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Abstract—The term periocular refers to the facial region in the
immediate vicinity of the eye. Acquisition of the periocular bio-
metric is expected to require less subject cooperation while per-
mitting a larger depth of field compared to traditional ocular bio-
metric traits (viz., iris, retina, and sclera). In this work, we study
the feasibility of using the periocular region as a biometric trait.
Global and local information are extracted from the periocular re-
gion using texture and point operators resulting in a feature set for
representing and matching this region. A number of aspects are
studied in this work, including the 1) effectiveness of incorporating
the eyebrows, 2) use of side information (left or right) in matching,
3) manual versus automatic segmentation schemes, 4) local versus
global feature extraction schemes, 5) fusion of face and periocular
biometrics, 6) use of the periocular biometric in partially occluded
face images, 7) effect of disguising the eyebrows, 8) effect of pose
variation and occlusion, 9) effect of masking the iris and eye region,
and 10) effect of template aging on matching performance. Exper-
imental results show a rank-one recognition accuracy of 87.32%
using 1136 probe and 1136 gallery periocular images taken from
568 different subjects (2 images/subject) in the Face Recognition
Grand Challenge (version 2.0) database with the fusion of three
different matchers.

Index Terms—Biometrics, face, fusion, gradient orientation
histogram, local binary patterns, periocular recognition, scale
invariant feature transform.

I. INTRODUCTION

B IOMETRICS is the science of establishing human iden-
tity based on the physical or behavioral traits of an indi-

vidual [2], [3]. Several biometric traits such as face, iris, hand
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Fig. 1. Ocular biometric traits: (a) retina, (b) iris, (c) conjunctiva [10], and
(d) periocular.

geometry, and fingerprint have been extensively studied in the
literature and have been incorporated in both government and
civilian identity management applications. Recent research in
biometrics has explored the use of other human characteristics
such as gait [4], conjunctival vasculature [5], knuckle joints [6],
etc., as supplementary biometric evidence to enhance the per-
formance of classical biometric systems.

Ocular biometrics (see Fig. 1) has made rapid strides over the
past few years primarily due to the significant progress made in
iris recognition [7], [8]. The iris is the annular colored structure
in the eye surrounding the pupil and its function is to regulate the
size of the pupil thereby controlling the amount of light incident
on the retina. The surface of the iris exhibits a very rich texture
due to the numerous structures evident on its anterior layers.
The random morphogenesis of the textural relief of the iris and
its apparent stability over the lifetime of an individual (that has,
however, been challenged recently), have made it a very popular
biometric. Both technological and operational tests conducted
under predominantly constrained conditions have demonstrated
the uniqueness of the iris texture to an individual and its po-
tential as a biometric in large-scale systems enrolling millions
of individuals [7], [9]. Besides the iris, other ocular biometric
traits such as retina and conjunctiva have been investigated for
human recognition.

In spite of the tremendous progress made in ocular bio-
metrics, there are significant challenges encountered by these
systems:

1) The iris is a moving object with a small surface area that
is located within the independently movable eyeball. The
eyeball itself is located within another moving object—the
head. Therefore, reliably localizing the iris in eye images
obtained at a distance in unconstrained environments can
be difficult [11]. Furthermore, since the iris is typically
imaged in the near-infrared (NIR) portion (700–900 nm)
of the electromagnetic (EM) spectrum, appropriate in-
visible lighting is required to illuminate it prior to image
acquisition.

2) The size of an iris is very small compared to that of a face.
Face images acquired with low resolution sensors or large
standoff distances offer very little or no information about
iris texture.
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3) Even under ideal conditions characterized by favorable
lighting conditions and an optimal standoff distance, if the
subject blinks or closes his eye, the iris information cannot
be reliably acquired.

4) Retinal vasculature cannot be easily imaged unless the sub-
ject is cooperative. In addition, the imaging device has to
be in close proximity to the eye.

5) While conjunctival vasculature can be imaged at a distance,
the curvature of the sclera, the specular reflections in the
image, and the fineness of the vascular patterns can con-
found the feature extraction and matching modules of the
biometric system [10].

In this work, we attempt to mitigate some of these concerns
by considering a small region around the eye as an additional
biometric. We refer to this region as the periocular region. We
explore the potential of the periocular region as a biometric in
color images pertaining to the visible spectral band. Some of the
benefits in using the periocular biometric trait are as follows:

1) In images where the iris cannot be reliably obtained (or
used), the surrounding skin region may be used to either
confirm or refute an identity. Blinking or off-angle poses
are common sources of noise during iris image acquisition.

