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A Network of Dynamic Probabilistic Models
for Human Interaction Analysis
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Abstract—We propose a novel method of analyzing human
interactions based on the walking trajectories of human sub-
jects, which provide elementary and necessary components for
understanding and interpretation of complex human interactions
in visual surveillance tasks. Our principal assumption is that
an interaction episode is composed of meaningful small unit
interactions, which we call ‘“sub-interactions.” We model each
sub-interaction by a dynamic probabilistic model and propose a
modified factorial hidden Markov model (HMM) with factored
observations. The complete interaction is represented with a
network of dynamic probabilistic models (DPMs) by an or-
dered concatenation of sub-interaction models. The rationale for
this approach is that it is more effective in utilizing common
components, i.e., sub-interaction models, to describe complex
interaction patterns. By assembling these sub-interaction models
in a network, possibly with a mixture of different types of
DPMs, such as standard HMMs, variants of HMMs, dynamic
Bayesian networks, and so on, we can design a robust model for
the analysis of human interactions. We show the feasibility and
effectiveness of the proposed method by analyzing the structure
of network of DPMs and its success on four different databases:
a self-collected dataset, Tsinghua University’s dataset, the public
domain CAVIAR dataset, and the Edinburgh Informatics Forum
Pedestrian dataset.

Index Terms—Dynamic Bayesian network, human interac-
tion analysis, network of dynamic probabilistic models, sub-
interactions, video surveillance.

I. INTRODUCTION

NDERSTANDING and analyzing human activities in
video is one of the challenging issues in computer
vision. During the past couple of decades, many research
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groups have addressed this problem and achieved good results
mostly for recognizing single person actions [2]-[6]. With
growing interest in vision-based surveillance systems, many
researchers are now devoting their efforts to the analysis of
human activities with interactions.

Most of the existing work on the recognition of human activ-
ity or interaction is focused on representing and learning spa-
tiotemporal patterns embedded in human activities. To model
spatiotemporal patterns, the hidden Markov model (HMM) or
its variants [7]-[15], dynamic Bayesian networks [16]-[19],
and other approaches [20]-[22] have been proposed in the lit-
erature. A comprehensive review of modeling, recognition, and
analysis of human actions and interactions is available in [23].

There are two main approaches for modeling human in-
teractions: 1) represent an interaction pattern by a single
model [8]-[10], [16]-[18], [21], [24] with a large hidden state
space, and 2) consider an interaction as a series of small unit
interactions, which we call “sub-interactions” [7], [19], [25],
[26]. Assume, e.g., that there are two interactions, Approach +
Meet + GoTogether and Approach + Meet + GoSeparately as
shown in Fig. 1. The first approach represents each interaction
with a separate model, whereas the second one considers
each interaction as a combination of four sub-interactions,
i.e., Approach, Meet, GoTogether, and GoSeparately and then
recognize an interaction by taking results from the sub-
interaction models.

Table I gives a brief comparison of various methods in
the literature for detection or recognition of person-to-person
interactions in video sequence. Oliver et al. [9] proposed a
system for detection of two person interactions. They utilized
coupled hidden Markov models (CHMMs), a variant of the
HMM integrating two or more information streams, for model-
ing and recognizing human behavior by employing a Bayesian
approach in a visual surveillance task. For the classification
of three-agent activities, Liu and Chua [10] proposed an
observation decomposed hidden Markov model (ODHMM)
introducing a parameter to assign a role to each agent for the
problem of variable number of agents in an interaction. Du
et al. [17] decomposed an interaction into multiple interact-
ing stochastic processes and proposed a coupled hierarchical
durational-state dynamic Bayesian network (DBN).

Unlike the work mentioned above, some groups have ap-
proached this problem in a hierarchical manner. Hongeng et al.
[21] decomposed multiagent events into simple and complex
single and multithread events. Park and Trivedi [16] considered
the problem of vision-based surveillance tasks in more realistic
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(b)

Fig. 1. Examples of a person-to-person interaction of interest. (a) Approach
+ Meet + GoTogether. (b) Approach + Meet + GoSeparately.

environments. They proposed a track-level and body-level
analysis framework in which the two levels are adaptively
switched depending on the inter-person configuration and
imaging fidelity.

Although these previous methods have worked well in their
respective problems, their disadvantage is that they do not
make an effective use of the common small-unit interactions
to build the person-to-person interaction models. In other
words, when the target interactions share some common sub-
interactions, they are represented in multiple interaction mod-
els repeatedly and independently. Accordingly, they require
large training sets for reliable estimation of the parameters of
interaction models.

Motivated by this, Ivanov and Bobick [7] proposed a two-
level method for detection and recognition of temporally
extended activities and interactions between two agents. In
their system, the lower-level detects primitive events using
HMMs and then the upper-level exploits a stochastic context-
free grammar parsing mechanism to handle the uncertainty of
the stream symbols passed from the lower-level. Nguyen et
al. [28] proposed a sampling-based approximation algorithm
for inference in a hierarchical hidden Markov model (HHMM),
which is widely used for human activity recognition [27]-[29],
for real-time recognition of single-person activity.

Pinhanez and Bobick [31] proposed a method of modeling
temporal constraints of past, now, and future, called PNF-
network, based on Allen’s interval algebra [32], for the
detection of actions and sub-actions. Shi et al. [33] proposed
a propagation networks (P-Nets) to represent sequentially
ordered activities by constraining temporal and logical
ordering and duration of the activity intervals. These
two methods basically utilize a deterministic approach in
traversing a network. That is, a node in the network can only
be activated if and only if the preceding node is deactivated.
This approach may cause a poor performance in terms of
an event detection or recognition in video because of the
ambiguities and inaccuracies in the observations from low-
level image processing. In order to deal with these problems,
Albanese et al. proposed a probabilistic Petri net (PPN) suited
to express uncertainty in the state of a node or associate a
probability to a particular transition in a network for human
activity detection in video [34]. However, the PPN takes a
threshold-based method to fire ensuing nodes in traversing a
network. As stated in their paper, finding an optimal threshold
for decision of a transition is another big challenging problem.

