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Abstract —Multiple kernel learning (MKL) is a principled approach for selecting and combining kernels for a given
recognition task. A number of studies have shown that MKL is a useful tool for object recognition, where each image is
represented by multiple sets of features and MKL is applied to combine different feature sets. We review the state-of-the-art
for MKL, including different formulations and algorithms for solving the related optimization problems, with the focus on their
applications to object recognition. One dilemma faced by practitioners interested in using MKL for object recognition is that
different studies often provide conflicting results about the effectiveness and efficiency of MKL. To resolve this, we conduct
extensive experiments on standard datasets to evaluate various approaches to MKL for object recognition. We argue
that the seemingly contradictory conclusions offered by studies are due to different experimental setups. The conclusions
of our study are, (i) given a sufficient number of training examples and feature/kernel types, MKL is more effective for
object recognition than simple kernel combination (e.g., choosing the best performing kernel or average of kernels), and
(ii) among the various approaches proposed for MKL, the sequential minimal optimization, semi-infinite programming, and
level method based ones are computationally most efficient.

Index Terms —Multiple kernel learning, support vector machine, visual object recognition, convex optimization.
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1 INTRODUCTION

K ERNEL methods [1] have become popular in
computer vision, particularly for visual object

recognition. The key idea of kernel methods is to
introduce nonlinearity into the decision function
by mapping the original features to a higher di-
mensional space. Many studies [2], [3], [4] have
shown that nonlinear kernels, such as radial basis
functions (RBF) or chi-squared kernels, yield signif-
icantly higher accuracy for object recognition than
a linear classification model.

One difficulty in developing kernel classifiers is
to design an appropriate kernel function for a given
task. We often have multiple kernel candidates
for visual object recognition. These kernels arise
either because multiple feature representations are
derived for images, or because different kernel
functions (e.g., polynomial, RBF, and chi-squared)
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Fig. 1: The first row shows the surface graphs that
demonstrate the influence of different kernel combination
weights on the mean average precision score for three
different classes. Four examples from each class are given
in the second row.

are used to measure the visual similarity between
two images for a given feature representation. One
of the key challenges in visual object recognition
is to find the optimal combination of these kernels
for a given object class. This is the central question
addressed by Multiple Kernel Learning (MKL).

We motivate the use of MKL on a simple object
recognition problem. We create two kernels: one
based on color histogram and one based on texture
distribution in the image. We choose three object



classes (crocodile, snoopy, strawberry) from Caltech
101 dataset [5], each with 15 instances, and train
one-vs-all SVM for each of the three classes by
using different combinations of these two kernels.
To combine the kernels, we vary the combination
coefficients in the set {0, 0.2, 0.4, 0.6, 0.8, 1}. In Fig-
ure 1 we generate a heat map to represent classifi-
cation performance of different linear combinations
of the two kernels. We observe that the optimal
combination varies from one class to other. For
example, while texture based kernel is assigned a
higher coefficient for crocodile classification task,
color feature should be used with a higher weight
for the strawberry class. This simple example il-
lustrates the significance of identifying appropriate
combination of multiple kernels for recognizing a
specific class of visual objects. It also motivates
the need for developing automatic approaches for
finding the optimal combination of kernels from
training examples as there is no universal solution
for kernel combination that works well for all visual
object classes.

MKL has been successfully applied to a number
of tasks in computer vision. For instance, the win-
ning group in Pascal VOC 2010 object categoriza-
tion challenge [3] used MKL to combine multiple
sets of visual features. The best performance re-
ported on the Caltech 101 dataset was achieved by
learning the optimal combination of multiple ker-
nels [6]. Recent studies have also shown promising
performance of MKL for object detection [7].

There is a considerable amount of literature on
MKL. While many of the studies address the effi-
ciency and effectiveness of MKL methods [8], [9],
[10], [11], [12], [13], a large number of studies
focus on the application of MKL to different do-
mains [14], [7], [15]. Most published MKL studies
are limited in their scope in the sense that only
a small subset of MKL algorithms are compared
under a limited number of experimental conditions,
making it difficult to generalize their conclusions.

A lack of comprehensive studies has resulted
in different, sometimes conflicting, statements re-
garding the effectiveness of various MKL meth-
ods on real-world problems. For instance, some of
the studies [6], [22], [13], [8] reported that MKL
outperforms the average kernel baseline (assigning
equal weights to all the kernels) while other studies
made the opposite conclusion [30], [31], [24] (see
Table 1). Moreover, as Table 2 shows, there are also
some confusing results and statements about the

efficiency of different MKL methods. The problem
of having discordant conclusions drawn on the
empirical performance of different MKL methods
motivated us to write this review article. Besides
summarizing the latest developments in MKL and
its application to visual object recognition, an im-
portant contribution of this paper is to resolve the
conflicting statements by conducting a comprehen-
sive evaluation of state-of-the-art MKL algorithms
under various experimental conditions. In this sur-
vey, we focus on visual object recognition because
among all the applications of MKL in computer
vision, it is in object recognition domain that MKL
has been reported to achieve the greatest success.

The main contributions of this survey are:

• A review of a wide range of MKL formulations
that use different regularization mechanisms,
and the related optimization algorithms.

• A comprehensive study that evaluates and
compares a representative set of MKL algo-
rithms for visual object recognition under dif-
ferent experimental settings.

• An exposition of the conflicting statements
regarding the performance of different MKL
methods, particularly for visual object recog-
nition. We attempt to understand these state-
ments and determine to what degree and un-
der what conditions these statements are cor-
rect.

There does exist a survey of MKL published
in 2011 [32]. However, the focus of our work is
very different from [32]. First, while [32] provides a
general review of MKL, we choose to focus on the
application of MKL to visual object recognition, a
task where MKL has shown great success. Second,
while the empirical studies in [32] are based on
small UCI datasets and focus on comparing differ-
ent MKL formulations, we conduct experiments on
significantly larger object recognition datasets.

2 OVERVIEW

In this section we give an overview of multiple
kernel learning. We also briefly describe visual
object recognition task as an application of MKL.

2.1 Overview of Multiple Kernel Learning (MKL)

MKL was first proposed in [33], where it was cast
into a Semi-Definite Programming (SDP) problem.
Most studies on MKL are centered around two is-
sues, (i) how to improve the classification accuracy
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TABLE 1: Comparison of MKL baselines and simple baselines (“Single” for single best performing kernel and “AVG”
for the average of all the base kernels) in terms of classification accuracy. The last three columns give the references
in which either “method1” or “method2” performs better, or both methods give comparable results, respectively.

method1 method2 dataset # samples # kernels method1 better method2 better similar

MKL Single UCI [1-6,000] [1-10] [16], [17] [18], [19]
MKL Single UCI [1-2,000] [10-200] [16], [17] [20] [20]

L1-MKL AVG Caltech 101 [510-3,060] [10-1,000] [21], [22] [23],[24] [25], [13]
L1-MKL AVG VOC07 5011 [10-22] [22], [13] [26]
L1-MKL AVG Oxford Flowers 680 [5-65] [25], [23]
Lp-MKL AVG VOC07 5011 10 [26]
Lp-MKL AVG Caltech 101 [1,530-3,060] [24-1,000] [13] [24]
Lp-MKL AVG Oxford Flowers 680 [5,65] [13]
L1-MKL Lp-MKL UCI [1-2,000] [1-50] [27] [28], [8] [29]
L1-MKL Lp-MKL VOC07 5011 [10-22] [26],[13]
L1-MKL Lp-MKL Caltech 101 [510-3,060] [10-1,000] [24] [13]

of MKL by exploring different formulations, and
(ii) how to improve the learning efficiency of MKL
by exploiting different optimization techniques (see
Fig. 2).

In order to learn an appropriate kernel combina-
tion, various regularizers have been introduced for
MKL, including L1 norm [34], Lp norm (p > 1)
[10], entropy based [30], and mixed norms [35].
Among them, L1 norm is probably the most pop-
ular choice because it results in sparse solutions
and could potentially eliminate irrelevant and noisy
kernels. In addition, theoretical studies [36], [37]
have shown that L1 norm will result in a small gen-
eralization error even when the number of kernels
is very large.

A number of empirical studies have compared
the effect of different regularizers used for MKL
[8], [38], [13]. Unfortunately, different studies arrive
at contradictory conclusions. For instance, while
many studies claim that L1 regularization yields
good performance for object recognition [11], [24],
others show that L1 regularization results in infor-
mation loss by imposing sparseness over MKL so-
lutions, thus leading to suboptimal performance [8],
[30], [38], [13], [39] (see Table 1).

In addition to a linear combination of base ker-
nels, several algorithms have been proposed to find
a nonlinear combination of base kernels [12], [28],
[44], [23], [45]. Some of these algorithms try to
find a polynomial combination of the base ker-
nels [12], [28], while others aim to learn an instance-
dependent linear combination of kernels [46], [47],
[6]. The main shortcoming of these approaches is
that they have to deal with non-convex optimiza-
tion problems, leading to poor computational ef-
ficiency and suboptimal performance. Given these

shortcomings, we will not review them in detail.

