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ABSTRACT
In the study of various diseases, heterogeneity among patients
usually leads to di�erent progression pa�erns and may require
di�erent types of therapeutic intervention. �erefore, it is impor-
tant to study patient subtyping, which is grouping of patients into
disease characterizing subtypes. Subtyping from complex patient
data is challenging because of the information heterogeneity and
temporal dynamics. Long-Short Term Memory (LSTM) has been
successfully used in many domains for processing sequential data,
and recently applied for analyzing longitudinal patient records. �e
LSTM units are designed to handle data with constant elapsed times
between consecutive elements of a sequence. Given that time lapse
between successive elements in patient records can vary from days
to months, the design of traditional LSTM may lead to suboptimal
performance. In this paper, we propose a novel LSTM unit called
Time-Aware LSTM (T-LSTM) to handle irregular time intervals in
longitudinal patient records. We learn a subspace decomposition of
the cell memory which enables time decay to discount the memory
content according to the elapsed time. We propose a patient subtyp-
ing model that leverages the proposed T-LSTM in an auto-encoder
to learn a powerful single representation for sequential records
of patients, which are then used to cluster patients into clinical
subtypes. Experiments on synthetic and real world datasets show
that the proposed T-LSTM architecture captures the underlying
structures in the sequences with time irregularities.
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1 INTRODUCTION
Clinical decision making o�en relies on medical history of patients.
Physicians typically use available information from past patient
visits such as lab tests, procedures, medications, and diagnoses
to determine the right treatment. Furthermore, researchers use
medical history and patient demographics to discover interesting
pa�erns in patient cohorts, to study prognosis of di�erent types of
diseases, and to understand e�ects of drugs. In a nut shell, large-
scale, systematic and longitudinal patient datasets play a key role in
the healthcare domain. Examples such as Electronic Health Records
(EHRs), whose adoption rate increased by 5% between 2014 and
2015 [1] in the healthcare systems in the United States, facilitate a
systematic collection of temporal digital health information from
variety of sources.

With the rapid development of computing technologies in health-
care, longitudinal patient data are now beginning to be readily
available. However, it is challenging to analyze large-scale het-
erogeneous patient records to infer high level information em-
bedded in patient cohorts. �is challenge motivates the devel-
opment of computational methods for biomedical informatics re-
search [5, 17, 24, 28, 31]. �ese methods are required to answer
di�erent questions related to disease progression modeling and risk
prediction [9, 10, 14, 22, 30, 32].

Patient Subtyping, which seeks patient groups with similar dis-
ease progression pathways, is crucial to address the heterogeneity
in the patients which ultimately leads to precision medicine where
patients are provided with treatments tailored to their unique health
status. Patient subtyping facilitates the investigation of a particular
type of complicated disease condition [5]. From the data mining



KDD ’17, August 13-17, 2017, Halifax, NS, Canada Inci M. Baytas, Cao Xiao, Xi Zhang, Fei Wang, Anil K. Jain, and Jiayu Zhou

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6
Diagnoses 
ICD-9:
• 42789
• 42822
• 4263
• 41401
• V861
• 4280
• 2449
• 3659

Diagnoses 
ICD-9:
• 3962
• 4260
• 2875
• 41401
• 4019

Diagnoses 
ICD-9:
• 99831
• 41511
• 99672
• 496
• V4581
• 4019
• V1051

Diagnoses 
ICD-9:
• 41401
• 4111
• 496
• 4019
• 53081
• V1051

Diagnoses 
ICD-9:
• V4511
• V1251
• V5861
• V4589
• 2875

Diagnoses 
ICD-9:
• 2766
• 5856
• 40301
• 4254
• 28529
• 7100
• 78909

Figure 1: An example segment of longitudinal patient
records. �e patient had 6 o�ce visits between Sept 5, 2015
and Sept 27, 2016. In each visit, diagnosis of the patient was
given by a set of ICD-9 codes. Time spans between two suc-
cessive visits can vary, and may be months apart. Such time
irregularity results in a signi�cant challenge in patient sub-
typing.

perspective, patient subtyping is posed as an unsupervised learn-
ing task of grouping patients according to their historical records.
Since these records are longitudinal, it is important to capture the
relationships and the dependencies between the elements of the
record sequence in order to learn more e�ective and robust repre-
sentations, which can then be used in the clustering stage to obtain
the patient groups.

One powerful approach which can capture underlying structure
in sequential data is Recurrent Neural Networks (RNNs), which
have been applied to many areas such as speech recognition [16],
text classi�cation [21], video processing [13, 26], and natural lan-
guage processing [27]. In principle, time dependencies between
the elements can be successfully captured by RNNs, however tradi-
tional RNNs su�er from vanishing and exploding gradient problems.
To handle these limitations, di�erent variants of RNN have been
proposed. Long-Short Term Memory (LSTM) [18] is one such pop-
ular variant which can handle long term event dependencies by
utilizing a gated architecture. LSTM has recently been applied in
health informatics [4, 6] with promising results.