2) The periocular region represents a good trade-off between
using the entire face region or using only the iris texture
for recognition. When the entire face is imaged from a dis-
tance, the iris information is typically of low resolution.
On the other hand, when the iris is imaged at close quar-
ters, the entire face may not be available thereby forcing
the recognition system to rely only on the iris. However,
the periocular biometric can be useful over a wide range of
distances.

3) The periocular region can offer information about eye
shape that may be useful as a soft biometric [12], [13].

4) When portions of the face pertaining to the mouth and nose
are occluded, the periocular region may be used to deter-
mine the identity.

5) The design of a newer sensor is not necessary as both pe-
riocular and face regions can be obtained using a single
sensor.

Only a few studies have been published on the use of the
periocular region as a biometric. Park et al. [1] used both local
and global image features to match periocular images acquired
in the visible spectra and established its utility as a soft biometric
trait. In their work, the authors also investigated the role of the
eyebrow on the overall matching accuracy. Miller et al. [14]
used scale and rotation invariant local binary pattern (LBP) to
encode and match periocular images. They explicitly masked
out the iris and sclera before the feature extraction process. In
this work, our experiments are based on a significantly larger
gallery and probe database than what was used by Miller et al.
Further, we store only one image per eye in the gallery. We
also automatically extract the periocular region from full face
images.

Since periocular biometrics is a relatively new area of re-
search, it is essential to conduct a comprehensive study in order
to understand the uniqueness and stability of this trait. Some of
the most important issues that have to be addressed include the
following:

1) Region definition: What constitutes the periocular region?
Should the region include the eyebrows, iris, and the sclera,
or should it exclude some of these components?

2) Feature Extraction: What are the best features for repre-
senting these regions? How can these features be reliably
extracted?

3) Matching: How do we match the extracted features? Can
a coarse classification be performed prior to matching in
order to reduce the computational burden?

4) Image Acquisition: Which spectrum band (visible or NIR)
is more beneficial for matching periocular biometrics?

5) Fusion: What other biometric traits are suitable to be fused
with the periocular information? What fusion techniques
can be used for this process?

In this work, we carefully address some of the above listed is-
sues. The experiments conducted here discuss the performance
of periocular matching techniques across different factors such
as region segmentation, facial expression, and face occlusion.
Experiments are conducted in the visible spectrum using images
obtained from the Face Recognition Grand Challenge (FRGC
2.0) database [15]. The eventual goal would be to use a mul-
tispectral acquisition device to acquire periocular information
in both visible and NIR spectral bands [16], [17]. This would
facilitate combining the iris texture with the periocular region
thereby improving the recognition performance.

II. PERIOCULAR BIOMETRICS

The proposed periocular recognition process consists of a se-
quence of operations: image alignment (for the global matcher
described in the next section), feature extraction, and matching.
We adopt two different approaches to the problem: one based
on global information and the other based on local information.
The two approaches use different methods for feature extrac-
tion and matching. In the following section, the characteristics
of these two approaches are described.

A. Global versus Local Matcher

Most image matching schemes can be categorized as being
global or local based on whether the features are extracted from
the entire image (or a region of interest) or from a set of local
regions. Representative global image features include those
based on color, shape, and texture [18]. Global features are
typically represented as a fixed length vector, and the matching
process simply compares these fixed length vectors, which is
very time efficient. On the other hand, a local feature-based
approach first detects a set of key points and encodes each of
the key points using the surrounding pixel values, resulting in
a local key point descriptor [19], [20]. Then, the number of
matching key points between two images is used as the match
score. Since the number of key points varies depending on the
input image, two sets of key points from two different images
cannot be directly compared. Therefore, the matching scheme
has to compare each key point from one image against all the
key points in the other image, thereby increasing the time for
matching. There have been efforts to achieve constant time
matching using the bag of words representation [21]. In terms
of matching accuracy, local feature-based techniques have
shown better performance [22]–[24].

When all the available pixel values are encoded into a feature
vector (as is the case when global features are used), it becomes
more susceptible to image variations especially with respect to
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Fig. 2. Example images showing difficulties in periocular image alignment.
(a) Illustrating eyelid movement; (b) presence of multiple corner candidates.

geometric transformations and spatial occlusions. The local fea-
ture-based approach, on the other hand, is more robust to such
variations because only a subset of distinctive regions is used to
represent an image. This has made local feature-based approach
to image retrieval very attractive.

