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Abstract

Multi-label learning is useful in visual object recogni-
tion when several objects are present in an image. Conven-
tional approaches implement multi-label learning as a set
of binary classification problems, but they suffer from im-
balanced data distributions when the number of classes is
large. In this paper, we address multi-label learning with
many classes via a ranking approach, termed multi-label

ranking. Given a test image, the proposed scheme aims to
order all the object classes such that the relevant classes
are ranked higher than the irrelevant ones. We present an
efficient algorithm for multi-label ranking based on the idea
of block coordinate descent. The proposed algorithm is ap-
plied to visual object recognition. Empirical results on the
PASCAL VOC 2006 and 2007 data sets show promising re-
sults in comparison to the state-of-the-art algorithms for
multi-label learning.

1. Introduction

A number of problems in computer vision, such as vi-

sual object recognition, require an object to be assigned

to a set of multiple classes, chosen from a large set of

class labels. They are often cast into multi-label learning,

in which each object can be simultaneously classified into

more than one class. The most widely used approaches di-

vide a multi-label learning task into multiple independent

binary labeling tasks. The division usually follows one-vs-

all (OvA), one-vs-one or the general error correction code

framework [6, 13, 11]. Most of these approaches suffer

from imbalanced data distributions when constructing bi-

nary classifiers to distinguish individual classes from the re-

maining classes. This problem becomes more severe when

the number of classes is large. Another limitation of these

approaches is that they are unable to capture the correlation

among classes, which is known to be important in multi-

label learning [22]. In this paper, we focus on the first prob-

lem of multi-label learning, namely imbalanced data distri-

bution arising from dividing a multi-label learning task into

a number of independent binary classification problems.

In this paper, we address multi-label learning with a large

number of classes using a multi-label ranking approach. For

a given example, multi-label ranking aims to order all the

relevant classes at a higher rank than the irrelevant ones. By

relaxing a classification problem into a ranking problem,

multi-label ranking avoids constructing binary classifiers

that distinguish individual classes from the other classes,

thus alleviating the problem of imbalanced data distribu-

tion. In addition, by avoiding the binary decision about

which subset of classes should be assigned to each example,

multi-label ranking is usually more robust than the classifi-

cation approaches, particularly when the number of classes

is large.

Although several algorithms have been proposed for

multi-label learning [22, 21, 8, 15], they are usually com-

putationally expensive because the number of comparisons

in multi-label ranking is O(nK2), where K is the number

of classes and n is the number of training examples. The

quadratic dependence on the number of classes makes it dif-

ficult to scale to a large number of classes. To this end, we

present an efficient learning algorithm for multi-label rank-

ing to handle a large number of classes. We apply the pro-

posed algorithm to visual object recognition in which mul-

tiple object classes can be assigned to a single image. Our

experiment with the PASCAL VOC 2006 dataset shows en-

couraging results in terms of both efficiency and efficacy.

2. Previous work

Ranking approach was first proposed in [9] for multi-

label learning problems. Constraints derived from the

multi-labeled instances were used in [9] to enforce that the

ranking of relevant classes is higher than the irrelevant ones.

[3] improves the computational efficiency of [9] by only

considering the most violated constraints. Dekel et al. [5]

and Shalev-Shwartz et al. [21] encode the ranking using
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a preference graph. In [5] a boosting based algorithm is

used to learn the classifiers from a set of given instances

and the corresponding preference graphs. In [21] a gener-

alization of the hinge loss for the preference graphs is used

for learning the ranking of classes. In [2], which presents a

semi-supervised algorithm for multi-label learning by solv-

ing a Sylvester Equation (SMSE), a graph is constructed

to capture the similarities between pair-wise categories. In

[19] a vector function mapping is defined to get higher di-

mensional feature vectors that encode the model of indi-

vidual categories as well as their correlations. A transduc-

tive multi-label classification approach, in which the multi-

label interdependence is formulated as a pairwise Markov

random field model, is proposed in [23]. In all these ap-

proaches, a ranking model is learned from the pairwise

constraints between the relevant classes and the irrelevant

classes. The number of pairwise constraints is square of the

number of classes, which makes it computationally expen-

sive when the number of classes is large. In contrast, the

proposed framework for multi-label ranking that is compu-

tationally efficient and can handle a large number of classes

(∼ 100).