One limitation of the standard LSTM networks is that it cannot
deal with irregular time intervals. But, the time irregularity is com-
mon in many healthcare applications. To illustrate this, one can
consider patient records, where the time interval between consecu-
tive visits or admissions varies, from days to months and sometimes
a year. We illustrate this in Figure 1 using a sample medical record
segment for one patient. Notice that the time di�erence between
records varies from one month to a few months. Such varying
time gaps could be indicative of certain impending disease condi-
tions. For instance, frequent admissions might indicate a severe
health problem and the records of those visits provide a source to
study progression of the condition. On the other hand, if there
are months between the two successive records, dependency on
the previous memory should not play an active role to predict the
current outcome.

To address the aforementioned challenges in patient subtyping,
we propose an integrated approach to identify patient subtypes
using a novel Time-Aware LSTM (T-LSTM), which is a modi�ed
LSTM architecture that takes the elapsed time into consideration

between the consecutive elements of a sequence to adjust the mem-
ory content of the unit. T-LSTM is designed to incorporate the
time irregularities in the memory unit to improve the performance
of the standard LSTM. �e main contributions of this paper are
summarized bellow:
• Anovel LSTM architecture (T-LSTM) is proposed to handle time

irregularities in sequences. T-LSTM has forget, input, output
gates of the standard LSTM, but the memory cell is adjusted
in a way that longer the elapsed time, smaller the e�ect of
the previous memory to the current output. For this purpose,
elapsed time is transformed into a weight using a time decay
function. �e proposed T-LSTM learns a neural network that
performs a decomposition of the cell memory into short and
long-term memories. �e short-term memory is discounted by
the decaying weight before combining it with the long-term
counterpart. �is subspace decomposition approach does not
change the e�ect of the current input to the current output, but
alters the e�ect of the previous memory on the current output.

• An unsupervised patient subtyping approach is proposed based
on clustering the patient population by utilizing the proposed
T-LSTM unit. T-LSTM is used to learn a single representation
from the temporal patient data in an auto-encoder se�ing. �e
proposed T-LSTM auto-encoder maps sequential records of pa-
tients to a powerful representation capturing the dependencies
between the elements in the presence of time irregularities. �e
representations learned by the T-LSTM auto-encoder are used
to cluster the patients by using the k-means algorithm.

Supervised and unsupervised experiments on both synthetic and
real world datasets show that the proposed T-LSTM architecture
performs be�er than standard LSTM unit to learn discriminative
representations from sequences with irregular elapsed times.

�e rest of the paper is organized as follows: related literature
survey is summarized in Section 2, technical details of the pro-
posed approach are explained in Section 3, experimental results are
presented in Section 4, and the study is concluded in Section 5.

2 RELATEDWORK
Computational Subtyping with Deep Networks. A similar
idea as presented in this study was proposed in [25], but for super-
vised problem se�ings. Pham et al. introduced an end-to-end deep
network to read EHRs, saves patient history, infers the current state
and predicts the future. �eir proposed approach, called “Deep-
Care”, used LSTM for multiple admissions of a patient, and also ad-
dressed the time irregularities between the consecutive admissions.
A single vector representation was learned for each admission and
was used as the input to the LSTM network. Forget gate of standard
LSTM unit was modi�ed to account for the time irregularity of the
admissions. In our T-LSTM approach, however the memory cell is
adjusted by the elapsed time. �e main aim of [25] was answering
the question “What happens next?”. �erefore, the authors of [25]
were dealing with a supervised problem se�ing whereas we deal
with an unsupervised problem se�ing.

�ere are several studies in the literature using RNNs for su-
pervised tasks. For instance, in [14], authors focused on patients
su�ering from kidney failure. �e goal of their approach was to
predict whether a patient will die, the transplant will be rejected,
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or transplant will be lost. For each visit of a patient, the authors
tried to answer the following question: which one of the three
conditions will occur both within 6 months and 12 months a�er the
visit? RNN was used to predict these aforementioned endpoints.
In [22], LSTM was used to recognize pa�erns in multivariate time
series of clinical measurements. Subtyping clinical time series was
posed as a multi-label classi�cation problem. Authors stated that
diagnostic labels without timestamps were used, but timestamped
diagnoses were obtained. LSTMwith a fully connected output layer
was used for the multi-label classi�cation problem.

In [10] authors aimed to make predictions in a similar way as
doctors do. RNN was used for this purpose and it was fed by the
patient’s past visits in a reverse time order. �e way RNN was
utilized in [10] is di�erent than its general usage. �ere were two
RNNs, one for visit-level and the other for variable-level a�ention
mechanisms. �us, the method proposed in [10] could predict the
diagnosis by �rst looking at the more recent visits of the patient,
and then determining which visit and which event it should pay
a�ention.