Hakeem and Shah [26] proposed a new approach to learn,
detect, and represent events in video by modeling multiagent

events in terms of a temporally varying sequence of sub-
events. Using the sub-event dependency graph, encoded from
the training dataset, they clustered the maximally correlated
sub-events using normalized cuts. Xiang and Gong [19]
proposed a framework for automatic behavior profiling and
online anomaly detection with no manual labeling of the
training dataset. They modeled each event pattern using a
multiple observation HMM (MOHMM) and measured the
similarity between behavior patterns based on the likelihood
computed in MOHMMs. By applying a spectral clustering
algorithm to the similarity matrix, they discovered natural
grouping of behavior patterns in a manner similar to Hakeem
and Shah’s method [26].

Ryoo and Aggarwal [22] proposed a description-based
approach for recognition of human actions and interactions
by extending Park and Aggarwal’s work [35]. A context-free
grammar was employed for the formal representation of the
structure of high-level composite human activities.

In this paper, we are concerned with recognizing and ana-
lyzing various scenarios of person-to-person interactions based
on the trajectories of human subjects. We propose a generic
approach for representing the complete interaction patterns as
a network of sub-interaction models, for which we also design
a variant of the factorial hidden Markov model (FHMM) with
factored observations for modeling sub-interactions.

The primary contribution of this paper is as follows. We
propose a novel method of modeling interactions with a
network of dynamic probabilistic models (NDPM) in order
to represent complex patterns with a combination of simpler
sub-interaction models. By representing complex interactions
with a network of simple sub-interactions and independently
training these sub-interaction models, we can greatly reduce
the computational complexity of a model and simplify the
training task. Another benefit of the proposed NDPM is that
it can be extended to incorporate new interactions by simply
adding extra sub-interaction models and paths as needed. We
also propose a dynamic programming (DP)-based inference
algorithm, which has a linear computational complexity and
allows us to construct a network linking different types of
dynamic probabilistic models. That is, we can build a network
of mixture models by linking standard HMMs, variants of
HMMs, and other types of dynamic probabilistic models
for different sub-interactions. However, a priori knowledge
about the structure of interactions is required to build the
corresponding NDPM, which results in robust models. Another
feature of our method is the modified factorial hidden Markov
model (MFHMM), which characterizes the dynamic patterns
by dividing observations into independent and shared compo-
nents. Compared to the preliminary version of this paper that
appeared in [1], we have extended our work by: 1) generalizing
the inference algorithm in a NDPM; 2) developing a new
sub-interaction model; and 3) carrying out more extensive
experiments and analysis on three public domain databases.

Due to the representational characteristics of the HHMM
and the proposed NDPM, they appear to be similar to each
other. However, the proposed NDPM is different from the
HHMM in many aspects. First, the proposed NDPM can
share common small unit models by building a more compact
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TABLE I
COMPARISON OF METHODS FOR PERSON-TO-PERSON INTERACTION DETECTION OR RECOGNITION

Approach | Authors Methods Limitations Database (NTA)
SG [9] CHMM Prior knowledge by the use SCD (5)
of synthetic prior models
[10] ODHMM, Difficult to distinguish classes having SCD (7)
agents’ role assignment similar decomposed sub-observations
[17] Coupled hierarchical High computational complexity SCD (7)
durational-state DBN
[21] Decompose activities into Require prior knowledge SCD (5)
single and multiple-thread events over target events
[24] Nearest neighbor classifier, Applicable to detect only small unit CAVIAR (5) [30]
Hausdorff distance interactions not complex interactions
[35] Hierarchical Bayesian network, Detailed representation of human body, SCD (4)
standard HMMs tracking multiple body parts
DCP [7] HMMs for primitive events, Require prior knowledge SCD (5)
stochastic context free grammar over target activities
[19] Multi-observation HMM, Retrain for inclusion of new behaviors SCD (6)
spectral clustering
[22] HMM for body part’s gesture, Manually described production rules SCD (8)
context free grammar
[26] Sub-event dependency graph, Restructure a sub-event graph SCD (6)
spectral clustering for inclusion of new events
A single network SCD (5),
Proposed | of dynamic probabilistic models Require prior knowledge CAVIAR (2) [30]
method by sharing common over target interactions Tsinghua DB (4) [17]
atomic models EIFP DB [44]

SG, single model for each human interaction or activity; DCP, decomposed modeling of the entire interaction into small units; SCD,

self-collected dataset; NTA, number of target activities.

model while the HHMM is restricted to a tree structure,
partially allowing to share common small unit models only
through explicit parameter tying which is not efficient [27].
Bui and Venkatesh [27] proposed a lattice-like state hierarchy
to overcome this limitation of HHMM. Thanks to the structural
characteristics, the NDPM can be considered as a cyclic model,
which allows to perform inference by traversing a network
in a cyclic path while the HHMM is a non-cyclic model.
Furthermore, it is possible for the proposed NDPM to design a
mixture of different dynamic probabilistic models, e.g., linking
HMMs, CHMMs, DBNs, and others, without modifying the
inference algorithm and to extend the structure whenever it
needs more patterns without destroying the current network
structure or retraining the current small unit models. These
features also differentiate our method from Hakeem and Shah’s
work [26]. Unlike Albanese et al.’s work, transitions and
segmentation points between sub-interaction models in the
proposed NDPM are determined based on the likelihoods.

The rest of this paper is organized as follows. A novel
network-based interaction model composed of dynamic prob-
abilistic models and a DP-based linear inference algorithm
in an NDPM is described in Section II. In Section II, we
also design a new type of dynamic probabilistic model for
sub-interactions. Experimental results and performance com-
parisons with competing methods are presented in Section III.
We conclude this paper by summarizing the proposed method
and providing directions for future work in Section IV.

II. PROPOSED NETWORK-BASED INTERACTION MODEL

The goal of this paper is to design a method that recognizes
person-to-person interactions and segments an input sequence

into meaningful small units for further analysis. For example,
suppose there are two interactions as shown in Fig. 1. Given
a sequence of video frames for the interaction of Fig. 1, our
method not only classifies it to the appropriate interaction class
but also detects the start and end points of sub-interactions,
i.e., Approach, Meet, and GoTogether.

In this section, we first describe how to represent target
interactions in a single network which we call a NDPM. We
then propose an inference algorithm to efficiently compute
the likelihood of each interaction and to segment a given
observation sequence into atomic sub-interactions. Note that
the description of the proposed method is based on a network
in which standard HMMs are injected. However, our method
of designing an interaction network and an inference algorithm
in NDPM is not limited to standard HMMs. In other words, we
can replace standard HMMs with other dynamic probabilistic
models. That is why the proposed model is referred to as a
network of dynamic probabilistic models.