A number of approaches have been developed for multi-

label learning that aim to capture the dependency among

classes. In [22], the authors proposed to model the depen-

dencies among the classes using a generative model. Gham-

rawi et al. [8] try to capture the dependencies by defining a

conditional random field over all possible combinations of

the labels. In [15], a matrix factorization approach is used

for multi-label learning that captures the class correlation

via a class co-occurrence matrix. Hierarchical Bayesian ap-

proach is used in [24] to capture the dependency among

classes. Overall, these approaches are computationally ex-

pensive when the number of classes is large. There are sev-

eral approaches [17, 12, 25, 20, 16] for multi-label learning

which encode the class dependence by assuming the shar-

ing of important features among classes. [12] showed that

a shared subspace model outperforms a number of state-of-

the-art approaches for multi-label learning in terms of cap-

turing the class correlation. We emphasize that our work

does not focus on exploring the class correlation. It can be

combined with these approaches to further improve the ef-

ficacy of multi-label learning.

3. Maximum margin framework for multi-
label ranking

Let xi, i = 1, . . . , n be the collection of training ex-

amples where each example xi ∈ R
d is a vector of d

dimensions. Each training example xi is annotated by

a set of class labels, denoted by a binary vector yi =
(y1

i , . . . , yK
i ) ∈ {−1, 1}K , where K is the total number

of classes, and yk
i = 1 when xi is assigned to class ck and

−1 otherwise. In multi-label ranking, we aim to learn K
classification functions fk(x) : R

d �→ R, k = 1, . . . , K,

one for each class, such that for any example x, fk(x) is

larger than fl(x) when x belongs to class ck and does not

belong to class cl. We define the classification error εk,l
i for

an example xi with respect to any two classes ck and cl, as

follows

εk,l
i = I(yk

i �= yl
i)�

(
yk

i − yl
i

2
(fk(xi) − fl(xi))

)
, (1)

where I(z) is an indicator function that outputs 1 when z
is true and zero, otherwise. The loss �(z) is defined to be

the hinge loss, where �(z) = max(0, 1 − z). Note that the

above error function outputs 0 when yk
i = yl

i, namely when

no classification error is counted, i.e. xi either belongs to

both ck and cl or xi does not belong to neither of the two

classes.

Following the maximum margin framework for classi-

fication, we aim to search for the classification functions

fk(x), k = 1, . . . , K that simultaneously minimize the

overall classification error. This is summarized into the fol-

lowing optimization problem.

min
{fk∈Hκ}K

k=1

1
2

K∑
k=1

|fk|2Hκ
+ C

n∑
i=1

K∑
k,l=1

εk,l
i , (2)

where κ(x, x′) : R
d × R �→ R is a kernel function, Hκ is a

Hilbert space endowed with a kernel function κ(·, ·) and C
is a constant parameter. Theorem 1 provides the representer

theorem for fk(·), k = 1, . . . , K.

Theorem 1. Classification functions fk(x), k = 1, . . . , K
that optimize (2) are represented in the following form

fk(x) =
n∑

i=1

yk
i [Γi]kκ(xi, x), (3)

where [Γi]k =
∑K

l=1 Γk,l
i . Note that Γi ∈ SK×K , i =

1, . . . , n are symmetric matrices that are obtained by solv-
ing the following optimization problem

max
n∑

i=1

K∑
k=1

[Γi]k − 1
2

K∑
k=1

n∑
i,j=1

κ(xi, xj)yk
i yk

j [Γi]k[Γj ]k

s. t. Γk,l
i =

{
0 ≤ Γk,l

i ≤ C yk
i �= yl

i

0 otherwise

Γi = [Γi]�, i = 1, . . . , n; k, l = 1, . . . , K. (4)