Another computational subtyping study [9] learned a vector
representation for patient status at each time stamp and predicted
the diagnosis and the time duration until the next visit by using
this representation. Authors proposed a di�erent approach to in-
corporate the elapsed time in their work. A so�max layer was
used to predict the diagnosis and a ReLU unit was placed at the
top of the GRU to predict the time duration until the next visit.
�erefore, the elapsed time was not used to modify the GRU net-
work architecture but it was concatenated to the input to be able to
predict the next visit time. On the other hand, authors in [4] aimed
to learn patient similarities directly from temporal EHR data for
personalized predictions of Parkinson’s disease. GRU unit was used
to encode the similarities between the sequences of two patients
and dynamic time warping was used to measure the similarities
between temporal sequences.

A di�erent approach to computational subtyping was introduced
in [11]. �eir method, called Med2Vec, was proposed to learn
a representation for both medical codes and patient visits from
large scale EHRs. �eir learned representations were interpretable,
therefore Med2Vec did not only learn representations to improve
the performance of algorithms using EHRs but also to provide
interpretability for physicians. While the authors did not use RNN,
they used a multi-layer perceptron to generate a visit representation
for each visit vector.
Auto-Encoder Networks. �e purpose of our study is patient
subtyping which is an instance of unsupervised learning or clus-
tering, therefore we need to learn powerful representations of the
patient sequences that can capture the dependencies and the struc-
tures within the sequence. One of the ways to learn representations
by deep networks is to use auto-encoders. Encoder network learns
a single representation of the input sequence and then the decoder
network reconstructs the input sequence from the representation
learned by the encoder at the end of the input sequence. In each
iteration, reconstruction loss is minimized so that the learned rep-
resentation is e�ective to summarize the input sequence. In [26]
LSTM auto-encoders were used to learn representations for video

sequences. Authors tested the performance of the learned repre-
sentation on supervised problems and showed that the learned
representation is able to increase the classi�cation accuracy.

Auto-encoders are also used to generate a di�erent sequence by
using the representation learned in the encoder part. For instance,
in [7], one RNN encodes a sequence of symbols into a vector repre-
sentation, and then the decoder RNN map the single representation
into another sequence. Authors of [7] showed that their proposed
approach can interpret the input sequence semantically and can
learn its meaningful representation syntactically.

3 METHODOLOGY
3.1 Time-Aware Long Short Term Memory

3.1.1 Long Short-Term Memory (LSTM). Recurrent neural net-
work (RNN) is a deep network architecture where the connections
between hidden units form a directed cycle. �is feedback loop
enables the network to keep the previous information of hidden
states as an internal memory. �erefore, RNNs are preferred for
problems where the system needs to store and update the con-
text information [3]. Approaches such as Hidden Markov Models
(HMM) have also been used for similar purposes, however there
are distinctive properties of RNNs that di�erentiates them from
conventional methods such as HMM. For example, RNNs do not
make the assumption of Markov property and they can process
variable length sequences. Furthermore, in principle, information
of past inputs can be kept in the memory without any limitation on
the time in the past. However, optimization for long-term depen-
dencies is not always possible in practice because of vanishing and
exploding gradient problems where the value of gradient becomes
too small and too large, respectively. To be able to incorporate the
long-term dependencies without violating the optimization process,
variants of RNNs have been proposed. One of the popular variants
is Long Short-Term Memory (LSTM) which is capable of handling
long-term dependencies with a gated structure [18].

A standard LSTM unit comprises of forget, input, output gates,
and a memory cell, but the architecture has the implicit assumption
of uniformly distributed elapsed time between the elements of a
sequence. �erefore, the time irregularity, which can be present in a
longitudinal data, is not integrated into the LSTM architecture. For
instance, the distribution of the events in a temporal patient record
is highly non-uniform such that the time gap between records
can vary from days to years. Given that the time passed between
two consecutive hospital visits is one of the sources of decision
making in the healthcare domain, an LSTM architecture which
takes irregular elapsed times into account is required for temporal
data. For this purpose, we propose a novel LSTM architecture,
called Time-Aware LSTM (T-LSTM), where the time lapse between
successive records is included in the network architecture. Details
of T-LSTM are presented in the next section.

3.1.2 Time-Aware LSTM (T-LSTM). Regularity of the duration
between consecutive elements of a sequence is a property that does
not always hold. One reason of the variable elapsed time is the
nature of the EHR datasets, where the frequency and the number of
patient records are quite unstructured. Another reason is missing
information in the longitudinal data. In case of the missing data,
elapsed time irregularity impacts predicting the trajectory of the
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Figure 2: Illustration of the proposed time-aware long-short term memory (T-LSTM) unit, and its application on analyzing
healthcare records. Green boxes indicate networks and yellow circles denote point-wise operators. T-LSTM takes two inputs,
input record and the elapsed time at the current time step. �e time lapse between the records at time t − 1, t and t + 1 can vary
from days to years in healthcare domain. T-LSTM decomposes the previous memory into long and short term components
and utilizes the elapsed time (∆t ) to discount the short term e�ects.

temporal changes. �erefore, an architecture that can overcome
this irregularity is necessary to increase the prediction performance.
For EHR data, varying elapsed times can be treated as a part of the
information contained in the medical history of a patient, hence it
should be utilized while processing the records.