A. Representation of Interactions in a Network

Interactions of interest in this paper are similar to those in
[7], [9], [10], [17], [21], [24], [26], namely, Follow + Meet
+ GoTogether, Follow + Meet + GoSeparately, Approach +
Meet + GoTogether, Approach + Meet + GoSeparately, and
Approach + PassBy. These interactions can be described as
follows:

Interaction £ (Follow|Approach) -
(PassBy|(Meet - (GoSeparately|GoTogether)))

where the symbol “|”
concatenation.

means disjunction (or) and “-” means
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Follow

CaTogether

Approach

Fig. 2. Example of a network-based interaction model by concatenating sub-
interaction standard HMMs to represent five interactions: Follow + Meet +
GoTogether, Follow + Meet + GoSeparately, Approach + Meet + GoTogether,
Approach + Meet + GoSeparately, and Approach + PassBy.

A directed graph or network is an elegant structure to
embody the relationship or the order of sub-interactions for
representing the target interactions in a single model. Fig. 2
shows an interaction network designed for five different inter-
actions. The introduction of the dummy network nodes, i.e.,
B, I, I, and E in Fig. 2, makes modeling and inference
conceptually simple and easy; they represent the milestones
in the history of the interaction sequence.

There are two kinds of arcs in the network: internal
and external. Internal arcs, within rounded rectangles, repre-
sent causal relations between random variables in each sub-
interaction model. Although we have depicted only three time
slices for each sub-interaction model in Fig. 2, there may be
as many slices as the number of frame sequences related to the
sub-interactions. External arcs link a dummy node to a sub-
interaction model or vice versa. They represent a transition
of sub-interactions where one ends and a new one begins.
During an inference, each link from a sub-interaction model
to a dummy node passes the likelihood computed by the
sub-interaction model, and each dummy node chooses the
maximum among the incoming likelihoods. On the contrary,
the links from a dummy node to sub-interaction models sim-
ply propagate the likelihood to the following sub-interaction
models without needing their own additional computation.

For the recognition of interactions we compute the likeli-
hood for the given observations, considering all possible paths
of sub-interaction models in the network, and state transitions
within the sub-interaction models. When the last observation
arrives, we finish the forward computation and retrieve the
sequence of sub-interactions, which maximizes the likelihood
for the given observations in the network. From this result,
we can recognize and detect interactions in a video sequence.
Through this compact and intuitive way, the proposed NDPM
represents various interactions and can be used to decode them
in order to segment unit-interactions of interest. The detailed
explanation of the computation is given in the forthcoming
section.

Given the structural characteristics of the proposed NDPM,
we can easily insert additional interactions into the NDPM.
Assume that a new interaction contains sub-interactions not
included in the current NDPM. Then it is sufficient to model
those sub-interactions independently and insert them into the
NDPM with appropriate links and dummy nodes, if necessary.
But if the new interaction is only composed of the sub-

interactions already included in the NDPM, then we need to
only include the links to represent the new interaction. Thus,
the proposed network-based interaction model is extensible.

B. Inference in NDPM

Since we model interactions as a sequence of sub-
interactions, the process requires simultaneous solution to
problems of finding the start and end points of sub-
interactions, determining their class labels, and finally clas-
sifying the interaction for the given input sequence based on
the sequence of sub-interaction labels. This requires finding the
best alignment between a given input sequence and a complete
state sequence. The solution is based on the best model and
state sequence that jointly maximize the likelihood along with
the segmental sequence. In order to tackle this problem, we
exploit the one-pass DP search [36].

1)  Problem Formulation: Let M = {My, ...,
My, ..., Mg}, where M is a label of sub-interaction, i.e.,
M, e{Follow, Approach, Meet, GoTogether, GoSeparately,
PassBy} and K > 1 be the number of sub-interaction models
which need to be determined from a given input frame
sequence Y = Y;Y,,...,Yr. Note that the number of
sub-interactions K is not known a priori and depends on the
complexity of interaction in video. In the case of Fig. 2, it
can take a value of either two or three. Our goal is to find
the best alignment of Y to the best path M that maximizes
the likelihood from the network as follows:

P(Y|G) £ max P(Y, M|G) (1
K.M

where G denotes a network representing interactions of inter-
est, e.g., as shown in Fig. 2. Let one possible segmentation of
Y that aligns to M be

V = ViVp,..., Vg
(Y(l,tl), )’(1‘1'4'1, t2)a L] )’(IK—I"'L tK))

where y(ti_1 + 1, %) = {Y;_,+1,...,Y,} denotes a segment
aligned to a sub-interaction My and 1 =1y <#; < ... < tx=T.
Then (1) can be formulated as the maximization problem as
follows:

P(Y|G) = max P(V.MIG). )

This is a joint optimization problem of computing the
maximum likelihood for the given observations by determining
the optimum number of sub-interactions K, the best sequence
of sub-interactions M, and the best segmentation V of Y
aligned to M.

Now, let us assume that all the paths among the sub-
interaction models in the network are equally probable, i.e.,
assume a uniform distribution for transitions from one sub-
interaction to the others. Then we can write the probability
on the right-hand side of (2) as a product of the likelihood of
individual sub-interaction models in M as follows:

P(V.M|G) = P(VIM)- PM|G) 3

K
£ 1] Pvilmp). )

k=1
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Here, we ignore the second term in (3) due to the assumption
of uniformity in transitions among the sub-interactions. If we
further apply the concept of Viterbi path alignment (Vj, Si)
[37] inside a sub-interaction model M, then we can rewrite
(2) as follows:

IO S

K
lH max P(Vy, Skle)] %)
=1 *

where Sp = s(t—1 + 1, %) = {ss,_,+1,... .5} denotes a legal
state sequence within the sub-interaction model M.