Despite significant efforts in improving the ef-
fectiveness of MKL, one of the critical questions
remaining is whether MKL is more effective than
a simple baseline, e.g., taking the average of the
base kernels. While many studies show that MKL
algorithms bring significant improvement over the
average kernel approach [8], [39], [48] , opposite
conclusions have been drawn by some other stud-
ies [30], [13], [31], [24]. Our empirical studies show
that these conflicting statements are largely due
to the variations in the experimental conditions,
or in other words, the consequence of a lack of
comprehensive studies on MKL.

The second line of research in MKL is to im-
prove the learning efficiency. Many efficient MKL
algorithms [34], [49], [43], [8], [30], [9], [44] have
been proposed, mostly for L1 regularized MKL,
based on the first order optimization methods. We
again observe conflicting statements in the MKL
literature when comparing different optimization
algorithms. For instance, while some studies [8],
[42], [41] report that the subgradient descent (SD)
algorithms [43] are more efficient in training MKL
than the semi-infinite linear programming (SILP)
based algorithm [50], an opposing statement was
given in [11]. It is important to note that besides
the training time, the sparseness of the solution also
plays an important role in computational efficiency:
both the number of active kernels and the number
of support vectors affect the number of kernel eval-
uations and, consequentially, computational times
for both training and testing. Unfortunately, most
studies focus on only one aspect of computational
efficiency: some only report the total training time
[30], [11] while others focus on the number of
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TABLE 2: Comparison of computational efficiency of MKL methods. The last three columns give the references,
where “method1” is better, “method2” is better, or both give similar results.

eval. criterion method1 method2 datasets # samples # kernels method1 better method2 better similar
training time L1-MKL Lp-MKL Mediamill 30,993 3 [40]
training time MKL-L1 Lp-MKL UCI [1-2,000] [90-800] [30]
training time MKL-SD MKL-SIP UCI datasets [1-2,000] [50-200] [41],[42],[43],[8]
training time MKL-SD MKL-SIP Oxford Flowers 680 [5-65] [25]

# active kernels MKL-SD MKL-SIP UCI datasets [1-2,000] [50-200] [41],[42],[43]
training time MKL-SD MKL-MD Oxford Flowers 680 [5-65] [23]
training time MKL-SD MKL-MD Caltech 101 3,060 9 [22]
training time MKL-SD MKL-MD VOC07 5,011 22 [22]
training time MKL-SD MKL-Level UCI datasets [1-2,000] [50-200] [42]

# active kernels MKL-SD MKL-Level UCI datasets [1-2,000] [50-200] [42]
training time MKL-SIP MKL-Level UCI datasets [1-2,000] [50-200] [42]

# active kernels MKL-SIP MKL-Level UCI datasets [1-2,000] [50-200] [42]

support vectors (support set size) [47], [8]. An-
other limitation of the previous studies is that they
are mostly constrained to small datasets (around
1,000 samples) and limited number of base kernels
(10 to 50), making it difficult to draw meaningful
conclusions on the computational efficiency. One
goal of this article is to provide a comprehensive
examination of computational efficiency for MKL
from the viewpoints of training time and solution
sparseness.

2.2 Relationship to the Other Approaches

Multiple kernel learning is closely related to feature
selection [51], where the goal is to identify a subset
of features that are optimal for a given prediction
task. This is evidenced by the equivalence between
MKL and group lasso [52], a feature selection
method where features are organized into groups,
and the selection is conducted at the group level
instead of at the level of individual features.

MKL is also related to metric learning [53], where
the goal is to find a distance metric, or more gener-
ally a distance function, consistent with the class
assignment. MKL generalizes metric learning by
searching for a combination of kernel functions that
gives a larger similarity to any instance pair from
the same class than instance pairs from different
classes.

Finally, it is important to note that multiple ker-
nel learning is a special case of kernel learning.
In addition to MKL, another popular approach for
learning a linear combination of multiple kernels is
kernel alignment [54], which finds the optimal com-
bination of kernels by maximizing the alignment
between the combined kernel and the class assign-
ments of training examples. More generally, kernel
learning methods can be classified into two groups:

parametric and non-parametric kernel learning. In
parametric kernel learning, a parametric form is
assumed for the combined kernel function [55],
[56]. In contrast, nonparametric kernel learning
does not make any parametric assumption about
the target kernel function [57], [58], [54]. Multiple
kernel learning belongs to the category of para-
metric kernel learning. Despite its generality, the
high computational cost of non-parametric kernel
learning limits its applications to real-world prob-
lems. Aside from supervised kernel learning, both
semi-supervised and unsupervised kernel learning
have also been investigated [54], [56], [59]. We do
not review them in detail here because of their
limited success in practice and because of their high
computational cost.

2.3 Visual Object Recognition

The goal of visual object recognition is to determine
if a given image contains one or more objects be-
longing to the class of interest (without necessarily
locating the position of the object in the image). It
is a challenging task because of the large variations
in the visual appearance of objects from the same
class [60], [61] caused by viewpoint variation and
occlusion, articulation, background clutter, illumi-
nation, and pose change.

Among various approaches developed for visual
object recognition, the bag-of-words (BoW) model
is probably the most popular due to its simplicity
and success in practice. There are numerous options
for each step of the BoW model. In this section, we
will briefly state these steps and discuss the options
for each step that we use in our experiments to
construct the base kernels.

The first step of the BoW model is to detect key-
points or keyregions from images. Many algorithms
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have been developed for keypoint/region detec-
tion [62], [63], [64], each having its own strength
and weakness. For instance, although dense sam-
pling is shown to be superior to other techniques
for object recognition, it usually yields a large num-
ber of keypoints and might lead to high computa-
tional costs. To have a richer variety of representa-
tions, in our experiments we used Harris-Laplacian
[63] and canny-edge detector based keypoint de-
tection methods in addition to dense sampling.
The second step is to generate local descriptors
for the detected keypoints/regions. There is a rich
literature on local descriptors, among which scale
invariant feature transform (SIFT) [64] is, without
doubt, the most popular. Other techniques we use
in our experiments to improve the recognition per-
formance are local binary patterns (LBP) [65] and
histogram of oriented gradients (HOG) [66].

Given the computed descriptors, the third step
of the BoW model is to construct the visual vocab-
ulary. Both the dictionary size and the technique
used to create the dictionary can have significant
impact on the final recognition accuracy. In our
experiments, we use k-means clustering technique
to generate the dictionary. Given the dictionary, the
next step is to map each keypoint to a visual word
in the dictionary, a step that is often referred to as
the encoding module. Recent studies express a vast
amount of interest in the encoding step, resulting
in many alternatives to vector quantization (e.g.,
Fisher kernel representation [67]).

The last step of the BoW model is the pooling
step that pools encoded local descriptors into a
global histogram representation. Various pooling
strategies have been proposed for the BoW model
such as mean and max-pooling, two techniques that
we employ in our experiments. Studies [68] have
shown that it is important to take into account
the spatial layout of keypoints in the pooling step.
One common approach is to divide an image into
multiple regions and construct a histogram for
each region separately. A well known example of
this approach is spatial pyramid pooling [68] that
divides an image into 1× 1, 2× 2, and 4× 4 grids.

Besides the BoW model, many alternative image
features have been proposed for object recognition,
including GIST [69], color histograms, V1S+ [70]
and geometric blur [71]. As demonstrated in our
experiments, these techniques can be successfully
combined with the BoW model for a better image
representation. Given these additional alternatives

and the large number of ways for constructing the
BoW model, one critical issue in developing sta-
tistical models for visual object recognition is how
to effectively combine different image representa-
tions for accurate object recognition. MKL presents
a principled framework for combining multiple
image representations: it creates a base kernel for
each representation and finds the optimal kernel
combination via a linear combination of kernels.

3 MULTIPLE KERNEL LEARNING (MKL):
FORMULATIONS

In this section, we first review the theory of multi-
ple kernel learning for binary classification. We then
discuss MKL for multi-class multi-label learning.

3.1 MKL for Binary Classification

Let D = {x1, . . . ,xn} be a collection of n training
instances, where X ⊆ R

d is a compact domain.
Let y = (y1, . . . , yn)

> ∈ {−1,+1}n be the vec-
tor of class assignments for the instances in D.
We denote by {κj(x,x

′) : X × X 7→ R, j =
1, . . . , s} the set of s base kernels to be combined.
For each kernel function κj(·, ·), we construct a
kernel matrix Kj = [κj(xi,xi′)]n×n by applying
κj(·, ·) to the training instances in D. We denote
by β = (β1, . . . , βs)> ∈ R

s
+ the set of coefficients

used to combine the base kernels, and denote
by κ(x,x′;β) =

∑s

j=1
βjκj(x,x

′) and K(β) =∑s

j=1
βjKj the combined kernel function and ker-

nel matrix, respectively. We further denote by Hβ

the Reproducing Kernel Hilbert Space (RKHS) en-
dowed with the combined kernel κ(x,x′;β). In
order to learn the optimal combination of kernels,
we first define the regularized classification error
L(β) for a combined kernel κ(·, ·;β), i.e.