T-LSTM is proposed to incorporate the elapsed time informa-
tion into the standard LSTM architecture to be able to capture the
temporal dynamics of sequential data with time irregularities. �e
proposed T-LSTM architecture is given in Figure 2 where the input
sequence is represented by the temporal patient data. Elapsed time
between two immediate records of a patient can be quite irregular.
For instance, time between two consecutive admissions/hospital
visits can be weeks, months and years. If there are years between
two successive records, then the dependency on the previous record
is not signi�cant enough to a�ect the current output, therefore the
contribution of the previous memory to the current state should be
discounted. �e major component of the T-LSTM architecture is
the subspace decomposition applied on the memory of the previ-
ous time step. While the amount of information contained in the
memory of the previous time step is being adjusted, we do not want
to lose the global pro�le of the patient. In other words, long-term
e�ects should not be discarded entirely, but the short-term mem-
ory should be adjusted proportional to the amount of time span
between the records at time step t and t − 1. If the gap between
time t and t − 1 is huge, it means there is no new information
recorded for the patient for a long time. �erefore, the dependence
on the short-term memory should not play a signi�cant role in the
prediction of the current output.

T-LSTM applies the memory discount by employing the elapsed
time between successive elements to weight the short-term mem-
ory content. To achieve this, we propose to use a non-increasing

function of the elapsed time which transforms the time lapse into
an appropriate weight. Mathematical expressions of the subspace
decomposition procedure are provided in Equation Current hidden
state. First, short-term memory component (CS

t−1) is obtained by
a network. Note that this decomposition is data-driven and the
parameters of the decomposition network are learned simultane-
ously with the rest of network parameters by back-propagation.
�ere is no speci�c requirement for the activation function type of
the decomposition network. We tried several functions but did not
observe a drastic di�erence in the prediction performance of the
T-LSTM unit, however tanh activation function performed slightly
be�er. A�er the short-term memory is obtained, it is adjusted
by the elapsed time weight to obtain the discounted short-term
memory (ĈS

t−1). Finally, to compose the adjusted previous memory
back (C∗t−1), the complement subspace of the long-term memory
(CTt−1 = Ct−1 −C

S
t−1) is combined with the discounted short-term

memory. Subspace decomposition stage of the T-LSTM is followed
by the standard gated architecture of the LSTM. Detailed mathe-
matical expressions of the proposed T-LSTM architecture are given
below:

CS
t−1 = tanh (WdCt−1 + bd ) (Short-term memory)

ĈS
t−1 = C

S
t−1 ∗ д (∆t ) (Discounted short-term memory)

CTt−1 = Ct−1 −C
S
t−1 (Long-term memory)

C∗t−1 = C
T
t−1 + Ĉ

S
t−1 (Adjusted previous memory)

ft = σ
(
Wf xt +Uf ht−1 + bf

)
(Forget gate)

it = σ (Wixt +Uiht−1 + bi ) (Input gate)
ot = σ (Woxt +Uoht−1 + bo ) (Output gate)

C̃ = tanh (Wcxt +Ucht−1 + bc ) (Canditate memory)
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Ct = ft ∗C
∗
t−1 + it ∗ C̃ (Current memory)

ht = o ∗ tanh (Ct ) , (Current hidden state)

where xt represents the current input, ht−1 and ht are previous and
current hidden states, andCt−1 andCt are previous and current cell
memories.

{
Wf ,Uf ,bf

}
, {Wi ,Ui ,bi }, {Wo ,Uo ,bo }, and {Wc ,Uc ,bc }

are the network parameters of the forget, input, output gates and
the candidate memory, respectively. {Wd ,bd

} are the network pa-
rameters of the subspace decomposition. Dimensionalities of the
parameters are determined by the input, output and the chosen
hidden state dimensionalities. ∆t is the elapsed time between xt−1
and xt and д (·) is a heuristic decaying function such that the larger
the value of ∆t , less the e�ect of the short-term memory. Di�erent
types of monotonically non-increasing functions can be chosen for
д (·) according to the measurement type of the time durations for a
speci�c application domain. If we are dealing with time series data
such as videos, the elapsed time is generally measured in seconds.
On the other hand, if the elapsed time varies from days to years as
in the healthcare domain, we need to convert the time lapse of suc-
cessive elements to one type, such as days. In this case, the elapsed
time might have large numerical values when there are years be-
tween two consecutive records. As a guideline, д (∆t ) = 1/∆t
can be chosen for datasets with small amount of elapsed time and
д (∆t ) = 1/ log (e + ∆t ) [25] is preferred for datasets with large
elapsed times.