2) Global DP in NDPM: Let us denote the current network
node in a path as gr € {I, I, E} and the other node that
immediately precedes it as gl. The pair g/ and gr is connected
via a set of parallel standard HMMs, as shown in Fig. 2. This
can be regarded as a conceptual link with the label of standard
HMMs. Let L(gl, gr) be a set of sub-interaction models, i.e.,
standard HMMs in the path from node g/ to gr. In addition,
let us define the likelihood of the initial partial sequence of
length ¢ at the network node gr as follows:

A(gr)=P(Y1--- Y, 8108, 85 — grlG). (6)

This is the accumulated joint likelihood of the partial
sequence Y, ..., Y, and the best state sequence si, ... ,s;
reaching the node gr at time f¢. The probability on the
right-hand side of (6) is equivalent to P(Y;---Y,, s1---5|G)
because no computation is needed during propagation of
likelihood from a sub-interaction model to a network dummy
node, i.e., s, — gr, as explained in Section II-A. Based on the
DP principle, we can rewrite A,(gr) as a recurrence relation
as follows:

y' +1,1)
A = Ap(gh)- P M
((87) (el M) 5 MEL(el,g) r(8D) ( st +1,1)
7
where ¢t € {1,..., T}, gr € {I;, I, E}. From here on, we use

M instead of M to keep the notation simple. The notation
(gl, M) means traversal from g/ to other network node gr
via the sub-interaction model M, y(t' + 1,¢) = Yy ---Y,,
s +1,t) = spy1---5;, and ¢ < t. This is what we refer to
as global DP which performs maximization at the level of
sub-interaction models. The second factor on the right-hand
side in (7), which is the likelihood of the partial sequence of
observations y(#' + 1, t) and states s(# + 1, t), can be computed
within a sub-interaction model M. The start and end points of
the corresponding sub-interaction, i.e., #'+1 and ¢, respectively,
are determined probabilistically in what we refer to as local
DP described below.

3) Local DP Within Sub-Interaction Models: In a manner
similar to (7), we define a measure for the internal state i of
each sub-interaction model as

(Sf’l(i) = Asgh)-Py@ +1,0),s(t' +1,t—1),s, =i|M)
= max {/,())- ALy, o} - BiL(Y) ®)
J
where r € {1,...,T} and M denotes a label of a sub-

interaction model. Equation (8) gives the joint likelihood of

the partial sequence Y, ..., Y, and the best state sequence
Si,...,8, where s, =i in the model M. In (8), A?f:im,l:j and
Bff:i(Yt) denote, respectively, the state transition probability
P (s; =i|s;—1 = j, M) and the probability of observing Y, at
the state i in the model M, P(Y,|s; =i, M). This is the second
recurrence relation called as local DP. Its aim is to find the best
state transitions to a state i at time ¢ for the partial sequence
Yy, ..., Y, in the model M.

In order to retrieve the state sequences for segmentation
and recognition of interactions, we need to keep track of the
source state, which maximizes (8) at each time 7 in each sub-
interaction model M, for efficient segmentation as follows:

Y(i) = argmax {87,(j) - AYL, o} BiL(Y).  (9)
J

Furthermore, we also utilize one more variable golM (i) in
order to maintain the duration of the best path to the state i
since it entered the sub-interaction model M as follows:

oGy = oM (M) + 1.

For recognizing interactions and segmenting to meaning-
ful sub-interactions in a video sequence, the segmentation
boundaries of sub-interactions are not known a priori. Let us
consider a likely segment y(¢, t + d) for any d > 0. At time
t — 1, the likelihood of a model corresponding to the sub-
interaction being completed will be high. During the global
DP in (7), the likelihood is propagated to a given network
node gr. Then the decision on picking the starting boundary
of a new segment y(¢, f +d) in the model M, where d denotes
the possible number of frames devoted to the sub-interaction,
is computed by

(10)

S - Agli, =

M _
s, (z)—max{ Arr(gh

} -Bg(Y) (D)
where nX";’:i denotes the initial state probability of staying the
state i in the model M. Here, the two expressions in the braces
correspond, respectively, to staying in the state i itself and to
making a transition to a sub-interaction model M from outside
implying that a next sub-interaction or a segment begins at this
point. Unlike the other state transitions within a sub-interaction
model M, we need to keep track of the source and duration
in the model, which maximize (11) for the state i, because it
is also possible for it to have the likelihood forwarded from
outside the sub-interaction model M, i.e., a network dummy
node gl as follows:

Y (i) = argrl}ax{sﬁl(i) CAM L AagD ) (12)
L8
1 if, ' < T
M _ s 11 2
i (’)‘{ oM (YyM(i)) +1 otherwise (13)

where T'y = 8,(0) - A)L, - and Ty = A, _1(gl) - w)L,. The
left-hand term within the braces in (12) and the lower term on
the right-hand side of (13) imply that a transition has occurred

within a model M.
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Fig. 3. Example of the backtracking procedure. The numbers in the upper
row denote the label of sub-interaction models and those in the lower row
represent the time duration in the corresponding sub-interaction models. Refer
to the contexts for the description of the two variables ¥, and .

4) Interaction Classification Via Backtracking: Based on
the computation of the local DP, the global DP in (7) is
straightforward. Since the likelihood from the final state F™
in a sub-interaction model M is equal to the right-hand side
of (7) for the pair M and gl, the likelihood propagated to the
network node gr in global DP is given by

A(gr) = max SM(FM)

(14)
(gl,M) s.t. MeL(gl,gr)

where t € {1,...,T}, gr € {I, I, E}, and F™ denotes the
final state in the model M. Here, we introduce the variable
W,(gr), which records the sub-interaction model’s label M
and the source network node g/, which together produce the
maximum value A,(gr) as follows:

W, (gr) = argmax 8?4(FM).

(gl,M) s.t. MeL(gl,gr)

15)

After the forward pass, i.e., computing the recurrences of
(7) and (8) until the last observation Yy, the algorithm traces
back the current result of the forward pass in order to recover
the best sequence of sub-interaction models starting from the
rightmost network node “E” in Fig. 2. The backtracking is
based on the information about the transitions among network
nodes in W, and the elapsed time of the sub-interaction model
M in <p,M , which evaluated the maximum likelihood at time ¢.
An example of the backtracking procedure is given in Fig. 3.
No computation is required during backtracking since all we
need to do is to access the array of two variables, W, and (pf” .

Without any constraints on traversing the network, it is
possible for the NDPM to output an undefined sequence of
sub-interactions as an output interaction, e.g., Follow + PassBy.
In (11), we can filter out the forwarding likelihood coming
from the network node g/ in the case of an unallowed transition
from the previous model.

C. Computational Complexity of NDPM

The majority of the computation in the proposed NDPM
is carried out in the local DP while the only computation
performed in the global DP is to choose the maximum like-
lihood passed to network nodes. Since we have built simpler
sub-interaction models by decomposing the original complex
interactions, the number of hidden states to represent atomic
sub-interactions is much less than that of the full interaction
models, resulting in lower computational complexity of dy-
namic probabilistic models.