B. Image Alignment

Periocular images across subjects contain some common
components (e.g., iris, sclera, and eyelids) that can be repre-
sented in a common coordinate system. Once a common area
of interest is localized, a global representation scheme can be
used. The iris or eyelids are good candidates for the alignment
process. Even though both the iris and eyelids exhibit motion,
such variations are not significant in the periocular images used
in this research. While frontal iris detection can be performed
fairly well due to the approximately circular geometry of the
iris and the clear contrast between the iris and sclera, accurate
detection of the eyelids is more difficult. The inner and outer
corners of the eye can also be considered as anchor points, but
there can be multiple candidates as shown in Fig. 2. Therefore,
we primarily use the iris for image alignment. A public domain
iris detector based on the Hough transformation is used for
localizing the iris [25]. The iris can be used for translation and
scale normalization of the image, but not for rotation normal-
ization. However, we overcome the small rotation variations
using a rotation tolerant feature representation. The iris-based
image alignment is only required by the global matching
scheme. The local matcher does not require image alignment
because the descriptors corresponding to the key points can be
independently compared with each other.

C. Feature Extraction

We extract global features using all the pixel values in the de-
tected region of interest that is defined with respect to the iris.
The local features, on the other hand, are extracted from a set of
characteristic regions. From the center and the radius
of the iris, multiple interest points are
selected within a rectangular window defined around with
a width of and a height of , as shown in Fig. 3.
The number of interest points is decided based on the sampling
frequency which is inversely proportional to the dis-
tance between interest points, . For each interest point

Fig. 3. Schematic of image alignment and feature extraction process. (a) Input
image; (b) iris detection; (c) interest point sampling; (d) interest region
sampling.

Fig. 4. Example images showing interest points used by the global matcher
over the periocular region. Eyebrows are included in (a), (b), and (c), but not in
(d).

, a rectangular region is defined. The dimension of each rec-
tangle in the ROI is of size by .
When , the size of the rectangle becomes
[see Fig. 3(d)]. The interest points used by the global matcher
cover the eyebrows over 70% of the time as shown in Fig. 4.
In a few cases, the region does not include the entire eyebrow.
However, this does not affect the overall accuracy because the
eyebrows are included in most cases and the SIFT uses the entire
area of the image including the eyebrows. We construct the key
point descriptors from and generate a full feature vector by
concatenating all the descriptors. Such a feature representation
scheme using multiple image partitions is regarded as a local
feature representation in some of the image retrieval literature
[26], [27]. However, we consider this as a global representation
scheme because all the pixel values are used in the representa-
tion without considering the local distinctiveness of each region.

Mikilajczyk et al. [20] have categorized the descriptor types
as distribution-based, spatial frequency-based, and differential-
based. We use two well-known distribution-based descriptors:
gradient orientation (GO) histogram [28] and local binary pat-
tern (LBP) [29]. We quantize both GO and LBP into eight dis-
tinct values to build an eight bin histogram. The eight bin his-
togram is constructed from a partitioned subregion and concate-
nated across the various subregions to construct a full feature
vector. A Gaussian blurring with a standard deviation is ap-
plied prior to extracting features using the GO and LBP methods
in order to smooth variations across local pixel values. This sub-
partition-based histogram construction scheme has been suc-
cessfully used in SIFT [22] for the object recognition problem.
The local matcher first detects a set of salient key points in scale
space. Features are extracted from the bounding boxes for each
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Fig. 5. Examples of local features and bounding boxes for descriptor construc-
tion in SIFT. Each bounding box is rotated with respect to the major orientation
or gradient.

key point based on the gradient magnitude and orientation. The
size of the bounding box is proportional to the scale (i.e., the
standard deviation of the Gaussian kernel in scale space con-
struction). Fig. 5 shows the detected key points and the sur-
rounding boxes on a periocular image. While the global fea-
tures are only collected around the eye, the local features are
collected from all salient regions such as facial marks. There-
fore, the local matcher is expected to provide more distinctive-
ness across subjects.

Once a set of key points are detected, these points can be used
directly as a measure of image matching based on the goodness
of geometrical alignment. However, such an approach does not
take into consideration the rich information embedded in the
region around each interest point. Moreover, when images are
occluded or subjected to affine transformations, it will be benefi-
cial to match individual interest points rather than relying on the
entire set of interest points. We used a publicly available SIFT
implementation [30] as the local matcher.