In the literature, studies proposing di�erent ways to incorporate
the elapsed time into the learning process can be encountered. For
instance, elapsed time was used to modify the forget gate in [25].
In T-LSTM, one of the reasons behind adjusting the memory cell
instead of the forget gate is to avoid any alteration of the current
input’s e�ect to the current output. �e current input runs through
the forget gate and the information coming from the input plays
a role to decide how much memory we should keep from the pre-
vious cell. As can be seen in the expressions of Current memory
and Current hidden state in Equation Current hidden state, mod-
ifying the forget gate directly might eliminate the e�ect of the
input to the current hidden state. Another important point is that,
the subspace decomposition enables us to selectively modify the
short-term e�ects without losing the relevant information in the
long-term memory. Section 4 shows that the performance of T-
LSTM is improved by modifying the forget gate, which is named
as Modi�ed Forget Gate LSTM (MF-LSTM) in this paper. Two ap-
proaches are adopted from [25] for comparison. First approach,
denoted by MF1-LSTM, multiplies the output of the forget gate by
д (∆t ) such as ft = д (∆t ) ∗ ft . whereas MF2-LSTM utilizes a para-
metric time weight such as ft = σ

(
Wf xt +Uf ht−1 +Qf q∆t + bf

)
where q∆t =

(
∆t
60 ,

(
∆t
180

)2
,
(
∆t
360

)3) when ∆t is measured in days
similar to [25].

Another idea to handle the time irregularity could be imputing
the data by sampling new records between two consecutive time
steps to have regular time gaps and then applying LSTM on the
augmented data. However, when the elapsed time is measured in
days, so many new records have to be sampled for the time steps
which have years in between. Secondly, the imputation approach
might have a serious impact on the performance. A patient record
contains detailed information and it is hard to guarantee that the

imputed records re�ect the reality. �erefore, a change in the
architecture of the regular LSTM to handle time irregularities is
suggested.

3.2 Patient Subtyping with T-LSTM
Auto-Encoder

In this paper, patient subtyping is posed as an unsupervised clus-
tering problem since we do not have any prior information about
the groups inside the patient cohort. An e�cient representation
summarizing the structure of the temporal records of patients is
required to be able to cluster temporal and complex EHR data. Auto-
encoders provide an unsupervised way to directly learn a mapping
from the original data [2]. LSTM auto-encoders have been used to
encode sequences such as sentences [33] in the literature. �ere-
fore, we propose to use T-LSTM auto-encoder to learn an e�ective
single representation of the sequential records of a patient. T-LSTM
auto-encoder has T-LSTM encoder and T-LSTM decoder units with
di�erent parameters which are jointly learned to minimize the re-
construction error. �e proposed auto-encoder can capture the long
and the short term dependencies by incorporating the elapsed time
into the system and learn a single representation which can be used
to reconstruct the input sequence. �erefore, the mapping learned
by the T-LSTM auto-encoder maintains the temporal dynamics of
the original sequence with variable time lapse.

In Figure 3, a single layer T-LSTM auto-encoder mechanism is
given for a small sequence with three elements [X1,X2,X3]. �e
hidden state and the cell memory of the T-LSTM encoder at the end
of the input sequence are used as the initial hidden state and the
memory content of the T-LSTM decoder. First input element and
the elapsed time of the decoder are set to zero and its �rst output is
the reconstruction (X̂3) of the last element of the original sequence
(X3). When the reconstruction error Er given in Equation 1 is
minimized, T-LSTM encoder is applied to the original sequence to
obtain the learned representation, which is the hidden state of the
encoder at the end of the sequence.

Er =
∑L

i=1



Xi − X̂i





2
2 , (1)

where L is the length of the sequence, Xi is the ith element of the
input sequence and X̂i is the ith element of the reconstructed se-
quence. �e hidden state at the end of the sequence carries concise
information about the input such that the original sequence can be
reconstructed from it. In other words, representation learned by
the encoder is a summary of the input sequence [8]. �e number of
layers of the auto-encoder can be increased when the input dimen-
sion is high. A single layer auto-encoder requires more number of
iterations to minimize the reconstruction error when the learned
representation has a lower dimensionality compared to the original
input. Furthermore, learning a mapping to low dimensional space
requires more complexity in order to capture more details of the
high dimensional input sequence. In our experiments, a two layer
T-LSTM auto-encoder, where the output of the �rst layer is the
input of the second layer, is used because of the aforementioned
reasons.