Proof. See Appendix A.1

The constraints in Eq (4) explicitly capture the relation-

ship between the classes. When an instance xi belongs to

class ck, but does not belong to class cl, the value of Γk,l
i

is positive, causing xi to be a support vector. The positive

terms Γk,l
i are combined into [Γk

i ], which is used in comput-

ing the ranking function for class ck.
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4. Approximate formulation
A straightforward approach that directly solves (4) by a

standard quadratic programming approach is computation-

ally expensive when the number of classes K is large be-

cause the number of constraints is O(K2). We show that the

relationship between multi-label ranking and one-versus-all

approach provides insight for deriving an approximate for-

mulation for (4) that can be solved efficiently.

4.1. Relation to one-versus-all approach

Consider constructing fk(x) in (2) by the OvA approach.

The resulting representer theorem for fk(x) is

fk(x) =
n∑

i=1

yk
i αk

i κ(xi, x), k = 1, . . . , K (5)

where αi
k, i = 1 . . . , n; k = 1, . . . , K, are obtained by solv-

ing the following optimization problem

max
n∑

i=1

K∑
k=1

αk
i − 1

2

K∑
k=1

n∑
i,j=1

κ(xi, xj)yk
i yk

j αk
i αk

j

s. t. αk
i ∈ [0, C], i = 1, . . . , n; k = 1, . . . , K. (6)

Comparing the above formulation to (4), we clearly see the

mapping, i.e., [Γi]k ↔ αk
i . Hence, the first simplification

is to relax (4) by treating each [Γi]k as an independent vari-

able, which approximates (4) into the following optimiza-

tion problem

max
n∑

i=1

K∑
k=1

αk
i − 1

2

K∑
k=1

n∑
i,j=1

κ(xi, xj)yk
i yk

j αk
i αk

j

s. t. 0 ≤ αk
i ≤ C

K∑
l=1

I(yk
i �= yl

i),

i = 1, . . . , n; k = 1, . . . , K. (7)

Note that the constraint αk
i ≤ C

∑K
l=1 I(yk

i �= yl
i) follows

[Γi]k =
K∑

l=1

I(yk
i �= yl

i)Γ
k,l
i ≤ C

K∑
l=1

I(yk
i �= yl

i).

While the problem in Eq (7) can be decomposed into K in-

dependent problems, similar to an OvA SVM, this is not ad-

equate for multi-label ranking as the depdendence between

the functions fk(x), k = 1, . . . , K cannot be captured.

4.2. Proposed approximation

In this section, we present a better approximation of (4)

compared to the one presented in Eq (7). Without loss of

generality, consider a training example xi that is assigned

to the first a classes, and is not assigned to the remaining

b = K − a classes. According to the definition of Γi in (4),

we can rewrite Γ as

Γ =
(

0 Z
Z� 0

)
(8)

where Z ∈ [0, C]a×b. Using this notation, variable τk =
[Γi]k is computed as

τk =
{ ∑b

l=1 Zk,l 1 ≤ k ≤ a∑a
l=1 Zl,k a + 1 ≤ k ≤ K

where Zk,l is an element in Z that is bounded by 0 and

C. According to the above definition, for each instance, τk

is the sum of either the kth column or the kth row of Z de-

pending on whether the label k is relevant to that instance or

not. Formulating τk by using Z brings several advantages.

Firstly, it enables us to derive constraints for τk explicitly in

the optimization. Secondly, all τk variables depend on each

other in the optimization since the components of these vari-

ables are taken from a closed domain Z. This relationship

is in fact a special case of the constraint given in Eq (4). The

constraint in Eq (4) intuitively forces a balance between the

irrelevant and relevant labels of an instance by requiring the

sum of the upper bounds of [Γi]k that correspond to relevant

classes to be equal to that of [Γi]k that correspond to irrel-

evant classes. Obtaining τk from Z as formulated above

introduces an additional constraint by forcing the sum of

the weights corresponding to the relevant labels to be equal

to the sum of the weights that are associated with irrelevant

ones. This constraint is useful in dealing with the imbalance

between the number of relevant and irrelevant labels as well

as capturing the dependencies between the classes for that

instance.