L(β) = min
f∈Hβ

1

2
||f ||

2

Hβ
+ C

n∑

i=1

`(yif(xi)), (1)

where `(z) = max(0, 1 − z) is the hinge loss and
C > 0 is a regularization parameter. Given the regu-
larized classification error, the optimal combination
vector β is found by minimizing L(β), i.e.

min
β∈∆,f∈Hβ

1

2
||f ||

2

Hβ
+ C

n∑

i=1

`(yif(xi)) (2)

where ∆ is a convex domain for combination
weights β that will be discussed later. As in [33],
the problem in (2) can be written into its dual form,
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leading to the following convex-concave optimiza-
tion problem

min
β∈∆

max
α∈Q
L̂(α,β) = 1>α−

1

2
(α ◦ y)>K(β)(α ◦ y),

(3)
where ◦ denotes the Hadamard (element-wise)
product, 1 is a vector of all ones, and Q = {α ∈
[0, C]n} is the domain for dual variables α.

The choice of domain ∆ for kernel coefficients
can have a significant impact on both classifica-
tion accuracy and efficiency of MKL. One common
practice is to restrict β to a probability distribu-
tion, leading to the following definition of domain
∆ [33], [34],

∆1 =



β ∈ R

s
+ : ‖β‖1 =

s∑

j=1

|βj | ≤ 1



 . (4)

Since ∆1 bounds ‖β‖1, we also refer to MKL using
∆1 as the L1 regularized MKL, or L1-MKL. The
key advantage of using ∆1 is that it will result in
a sparse solution for β, leading to the elimination
of irrelevant kernels and consequentially an im-
provement in computational efficiency as well as
robustness in classification.

The robustness of L1-MKL is verified by the
analysis in [36], which states that the additional
generalization error caused by combining multi-
ple kernels is O(

√
log s/n) when using ∆1 as the

domain for β, implying that L1-MKL is robust to
the number of kernels as long as the number of
training examples is not too small. The advantage
of L1-MKL is further supported by the equivalence
between L1-MKL and feature selection using group
Lasso [52]. Since group Lasso is proved to be effec-
tive in identifying the groups of irrelevant features,
L1-MKL is expected to be resilient to weak kernels.

Despite the advantages of L1-MKL, it was re-
ported in [40] that sparse solutions generated by
L1-MKL might result in information loss and con-
sequentially suboptimal performance. As a result,
Lp regularized MKL (Lp-MKL), with p > 1, was
proposed in [11], [10] in order to obtain a smooth
kernel combination, with the following definition
for domain ∆

∆p =
{
β ∈ R

s
+ : ||β||p ≤ 1

}
. (5)

Among various choices of Lp-MKL (p > 1), L2-
MKL is probably the most popular one [40], [31],
[10]. Other smooth regularizers proposed for MKL
include negative entropy (i.e.,

∑s

k=1
βk log βk) [30]

and Bregman divergence [9]. In addition, hybrid
approaches have been proposed to combine differ-
ent regularizers for MKL [15], [31], [72].

Although many studies compared L1 regulariza-
tion to smooth regularizers for MKL, the results are
inconsistent. While some studies claimed that L1

regularization yields better performance for object
recognition [11], [24], others show that L1 regular-
ization may result in suboptimal performance due
to the sparseness of the solutions [8], [30], [38],
[13], [39]. In addition, some studies reported that
training an L1-MKL is significantly more efficient
than training a L2-MKL [30], while others claimed
that the training times for both MKLs are compa-
rable [40].

A resolution to these contradictions, as revealed
by our empirical study, depends on the number of
training examples and the number of kernels. In
terms of classification accuracy, smooth regularizers
are more effective for MKL when the number of
training examples is small. Given a sufficiently
large number of training examples, particularly
when the number of base kernels is large, L1

regularization is likely to outperform the smooth
regularizers.

In terms of computation time, we found that
Lp-MKL methods are generally more efficient than
L1-MKL. This is because the objective function of
Lp-MKL is smooth while the objective function of
L1-MKL is not 1. As a result, Lp-MKL enjoys a
significantly faster convergence rate (O(1/T 2)) than
L1-MKL (O(1/T )) according to [73], where T is the
number of iterations. However, when the number
of kernels is sufficiently large and kernel combina-
tion becomes the dominant computational cost at
each iteration, L1-MKL can be as efficient as Lp-
MKL because L1-MKL produces sparse solutions.

One critical question that remains to be answered
is whether a linear MKL is more effective than sim-
ple approaches for kernel combination, e.g. using
the best single kernel (selected by cross validation)
or the average kernel method. Most studies show
that L1-MKL outperforms the best performing ker-
nel, although there are scenarios where kernel com-
bination might not perform as well as the single
best performing kernel [40]. Regarding the com-
parison of MKL to the average kernel baseline, the
answer is far from conclusive (see Table 1). While
some studies show that L1-MKL brings significant
improvement over the average kernel approach [8],

1. A function is smooth if its gradient is Lipschitz continuous
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[39], [48], other studies claim the opposite [30],
[13], [31], [24]. As revealed by the empirical study
presented in Section 5, the answer to this question
depends on the experimental setup. When the num-
ber of training examples is not sufficient to identify
the strong kernels, MKL may not perform better
than the average kernel approach. But, with a large
number of base kernels and a sufficiently large
number of training examples, MKL is very likely
to outperform, or at least yield similar performance
as, the average kernel approach.

Besides the linear kernel combination, several
algorithms have been proposed to learn the nonlin-
ear combination of multiple kernels from training
data [45], [28], [12], [17], [47], [6], [46]. We skip these
methods because of their limited success and high
computational cost.

3.2 Multi-class and Multi-label MKL

A straightforward approach for multi-label MKL
(ML-MKL) is to decompose a multi-label learning
problem into a number of binary classification tasks
using either one-versus-all (OvA) or one-versus-
one (OvO) approaches. Tang et al. [74] evaluated
three different strategies for multi-label MKL based
on the OvA and concluded that learning one com-
mon kernel combination shared by all classes not
only is efficient but also yields classification per-
formance that is comparable to choosing different
kernel combinations for different classes. This result
is further confirmed in [22]. The main advantage of
using the shared kernel combination is its compu-
tational efficiency. Although the assumption that all
classifiers share the same kernel combination may
not hold in general, it seems to work well for object
recognition according to the empirical study in [22].

4 MULTIPLE KERNEL LEARNING : OPTI-
MIZATION TECHNIQUES

A large number of algorithms have been proposed
to solve the optimization problems posed in (2) and
(3). We can broadly classify them into two cate-
gories. The first group of approaches directly solve
the primal problem in (2) or the dual problem in (3).
We refer to them as the direct approaches. The second
group of approaches, solves the convex-concave
optimization problem in (3) by alternating between
two steps, i.e., the step for updating the kernel com-
bination weights and the step for solving the SVM
classifier for the given combination weights. We

refer to them as the wrapper approaches. Fig. 2 sum-
marizes different optimization methods developed
for MKL. We note that due to the scalability issue,
almost all the MKL algorithms are based on the first
order method (i.e. iteratively updates the solution
based on the gradient of the objective function or
the most violated constraint). We refer the readers
to [42], [38], [75] for more discussion about the
equivalence or similarities among different MKL
algorithms.

4.1 Direct Approaches for MKL

Lanckriet et al. [33] showed that the problem in (2)
can be cast into Semi-Definite Programming (SDP)
problem, i.e.,

min
z∈Rn,β∈∆,t≥0

t/2 + C

n∑

i=1

max(0, 1− yizi)

s. t.

(
K(β) z

z> t

)
� 0 (6)

Although general-purpose optimization tools such
as SeDuMi [76] and Mosek [77] can be used to
directly solve the optimization problem in (6), they
are computationally expensive and are unable to
handle more than a few hundred training examples.

Besides directly solving the primal problem, sev-
eral algorithms have been developed to directly
solve the dual problem in (3). Bach et al. [16] pro-
pose to solve the dual problem using the technique
of sequential minimal optimization (SMO) [78].
In [30], the authors applied the Nesterov’s method
to solve the optimization problem in (3). Although
both approaches are significantly more efficient
than the direct approaches that solve the primal
problem of MKL, they are generally less efficient
than the wrapper approaches [34].