Given a single representation of each patient, patients are grouped
by the k-means clustering algorithm. Since we do not make any as-
sumption about the structure of the clusters, the simplest clustering
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Figure 3: Clustering patients with a single-layer T-LSTM
Auto-Encoder. Blue arrows denote the cell memory and the
black arrows denote the hidden states. A�er the representa-
tions (Ri , i = 1, 2, · · · , 8) are learned for the population, we
can cluster the patients and obtain subtypes for each group
as the prominent common medical features of the group.
Number of layers should be increased in case of dimension-
ality reduction to be able to capturemore complex structure
with fewer iterations compared to single layer.

algorithm, k-means, is preferred. In Figure 3, a small illustration of
clustering the patient cohort for 8 patients is shown. In this �gure,
learned representations are denoted by R. If R has the capability to
represent the distinctive structure of patient sequence, then cluster-
ing algorithm can group patients with similar features (diagnoses,
lab results, medications, conditions, and so on) together. �us, each
patient group has a subtype, which is a collection of common med-
ical features present in the cluster. Given a new patient, learned
T-LSTM encoder is used to �nd the representation of the patient
and the subtype of the cluster which gives the minimum distance
between the cluster centroid and the new patient’s representation
is assigned to the new patient. As a result, T-LSTM auto-encoder
learns powerful single representation of temporal patient data that
can be easily used to obtain the subtypes in the patient population.

4 EXPERIMENTS
In this section, experimental results on synthetic and real world
datasets are reported. For synthetic data, two sets of experiments
were conducted such as a classi�cation task on a publicly avail-
able synthetic EHR dataset and a clustering task with auto-encoder
se�ing on a randomly generated synthetic data. Comparisons be-
tween T-LSTM, MF1-LSTM, MF2-LSTM [25], LSTM, and logistic
regression are made. �e application of T-LSTM auto-encoder on
patient subtyping is presented on a real world dataset (PPMI) and
subtyping results are discussed. T-LSTM 1 was implemented in
Tensor�ow and mini-batch stochastic Adam optimizer was used
during experiments. All the weights were learned simultaneously
and in data-driven manner. Same network se�ings and parameters
were used for all the deep methods for comparison. �erefore, �xed
number of epochs were chosen during the experiments instead of
using a stopping criteria. Since there are variable size sequences in
longitudinal patient data, batches with same sequence sizes were
generated instead of padding the original sequences with zero to

1Available at h�ps://github.com/illidanlab/T-LSTM

Table 1: Supervised synthetic EHR experimental results, av-
erage AUC of testing on 10 di�erent splits. Training and
testing ratio was chosen as 70% and 30%, respectively.

Methods Avg. Test AUC Stdev.
T-LSTM 0.91 0.01

MF1-LSTM 0.87 0.02
MF2-LSTM 0.82 0.09

LSTM 0.85 0.02
LR 0.56 0.01

make every sequence same length. In this study, we did not use the
publicly available large scale ICU dataset, MIMIC [19]. MIMIC is an
ICU data, therefore sequence length for the majority of patients is
very small such as one or two admissions. Even though MIMIC is
an important public source for healthcare research, it is not suitable
for our purpose such that very short sequences do not enable us
to analyze long and short term dependencies and the e�ect of the
elapsed time irregularities.

4.1 Synthetic Dataset
4.1.1 Supervised Experiment. In this section, we report exper-

imental results for a supervised task on an arti�cially generated
EHR data which can be found in 2. �e aforementioned data has
electronic records of up to 100, 000 patients with lab results, diag-
noses, and start and end dates of the admissions. Each patient has
a unique patient ID similar to real world EHR data. We refer to
the reference study [20] for further details of the data generation
process. Although the dataset is arti�cially generated, it contains
similar characteristics as a real EHR data. In this experiment, tar-
get diagnoses was Diabetes Mellitus and the task was a binary
classi�cation problem. Input of the network was the sequence of
admissions and the output was the predicted label as one-hot vector.
�erefore, regular recurrent network se�ing was utilized for this
task instead of auto-encoder. Feature of one admission was a multi-
hot vector containing the diagnoses given in the corresponding
admission and the vocabulary size was 529. For this purpose, 6, 730
patients were sampled with an average of 4 admissions. For this
task, a single layer T-LSTM, MF1-LSTM and MF2-LSTM networks
were tested to compare the performance based on area under ROC
curve (AUC) metric for 50 epochs. In this experiment, number of
hidden and so�max layer neurons were chosen as 1028 and 512,
respectively. In addition, performance of the traditional logistic
regression (LR) classi�er was also analyzed. In logistic regression
experiments, admissions were aggregated for each patient without
incorporating the elapsed time. We also tried to incorporate the
elapsed time as a weight by using the same non-increasing function
used in T-LSTM during the aggregation of admissions. However,
this approach did not improve the performance in our case. �e
results are summarized in Table 1.

As it can be seen from the Table 1, T-LSTM has a be�er per-
formance than the baseline approaches. �e way to represent the
sequential data could be improved further for logistic regression,
but aggregation of the admissions for each patient did not perform
well for this task. Supervised experiments show that LSTM net-
works can enable us to leverage the time aspect of the EHR data

2h�p://www.emrbots.org/
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Table 2: Average Rand index of k-means over 10 runs. T-
LSTMauto-encoder outperforms LSTMandMF1-LSTMauto-
encoders. �is result indicates that the time irregularities
should be considered to capture the temporal dynamics of a
sequence.