In order to convert τk, k = 1, . . . , K into free variables,

we need to derive explicit constraints on τk that will ensure

that each solution of τk will result in a feasible solution for

Z. Let us first consider a simple case in which we only re-

quire elements in Z to be non-negative. Theorem 2 provides

the constraints on τk.

Theorem 2. The following two domains Q1 and Q2 for vec-
tor τ = (τ1, . . . , τK) are equivalent

Q1 = {τ ∈ R
K : ∃Z ∈ R

a×b
+ s. t.

τ1:a = Z1b, τa+1:K = Z�1a} (9)

Q2 =

{
τ ∈ R

K
+ :

a∑
k=1

τk =
K∑

k=a+1

τk

}
(10)

Proof. See Appendix A.2.

Theorem 2 which states that the two domains Q1 and Q2

are equivalent for vector τ leads to the following corollary.
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Corollary 1. Consider the following two domains Q1 and
Q2 for vector τ = (τ1, . . . , τK)

Q1 = {τ ∈ R
K : ∃Z ∈ [0, C]a×b s. t.

τ1:a = Z1b, τa+1:K = Z�1a} (11)

Q2 =

{
τ ∈ [0, C]K :

a∑
k=1

τk =
K∑

k=a+1

τk

}
(12)

We have τ ∈ Q2 ⇒ τ ∈ Q1.

The above corollary becomes the basis for our approx-

imation. Instead of defining matrix variables Γi, i =
1, . . . , n as in (4), we introduce the variable αk

i for [Γi]k.

We furthermore restrict αi = (α1
i , . . . , α

k
i ) to be in the do-

main G =
{

τ ∈ [0, C]K :
∑a

k=1 τk =
∑K

k=a+1 τk

}
to en-

sure that feasible Γi can be recovered from a solution of αk
i .

The resulting approximate optimization is

max
n∑

i=1

K∑
k=1

αk
i − 1

2

K∑
k=1

n∑
i,j=1

κ(xi, xj)yk
i yk

j αk
i αk

j

s. t.

K∑
k=1

I(yk
i = 1)αk

i =
K∑

k=1

I(yk
i = −1)αk

i ,

αk
i ∈ [0, C], i = 1, . . . , n, k = 1, . . . , K (13)

Unlike Eq (7), Eq (13) cannot be solved as K independent

problems since for each instance xi, the αk
i from all the

classes ck, k = 1, . . . , K are involved in the constraint. Ac-

cording to these constraints, for each instance the sum of the

weights corresponding to the relevant labels should be equal

to the sum of the weights that are associated with irrelevant

ones. Theorem 2 showed that by adding this constraint to

the problem, the relationships between the classes can be

exploited and used without explicitly determining the set Z
and the matrices Γi. Another advantage of this formulation

is that no assumptions on the form of these relationships

(e.g., pairwise relationship) is made.

5. Efficient algorithm
We follow the work of Lin et al. [10] and solve Eq (13)

by coordinate descent. At each iteration, we choose one

training example (xi, yi) and the related variables αi =
(α1

i , . . . , α
K
i ), while fixing the remaining variables. The

resulting optimization problem becomes

max
K∑

k=1

αk
i − 1

2

K∑
k=1

yk
i f−i

k (xi)αk
i − κ(xi, xi)

2

K∑
k=1

(αk
i )2

s. t. αi ∈ [0, C]K , y�
i αi = 0 (14)

where f−i
k (xi) is the leave-one-out prediction that can be

computed as f−i
k (x) =

∑
j �=i yk

j αk
j κ(xj , x).

Theorem 3. The optimal solution to (14) is written as

αk
i = π[0,C]

(
1 + λyk

i − 1
2yk

i f−i
k (xi)

κ(xi, xi)

)
, k = 1, . . . , K (15)

where λ is the solution to the following equation

g(λ) =
K∑

k=1

h

(
yk

i + λ − 1
2f−i

k (xi)
κ(xi, xi)

, yk
i C

)
= 0. (16)

Here h(x, y) = π[0,y](x) if y > 0 and h(x, y) = π[y,0](x)
if y ≤ 0. Function πG(x) projects x onto the region G.