Let the average number of states for a hidden variable be
N. For K possible sub-interaction models, assuming that they
are all standard HMMs in an NDPM, the time complexity for
a whole sequence of observations of length T is O(KN*T),

Fig. 4. Graphical representation of a MFHMM.

which is linear in both the length of observations 7 and the
number of sub-interaction models K, and quadratic in the num-
ber of hidden states N that is much smaller than that of the full
interaction models. This complexity is promising compared to
the exponential complexity of the inference algorithm for a
hierarchical HMM, O(T3NP), where D is the number of levels
in the hierarchy [27], and that of the probabilistic Petri net,
O(TRK"), where R is the number of transition nodes related
to both sub-interactions and skips, and k is a bounded constant
for the number of tokens in the network at any marking [34].

D. MFHMM

‘We now propose a new type of dynamic probabilistic model
for representation of sub-interactions. For the representation
of dynamic patterns in human motions, we introduce two
hidden variables, one for each human subject involved in the
interaction. Modeling with two hidden variables rather than a
single hidden variable results in reducing the computational
complexity of the model due to a decomposed hidden state
space. In addition, it makes it easy to analyze and interpret
the model. We decompose a feature vector Y, into three parts
according to the correlation: ¥! and Y? represent individual
motions of the two subjects and Y} represents the change in
the relative distance between two subjects.

The resulting model has been extended to the temporal
dimension by introducing the first-order Markov assumption
describing the motion dynamics as shown in Fig. 4. The
shaded circles denote hidden variables and the white rectangles
denote the observation variables. Since the model is graphi-
cally and conceptually similar to the FHMM [38], we call it a
“MFHMM.” The sequence of feature vectors Y, Y2, and Y}
represent an observation of an interaction that we analyze by
the proposed interaction model. We represent the distributions
of the observations in a state with a Gaussian distribution.

It is also possible to represent the proposed model with
an FHMM by combining all the observations into a single
vector and by assuming statistical independence among the
observations. The proposed model, however, is conceptually
more intuitive to understand in graphical representation and
has low computational cost in terms of inference due to the
smaller size of the covariance matrices. In effect, it introduces
a fine-grained factorization of the observations.

Given an observation sequence Y = [V, Yi;, Y13:T]T,
where Y, = Y{,... YL, i € {1,2,3}, and a model A, the
probability of observing the sequence is defined as

P(Y|2) > P(Y.S|n)
N

> P(YISLy, SEP(SLy, Siglh)  (16)

1:2
SI:T
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where S = S{Z = [S];, S7,]7 is a sequence of hidden
states. In (16), the first term on the right-hand side computes
the density of the observation sequence given the values of the
two hidden variables S' and S? from time 1 to T, while the
second term computes the joint probability of the sequences
of two hidden variables.

Since the values of the two hidden variables are unob-
servable, we marginalize out all possible values in the states
space. Hence, we need to compute the joint probability of
Y and S within the model A. The joint probability can be
efficiently computed by factorizing it into a product of local
conditional probabilities, one for each random variable, by
utilizing conditional independencies or d-separation [39] as
follows:

P(Y,S)

T T
PSH ] PSS ] PYisy A7)

=2 t=1

T T
g2 H AS,]:2|S’li2| H Bg2(Y,)
1=2 t=1

where P(S)) = Tg12 = P(S})P(Slz) represents the initial state
probability, P(S[S;—1) = Agzg2 = P(S}ISL)P(SISE )
the state transition probability, and P(Y,|S;) = BSrl:Z(Y[) =
P(Y,l|S[1)P(Yt2|St2)P(Yt3|St1, Stz) the probability of observing
Y, = [V}, Y2, Y17 from the state S, = [S!, S?]7. In (17), we
omitted A to keep it uncluttered. This factored joint probability
has the same form as other dynamic state-space models, e.g.,
HMMs or Kalman filters.

(18)

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we describe experiments on the recognition
and analysis of person-to-person interactions based on the
trajectories of human subjects. Since detection and tracking of
human subjects in a video sequence are not of interest here,
we performed these processes manually. We perform experi-
ments on four different databases: a self-collected database,
Tsinghua University’s dataset [17], the public domain
CAVIAR dataset [30], and the Edinburgh Informatics Forum
Pedestrian dataset [44] to show the feasibility of our approach.
The proposed models, MFHMMs and NDPM, as well as
the other competing models, MOHMM [19], parallel HMM
(PaHMM) [43], CHMM [9], ODHMM [10], and FHMM
[38]), were implemented in MATLAB by using the Bayes net
toolbox (BNT) [41], [42].

A. Data Collection and Feature Extraction

In our database, we define five interaction scenarios similar
to those in [7], [9], [10], [17], [21], [24], and [26] as follows.

1) Follow, meet, and go together (Interaction 1).

2) Follow, meet, and go separately (Interaction 2).

3) Approach, meet, and go together (Interaction 3).

4) Approach, meet, and go separately (Interaction 4).

5) Approach and pass by (Interaction 5).
The five interactions of interest are composed of either two
or three sub-interactions as shown in Table II. We collected
75 outdoor video sequences with 15 sequences for each

TABLE I
INTERACTION SCENARIOS AND THE ASSOCIATED SUB-INTERACTIONS

Sub-Interactions
FL | AP | MT | GT | GS | PB
Interaction 1 | O O O
Interaction 2 | O O @)
Interaction 3 O O O
Interaction 4 O O O
Interaction 5 O O

“Follow” (FL), “Approach” (AP), “Meet” (MT),
“GoTogether” (GT), “GoSeparately” (GS), “PassBy” (PB).

hr‘ 1 hl
Hﬁ

Fig. 5. Features tolerant to changes in distance between the camera and the
subjects and subject’s initial position and orientation [10].

interaction involving five subjects. The number of frames in
a sequence is 296, on average. All the video sequences were
captured using a JAI CV-S3300 camera, which was installed
on the second floor of a building facing down. It operated at
301/s, with a frame resolution of 320x240, and 24-bit color.