Method Mean RI Std
T-LSTM 0.96 0.05

MF1-LSTM 0.85 0.13
LSTM 0.90 0.09

be�er. In addition, modifying the cell memory yields a be�er clas-
si�cation performance. According to our observation, MF1-LSTM
and MF2-LSTM have be�er and sometimes similar results as the
traditional LSTM for the tasks in our experiments.

4.1.2 Unsupervised Experiment. In this experiment, we investi-
gate the expressive power of the representation learned from the
T-LSTM auto-encoder. For this purpose, a synthetic data was ran-
domly generated and the clustering results were evaluated. Since
we know the ground truth of the synthetic data, we computed the
Rand index (RI), given in Equation 2 [23], of the clustering to ob-
serve the discriminative power of the learned representations. A
large value of Rand index indicates that the learned representations
are clustered close to the ground truth.

RI = (TP + TN)/(TP + FP + FN + TN), (2)

whereTP ,TN , FP , FN are true positive, true negative, false positive
and false negative, respectively. Note that 0 ≤ RI ≤ 1.

�e results on a synthetic dataset containing 4 clusters gener-
ated from a mixture of normal distributions with four di�erent
means and the same covariance are reported. A data point in the
synthetic dataset is a sequence of vectors and the values of the
sequences are increasing with time. Some of the elements in the se-
quences are discarded randomly to introduce unstructured elapsed
time and obtain variable sequence lengths of sizes 4, 6, 18, 22, and
30. Dimensionality of the vectors was 5 and the dimension was
reduced to 2 by the T-LSTM auto-encoder to be able to plot the
representations in a 2-D space. �us, the input and the output of
the T-LSTM auto-encoder were 5 dimensional input and the re-
constructed sequences, respectively. �e hidden state dimension
of the second layer T-LSTM encoder was chosen as 2, therefore
the learned representations were 2-dimensional single vectors. �e
learned representations were clustered by k-means, where k was set
to 4. Representation learning was repeated 10 times with di�erent
initializations of k-means and the average Rand index of cluster-
ing is reported for T-LSTM, LSTM and MF1-LSTM auto-encoders
in Table 2. �e non-increasing heuristic function was chosen as
д (∆t ) = 1/ log (e + ∆t ). For this experiment, we compared the per-
formances of T-LSTM, MF1-LSTM and LSTM excluding MF2-LSTM.
Since the time gap of the data used in this experiment does not
relate to an actual time measurement such as days, MF2-LSTM was
excluded.

Table 2 shows that the T-LSTM outperforms the baselines and T-
LSTM auto-encoder can learn the underlying structure of the input
sequence with varying elapsed times such that the representations
obtained by T-LSTM encoder could be clustered. In this example,
performance of MF1-LSTM was obtained be�er than LSTM on
average. A visual example of one of the trials is also shown in

Figure 4 where the 2-dimensional representations obtained by the
three approaches were plo�ed.

In Figure 4 di�erent colors denote ground truth assignments of
di�erent clusters. Representations learned by T-LSTM yields more
compact groups in the 2-D space leading to a more accurate clus-
tering result compared to the standard LSTM and MF1-LSTM. As it
can be observed from the Figures 4c and 4b, directly multiplying the
forget gate with the time coe�cient does not always enables a mod-
i�cation which leverages the time irregularity in our experiments.
Even though MF1-LSTM produced a higher Rand index, there are
examples, such as Figure 4, where LSTM actually learns a be�er
representation than MF1-LSTM. �e change in the objective values
of T-LSTM, MF1-LSTM and LSTM with respect to the number of
epochs are also compared in Figure 5 for the trial illustrated in
Figure 4. It is observed that the modi�cations related to the time
irregularity does not a�ect the convergence of the original LSTM
network in a negative way.

4.2 Parkinson’s Progression Markers Initiative
(PPMI) Data

In this section, we present experimental results for a real world
dataset. Parkinson’s Progression Markers Initiative (PPMI) is an
observational clinical and longitudinal study comprising of evalua-
tions of people with Parkinson’s disease (PD), those people with
high risk, and those who are healthy [12]. PPMI aims to identify
biomarkers of the progression of Parkinson’s disease. PPMI data is
a publicly available dataset which contains clinical and behavioral
assessments, imaging data, and biospecimens, therefore PPMI is a
unique archive of PD [12]. As with many EHRs, PPMI is a longitu-
dinal dataset with unstructured elapsed time. �erefore, T-LSTM is
a suitable approach for prediction and clustering of PPMI dataset.