Proof. See Appendix A.3.

The function g(λ) defined in (16) is a monotonically in-

creasing function of λ which can be solved using bisection

search. The lower and upper bounds for λ for bisection

search are shown in the proposition below.

Proposition 1. The value of λ that satisfies (16) is bounded
by λmin and λmax. Define, κii = κ(xi, xi) and G = [0, C],

η−i
k+ = 1 +

1
2
f−i

k (xi) η−i
k− = 1 − 1

2
f−i

k (xi)

Δ =
K∑

k=1

δ(yk
i , 1)πG

(
η−1

k−
kii

)
−

K∑
k=1

δ(yk
i ,−1)πG

(
η−i

k+

κii

)

amin = −Cκii + min
yk

i =−1
η−i

k+ bmin = −max
yk

i =1
η−i

k−

amax = Ckii − min
yk

i =1
η−i

k− bmax = max
yk

i =−1
η−i

k+

If Δ < 0,we have λmin = 0 and λmax = max(amax, bmax).
If Δ > 0, we have λmax = 0 and λmin = min(amin, bmin).

Proof. See supplementary documents.

Once λ is calculated by applying bisection search be-

tween the bounds λmin and λmax, it is straightforward to

calculate the coefficients αk
i and finally the ranking func-

tions fk(x) for any new instance x.

6. Experimental results
We start with a simple example to demonstrate the ad-

vantage of a multilabel ranking method over methods that

combine several binary classifiers for multiclass learning.

Figure 1 shows an illustration of the proposed approach,

applied to a single-label multiclass classification task, on

a synthetic dataset. The two dimensional data with the true

labels are shown in Figure 1(a). The decision boundaries

obtained by one-vs-rest (OvA) SVM and the proposed ap-

proach are shown in Figures 1(b) and (c), respectively. We

used an RBF kernel with the parameter σ = 1 to gener-

ate the decision boundaries. We observe that in the OvA
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Figure 1. Illustration of the proposed approach on a single-label five-class classification task. (a) Two dimensional data points with labels,

(b) Decision boundary obtained using OvA SVM and (c) decision boundary obtained using the proposed ranking approach.

approach, the decision boundary fits tightly around classes

1,3,4 and 5. The region outside these class boundaries is as-

signed to class 2, which is clearly not acceptable based on

the input data. The proposed approach partitions the space

in a more reasonable way, as shown in Figure 1(c).

Data sets The PASCAL VOC Challenge 2006 and 2007
data sets [1] are used in our study. VOC 2006 data con-

tains 5304 images with 9507 annotated objects while VOC

2007 has 9963 images with 14319 objects. Since the focus

of this study is multi-label learning and about 70% of im-

ages in these data sets are labeled by a single object, we did

not use the default partition. Instead, we formed the train-

ing data set for VOC 2006 experiments by randomly select-

ing 1600 images with a single object and 800 images with

multiple objects, and used the remaining images for testing.

Similarly, we randomly chose 3200 images with a single

object and 2000 images with multiple objects for training

from VOC 2007. It should also be noted that there are a

total of 10 classes in VOC 2006 set while this number is 20

for VOC 2007. A bag-of-words model is used to represent

image content. Following the standard approach [4], we ob-

tained SIFT descriptors from each image in the dataset and

then clustered these feature vectors into 5, 000 clusters by

an approximate K-means algorithm [18].

Evaluation metric: Area under the ROC Curve (AUC) is

used as the evaluation metric in our study. Since we focus

on multi-label ranking, we rank the classes in the descend-

ing order of their scores. For each image, we predict its cat-

egories by the first k objects with the largest scores. We vary

k, i.e., the number of predicted objects, from 1 to the num-

ber of total categories, and compute the true positive and

false positive rates, which lead to the calculation of AUC.