4.1.1 A Sequential Minimum Optimization (SMO)
based Approach for MKL

This approach is designed for Lp-MKL. Instead
of constraining ‖β‖p ≤ 1, Vishwanathan et al.
proposed to solve a regularized version of MKL in
[9], and converted it into the following optimization
problem,

max
α∈Q

1>α−
1

8λ

(
s∑

k=1

[
(α ◦ y)>Kk(α ◦ y)

]q
) 2

q

. (7)
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MKL algorithms
online methods

batch methods

direct methodswrapper methods

primal 
methods

dual methods

semi-infinite programming (SIP) subgradient descent (SD) level method

mirror descent (MD) alternating update methods

(+) Scales to number of samples

(-) May require many iterations to convergence

(-) Might not scale well to the number of kernels

(+) Generalizes the subgradient descent

(-) Has high computational cost at each 
iteration

(+) Have closed form solution

(-) Solutions obtained may be unstable

(+) Fast convergence

(-) High computational cost per iteration

(-) May not converge to global optimum

(+) Exploits all gradients from previous steps 
and regularizes the solution via projection to a 
level set

(-) Parameter selection for level set construction

(+) Optimize SVM and MKL 
parameters together

(-) Not efficient for L1-MKL

Fig. 2: A summary of representative MKL optimization schemes

It can be shown that given α, the optimal solution
for β is given by

βj =
γj
2λ

(
s∑

k=1

(
(α ◦ y)>Kk(α ◦ y)

)q
) 1

q
− 1

p

(8)

where γj =
(
(α ◦ y)>Kj(α ◦ y)

) q
p and q−1 + p−1 =

1. Since the objective given in (7) is differentiable,
a Sequential Minimum Optimization (SMO) ap-
proach [9] can be used.

4.2 Wrapper Approaches for MKL

The main advantage of the wrapper approaches
is that they are able to effectively exploit the off-
the-shelf SVM solvers (e.g., LIBSVM). Below, we
describe several representative wrapper approaches
for MKL, including a Semi-Infinite Programming
(SIP), a subgradient descent, a mirror-descend, and
an extended level approach.

4.2.1 A Semi-infinite Programming Approach for
MKL (MKL-SIP)

It was shown in [50] that the dual problem in (3)
can be cast into the following SIP problem:

min
θ∈R,β∈∆

θ (9)

s. t.
s∑

j=1

βj{α
>1−

1

2
(α ◦ y)>Kj(α ◦ y)} ≥ θ,

∀α ∈ Q

When we use the domain ∆1 for β, the problem
in (9) is reduced to a Semi-Infinite Linear Program-
ming (SILP) problem. To solve (9), we first initialize
the problem with a small number of linear con-
straints. We then solve (9) by alternating between
two steps: (i) finding the optimal β and θ with
fixed constraints, and (ii) finding the unsatisfied
constraints with the largest violation under the
fixed β and θ and adding them to the system. Note
that in the second step, to find the most violated
constraints, we need to solve the optimization prob-
lem

max
α∈Q

s∑

j=1

βjSj(α) = α>1−
1

2
(α ◦ y)>K(β)(α ◦ y),

a SVM problem using the combined kernel κ(·, ·;β)
that can be solved using off-the-shelf SVM solver.

4.2.2 Subgradient Descent Approaches for MKL
(MKL-SD & MKL-MD)
A popular wrapper approach for MKL is Sim-
pleMKL [43], which solves the dual problem in (3)
by a subgradient descent approach. The authors
turn the convex concave optimization problem in
(3) into a minimization problem min

β∈∆
J(β), where

the objective J(β) is defined as

J(β) = max
α∈Q
−
1

2
(α ◦ y)>K(β)(α ◦ y) + 1>α (10)

Since the partial gradient of J(β) is given by
∂βj

J(β) = 1 − 1

2
(α∗ ◦ y)>Kj(α

∗ ◦ y), j = 1, . . . , s,
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where α∗ is an optimal solution to (10), following
the subgradient descent algorithm, we update the
solution β by

β ← π∆ (β − η∂J(β))

where η > 0 is the step size determined by a line
search [43] and π∆(β) projects β into the domain
∆. Similar approaches were proposed in [12], [39].

A generalization of the subgradient descent
method for MKL is a mirror descent method (MKL-
MD) [23]. Given a proximity function w(β′,β), the
current solution βt and the subgradient ∂J(βt),
the new solution βt+1 is obtained by solving the
following optimization problem

βt+1 = argmin
β∈∆

η(β − βt)>∂J(βt) + w(βt,β), (11)

where η > 0 is the step size.
The main shortcoming of SimpleMKL arises from

the high computational cost of line search. It was
indicated in [8] that many iterations may be needed
by the line search to determine the optimal step
size. Since each iteration of the line search requires
solving a kernel SVM, it becomes computationally
expensive when the number of training examples
is large. Another subtle issue of SimpleMKL, as
pointed out in [43], is that it may not converge to
the global optimum if the kernel SVM is not solved
with high precision.

4.2.3 An Extended Level Method for MKL (MKL-
Level)

An extended level method is proposed for L1-
MKL in [42]. To solve the optimization problem
in (3), at each iteration, the level method first
constructs a cutting plane model gt(β) that pro-
vides a lower bound for the objective function
J(β). Given {βj}tj=1, the solutions obtained for
the first t iterations, a cutting plane model is
constructed as gt(β) = max1≤j≤t L(β,α

j), where
αj = argmaxα∈QL(β

j ,α). Given the cutting plane
model, the level method then constructs a level set
St as

St = {β ∈ ∆1 : gt(β) ≤ lt = λL̄t + (1− λ)Lt}, (12)

and obtain the new solution βt+1 by projecting βt

into St, where L̄t and Lt, the upper and lower
bounds for the optimal value L(β∗,α∗), are given
by Lt = min

β∈∆
gt(β) and L̄t = min

1≤j≤t
L(βj ,αj).

Compared to the subgradient-based approaches,
the main advantage of the extended level method is

that it is able to exploit all the gradients computed
in the past for generating new solutions, leading to
a faster convergence to the optimal solution.

4.2.4 An Alternating Optimization Method for MKL
(MKL-GL)

This approach was proposed in [43], [10] for L1-
MKL. It is based on the equivalence between group
Lasso and MKL, and solves the following optimiza-
tion problem for MKL

min
β ∈ ∆1

fj ∈ Hj

1

2

s∑

j=1

‖fj‖
2
Hj

βj

+ C

n∑

i=1

`


yi

s∑

j=1

fj(xi)


 (13)

To solve the optimization problem in (13), an
alternating optimization method was proposed in
in [43]. It alternates between two steps, i.e. the step
of optimizing fj under fixed β and the step of opti-
mizing β given fixed fj . The first step is equivalent
to solving a kernel SVM with a combined kernel
κ(·, ·;β), and the optimal solution in the second step
is given by

βk =
||fk||Hk∑s

k=1
||fk||Hk

(14)

It was shown in [8] that the above approach can be
extended to Lp-MKL.

4.3 Online Learning Algorithms for MKL

We briefly discuss online learning algorithms for
MKL. Online learning is computationally efficient
as it only needs to process one training example
at each iteration. In [79], the authors propose sev-
eral online learning algorithms for MKL that com-
bine the Perceptron algorithm [80] with the Hedge
algorithm [81]. More specifically, they apply the
Perceptron algorithm to update the classifiers for
the base kernels and the Hedge algorithm to learn
the combination weights. In [21], Jie et al. present
an online learning algorithm for MKL, based on
the framework of the follow-the-regularized-leader
(FTRL). One disadvantage of online learning for
MKL is that it usually yields suboptimal recogni-
tion performance compared to the batch learning
algorithms. As a result, we did not include online
MKL in our empirical study.
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4.4 Computational Efficiency

In this section we review the conflicting state-
ments in MKL literature about the computational
efficiency of different optimization algorithms for
MKL. First, there is no consensus on the efficiency
of the SIP based approach for MKL. While several
studies show a slow convergence of the SIP based
approach for MKL [48], [43], [42], [9], it was stated
in [75] that only a few iterations would suffice when
the number of relevant kernels is small. According
to our empirical study, the SIP based approach can
converge in a few iterations for Lp-MKL. On the
other hand, SIP based approach takes many more
iterations to converge for L1-MKL.

Second, several studies have evaluated the train-
ing time of SimpleMKL in comparison to the other
approaches for MKL, but with different conclu-
sions. In [8] MKL-SIP is found to be significantly
slower than SimpleMKL while the studies in [42],
[41] report the opposite.

The main reason behind the conflicting conclu-
sions is that the size of testbed (i.e. the number of
training examples and the number of base kernels)
varies significantly from one study to another (Ta-
ble 2). When the number of kernels and the num-
ber of training examples are large, calculation and
combination of the base kernels take a significant
amount of the computational load, while for small
datasets, the computational efficiency is mostly de-
cided by the iteration complexity of algorithms.
In addition, implementation details, including the
choice of stopping criteria and programming tricks
for calculating the combined kernel matrix, can also
affect the running time.

In terms of visual object recognition, our empir-
ical study shows that SimpleMKL is less efficient
than MKL-SIP. Although SimpleMKL requires a
smaller number of iterations, it takes significantly
longer time to finish one iteration than the other
approaches for MKL, due to the high computational
cost of the line search. Overall, we observed that
MKL-SIP is more efficient than the other wrapper
optimization techniques for MKL whereas MKL-
SMO is the fastest method for solving Lp-MKL.

5 EXPERIMENTS

Our goal is to evaluate the classification perfor-
mance of different MKL formulations and the ef-
ficiency of different optimization techniques for
MKL. We focus on MKL algorithms for binary
classification, and apply the one-versus-all (OvA)

strategy to convert a multi-label learning problem
into a set of binary classification problems, with one
binary classification problem for each class. Among
various formulations for MKL, we only evaluate
algorithms for L1 and Lp regularized MKL. As
stated earlier, we do not consider (i) online MKL
algorithms due to their suboptimal performance
and (ii) nonlinear MKL algorithms due to their high
computational costs.