D. Match Score Generation

For the global descriptor, the Euclidean distance is used
to calculate the matching scores. The distance ratio-based
matching scheme [22] is used for the local matcher (SIFT).

E. Parameter Selection for Each Matcher

The global descriptor varies depending on the choice of
and the frequency of sampling interest points . SIFT has
many parameters that affect its performance. Some of the rep-
resentative parameters are the number of octaves , number
of scales , and the cutoff threshold value related to the
contrast of the extrema points. The absolute value of each ex-
trema point in the Difference of Gaussian (DOG) space needs
to be larger than to be selected as a key point. We construct
a number of different descriptors for both the global and local
schemes by choosing a set of values for , , , , and .
The set of parameters that results in the best performance in a
training set is used on the test data for the global and local rep-
resentations. We used a size of by (width
height) as the region for global feature extraction, 4 for , 0.7
(0.5) for in GO (LBP), and 4, 4, 0.005 for , , and ,
respectively.

III. EXPERIMENTS

A. Database

Two different databases were used in our experiments: DB1
and DB2. DB1 consists of 120 images (60 for probe and 60 for

Fig. 6. Example images of a subject from the FRGC database [15] with (a) neu-
tral and (b) smiling expressions.

gallery) with two periocular images (left and right eye) per sub-
ject (30 subjects). Images in DB1 were captured in our labora-
tory using a NIKON COOLPIX P80 camera at a close distance,
where a full image contains only the periocular region. The im-
ages in DB2 were taken from the FRGC (version 2.0) database
[15]. FRGC 2.0 contains frontal images of subjects captured in
a studio setting, with controlled illumination and background.
A 4 Megapixel Canon PowerShot camera was used to capture
the images [31], with a resolution of 1704 2272 pixels. The
images are recorded in JPEG format with an approximate file
size of 1.5 MB. The interpupillary distance, i.e., the distance
between the centers of the two eyes of a subject in the FRGC
images, is approximately 260 pixels. The FRGC database con-
tains images with two different facial expressions for every sub-
ject: neutral and smiling. Fig. 6 shows two images of a subject
with these two facial expressions. Three images (2 neutral and
1 smiling) of all the available 568 subjects in the FRGC data-
base were used to form DB2, resulting in a total of 1704 face
images. The FRGC database was assembled over a time period
of 2 years with multiple samples of subjects captured in var-
ious sessions. However, the samples considered for the probe
and gallery in this work belong to the same session, and do not
have any time lapse between them. We used DB1 for parameter
selection and then used these parameter values on DB2 for per-
formance evaluation. We also constructed a small face image
database including 40 different subjects collected at West Vir-
ginia University and Michigan State University to evaluate the
perspective distortion effect on periocular biometrics.

B. Periocular Region Segmentation

It is necessary for the periocular regions to be segmented
(cropped out) from full face images prior to feature extraction.
Such a segmentation routine should be accurate, ensuring the
presence of vital periocular information (eye, eyebrow, and the
surrounding skin region) in the cropped image. Existing liter-
ature does not specify any guidelines for defining the perioc-
ular region. Therefore, segmentation can be performed to ei-
ther include or discard the eyebrows from the periocular region.
However, it can be hypothesized that the additional key points
introduced by the inclusion of eyebrows can enhance recogni-
tion performance. To study the effect of the presence of eye-
brows, periocular regions are segmented from the face images
with and without eyebrows. The segmentation process was per-
formed using the following techniques:
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Fig. 7. Example outputs of (a) face detection and (b) automatic periocular re-
gion segmentation. A set of heuristics is used to determine the periocular region
based on the output of the face detector.

Fig. 8. Examples of incorrect outputs for face detection and periocular region
segmentation.

• Manual Segmentation: The FRGC 2.0 database provides
the coordinates of the centers of the two eyes and this was
used to manually segment the periocular region. Such an
approach was used to mitigate the effects of incorrect seg-
mentation on the periocular matching performance.

• Automatic Segmentation: We used an automatic perioc-
ular segmentation scheme based on the OpenCV face de-
tector [32] which is an implementation of the classical
Viola-Jones algorithm [33]. Given an image, the OpenCV
face detector outputs a set of spatial coordinates of a rect-
angular box surrounding the candidate face region. To au-
tomatically segment the periocular region, heuristic mea-
surements are applied on the rectangular box specified by
the face detector. These heuristic measurements are based
on the anthropometry of the human face. Example outputs
of the OpenCV face detector and the automatic periocular
segmentation scheme are shown in Fig. 7.