Spatiotemporal patterns of many types of human interac-
tions are independent of the initial position, moving direction
of human subjects and the distance from the camera. Liu and
Chua [10] mentioned these problems and used feature vectors
composed of five elements as follows:

d(a;—1, a;) d(b;—1, by)
;= , (19)
d(a,—1,bi—1) d(a,—1, bi—1)
d(a;, b)) !
—, cos(8,), cos(0p)
d(a;—1, bi—1) ‘ b

where a, and b, denote the positions of subjects a and b at
time ¢, d(a;, b;) is the Euclidean distance between two points
a; and b, 6, is the angle between the lines of (a,—i, b;—1)
and (o;—1, «;), and cos(6,) is the motion direction of a subject
« based on the relative positions in the previous frame, o €
{a, b}, respectively. Fig. 5 illustrates these variables.

B. Modeling Sub-Interactions

1) Automatic Segmentation of Interaction Video Sequences:
The entire interaction sequence is automatically segmented
into sub-interactions using the Viterbi algorithm [37].

For each interaction sequence, we train the parameters of
HMM, A, to an observation sequence Y = y;y2, ..., yr. The
number of states is equal to the number of sub-interactions,
which is assumed to be known a priori. We choose a left-to-
right topology for an HMM, because there are no recursive or
repeated sub-interactions in any of the interactions of interest.
We find the best sequence of states Q* = q1¢», ... , gr which
maximizes P(Q, Y|X), e, Qf = argmax P(Q, Y|i). An
example of segmentation result for the interaction Follow +
Meet + GoTogether is presented in Fig. 6. The middle graph
represents the change in the likelihood for the three states
in time. The likelihood of a state dedicated to the current
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Fig. 6. Segmentation of an interaction sequence into sub-interactions via the
Viterbi algorithm.

TABLE III
CONFUSION MATRIX FOR RECOGNITION OF SUB-INTERACTIONS

FL | AP | MT | GT | GS | PB

Follow (FL)
Approach (AP)
Meet (MT)
GoTogether (GT)
GoSeparately (GS)
PassBy (PB)

(=] Rl ol Rl Reod 101

(=] E=] Ke) §o )l Kol Kol

NWw|o|o|o|o

S|o|o|o|Un|o
o|lo|wn|o|o|—
B R k=l Rl Nl

observation is greater than that of the other states not related
to it. In Fig. 6, the state transitions are marked with circles
and solid lines in the graph. The video frames corresponding
to each sub-interaction are also presented at the top and the
bottom of the figure.

2) Recognition of Sub-Interactions: The hyperparameters,
i.e., the number of states which each hidden variable in an
MFHMM can take, were determined by cross-validation. We
varied the number of states from two to five considering the
complexity of the target sub-interaction patterns. We assume
a left-to-right topology with a single Gaussian distribution for
states.

We train sub-interaction models with 30 randomly selected
interaction video sequences. Six out of the 15 sequences
are selected for each interaction, and six test clips per sub-
interaction are used to determine whether the sub-interactions
are separable. The confusion matrix of the recognition result
is given in Table IIl. These results show that the two sub-
interactions, GoSeparately and PassBy, are confusing and
appear to have very similar trajectories. So we combine these
two sub-interactions and build a single model for them, except
that the labels in the NDPM are different in order to ensure
that they have a valid interpretation.

Since we have a limited number of training and test data
of sub-interactions, we believe that it is not fair to compare
the performance of the proposed MFHMM with that of a
factorial HMM [38]. Besides our main objective is interaction
recognition.

C. Recognition of Person-to-Person Interactions

We create a network of MFHMMs for recognition of the
five interactions by replacing the standard HMMs in Fig. 2
with MFHMMs. Given a test video, we first find the sequence
of sub-interaction models which maximizes the likelihood for
the given observation Y of the test video, according to the
function as follows:

Interaction = argmax P(Y, M|G, ®)
M
where © = {QFL» GAP’ GMT, QGT» 9(;5}, 9,' = {JT,', A,’, B,} denotes
a set of parameters for a dynamic probabilistic model, i €
{Follow (FL), Approach (AP), Meet (MT), GoTogether (GT),
GoSeparately (GS)}, and M represents the sequence of the
labels of sub-interaction models in the network G.

1) Performance of the Proposed Interaction Model: We
exploit the cross-validation technique with 20 interaction
sequences for training and the remaining 55 interaction se-
quences for test. We further exploit 20 interaction sequences
out of the 55 test sequences for validation. From ten repetitions
of this process, where all the training, test, and validation
datasets were selected randomly, the proposed NDPM showed
an average recognition rate of 87.82% with a standard devia-
tion of 2.71%.

For the analysis and understanding of the proposed NDPM,
we illustrate the detailed results on a test video of Follow
+ Meet + GoTogether in Fig. 7. It presents the temporal
evolution of each sub-interaction model’s likelihood and the
segmental results marked on the trajectories of human subjects
in Fig. 7(a) and (b), respectively. Note that in Fig. 7(a), we
plotted the likelihood values for every seventh frame starting
from the 124th frame for a clear view. So the unit on the
time-axis corresponds to the (7 x ¢+ 124)th frame in the input
video. Fig. 7(a) explains the effectiveness of the proposed
method by showing that the likelihood of the sub-interaction
model dedicated to the observation sequences increases as
more evidence becomes available. However, the likelihood of
the other models unrelated to the observations stays low until
the evidence represented by those model becomes available.
That is, the Follow model outputs the highest likelihood for
the input sequence up to the 215th frame, but after the
216th frame its likelihood reduces and that of Meet model
dramatically increases. Last, the GoTogether model has the
highest likelihood between the 271st and the 341st frames. In
the likelihood graph, the slopes of the sub-interaction models
connected via the network nodes are very similar with a time
delay. This phenomenon is a result of passing the maximum
likelihood at a network node to the ensuing sub-interaction
models. We also illustrate the optimal sub-interactions and
internal states transitions in Fig. 8. The vertical axis is the
concatenation of the five sub-interaction models and the ticks
for each sub-interaction denote the indices of the state pairs.