The first objective of this empirical study is to
compare L1-MKL algorithms to the two simple
baselines of kernel combination mentioned in Sec-
tion 2.1, i.e., the single best performing kernel and
the average kernel approach. As already mentioned
in Section 2.1, there are contradictory statements
from different studies regarding the comparison
of MKL algorithms to these two baselines (Table
1). The goal of our empirical study is to examine
and identify the factors that may contribute to
the conflicting statements. The factors we consider
here include (i) the number of training examples
and (ii) the number of base kernels. The second
objective of this study is to evaluate the classifi-
cation performance of different MKL formulations
for visual object recognition. In particular, we will
compare L1-MKL to Lp-MKL with p = 2 and p = 4.
The final objective of this study is to evaluate the
computational efficiency of different optimization
algorithms for MKL. To this end, we choose six
representative MKL algorithms in our study (See
Section 5.2).

5.1 Datasets, Features and Kernels

Three benchmark datasets for object recognition are
used in our study: Caltech 101 [5], Pascal VOC 2007
[82], and a subset of ImageNet 2. All the exper-
iments conducted in this study are repeated five
times, each with an independent random partition
of training and testing data. Average classification
accuracies along with the associated standard de-
viation are reported.

Caltech 101 dataset has been used in many MKL
studies. It is comprised of 9, 146 images from 101
object classes and an additional class of “back-
ground” images. Caltech 101 is a single-labeled
dataset in which each image is assigned to one
object class. To obtain the full spectrum of classifi-
cation performance for MKL, we vary the number
of training examples per class (10, 20, 30). We con-
struct 48 base kernels (Table 3) for the Caltech 101

2. www.image-net.org
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dataset: 39 of them are built by following the proce-
dure in [25] and the remaining 9 are constructed by
following [49]. For all the features except the one
that is based on geometric blur, RBF kernel with χ2

distance is used as the kernel function [2]. For the
geometric blur feature, RBF kernel with the average
distance of the nearest descriptor pairs between two
images is used [49].

TABLE 3: Description of the 48 kernels built for the
Caltech-101 dataset.

Kernel Description Color # levels
indices Space for SPK

1-3 LBP [65] Gray 3
4 LBP (combined histogram) Gray 3

5-8 BOW with dense-SIFT (300 bins) HSV 4
9-12 BOW with dense-SIFT (1000 bins) Gray 4
13-16 BOW with dense-SIFT (1000 bins) HSV 4
17-18 Mean over 100 subwindows [24] Gray-HSV 1
19-22 BOW with dense-SIFT (300 bins) Gray 4
23-26 Canny edge detector + histogram of Gray 4

unoriented gradient feature (40 bins)
27-30 Canny edge detector + histogram of Gray 4

oriented gradient feature (40 bins) [83]
31,34, Product of kernels: {20 to 23}, 1
33,34 {24 to 27}, {16 to 19}, and {4 to 7}

35 V1S+ feature [70] Gray 1
36-38 Region covariance [84] Gray 3

39 Product of kernels 4 to 7 1
40 Geometric blur [71] Gray 1

41-43 BOW with dense-SIFT (300 bins) Gray 4
44-46 BOW with dense-SIFT (300 bins) HSV 4
47-48 BOW (300 visual words)[85] Gray 2

with self-similarity features

Pascal VOC 2007 dataset is comprised of 9, 963
images from 20 object classes. Unlike Caltech 101,
more than half of the images in VOC 2007 are
assigned to multiple classes. It is, a more challeng-
ing dataset than Caltech 101 because of the large
variations in object size, orientation, and shape, as
well as the occlusion problem. We vary the number
of training examples, by randomly selecting 1%,
25%, 50%, and 75% of images to form the training
set. Due to the different characteristics of the two
datasets, we choose a different set of image features
for VOC 2007. In particular, we follow [86] and
create 15 sets of features: (i) GIST features [69]; (ii)
six sets of color features generated by two different
spatial pooling layouts [68] (1 × 1 and 3 × 1) and
three types of color histograms (i.e. RGB, LAB, and
HSV). (iii) eight sets of local features generated
by two keypoint detection methods (i.e., dense
sampling and Harris-Laplacian [63]), two spatial
layouts (1× 1 and 3× 1), and two local descriptors
(SIFT and robust hue [87]). A RBF kernel with χ2

distance is applied to each of the 15 feature sets.
A Subset of ImageNet is used in [88] for eval-

uating object recognition. Following the protocol

in [88], we include in this dataset about 81, 738
images from ImageNet that belong to 18 cate-
gories of VOC 2007. This is significantly larger
than Caltech101 and VOC2007, making it possible
to examine the scalability of MKL methods for
object recognition. Both dense sampling and Harris-
Laplacian [63] are used for keypoint detection, and
SIFT is used as the local descriptor. We create
four BoW models by setting the vocabulary size
to be 1, 000 and applying two descriptor pooling
techniques (i.e. max-pooling and mean-pooling) to
a two level spatial pyramid kernel (i.e. 1 × 1 and
4×4 spatial partitionings). We also created six color
histograms by applying two pooling techniques (i.e.
max-pooling and mean-pooling) to three different
color spaces, namely RGB, LAB and HSV. In total,
ten kernels are created for the ImageNet dataset.
We note that the number of base kernels we con-
structed for the ImageNet dataset is significantly
smaller than the other two datasets because of
the significantly larger number of images in the
ImageNet dataset. The common practice for large
scale datasets has been to use a small number of
features/kernels for scalability concerns [88].

5.2 MKL Methods in Comparison

We divide the MKL methods of interest into two
groups. The first group consists of the two sim-
ple baselines for kernel combination, i.e., the av-
erage kernel method (AVG) and the best per-
forming kernel selected by the cross validation
method (Single). The second group includes seven
MKL methods designed for binary classification.
These are: GMKL [12], SimpleMKL [43], VSKL [44],
MKL-GL [8], MKL-Level [42], MKL-SIP [10], MKL-
SMO [9]. The difference between the two sub-
gradient descent based methods, SimpleMKL and
GMKL, is that SimpleMKL performs a golden sec-
tion search to find the optimal step size while
GMKL applies a simple backtracking method.

In addition to different optimization algorithms,
we have used both L1-MKL and Lp-MKL with
p = 2 and p = 4. For Lp-MKL, we apply MKL-
GL, MKL-SIP, and MKL-SMO to solve the related
optimization problems.

5.3 Implementation

To make a fair comparison, we follow [8] and
implement 3 all wrapper MKL methods within the

3. The code is available at http://www.cse.msu.edu/
∼bucakser/mkl.html
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framework of SimpleMKL using MATLAB, where
we used LIBSVM [89] as the SVM solver. For MKL-
SIP and MKL-Level, CVX [90] and MOSEK [77] are
used to solve the related optimization problems, as
suggested in [42].

The same stopping criteria is applied to all base-
lines. The algorithms are stopped when one of
the following criteria is satisfied: (i) the maximum
number of iterations (specified as 40 for wrapper
methods) is reached, (ii) the difference in the kernel
coefficients β between two consecutive iterations is
small (i.e., ||βt − βt−1||∞ < 10−4), (iii) the duality
gap drops below a threshold value (10−3).

The regularization parameter C is chosen with
a grid search over {10−2, 10−1, . . . , 104}. The band-
width of the RBF kernel is set to the average pair-
wise χ2 distance of images.

In our empirical study, all the feature vectors
are normalized to have the unit L2 norm before
they are used to construct the base kernels. Ac-
cording to [91] and [10], kernel normalization can
have a significant impact on the performance of
MKL. Various normalization methods have been
proposed, including unit trace normalization [91],
normalization with respect to the variance of ker-
nel features [10], and spherical normalization [10].
However, since almost no difference was observed
in the classification accuracy for all the methods in
comparative study when applying the above tech-
niques to normalize kernels, we will only report the
performance without using kernel normalization.

The experiments with varied numbers of kernels
on the ImageNet dataset were performed on a
cluster of Sun Fire X4600 M2 nodes, each with 256
GB of RAM and 32 AMD Opteron cores. All other
experiments were run on a different cluster, where
each node has two four-core Intel Xeon E5620s at
2.4 GHz with 24 GB of RAM. We pre-compute all
the kernel matrices and load the computed kernel
matrices into the memory. This allows us to avoid
re-computing and loading kernel matrices at each
iteration of optimization.

5.4 Classification Performance of MKL

We evaluate the classification performance by the
mean average precision (MAP) score. For a given
class, each image is given a score by the classifi-
cation method, and the images with scores higher
than the threshold are returned as relevant images
(i.e., images containing the objects from the given
class). By varying the threshold, we obtain different

sets of relevant images, each providing a value of
precision and recall. The MAP score is computed
based on the precision-recall pairs obtained by
varying the threshold. For convenience, we report
MAP score as a percentage number because the
maximum value for MAP is 1.