It has to be noted that the success of periocular recognition
directly depends on the segmentation accuracy. In the proposed
automatic segmentation setup, the OpenCV face detector mis-
classified nonfacial regions as faces in 28 out of 1704 images in
DB2 ( 98.35% accuracy). Some of the wrongly classified out-
puts from the OpenCV face detector are shown in Fig. 8.

Based on the type of segmentation used (manual or auto-
matic), and the decision to include or exclude the eyebrows from
a periocular image, the following four datasets were generated
from DB2:

• Dataset 1: Manually segmented, without eyebrows;
• Dataset 2: Manually segmented, with eyebrows;
• Dataset 3: Automatically segmented, without eyebrows;
• Dataset 4: Automatically segmented, with eyebrows.

The number of images obtained using the above-mentioned seg-
mentation schemes and their corresponding sizes are listed in

TABLE I
SIZE OF THE PERIOCULAR IMAGES OF THE DATABASES

WITH RESPECT TO THE TYPE OF SEGMENTATION USED

Fig. 9. Illustration of the mask on (a) iris and (b) entire eye region.

Table I. Note that manual segmentation generally crops the pe-
riocular region more tightly compared to automatic segmenta-
tion. Manual segmentation regions were normalized to a fixed
size.

C. Masking Iris and Eye

As stated earlier, existing literature (both in the medical
and biometric communities) does not offer a clear definition
regarding the dimension of the periocular region. From an
anatomical perspective, the term “peri-ocular” describes the
surrounding regions of the eye. However, from a forensic/bio-
metric application perspective, the goal is to improve the
recognition accuracy by utilizing information from the shape
of the eye, and the color and surface level texture of the iris.
To study the effect of iris and sclera on the periocular recog-
nition performance, we constructed two additional datasets by
masking 1) the iris region only, and 2) the entire eye region of
the images in Dataset 2 (see Fig. 9).

D. Recognition Accuracy

Using the aforementioned dataset configuration, the perioc-
ular recognition performance was studied. Each dataset is di-
vided into a gallery containing 1 neutral image per subject, and
a probe-set containing either a neutral or a smiling face image
for each subject. Every probe image is compared against all the
gallery images using the GO, LBP, and SIFT matching tech-
niques. In this work, the periocular recognition performance
is evaluated using 1) cumulative match characteristic (CMC)
curves and rank-one accuracies, as well as 2) detection error
trade-off (DET) curves and equal error rates (EERs).

Most biometric traits can be categorized into different classes,
based on the nature (or type) of prominent patterns observed in
their features. For example, fingerprints can be classified based
on the pattern of ridges, while face images can be classified
based on skin color. It is often desired to determine the class of
the input probe image before the matching scheme is invoked.
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TABLE II
RANK-ONE ACCURACIES FOR NEUTRAL–NEUTRAL MATCHING ON MANUALLY

SEGMENTED DATASET (IN %) USING EYEBROWS AND L/R SIDE INFORMATION

Number of probe and gallery images are both 1136.

TABLE III
RANK-ONE ACCURACIES FOR NEUTRAL–NEUTRAL MATCHING ON

AUTOMATICALLY SEGMENTED DATASET (IN %) USING EYEBROWS

AND L/R SIDE INFORMATION

Number of probe and gallery images are both 1136.

This helps in reducing the number of matches required for iden-
tification by matching the probe image only with the gallery im-
ages of the corresponding class. This is also known as database
indexing or filtering.

In the case of periocular recognition, the images can be
broadly divided into two classes: left periocular region and
the right periocular region. This classification is based on the
location of the nose (left or right side) with respect to the
inner corner of the eye in the periocular image. Periocular
image classification can be potentially automated to enhance
the recognition performance. However, in this work, this in-
formation is determined manually and used for observing the
performance of the various matchers. Therefore, the following
two different matching schemes were considered.

1) Retaining the side information: Left probe images are
matched only against the left gallery images (L-L), and
right probe images are matched only against right gallery
images (R-R). The two recognition accuracies are aver-
aged to summarize the performance of this setup.

2) Ignoring the side information: All probe periocular images
are matched against all gallery images, irrespective of the
side (L or R) they belong to.

This setup can also be understood as: (a) matching after
performing classification and (b) matching without any
classification.

For every dataset, all probe images containing a neutral ex-
pression are matched with their corresponding gallery images.
Tables II and III indicate the rank-one accuracies obtained after
employing the manual and automatic segmentation schemes,
respectively.