Note that this is different from other studies of object recog-

nition where AUC is computed for each category. We did

not compute AUC for each category because our method

only ranks object categories for an image without making

binary decision. Since the focus of this study is multi-label

learning, we also evaluate AUC for images with single ob-

ject and AUC for images with multiple objects, separately.

All the experiments are repeated several times, and AUC

averaged over these runs is reported as the final result.

Baseline methods: We compare ranking ability of the

proposed method to three baseline methods: (i) LIBSVM

[7] implementation of OvA SVM classifier, which is shown

to outperform multi-class SVM methods in [11]. (ii) SVM-

perf [14] that is designed to optimize Area Under ROC

Curve (AUC), which are used as the evaluation metrics

in our study. (iii) Multiple Label Shared Space Model

(MLSSM) in [12] that makes use of the class correlations

and is reported to give the best performance compared to

other state-of-the-art methods that explore class correlation.

We use the chi-squared kernel in our experiments, which

has shown to outperform the other kernels for object recog-

nition. The same values of the parameters C and σ are used

for all the binary classifiers in the OvA SVM. The optimal

values C and σ are chosen by a cross-validation grid search

in which different values of C = {10−4, 10−2, · · · , 106}
and σ = {2−11, 2−9, · · · , 23} are tried.

Object recognition: The goal of this study is to verify (i)

the proposed multi-label ranking approach is more effective

for object recognition than binary classification based meth-

ods such as SVM, and (ii) the proposed multi-label ranking

approach is computationally more efficient than the binary

classification based methods for multi-label learning.

The AUC results for PASCAL VOC Challenge 2006 and

2007 data sets are summarized in Table 1. Three AUC re-

sults are reported: overall AUC for all test images, multi-obj
AUC for test images with multiple objects, and single-obj
AUC for test images with a single object. When evaluating

AUC for all the test images, both the proposed method and

LIBSVM yield the best performance for VOC 2006 data

set, and the difference between different methods is small.
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Table 1. Mean and standard deviation of AUC (%)
VOC 2006 Proposed LIBSVM SVM-perf MLSSM

overall 76.8 ± 0.4 76.4 ±0.6 74.2 ± 0.8 75.8 ± 0.6

multi-obj 81.2 ± 0.9 74.3 ± 0.7 74.0 ± 0.1 77.8 ± 0.7

single-obj 74.4 ± 1.0 76.8 ± 0.7 75.6 ± 0.7 75.6 ± 0.7

VOC 2007 Proposed LIBSVM SVM-perf MLSSM

overall 76.0 ± 0.2 74.8 ±0.1 68.2 ± 0.6 74.7 ± 0.2

multi-obj 79.4 ± 0.7 77.9 ± 0.2 69.4 ± 0.8 78.6 ± 0.1

single-obj 73.1 ± 0.5 72.2 ± 0.2 67.9 ± 0.2 71.29 ± 0.1

Table 2. Mean and standard deviation for running times (sec)

Proposed LIBSVM SVM-perf MLSSM

VOC 06 43.2 ±1.4 1147.5 ± 349.7 673.7 ±65.8 324.2 ±16.9

VOC 07 447.3 ±0.3 7720.7 ± 34.2 1597.3 ±3.21 1821.04 ±5.1

However, for images with multiple objects, the two methods

designed for multi-label learning, i.e., the proposed method

and MLSSM perform better than the other two competitors.

Compared to MLSSM, the proposed algorithm performs

significantly better. We emphasize that unlike MLSSM that

makes strong assumption about the correlation among clas-

sifiers (i.e., all the classifier share the same subspace), the

proposed method makes no assumption regarding class cor-

relation. In the future, we plan to investigate how to in-

corporate the class correlation into the proposed method

for multi-label ranking. For images with a single object,

although we observe that the proposed method is outper-

formed by the other three methods for VOC 2006, it gives

the best results for all three cases in VOC 2007. This im-

provement is due to the increased number of object classes

in VOC 2007. It is also surprising to observe that SVM-perf

performs worse than LIBSVM even though it is targeted on

the evaluation metric.