5.4.1 Experiment 1: Classification Performance
Table 4 summarizes the classification results for the
Caltech 101 dataset with 10, 20, and 30 training
examples per class. First, we observe that both the
MKL algorithms and the average kernel approach
(AVG) outperform the best base kernel (Single).
This is consistent with most of the previous studies
[49], [6] Compared to the average kernel approach,
we observe that the L1-MKL algorithms have the
worst performance when the number of training
examples per class is small (n = 10, 20), but sig-
nificantly outperform the average kernel approach
when n = 30. This result explains the seemingly
contradictory conclusions reported in the literature.
When the number of training examples is insuffi-
cient to determine the appropriate kernel combi-
nation, it is better to assign all the base kernels
equal weights. MKL becomes effective only when
the number of training examples is large enough to
determine the optimal kernel combination.

Next, we compare the performance of L1-MKL
to that of Lp-MKLs. We observe that L1-MKL
performs worse than Lp-MKLs (p = 2, 4) when
the number of training examples is small (i.e.,
n = 10, 20), but outperforms Lp-MKLs when
n = 30. This result again explains why conflicting
results were observed in different MKL studies
in the literature. Compared to Lp-MKL, L1-MKL
gives a sparser solution for the kernel combination
weights, leading to the elimination of irrelevant
kernels. When the number of training examples
is small, it is difficult to determine the subset of
kernels that are irrelevant to a given task. As a
result, the sparse solution obtained by L1-MKL
may be inaccurate, leading to a relatively lower
classification accuracy than Lp-MKL. L1-MKL be-
comes advantageous when the number of training
examples is large enough to determine the subset
of relevant kernels.

We observe that there is no significant difference
in the classification performance between different
MKL optimization techniques. This is not surpris-
ing since they solve the same optimization problem.
It is however interesting to note that although
different optimization algorithms converge to the
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TABLE 4: Classification results (MAP) for the Caltech 101
dataset. We report the average values over five random
splits and the associated standard deviation.

Number of training instances per class
Baseline Norm 10 20 30

Single 45.3 ± 0.9 55.2 ± 0.9 70.6 ± 0.9
Average 59.0 ± 0.7 69.7 ± 0.6 77.2 ± 0.5
GMKL p = 1 54.2 ± 1.1 64.1 ± 0.7 84.8 ± 0.7

SimpleMKL p = 1 53.6 ± 0.9 63.4 ± 0.6 84.6 ± 0.5
VSKL p = 1 53.9 ± 0.9 64.0± 0.6 85.3 ± 0.5

level-MKL p = 1 54.7 ± 1.0 63.4 ± 0.6 84.4 ± 0.4
MKL-GL p = 1 54.3 ± 1.0 64.7 ± 0.7 85.4 ± 0.4
MKL-GL p = 2 60.3 ± 0.6 70.7 ± 1.0 80.0 ± 0.6
MKL-GL p = 4 60.1 ± 0.7 70.7 ± 1.0 80.0 ± 0.6
MKL-SIP p = 1 53.8 ± 0.6 63.8 ± 0.9 83.9 ± 0.7
MKL-SIP p = 2 60.1 ± 0.6 70.7 ± 1.0 79.1 ± 0.6
MKL-SIP p = 4 59.4 ± 0.6 70.0 ± 1.0 77.5 ± 0.5

MKL-SMO p = 2 59.8 ± 0.5 69.7.0 ± 0.9 79.3 ± 0.9
MKL-SMO p = 4 59.6 ± 0.4 69.6 ± 0.7 79.0 ± 0.5

same solution, they could behave very differently
over iterations. In Fig. 3, we show how the clas-
sification performances of the L1-MKL algorithms
change over the iterations for three classes from
Caltech101 dataset. We observe that

• SimpleMKL converges in a smaller number of
iterations than the other L1-MKL algorithms.
Note that convergence in a smaller number of
iterations does not necessarily mean a shorter
training time, as SimpleMKL takes signifi-
cantly longer time to finish one iteration than
the other algorithms.

• The classification performance of MKL-SIP
fluctuates significantly over iterations. This is
due to the greedy nature of MKL-SIP as it
selected the most violated constraints at each
iteration of optimization.

Due to the space constraint, from now on, unless
specified, we will only report the results of one
representative method for both L1-MKL (Level-
MKL) and Lp-MKL (MKL-SIP, p = 2).

Table 5 shows the classification results for VOC
2007 dataset with 1%, 25%, 50%, and 75% of im-
ages used for training. These results confirm the
conclusions drawn from Caltech 101 dataset: MKL
methods do not outperform the simple baseline (i.e.
the best single kernel) when the number of train-
ing examples is small (i.e., 1%); the advantage of
MKL is obvious only when the number of training
examples is sufficiently large.

Finally, we compare in Table 6 the performance
of MKL to that of the state-of-the-art methods for
object recognition on the Caltech 101 and VOC
2007 datasets. For Caltech 101, we use the standard

TABLE 5: Classification results (MAP) for the VOC 2007
dataset. We report the average values over five random
splits and the associated standard deviation.

Percentage of the samples used for training
baseline 1% 25% 50% 75%

Single 23.4 ± 0.1 44.7 ± 0.8 48.6 ± 0.8 50.0 ± 0.8
Average 21.9 ± 0.5 48.2 ± 0.8 54.5 ± 0.8 57.5 ± 0.8
L1-MKL 23.5 ± 0.7 51.9 ± 0.4 57.4 ± 0.4 59.9 ± 0.9
L2-MKL 22.7 ± 0.4 49.8 ± 0.2 57.3 ± 0.2 60.6± 0.5

TABLE 6: Comparison with the state-of-the-art perfor-
mance for object classification on Caltech 101 (measured
by classification accuracy) and VOC 2007 datasets (mea-
sured by MAP).

Caltech 101 (30 per class)
This paper state-of-the-art

AVG : 77.09 [6]: 84.3
L1-MKL : 79.93 [92]: 81.9
L2-MKL : 77.94 [93]: 80.0

VOC 2007
This paper state-of-the-art

AVG: 55.4 [94]: 73.0
L1-MKL: 57.2 [95]: 63.5
L2-MKL: 57.4 [96]: 61.7

splitting formed by randomly selecting 30 training
examples for each class, and for VOC 2007, we
use the default partitioning. We observe that the
L1-MKL achieves similar classification performance
as the state-of-the-art approaches for the Caltech
101 dataset. However, for the VOC 2007 dataset,
the performance of MKL is significantly worse
than the best ones [94], [95]. The gap in the clas-
sification performance is because object detection
(localization) methods are utilized in [94], [95] to
boost the recognition accuracy for the VOC 2007
dataset but not in this paper. We also note that
the authors of [96] get a better result by using
only one strong and well-designed (Fisher vector)
representation compared to the MKL results we
report. Interested readers are referred to [96], which
provides an excellent empirical study on how the
different steps of the BoW model can affect the
classification results. Note that the performance of
MKL techniques can be improved further by using
the different and stronger options discussed in [96].

5.4.2 Experiment 2: Number of Kernels vs Classi-
fication Accuracy
In this experiment, we examine the performance
of MKL methods with increasing numbers of base
kernels. To this end, we rank the kernels in the
descending order of their weights computed by L1-
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Fig. 3: Mean average precision (MAP) scores of different L1-MKL methods vs number of iterations.

MKL, and measure the performance of MKL and
baseline methods by adding kernels sequentially
from the ranking list. The number of kernels is
varied from 2 to 48 for the Caltech 101 dataset
and from 2 to 15 for VOC 2007 dataset. Figs. 4
and 5 summarizes the classification performance
of MKL and baseline methods as the number of
kernels is increased. We observe that when the
number of kernels is small, all the methods are able
to improve their classification performance with
increasing number of kernels. But, the performance
of average kernel and L2-MKL starts to drop as
more and more weak kernels (i.e. kernels with
small weights computed by L1-MKL) are added. In
contrast, we observe a performance saturation for
L1-MKL after five to ten kernels have been added.
We thus conclude that L1-MKL is more resilient
to the introduction of weak kernels than the other
kernel combination methods.
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Fig. 4: The change in MAP score with respect to the
number of base kernels for the Caltech 101 dataset.

5.5 Computational Efficiency

To evaluate the learning efficiency of MKL algo-
rithms, we report the training time for the simula-
tions with different numbers of training examples
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Fig. 5: The change in MAP score with respect to the
number of base kernels for the VOC 2007 dataset.

and base kernels. Many studies on the computa-
tional efficiency of MKL algorithms focused on the
convergence rate (i.e. number of iterations) [42],
which is not necessarily the deciding factor in de-
termining the training time. For instance, according
to Fig. 3, although SimpleMKL requires a smaller
number of iterations to obtain the optimal solution
than the other L1-MKL approaches, it is signifi-
cantly slower in terms of running time than the
other algorithms because of its high computational
cost per iteration. Thus, besides the training time,
we also examine the sparseness of the kernel coef-
ficients, which can significantly affect the efficiency
of both training and testing.