From these results, it can be noticed that the recognition per-
formance improves by incorporating the eyebrows in the peri-
ocular region. While the performance obtained using the auto-
matic segmentation scheme is comparable to the manual seg-

TABLE IV
RANK-ONE ACCURACIES FOR NEUTRAL–SMILING MATCHING ON

THE MANUALLY SEGMENTED DATASET (IN %) USING EYEBROWS

AND L/R SIDE INFORMATION

Number of probe and gallery images are both 1136.

TABLE V
RANK-ONE ACCURACIES FOR NEUTRAL–SMILING MATCHING ON THE

AUTOMATICALLY SEGMENTED DATASET (IN %) USING EYEBROWS

AND L/R SIDE INFORMATION

Number of probe and gallery images are both 1136.

Fig. 10. Right side periocular regions segmented from the face images in Fig. 6
containing neutral and smiling expressions, respectively. Note that the loca-
tion of the mole under the eye varies in the two images due to the change in
expression.

mentation scheme, slight degradation is observed due to incor-
rect face detection. The matching accuracies of GO and LBP are
slightly better in automatically segmented images than those in
the manually segmented images due to the partial inclusion of
eyebrows during the automatic segmentation process. The best
performance is observed when SIFT matching is used with peri-
ocular images containing eyebrows after manual segmentation
(79.49%). The best performance under automatic segmentation
is 78.35%.

To compare the effect of varying facial expression on peri-
ocular recognition, the probe images in all the four datasets in
DB2 containing the smiling expression are matched against their
corresponding gallery images. Tables IV and V summarize the
rank-one accuracies obtained using the manual and automatic
segmentation schemes for this experiment.

The neutral–smiling matching results support the initial
hypothesis that recognition performance can be improved
by including the eyebrows in the periocular region. Also,
neutral–smiling matching has lower performance than neu-
tral–neutral matching for the GO and LBP methods. In contrast,
there is no performance degradation for the SIFT matcher on
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TABLE VI
RANK-ONE ACCURACIES AFTER MASKING OUT IRIS OR EYE REGION

(NEUTRAL–NEUTRAL, MANUAL SEGMENTATION, WITH EYEBROWS)

Number of probe and gallery images are both 1136.

the neutral–smiling experiments. In general, the SIFT matcher
is more robust to geometric distortions than the other two
methods [22]. Examples of such geometric distortions are
shown in Fig. 10.

Tables II–V show that the performances obtained with and
without classification (based on retaining or ignoring the L/R
side information) are almost similar. This indicates that pe-
riocular images provide sufficient diversity between the two
classes (left and right) and probably exhibit very little interclass
similarity.

Table VI reports the recognition results after masking out
the iris region or the entire eye region. It is observed that the
use of the entire periocular image (i.e., no masking) yields
higher recognition accuracy. The performance drop of the local
matcher (SIFT) is significantly larger than those of the global
matchers. This is due to the reduced number of SIFT key points
which are mostly detected around the edges and corners of the
eye, and are lost after masking.

E. Score Level Fusion

The results described above provide a scope to further im-
prove the recognition performance. To enhance the recognition
performance, score level fusion schemes can be invoked. In this
work, score level fusion is implemented to combine the match
scores obtained from multiple classes (left and right) and mul-
tiple algorithms (GO, LBP, and SIFT). The fusion experiments
are described below.

1) Score level fusion using multiple instances: The match
scores of dataset 4, obtained by matching left-left and right-
right are fused together using the simple sum rule (equal
weights without any score normalization). This process is
repeated for each of the three matchers, individually.

2) Score level fusion using multiple algorithms: The fused
scores obtained in the above process for each matcher are
fused together by the weighted sum rule after using the
minimum–maximum normalization.

Figs. 11 and 12 show the CMC curves obtained for the
multi-instance and multialgorithm fusion schemes using the
neutral–neutral match scores of dataset 4. The DET curves and
EERs for GO, LBP, and SIFT matchers by score level fusion
of multiple instances are shown in Fig. 13. Fig. 14 shows the
normalized histograms of the match/nonmatch distributions
for GO, LBP, and SIFT. A two-fold cross validation scheme is
used to determine the appropriate weights for the fusion. From
the figures, it can be noticed that the fusion of multiclass and

Fig. 11. CMC curves with fusion of (left-left) with (right-right) scores obtained
from neutral–neutral matching for (a) GO, (b) LBP, and (c) SIFT matchers.