We also evaluate the efficiency of the proposed algorithm

for both data sets. Table 2 summaries the running time of

four algorithms in comparison. Note that both the number

of classes and number of training samples in VOC 2007 set

are twice of those in VOC 2006 data. We clearly observe

that the proposed algorithm is computationally more effi-

cient than the three baseline methods.

Finally, Figure 2 shows examples of images and the ob-

jects predicted by different methods. We clearly see that

overall the objects identified by the proposed method are

more relevant to the visual content of images than the three

baseline methods, especially for the images that contain

several objects.

7. Conclusions and discussions
We have introduced an efficient multi-label ranking

scheme which offers a direct solution to multi-label rank-

ing unlike the conventional methods that use a set of binary

classifiers for multiclass classifier learning. This direct ap-

proach enables us to capture the relationships between the

class labels without making any assumptions on them. The

strength of the proposed approach lies in establishing the re-

lationships between the classifiers by treating them as rank-

ing functions. An efficient algorithm is presented for multi-

label ranking. Empirical study of object recognition with

PASCAL VOC Challenge 2006 and 2007 data sest demon-

strates that the proposed method outperforms state-of-the-

art methods.
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A. Proofs of theorems
A.1. Proof of Theorem 1

For notational convenience, let us define

Δk,l
i =

yk
i − yl

i

2
〈fk − fl, κ(xi, ·)〉Hκ

Using this, the objective function in (2) can be rewritten as

h(f) =
1
2

K∑
l=1

〈fl, fl〉HK
+ C

n∑
i=1

K∑
l,k=1

I(yl
i �= yk

i )�
(
Δk,l

i

)

We then rewrite �(z) as

�(z) = max
x∈[0,1]

(x − xz)

Using the above expression for �(z), the second term in

h(f) can be rewritten as,

n∑
i=1

K∑
l,k=1

I(yl
i �= yk

i ) max
γk,l

i ∈[0,C]

(
γk,l

i − γk,l
i Δk,l

i

)

The problem in (2) now becomes a convex-concave op-

timization problem as

min
fl∈HK

max
γl,k

i ∈[0,C]
g(f, γ)

where

g(f, γ) =
n∑

i=1

K∑
l,k=1

I(yl
i �= yk

i )γl,k
i +

1
2

K∑
l=1

〈fl, fl〉HK

−
n∑

i=1

K∑
l,k=1

I(yl
i �= yk

i )γl,k
i Δk,l

i

According to von Newman’s lemma, we could switch

minimization with maximization. By taking the minimiza-

tion over fl first, we have

fl(x) =
n∑

i=1

yl
i

(
K∑

k=1

I(yl
i �= yk

i )γl,k
i

)
k(xi, x)
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In the above derivation, we use the relation I(yl
i �= yk

i )(yl
i−

yk
i ) = 2yl

i. To simplify our notation, we introduce Γi ∈
[0, C]K×K where Γl,k

i = γl,k
i if yl

i �= yk
i and zero other-

wise. Note that since γl,k
i = γk,l

i , we have Γi = [Γi]�.

We furthermore introduce the notation [Γi]l as the sum of

the elements in the lth row, i.e., [Γi]l =
∑K

k=1 Γl,k
i . Using

these notations, we have fl(x) expressed as

fl(x) =
n∑

i=1

yl
i[Γi]lk(xi, x)

Finally, the remaining maximization problem becomes

max
n∑

i=1

K∑
k=1

[Γi]k − 1
2

K∑
k=1

n∑
i,j=1

k(xi, xj)yk
i yk

j [Γi]k[Γj ]k

s. t. Γk,l
i =

{
0 ≤ Γk,l

i ≤ C yk
i �= yl

i

0 otherwise

Γi = [Γi]�, i = 1, . . . , n; k, l = 1, . . . , K

A.2. Proof of Theorem 2.

It is straightforward to shown τ ∈ Q1 → τ ∈ Q2.