5.5.1 Experiment 4: Evaluation of Training Time

We first examine how the number of training ex-
amples affect the training time of the wrapper
methods. Table 7 summarizes the training time of
different MKL algorithms for Caltech 101 dataset
and VOC 2007 datasets. We also include in the
table the number of iterations and the time for
computing the combined kernel matrices. We did
not include the time for computing kernel matrices
because it is shared by all the methods. We draw
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the following observations from Table 7:

• The Lp-MKL methods require a considerably
smaller number of iterations than the L1-MKL
methods, indicating they are computationally
more efficient. This is not surprising because
Lp-MKL employs a smooth objective function
that leads to more efficient optimization [73].

• Since a majority of the training times is
spent on computing combined kernel matrices,
the time difference between different L1-MKL
methods is mainly due to the sparseness of
their intermediate solutions. Since MKL-SIP
yields sparse solutions throughout its opti-
mization process, it is the most efficient wrap-
per algorithm for MKL. Although SimpleMKL
converges in a smaller number of iterations
than the other L1-MKL methods, it is not as ef-
ficient as the MKL-SIP method because it does
not generate sparse intermediate solutions.

In the second set of experiments, we evaluate
the training time as a function of the number of
base kernels. For both Caltech 101 and VOC 2007
datasets, we choose 15 kernels with the best classifi-
cation accuracy, and create 15, 30, and 60 kernels by
simply varying the kernel bandwidth (i.e., from 1
times, to 1.5 and 2 times the average χ2 distance).
The number of training examples is set to be 30
per class for Caltech 101 and 50% of images are
used for training for VOC 2007. Table 8 summarizes
for different MKL algorithms, the training time, the
number of iterations, and the time for computing
the combined kernel matrices. Overall, we observe
that Lp-MKL is still more efficient than L1-MKL,
even when the number of base kernels is large.
But the gap in the training time between L1-MKL
and Lp-MKL becomes significantly smaller for the
MKL-SIP method when the number of combined
kernels is large. In fact, for the Caltech 101 dataset
with 108 base kernels, MKL-SIP for L1-MKL is
significantly more efficient than MKL-SIP for Lp-
MKL (p > 1). This is because of the sparse solution
obtained by MKL-SIP for L1-MKL, which leads to
less time on computing the combined kernels than
MKL-SIP for Lp-MKL, as indicated in Table 8.

As discussed in Section 5.3, we cannot compare
MKL-SMO directly with the other baselines in
terms of training times since they are not coded
in the same platform. Instead, we use the code
provided by the authors of MKL-SMO [9] to com-
pare it to the C++ implementation of MKL-SIP,
the fastest wrapper approach, which is available

TABLE 9: Comparison of training time between MKL-
SMO and MKL-SIP

Number of training samples
Caltech 101 n = 10 n = 20 n = 30

MKL-SIP 3.6 ±0.2 6.5± 0.3 11.8 ± 0.7
MKL-SMO 0.2 ±0.1 2.3 ± 0.2 3.8 ± 0.5

VOC 2007 25% 50% 75%

MKL-SIP 15.5 ± 1.6 145.6 ± 3.9 360.7 ± 8.4
MKL-SMO 3.5 ± 0.7 14.2± 1.8 33.1± 3.0

Number of base kernels
Caltech 101 K = 48 K = 63 K = 108

MKL-SIP 6.5 ± 0.3 13.6 ± 2.9 19.8 ± 3.4
MKL-SMO 2.3 ± 0.2 3.2± 0.8 6.3± 1.0

VOC 2007 K = 15 K = 30 K = 75

MKL-SIP 145.6 ± 3.9 542.0 ± 32.8 1412.1 ± 63.4
MKL-SMO 14.2 ± 1.8 29.1± 2.8 77.8± 10.3

within the Shogun package [97]. We fix p = 2,
vary the number of training samples for a fixed
number of kernels (48 for Caltech 101 and 15 for
VOC 2007) and the number of base kernels for
a fixed number of samples (2040 for Caltech 101
and 5011 for VOC 2007). Table 9 shows that MKL-
SMO is significantly faster than MKL-SIP on both
datasets, demonstrating the advantage of a well-
designed direct MKL optimization method against
the wrapper approaches for Lp-MKL. We finally
note that MKL-SMO cannot be applied to L1-MKL
which often demonstrates better performance with
a modest number of training examples.

5.5.2 Experiment 5: Evaluation of Sparseness
We evaluate the sparseness of MKL algorithms by
examining the sparsity of the solution for kernel
combination coefficients. In Figs. 6 and 7, we show
how the size of active kernel set (i.e., kernels with
non-zero combination weights) changes over the
iterations for MKL-SIP with three types of regular-
izers: L1-MKL, L2-MKL and L4-MKL. Note that it
is difficult to distinguish the results of L2-MKL and
L4-MKL from each other as they are identical.

As expected, L1-MKL method produces signifi-
cantly sparser solutions than Lp-MKL. As a result,
although Lp-MKL is more efficient for training
because it takes a smaller number of iterations to
train Lp-MKL than L1-MKL, we expect L1-MKL to
be computationally more efficient for testing than
Lp-MKL as most of the base kernels are eliminated
and need not to be considered.

5.6 Large-scale MKL on ImageNet

To evaluate the scalability of MKL, we perform
experiments on the subset of ImageNet consisting
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TABLE 7: Total training time (secs), number of iterations, and total time spent on combining the base kernels (secs)
for different MKL algorithms vs number of training examples for the Caltech 101(left) and VOC 2007 datasets (right).

Caltech 101 dataset
10 training instances per class

baseline training #iter KerComb
GMKL-L1 34.6 ± 8.6 38.4 ± 2.0 27.9 ± 7.7

SimpleMKL-L1 55.7 ± 25.3 17.2 ± 6.8 46.1 ± 22.0
VSKL-L1 14.1 ± 2.3 38.3 ± 4.3 11.1 ± 1.7

MKL-GL-L1 21.9 ± 0.8 40.0 ± 0.0 19.5 ± 0.8
MKL-GL-L2 5.3 ± 0.6 8.8 ± 1.0 4.8 ± 0.6
MKL-GL-L4 3.5 ± 0.2 5.9 ± 0.4 3.2 ± 0.2

MKL-Level-L1 8.0 ± 2.3 33.0 ± 9.5 5.5 ± 1.4
MKL-SIP-L1 5.4 ± 0.9 39.4 ± 2.6 2.1 ± 0.3
MKL-SIP-L2 3.8±1.2 5.6±0.9 2.4±1.1
MKL-SIP-L4 3.3±0.6 4.4±0.5 1.8±0.6

30 training instances per class
baseline training #iter KerComb

GMKL-L1 256.7 ± 47.7 38.6 ± 1.8 212.5 ± 42.3
SimpleMKL-L1 585.6 ± 204.7 19.0 ± 7.5 494.4 ± 174.7

VSKL-L1 121.9 ± 22.4 36.6 ± 5.1 103.5 ± 17.7
MKL-GL-L1 197.1 ± 9.1 39.8 ± 1.0 178.3 ± 8.5
MKL-GL-L2 50.8 ± 5.6 9.3 ± 1.0 46.3 ± 5.2
MKL-GL-L4 32.5 ± 1.6 5.9 ± 0.3 29.6 ± 1.5

MKL-Level-L1 63.3 ± 22.1 27.5 ± 11.1 47.9 ± 14.9
MKL-SIP-L1 44.3 ± 6.1 39.7 ± 2.9 23.2 ± 2.7
MKL-SIP-L2 30.4±4.2 6.3±1.0 25.2±3.9
MKL-SIP-L4 22.6±2.6 4.7±0.5 18.2±2.1

VOC 2007 dataset
2500 training instances

baseline training #iter KerComb
GMKL-L1 117.6 ± 16.3 39.0 ± 0.0 67.4 ± 7.7

SimpleMKL-L1 175.1 ± 77.4 16.7 ± 7.3 112.9 ± 48.3
VSKL-L1 45.2 ± 6.1 37.0 ± 3.4 25.3 ± 2.2

MKL-GL-L1 62.6 ± 4.7 40.0 ± 0.0 43.5 ± 0.6
MKL-GL-L2 14.5 ± 1.3 9.3 ± 0.6 10.2 ± 0.7
MKL-GL-L4 8.0 ± 0.8 5.2 ± 0.4 5.6 ± 0.5

MKL-Level-L1 40.1 ± 10.8 35.0 ± 7.7 20.2 ± 4.0
MKL-SIP-L1 34.6 ± 6.8 39.9 ± 0.5 12.7 ± 1.4
MKL-SIP-L2 9.6±1.9 5.7±0.5 4.9±0.4
MKL-SIP-L4 7.1±1.1 4.0±0.0 3.5±0.1

7500 training instances
baseline training #iter KerComb

GMKL-L1 1133.2 ± 252.8 39.0 ± 0.0 646.9 ± 98.2
SimpleMKL-L1 1671.3 ± 919.1 16.8 ± 6.4 1019.7 ± 424.8

VSKL-L1 330.0 ± 49.2 29.9 ± 3.8 190.9 ± 22.8
MKL-GL-L1 549.2 ± 79.8 40.0 ± 0.0 373.8 ± 4.2
MKL-GL-L2 130.1 ± 17.7 9.5 ± 0.5 89.4 ± 6.1
MKL-GL-L4 74.9 ± 11.1 5.3 ± 0.5 51.2 ± 4.5

MKL-Level-L1 297.3 ± 95.2 31.1 ± 8.1 151.9 ± 31.0
MKL-SIP-L1 309.0 ± 94.5 40.0 ± 0.0 117.0 ± 6.4
MKL-SIP-L2 84.3±24.5 6.1±0.3 47.3±3.0
MKL-SIP-L4 56.4±14.7 4.1±0.3 31.5±2.2

TABLE 8: Total training time (secs), number of iterations, and total time spent on combining the base kernels (secs)
for different MKL algorithms vs number of base kernels for the Caltech 101 (left) dataset and VOC 2007 (right)
datasets.