2) Performance Comparisons with Other Models: In this
experiment, we compare the performance of our method to
that of five other widely used methods in the literature:
MOHMM [19], PaHMM [43], CHMM [9], ODHMM [10], and
FHMM [38]. These dynamic probabilistic models, for which

(20)
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Fig. 7. Analysis of the results for the interaction Follow + Meet + GoTo-
gether. (a) Temporal evolution of likelihood of the five sub-interaction models.
(b) Segmentation results marked on the trajectories of the subjects.
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Fig. 8. Optimal sequence of sub-interactions and states within the sub-
interaction models which produced the maximum likelihood for the video
sequence shown in Fig. 7(a). The state numbers on the vertical axis denote
the state pair indices in each sub-interaction model.
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@@@@%

Fig. 9. Graphical representation of five different models in the literature
which are used for performance comparison with the proposed model.
(2) MOHMM. (b) PaHMM. (c) CHMM. (d) ODHMM. (e) FHMM.

the graphical representations are shown in Fig. 9, are trained
for each interaction. We trained these models with the same
training data, which were used for the training of the proposed
NDPM. Note that at this time, each model represents the whole
interaction, not sub-interactions. The hyperparameters of these
models, i.e., the number of hidden states, are determined
with a cross-validation technique, varying from five to nine.
We implemented all these models in MATLAB using BNT
[42]. More specifically, we converted them into DBNs and
performed an exact inference with junction-tree [40] and
interface [41] algorithms.

The performance of each model is given in Table IV. The
proposed NDPM outperforms all the other models. The main
reason for the low performance of the competing methods
could be the limited size of the training data. The more
parameters in a model, the larger the amount of training data
required. In summary, we can say that the proposed method is
effective in the sense that it can find optimal parameters with
a small number of training samples due to the decomposed
representation of the complete interaction.

3) Mixture of Sub-Interaction Models in NDPM: 1t is also
possible to mix different types of sub-interaction models in a
network. That is, we can use different models for each of the
sub-interactions. For example, we can apply an MOHMM for
a Meet sub-interaction and MFHMMs for the rest, reflecting
the fact that the temporal pattern of Meet is relatively simpler
than that of the others. In the following experiment, we
build a number of NDPMs by considering all the possible
combinations of dynamic probabilistic models used in the
previous experiment, i.e., six different types of models for five
sub-interactions, in total 3¢ different NDPMs. A combination
of FHMM for Follow, MOHMM for Meet, and MFHMMs
for the rest as presented in Fig. 10 resulted in the highest
recognition of 98.18%, correctly classifying 54 out of the 55
video sequences.

4) Test on Tsinghua University’s Dataset: We conduct
experiments on a subset of the Tsinghua University’s dataset
[17], made available to us (44 video clips captured by a single
static camera). The interactions are (TU-I) two persons walk
in opposite direction and pass by, (TU-II) two persons run
in opposite direction and pass by, (TU-III) two persons walk
and approach from opposite directions and when meeting,
they stand and chat and then resume walking in their initial
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TABLE IV

PERFORMANCE COMPARISON WITH COMPETING METHODS IN THE LITERATURE ON IN-HOUSE DATABASE

MOHMM | PaHMM | CHMM | ODHMM | FHMM | MFHMM | NDPM
[19] [43] 91 [10] [38]
Recognition rate (%) 82.22 68.89 75.56 80 66.67 75.56 87.63

941

Follow

Gologether
Fig. 10. Mixture of dynamic probabilistic models, FHMM for Follow,

MOHMM for Meet, and MFHMMs for the rest, in a network which gave
the best performance on the dataset.

o
Interaction TU-I Interaction TU-11

Interaction TU-111 Interaction TU-1V

Fig. 11. Representative frames for the four interactions in Tsinghua Univer-
sity’s dataset [17].
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Fig. 12. Performance comparison of the proposed NDPM with competing
methods in the literature on Tsinghua University’s dataset [17].

directions, (TU-IV) two persons approach and meet, one
puts an objects on the ground and goes away, and after a
short while, the other takes the object and goes away. The
representative frames for each of the four interactions are
presented in Fig. 11. Based on the characteristics of subjects’
trajectories in the video clips, we consider the TU-III as
Approach + Meet + GoSeparately, and TU-I and TU-II as
Approach + PassBy. In the case of TU-IV, two out of the 12
video clips belong to Approach + Meet + GoSeparately and the
rest belong to Approach + PassBy. We ignore the intervention
of an object, otherwise our sub-interaction models would need
to be redesigned with appropriate features.

For recognition, we exploit the sub-interaction models
trained on our self-collected dataset. Fig. 12 summarizes
the performance of the proposed method and the competing
methods. Except for the NDPM, each model represented a
whole interaction using a single model. The proposed NDPM
with MFHMMs for sub-interactions showed the highest per-
formance among the seven different models; the proposed
model correctly classifies all the video clips in the Tsinghua
University’s dataset.

Likelihood

—— Fallow
—&— Approach
—— \feet
—&— GoTogether
" " —— GoSeparately / PassBy
15 20 25 k)
Time = (Frame number-218)/12

(b)

)
5 1

=]

Fig. 13. Results on the interaction Approach + Meet + GoTogether in the
CAVIAR dataset [30]. (a) Approach + Meet + GoTogether interaction in
CAVIAR dataset [30]: motion trajectories of two subjects (middle), input
frame sequences (top and bottom), and the time instants (red dotted circles) at
which new sub-interactions begin to occur. The online color version provides
a clearer view. (b) Temporal evolution of sub-interaction models’ likelihoods.

5) Test on CAVIAR Dataset: We also apply our method
to the people/groups meeting, walking together, and splitting
up sequences in the CAVIAR project [30]. We again utilize
the sub-interaction models trained on our self-collected dataset
without any modification for the recognition and analysis of
the CAVIAR dataset.

Because there are only three video clips in CAVIAR, which
have similar interactions to our database, we do not com-
pare the performances of different models, but only present
the results obtained by the proposed NDPM with MFH-
MMs for sub-interactions. The first result is from the Meet-
WalkTogether2.mpeg video clip (see Fig. 13), which shows that
the proposed NDPM responds well to the change in subjects’
motion trajectories. Since two of the three video clips include
the same kind of interaction, we demonstrate the result for
one of them. In Fig. 13, the two subjects a and b stayed at the
same position for a while between the 374th and 410th frame.
Then they walked together in the same direction. But around
the 506th frame, subject b suddenly changed his/her direction
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Fig. 14. Representing a new interaction by minimally adding paths to
the trained NDPM. (a) Frame sequences of the interaction Approach +
GoTogether + GoSeparately in the CAVIAR dataset [30]. (b) Modified NDPM
for recognition and analysis of a new interaction (not available during training
the model based on the self-collected dataset) in the CAVIAR dataset [30].
The dotted red arcs allow us to represent the new interaction making a cyclic
path in the network. (c) Temporal evolution of likelihood of sub-interaction
models in the modified NDPM.

and went a different way, which caused the subject to become
distant from subject a. This fact is reflected in the temporal
evolution of the likelihood of sub-interaction models between
time instants 24 and 27 in Fig. 13(b). We should mention that
the ticks in the time-axis do not match the real frame numbers,
because we plotted the figure with the likelihood computed
every 12 frames for clarity of presentation.