The main challenge is to show the other direction, i.e.,

τ ∈ Q2 → τ ∈ Q1. For a given τ , in order to check

if there exists Z ∈ [0, C]a×b such that τ1 : a = Z1b and

τa+1:K = Z�1a, we need show that the following opti-

mization problem is feasible

min 0 (17)

s. t. Z ∈ R
a×b
+ , τ1 : a = Z1b, τa+1:K = Z�1a

For the convenience of presentation, we denote by μa =
τ1:a ∈ R

a, and by μb = τa+1:K ∈ R
b, and rewrite the

above feasibility problem as

min 0 (18)

s. t. Z ∈ [0, C]a×b, μa = Z1b, μb = Z�1a

It is important to note that, for the above optimization prob-

lem, its optimal value is 0 when the solution is feasible,

and +∞ when no feasible solution satisfies the condition.

By introducing the Lagrangian multipliers λa ∈ R
a for

μa = Z1b and λb ∈ R
b for μb = Z�1b, we have

min
Z�0

max
λa,λb

λ�
a (μa − Z1b) + λ�

b (μb − Z�1a) (19)

By taking the minimization over Z, we have

max
λa,λb

λ�
a μa + λ�

b μb (20)

s. t. λa1�
b + 1aλ�

b � 0

To decide if there is a feasible solution to (18), the necessary

and sufficient condition is that the optimal value for (20) is

zero. First, we show that the objective function of (20) is

upper bounded by zero under the constraint λa1�
b +1aλ�

b �
0. We denote by λ+

a and λ+
b the maximum elements in

vector λa and λb, respectively, i.e, λ+
a = max

1≤i≤a
[λa]i and

λ+
b = max

1≤i≤b
[λb]i. Evidently, according to the constraint

λa1�
b + 1aλ�

b � 0, we have λ+
a + λ+

b ≤ 0. We then have

the objective function bounded as

λ�
a μa + λ�

b μb ≤ λ+
a 1�

a μa + λ+
b 1�

b μb = (λ+
a + λ+

b )1�
a μa ≤ 0

Second, it is straightforward to verify that zero optimal

value is obtainable by setting λa = 0a and λb = 0b.

Combining the above two arguments, we have the opti-

mal value for (20) is zero, which therefore indicates that

there is a feasible solution to (18). By this, we prove that

τ ∈ Q2 → τ ∈ Q1.

A.3. Proof of Theorem 3

We first turn the problem in (14) into the following min-

max problem

max
αi∈[0,C]K

min
λ

K∑
l=1

αl
i −

1
2

K∑
k=1

yk
i f−i

k (xi)αk
i −

k(xi, xi)
2

K∑
k=1

[αk
i ]2 + λy�

i αi (21)

Since the objective function in (21) is convex in λ and

concave in αi, therefore according von Newman’s lemma,

switching minimization with maximization will not affect

the final solution. Thus, we could obtain the solution by

maximizing over α, i.e.,

αk
i = π[0,C]

(
1 + λyk

i − 1
2yk

i f−i
k (xi)

k(xi, xi)

)

where π[0,C](x) projects x onto the region [0, C]. To com-

pute λ, we aim to solve the following equation

K∑
k=1

yk
i π[0,C]

(
1 + λyk

i − 1
2yk

i f−i
k (xi)

k(xi, xi)

)
= 0 (22)

Since when yk
i = 1, the projection in Eq 22 is π[0,C]

and when yk
i = −1, it is π[−C,0], we could represent

yk
i π[0,C]

(
1+λyk

i − 1
2 yk

i f−i
k (xi)

k(xi,xi)

)
by h(yk

i +λ− 1
2 f−i

k (xi)

k(xi,xi)
, yk

i C)
where h(x, y) is already defined in the theorem. Since

y�
i αi = 0, we have the following equation for λ

g(λ) =
K∑

k=1

h

(
yk

i + λ − 1
2f−i

k (xi)
k(xi, xi)

, yk
i C

)
= 0 (23)
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