Caltech 101 dataset
63 base kernels

baseline training #iter KerComb
GMKL-L1 718.1 ± 169.8 38.8 ± 0.8 625.3 ± 152.9

SimpleMKL-L1 1255.2 ± 350.9 17.3 ± 6.5 1047.6 ± 285.8
VSKL-L1 398.1 ± 123.7 36.3 ± 5.2 345.6 ± 101.5

MKL-GL-L1 397.1 ± 30.0 39.8 ± 1.0 351.9 ± 26.7
MKL-GL-L2 118.8 ± 14.7 9.3 ± 1.0 108.5 ± 13.7
MKL-GL-L4 84.6 ± 5.8 6.0 ± 0.0 77.3 ± 4.8

MKL-Level-L1 204.1 ± 75.7 27.8 ± 10.4 167.2 ± 56.1
MKL-SIP-L1 147.8 ± 29.8 39.8 ± 2.4 85.3 ± 15.0
MKL-SIP-L2 114.7±36.7 7.9±0.7 102.7±33.6
MKL-SIP-L4 111.1±38.8 7.5±0.8 98.3±34.5 9

108 base kernels
baseline training #iter KerComb

GMKL-L1 1170.5 ± 208.7 38.9 ± 0.8 1049.2 ± 190.7
SimpleMKL-L1 2206.3 ± 580.1 17.2 ± 6.4 1960.3 ± 503.5

VSKL-L1 569.9 ± 160.3 35.6 ± 5.9 491.8 ± 131.2
MKL-GL-L1 604.6 ± 69.9 39.6 ± 1.6 546.6 ± 66.0
MKL-GL-L2 226.3 ± 24.8 9.5 ± 1.0 212.0 ± 23.6
MKL-GL-L4 169.1 ± 16.0 6.0 ± 0.1 158.2 ± 14.5

MKL-Level-L1 405.8 ± 152.7 29.5 ± 9.5 343.7 ± 121.3
MKL-SIP-L1 192.1 ± 41.3 39.9 ± 0.9 110.1 ± 18.1
MKL-SIP-L2 634.1±107.2 6.8±1.3 582.1±106.3
MKL-SIP-L4 407.2±80.2 4.6±0.6 368.4±67.9

VOC 2007 dataset
30 base kernels

baseline training #iter KerComb
GMKL-L1 1816.8 ± 405.8 37.8 ± 5.4 1186.9 ± 270.4

SimpleMKL-L1 2335.3 ± 991.9 11.2 ± 7.1 1581.6 ± 626.4
VSKL-L1 880.2 ± 128.5 30.6 ± 3.8 525.5 ± 75.3

MKL-GL-L1 853.5 ± 206.1 40.0 ± 0.0 561.8 ± 107.3
MKL-GL-L2 282.4 ± 64.2 9.6 ± 0.5 218.2 ± 46.3
MKL-GL-L4 190.1 ± 23.9 6.0 ± 0.0 147.4 ± 11.0

MKL-Level-L1 665.4 ± 114.7 36.8 ± 5.1 404.7 ± 40.2
MKL-SIP-L1 460.0 ± 135.5 40.0 ± 0.0 170.6 ± 23.1
MKL-SIP-L2 240.8±62.5 8.7±1.6 154.5±43.5
MKL-SIP-L4 170.1±16.5 6.2±0.4 115.1±15.4

75 base kernels
baseline training #iter KerComb

GMKL-L1 3975.3 ± 890.0 34.2 ± 8.8 3072.5 ± 724.5
SimpleMKL-L1 3416.3 ± 1299.7 8.3 ± 7.8 2776.4 ± 885.7

VSKL-L1 1587.9 ± 238.8 29.4 ± 3.7 909.3 ± 122.2
MKL-GL-L1 1500.4 ± 239.4 40.0 ± 0.0 1043.8 ± 87.6
MKL-GL-L2 629.5 ± 84.0 9.8 ± 0.4 520.4 ± 47.7
MKL-GL-L4 346.2 ± 45.3 6.0 ± 0.0 286.2 ± 31.9

MKL-Level-L1 1136.8 ± 328.9 36.7 ± 3.1 702.2 ± 177.7
MKL-SIP-L1 686.8 ± 262.9 40.0 ± 0.0 228.5 ± 46.0
MKL-SIP-L2 413.9±258.1 3.8±1.7 302.2±135.7
MKL-SIP-L4 566.4±141.9 5.0±0 424.2±81.5

of over 80, 000 images. Fig. 9 shows the classifi-
cation performance of MKL and baseline methods
with the number of training images per class var-
ied in powers of 2 (21, 22, ..., 211). Similar to the
experimental results for Caltech 101 and VOC 2007,
we observed that the difference between L1-MKL
and the average kernel method is significant only
when the number of training examples per class is
sufficiently large (i.e. ≥ 16). We also observed that
the difference between L1-MKL and the average

kernel method starts to diminish when the number
of training examples is increased over 256 per class.
We believe that the diminishing gap between MKL
and the average kernel method with increasing
number of training examples can be attributed to
the fact that all the 10 kernels constructed for the
ImageNet dataset are strong kernels and provide
informative features for object recognition. This is
reflected in the kernel combination weights learned
by the MKL method: most of the base kernels
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Fig. 6: Number of active kernels learned by the MKL-
SIP algorithm vs number of iterations for the Caltech 101
dataset.
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Fig. 7: Number of active kernels learned by the MKL-
SIP algorithm vs number of iterations for the VOC 2007
dataset.

received significant non-zero weights.
Fig. 9 shows the running time of MKL with a

varied number of training examples. Similar to the
experimental results for Caltech 101 and VOC 2007,
we observe that L2-MKL is significantly more effi-
cient than L1-MKL. We also observe that the run-
ning time for both L1-MKL and L2-MKL increases
almost quadratically in the size of training data,
making it difficult to scale to millions of training
examples. We thus conclude that although MKL
is effective in combining multiple image represen-
tations for object recognition, scalability of MKL
algorithms is an open problem.

6 SUMMARY AND CONCLUSIONS

We have reviewed different formulations of mul-
tiple kernel learning and related optimization al-
gorithms, with an emphasis on the application
to visual object recognition. We highlighted the
conflicting conclusions drawn by published studies
on the empirical performance of different MKL
algorithms. We have attempted to resolve these
inconsistent conclusions by addressing the exper-
imental setups in the published studies. Through
our extensive experiments on two standard datasets
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Fig. 8: Classification performance for different training
set sizes for the ImageNet dataset.
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Fig. 9: Training times for L1-MKL and L2-MKL on dif-
ferent training set sizes for the ImageNet dataset.

used for visual object recognition, we are able to
make the following conclusions:

• Overall, MKL is significantly more effective
than the simple baseline for kernel combina-
tion (i.e., selecting the best kernel by cross
validation or taking the average of multiple
kernels), particularly when there are a large
number of base kernels available and the num-
ber of training examples is sufficiently large.
However, MKL is not recommended for object
recognition when the base kernels are strong,
and the number of training examples are suf-
ficient enough to learn a reliable prediction for
each base kernel.

• Compared to Lp-MKL, L1-MKL is overall more
effective for object recognition and is signifi-
cantly more robust to the weaker kernels with
low classification performance.

• MKL-SMO, which is not a wrapper method but
a direct optimization technique, is the fastest
MKL baseline. However, it does not address
the L1-MKL formulation.

• Among various algorithms proposed for L1-
MKL, MKL-SIP is overall the most efficient for
object recognition, because it produces sparse
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intermediate solutions throughout the opti-
mization process.

• Lp-MKL is significantly more efficient than L1-
MKL because it converges in a significantly
smaller number of iterations. But, neither L1-
MKL nor Lp-MKL scales well to very large
datasets.

• L1-MKL can be more efficient than Lp-MKL in
terms of testing time. This is because L1-MKL
generates sparse solutions and, therefore, will
only use a small portion of the base kernels for
prediction.

In summary, we conclude that MKL is an ex-
tremely useful tool for visual object recognition
because it provides a principled way to combine
the strengths of different object representations.
Although it is important to further improve the
classification accuracy of MKL, it is much more crit-
ical to improve the overall computational efficiency
of MKL. The existing algorithms for MKL do not
scale to large datasets with millions of images.
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