6] and the proposed NLA algorithm are 0.31, 0.43 and 0.66,
respectively. Since the NLA algorithm aims at detecting nuclei surrounding the
lumen (while the algorithms in [2] and [6] mostly detect lumen and cytoplasm),
it segments more complete gland regions than [2] and [6] (Fig. 2). The compu-
tational complexity of the three segmentation algorithms is measured by their
running time on a 369×1213 image, containing 64 glands. The total computation
time of [2], [6] and the NLA algorithm for the image are 242.0s, 256.5s and 2.7s,
respectively (all algorithms, implemented in Matlab, were run on a 2.93GHz ma-
chine with 16GB memory). While the NLA algorithm processes pixels by only
considering their labels (see Fig. 1d and section 2), the algorithms in [2] and [6]
perform complicated operations on the grayscale intensities of the pixels. More
precisely, the level set algorithm [6] needs to iteratively evolve a zero level curve
by minimizing both the internal energy and the external energy of the curve,
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(a) Comparison of the SVM-SCF method with [2] for the 2-class gland classification

(b) Comparison of the SVM-SCF method with [6] for the 3-class gland classification

Fig. 3. Gland classification comparison. Cyan contours denote segmentation results,
and color of the lumen corresponds to gland label (black, red, yellow and blue denote
non-labeled glands, artifacts, normal glands and cancer glands, respectively)

and the region growing algorithm [2] needs to, at every step, add one pixel to
the growing region and recompute the boundary strength of the region. Hence,
the NLA algorithm is better than [2] and [6] in both accuracy and complexity.

c. Gland Classification Evaluation: We perform a 10-fold cross validation
on the gland dataset, and report the average classification accuracy. First, we
solve the two 2-class classification problems, i.e. (i) artifacts v. true glands and
(ii) normal glands v. cancer glands. Next, we perform the 3-class classification by
combining the previous two 2-class classification problems in a hierarchical fash-
ion. In Table 2, besides the methods in [6], [2] and the proposed method (denoted
by SVM-SCF, i.e. applying SVM classifier on the structural-contextual features
(SCF)), we also report the results of the SVM-SF method (applying SVM clas-
sifier on the structural features (SF)), the results of the PPMM-SF method
(applying the PPMM (Table 1) on the SF), and the results of the PPMM-SCF
method (applying the PPMM on the SCF). Since artifacts were not addressed
in [2], we only report normal v. cancer result for this method.

From Table 2, we can see that: (i) The SVM-SCF method obtains the highest
accuracy, (ii) the superior performance of PPMM-SF over [2] shows that the
SF are robust, and (iii) it is better to use SCF with SVM classifier than with
PPMM. A drawback of the PPMM is that it requires a density estimation p(y|x)
(y is the feature vector, and x is the class label), which is difficult when y is high
dimensional like the SF or SCF. Here, we address this “curse of dimensionality”
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problem (which was not discussed in [2]) by testing three different methods to
estimate p(y|x), i.e. (i) parzen window density estimator (PWDS), Naive Bayes
model with assumption that each feature follows a (ii) Gaussian distribution,
and (iii) Gamma distribution. The best results among them are obtained by
PWDS, which are reported in Table 2 (columns 5 and 6).

The Role of Segmentation: To evaluate how segmentation results affect clas-
sification results, we extract the proposed SF of the gland segments resulted from
the level set algorithm in [6], and perform classification using these features. The
results obtained are lower than those when using SF with the proposed NLA al-
gorithm (column 4 of Table 2). This shows that good segmentation results are
necessary for good classification results, as we discuss in section 4b that the NLA
algorithm performs better than the level set algorithm in [6].

Feature Weight: By applying linear SVM to compute weights for all 22 fea-
tures, we observe that the nuclei abundance (on the gland boundary) feature
receives the highest weight. This shows the important role of nuclei in classifi-
cation.

Classifier Selection: We also conduct experiments using other classifiers such
as: Neural Network, KNN, and Adaboost. However, the accuracies obtained by
those classifiers were lower than SVM. Moreover, performing classification by a
linear SVM is fast while the time-consuming training part is an offline process.

5 Conclusions and Future Work

We have presented a novel method to segment and classify glands in a prostate
histology image. The proposed method outperforms state of the art methods
for both gland segmentation and classification. The detected cancer glands can
facilitate the Gleason scoring task performed by either a pathologist or an auto-
mated system. Since the proposed segmentation algorithm relies on lumen, it is
not applicable to regions with occluded lumina. However, occluded lumina are
seldom observed in prostate tissue images. In our future work, we will address
this limitation. Moreover, we will improve the accuracy of the normal v. cancer
glands classification by further research on contextual information, and textural
information of the glands.
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