Fig. 12. CMC curves after fusing multiple classes (left and right eyes) and
multiple algorithms (GO, LBP, and SIFT).

multialgorithm scores provides the best CMC performance.
The fusion scheme did not result in any improvement in EER.
We believe this is due to the noise in the genuine and imposter
score distributions as shown in Fig. 14. The DET curves suggest
the potential of using the periocular modality as a soft biometric
cue.

F. Periocular Recognition Under Nonideal Conditions

In this section, the periocular recognition performance is
studied under various nonideal conditions:

1) Partial face images: To compare the performance of
periocular recognition with face recognition, a commercial
face recognition software, FaceVACS [34] was used to match
the face images in DB2. A rank-one accuracy of 99.77% was
achieved with only 4 nonmatches at rank-one and no enrollment
failures using 1136 probe and 568 gallery images from the 568
different subjects (DB2). In such situations, it is quite logical to
prefer face in lieu of periocular region. However, the strength
of the periocular recognition lies in the fact that it can be used
even in situations where only partial face images are available.
Most face recognition systems use a holistic approach, which
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Fig. 13. DET curves for GO, LBP, and SIFT matchers obtained by the score
level fusion of multiple classes.

Fig. 14. Genuine and imposter matching score distributions for (a) GO,
(b) LBP, and (c) SIFT, respectively.

requires a full face image to perform recognition. In situations
where a full face image is not available, it is quite likely that a
face recognition system might not be successful. On the other
hand, periocular region information could be potentially used
to perform recognition. An example for such a scenario would
be a bank robbery event where the perpetrator masks portions
of the face to hide his identity.

To support the above stated argument, a dataset was syntheti-
cally constructed with partial face images. For every face image
in DB2, a rectangular region of a specific size was used to mask
the information below the nose region, as shown in Fig. 15(a),
resulting in 1704 partial face images. The rank-one accuracy
obtained on the partial face dataset using FaceVACS was ob-
served to be 39.55%, much lower than the performance ob-
tained with the full face dataset, DB2. For the periocular recog-
nition, a total of 1663 faces out of the 1704 images (approxi-
mately 97.5%) were successfully detected using the OpenCV
automatic face detector. Fig. 15(b) shows an example of a suc-
cessfully detected partial face. The periocular regions with eye-
brows were segmented again for the partial face dataset based on
the same method used for the full face image. Fig. 16 shows the

Fig. 15. Example of a partial face image. (a) Face image with mask applied
under the nose region. (b) Detection of face and periocular regions.

Fig. 16. CMC curves obtained on the partial face image dataset with the pro-
posed periocular matcher and the FaceVACS face matcher.

Fig. 17. Examples of periocular images with (a), (c) original and (b), (d) altered
eyebrows using [35].

resulting performances of the matchers for neutral-versus-neu-
tral matching. These results indicate the reliability of using peri-
ocular recognition in scenarios where face recognition may fail.

2) Cosmetic modifications: Considering the potential
forensic applications, it is important to study the effect of cos-
metic modifications to the shape of the eyebrow on periocular
recognition performance. We used a web-based tool [35] to
alter the eyebrows in 40 periocular images and conducted a
matching experiment to determine its effect. Fig. 17 shows
examples of the original periocular images along with their
corresponding images with altered eyebrows. We have con-
sidered slight enlargement or shrinkage of the eyebrows. The
average rank-one identification accuracies using the 40 altered
(unaltered) images as probe and 568 images as gallery are 60%
(70%), 65% (72.50%), and 82.50% (92.50%) using GO, LBP,
and SIFT, respectively.

3) Perspective (or pose) variations: The periocular images
considered in this work are cropped from facial images with
frontal pose. However, the facial images might not always be
in the frontal pose in a real operating environment. In this re-
gard, a new dataset was collected with 40 different subjects
under normal illumination conditions. A set of four face im-
ages with neutral expression were collected for each subject:
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Fig. 18. Examples of images with perspective variations. (a), (d) Frontal,
(b), (e) 15 profile, and (c), (f) 30 profile.

TABLE VII
RANK-ONE ACCURACIES OBTAINED WITH POSE VARIATION DATA.