The second result is from the Meet-WalkSplit.mpeg video
clip. This video clip contains the interaction Approach + Go-
Together + GoSeparately; the corresponding frame sequences
are shown in Fig. 14(a) for every 20th frame. This interaction
is not defined in our interaction scenarios and therefore, it
cannot be recognized correctly with the current NDPM shown
in Fig. 2, but with MFHMMs instead of the standard HMMs.
However, we can accommodate this new interaction by simply
adding new paths from the network node /; to the GoTogether
model and E to GoSeparately model. The resulting NDPM is
shown in Fig. 14(b), where the broken red arcs make a path
of the successive occurrence of GoTogether and GoSeparately
allowing a cyclic traverse. The change in the likelihood for
each sub-interaction model is shown in Fig. 14(c), where the

009%000090

Likelihood

0.5 =@ Approach |
=== Meet
o = Go-Tagether 1
—&— Go-Separately\Pass-By
o 5 10 15 20 25 30 35 40 45 50

Fig. 15. Trajectories of two subjects in a file track.Jun08.txt of the EIFP
database. The vertical dotted lines denote the time points that segment
two consecutive sub-interactions. (a) View of the scene, (b) Follow, (c)
GoTogether, (d) GoSeparately, and (e) temporal evolution of likelihoods of
sub-interaction models in the NDPM of Fig. 14(b).

ticks in the time-axis do not match the frame numbers due to
computation performed every seventh frame.

The fact that we can represent a new interaction without
any modification or retraining of the sub-interaction models
is one of the strong points of the proposed method. If sub-
interactions not contained in the current NDPM are included
in new interactions, we only need to learn those ones. The
new interactions can then be recognized by incorporating the
newly trained sub-interaction models into the NDPM with
appropriate arcs. The reusability of the sub-interaction models
for recognition of new interactions is another feature of the
proposed method.

6) Test on Edinburgh Informatics Forum Pedestrian (EIFP)
Dataset: Our final experiment was performed on the EIFP
database [44] that consists of a set of detected targets of
people walking through the Informatics Forum at the Uni-
versity of Edinburgh from the videos captured by a camera
fixed overhead approximately 23 m above the ground [45]. A
view of the scene and one of the sample video sequences
detected by the proposed method is presented in Fig. 15.
For the detection of the interaction Follow + GoTogether
+ GoSeparately the NDPM designed in Fig. 14(b) is used.
Similar to our earlier experiments, the likelihoods of sub-
interaction models of Follow, GoTogether, and GoSeparately
responded well to the observations showing high likelihoods
in the corresponding time points.
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IV. CONCLUSION AND FUTURE RESEARCH

Understanding and analyzing human behavior in video is
one of the challenging issues in computer vision. Vision-based
surveillance systems have received a lot of interest and many
studies have been conducted on understanding human-centric
events in video sequences.

In this paper, we are concerned with analyzing various
scenarios of person-to-person interactions based on the tra-
jectories of human subjects. The primary contribution of this
paper is the development of a novel framework, i.e., a NDPM,
to represent complex interaction patterns. By representing
complex patterns with a sequence of simple sub-interaction
models and independently building these models, we can
greatly reduce the computational complexity of the model
and simplify the training problem. One of the advantages
of the proposed method is that it can be extended to in-
corporate new interaction patterns, not seen during training,
by minimally adding extra sub-interaction models and arcs.
Furthermore, it is also possible to inject different types of
dynamic probabilistic models for different sub-interactions in
a network. That is, a standard HMM for one sub-interaction
and a dynamic Bayesian network for another sub-interaction
can be linked together in a network to represent interactions
which include those sub-interactions. We also proposed a one-
pass DP search [36] based inference algorithm for NDPM. In
the proposed NDPM, it is natural to build a cyclic model to
represent repetitive sub-interactions in a complex interaction
without increasing the computational cost and redesigning the
interaction models. While moving from an acyclic model to a
cyclic model can be considered easy in terms of a graphical
representation, when it comes to inference it is a challenging
problem in machine learning. We have demonstrated the
capability of the proposed NDPM in modeling cyclic patterns
based on the experiments on the CAVIAR [30] and EIPF
dataset [44]. Another feature of the method is the modified
FHMM which characterizes the dynamic patterns by dividing
observations into independent and shared components.

In our experiments with self-collected 75 video sequences,
with 15 sequences per interaction, the proposed methods
provided an average recognition rate of 87.82%, outperforming
five other models proposed in the literature. Unlike previous
methods, the proposed NDPM could combine different types
of dynamic probabilistic models for different sub-interactions
resulting in a mixture model. We also demonstrated the
effectiveness and robustness of the proposed method by ana-
lyzing the internal organization of the NDPM and successfully
applying our approach to Tsinghua University’s dataset [17],
the public CAVIAR dataset [30], and the EIFP dataset [44]
with no retraining of the model that was trained on our self-
collected interaction sequences.

Even though the scenarios considered in this paper are
relatively simpler than encountered in real situations, we
believe they provide elementary and necessary components
for the understanding and interpretation of more complex
human interactions in a visual surveillance task. Furthermore,
it is possible to apply the proposed NDPM for detection of
interested events or actions from a continuous video sequence.
For instance, it can be used to detect person-to-person contact

or secret rendezvous in a huge amount of video streams.
The proposed method can be used in other domains. Sports
video analysis [46] is one of the potential applications. The
proposed method can be used in a system for summarization
or classification of a play sequence into predefined tactical
patterns and recognition of unknown patterns based on the
analysis of players’ movement in sports videos.

Limitations of the proposed approach are that it can only
recognize and analyze predefined interactions and the pro-
posed NDPM requires a priori knowledge about the structure
of patterns which we want to model. It may be desirable
to automatically build an NDPM which represents various
interactions or, more generally, events occurring in various
environments based on a large dataset. A data-driven method
of creating an NDPM will be the focus of our future work.
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