ALL GALLERY IMAGES ARE FRONTAL BUT THE PROBE IMAGES

ARE EITHER FRONTAL OR OFF-FRONTAL

Number of probe (gallery) images are 40 (608). Gallery image consists
of 568 FRGC 2.0 images and 40 images collected at West Virginia
University and Michigan State University.

two frontal, one 15 left profile, and one 30 left profile. While
one frontal image per subject was used to construct the gallery,
the other three images were used as probe. An additional 568
images from Dataset 2 were added to the gallery. The peri-
ocular regions from the gallery and probe face images were
segmented using the manual segmentation scheme described in
Section III-B. Fig. 18 shows some example facial images along
with their corresponding periocular regions. Table VII lists the
rank-one accuracies of periocular recognition obtained with per-
spective variations.

It is noticed that variations in the perspective (profile) view
can significantly reduce the recognition accuracy.

4) Occlusions: In a real operating environment, the perioc-
ular region could sometimes be occluded due to the presence of
structural components such as long hair or glasses. To study the
effect of occlusion on periocular recognition performance, three
datasets were generated by randomly occluding 10%, 20%, and
30% of the periocular images in Dataset 2. Fig. 19 shows ex-
ample images for each case. The recognition results are sum-
marized in Table VIII. It is observed that the performance sig-
nificantly drops with increasing amount of occlusion in the pe-
riocular region.

5) Template Aging: The periocular images used in all the
earlier experiments were collected in the same data acquisition
session. To evaluate the effect of time-lapse on the identifica-
tion performance of periocular biometric, we conducted an ad-
ditional experiment using data collected over multiple sessions.
We used the face images of 70 subjects in the FRGC 2.0 data-
base collected in Fall 2003 and Spring 2004. Three face images

Fig. 19. Examples of images showing occlusions pertaining to (a) 10%,
(b) 20%, and (c) 30% of the periocular image area.

TABLE VIII
RANK-ONE ACCURACIES OBTAINED USING OCCLUSION DATA

Number of probe and gallery images are both 140.

TABLE IX
EFFECT OF TEMPLATE AGING ON THE RANK-ONE ACCURACIES

Number of probe and gallery images are both 140.

were selected for each subject from Fall 2003. The first image
was used as the gallery image; the second image, where the sub-
ject was wearing the same clothes as the first one, was used as
the same-session probe image; the third image, where the sub-
ject was wearing different clothes, was used as the different-ses-
sion probe image. Further, the image of the corresponding sub-
ject from Spring 2004 was also used as a different-session probe
image (with larger time-lapse).

Table IX shows the rank-1 identification accuracy in these ex-
periments. As expected, the performance decreases as the time
lapse increases. Template aging is a challenging problem in
many biometric traits (e.g., facial aging). Further efforts are
required to address the template aging problem in periocular
biometrics.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the use of the periocular re-
gion for biometric recognition and evaluated its matching per-
formance using three different matchers based on global and
local feature extractors, viz., GO, LBP, and SIFT. The effects of
various factors such as segmentation, facial expression, and eye-
brows on periocular biometric recognition performance were
discussed. A comparison between face recognition and perioc-
ular recognition performance under simulated nonideal condi-
tions (occlusion) was also presented. Additionally, the effects of
pose variation, occlusion, cosmetic modifications, and template
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TABLE X
AVERAGE DIFFERENCE IN RANK-ONE ACCURACIES OF PERIOCULAR

RECOGNITION UNDER VARIOUS SOURCES OF DEGRADATION

aging on periocular recognition were presented. Experiments in-
dicate that it is preferable to include eyebrows and use neutral
facial expression for accurate periocular recognition. Matching
the left and right side of periocular images individually and
then combining the results helped in improving recognition ac-
curacy. The combination of both global and local matcher im-
prove the accuracy marginally, which may be further improved
by using more robust global matchers. Manually segmented pe-
riocular images showed slightly better recognition performance
than automatically segmented images. Removing the iris or eye
region, and partially occluding the periocular region degraded
the recognition performance. Altering the eyebrows and tem-
plate aging also degraded the matching accuracy. Table X re-
ports the average difference in rank-one accuracies of periocular
recognition under various scenarios.

On an average, the feature extraction using GO, LBP, and
SIFT takes 4.68, 4.32, and 0.21 seconds, respectively, while
matching takes 0.14, 0.45, and 0.10 seconds, respectively, on
a 2.99-GHz CPU and 3.23-GB RAM PC in a Matlab environ-
ment with periocular images of size 241 226 width height .
The performance of periocular recognition could be further en-
hanced by incorporating the information related to the eye shape
and size. Fusion of periocular (either in NIR or visible spectrum)
with iris is another topic that we plan to study.
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