In our experiments, we used the pre-processed PPMI data of 654
patients given in [4]. Che et al. [4] collected patients with Idio-
pathic PD or non PD, imputed missing values, used one-hot feature
form for categorical values, and encoded data abnormalities as 1
and 0. As a result, dataset we used has 15, 636 records of 654 pa-
tients with an average of 25 sequences (minimum sequence length
is 3). Authors of [4] also categorized data as features and targets,
where the features are related to patient characteristics and the
targets correspond to the progression of PD. A total of 319 features
consist of motor symptoms/complications, cognitive functioning,
autonomic symptoms, psychotic symptoms, sleep problems, depres-
sive symptoms, and hospital anxiety and depression scale. A total
of 82 targets are related to motor sign, motor symptom, cognition,
and other non-motor factors [4]. Summary of the PPMI data used
in this paper can be found in Table 3.

As it can be seen in Table 3, the elapsed time is measured as
months. From 1 month to nearly 2 years gap between successive
records of patients is encountered in the dataset. Several experi-
ments were conducted on PPMI data to show the performance of
the proposed subtyping approach.

4.2.1 Target Sequence Prediction. In this experiment, T-LSTM is
used to predict the target sequence of each patient. For this purpose,
we divided the data into di�erent train (70%)-test (30%) splits and
report the mean square error (MSE) between the original target
sequence and the predicted target sequence. Average MSEs of 10
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(a) T-LSTM Auto-Encoder (b) MF1-LSTM Auto-Encoder (c) LSTM Auto-Encoder

Figure 4: Illustration of the clustering results. Di�erent colors denote ground truth assignments of di�erent clusters. T-LSTM
auto-encoder learns a mapping for the sequences such that 4 separate groups of points can be represented in the 2-D space.

Figure 5: Change in the objective values of T-LSTM, MF1-
LSTM and LSTM with respect to 500 epochs. It is observed
that the modi�cations related to the time irregularity does
not deteriorate the convergence of the original LSTM net-
work.

Table 3: Details of PPMI data used in this study. Elapsed time
encountered in the data is measured in months and it varies
between 1 month to nearly 2 years. Here, the elapsed time
interval is not the time interval of PPMI data recording, but
elapsed times seen in records of individual patients.

Number of Patients 654
Elapsed Time Interval [1, 26]

Average Sequence Length 25
Feature Dimensionality 319
Target Dimensionality 82

di�erent train-test splits for T-LSTM, LSTM, MF1-LSTM and MF2-
LSTM are given in Table 4. Same step size and the number of epochs
were used for all the three methods. �e non-increasing heuristic
function of the elapsed time was chosen as д (∆t ) = 1/ log (e + ∆t )
for PPMI data.

We also investigated target features onwhich T-LSTM performed
the best. �e commonly encountered target features where the T-
LSTM provided lower MSE than LSTM, MF1-LSTM and MF2-LSTM

Table 4: Average mean square error (MSE) for 10 di�erent
train-test splits for T-LSTM, LSTM, MF1-LSTM, and MF2-
LSTM. T-LSTM yielded a better result than the standard
LSTM in the presence of the unstructured time gaps. Elapsed
time was multiplied by 30 while applying MF2-LSTM since
the time lapse is measured in months.

MSE T-LSTM MF1-LSTM MF2-LSTM LSTM
Mean 0.50 0.53 0.51 0.51
Std 0.018 0.017 0.012 0.017

are reported in Table 5. �e main observation about the target fea-
tures in Table 5 is that they are related to the e�ects of Parkinson’s
disease on the muscle control such as �nger tapping, rigidity, and
hand movements. In addition, T-LSTM predicted the target value of
Bradykinesia, which encompasses several of the problems related
to movement, and MoCA (Montreal Cognitive Assessment) Total
Score, which assesses di�erent types of cognitive abilities with
lower error than other methods. �is result shows that the reported
target features are sensitive to elapsed time irregularities and dis-
counting the short-term e�ects by the subspace decomposition of
memory cell helps to alleviate this sensitivity.

4.2.2 Patient Subtyping of PPMI Data. In this experiment, T-
LSTM auto-encoder was used to obtain subtypes of the patients in
the PPMI dataset. �e T-LSTM encoder was used to learn a repre-
sentation from the input feature sequence of each patient and the
T-LSTM decoder generated the target sequence. Parameters of the
auto-encoder were learned to minimize the squared error between
the original target sequence and the predicted target sequence. �e
learned representations were used to cluster the patients by the
k-means algorithm as discussed before.

Since we do not know the ground truth for the clustering, we
conducted a statistical analysis to assess the subtyping performance.
For this purpose, clustering results were statistically analyzed at
the time of 6 years follow-up in the PPMI study. Features including
demographics, motor severity measures such as Uni�ed Parkinson’s
Disease Rating Scale (MDSUPDRS), Hoehn and Yahr staging (H&Y),
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Table 5: Some common target features fromPPMI dataset on
which T-LSTM performed better than LSTM and MF1-LSTM
during 10 trials. �ese target features are mainly related to
the e�ects of Parkinson’s disease on muscle control.

Code Name
NP3BRADY Global spontaneity of movement
NP3RIGRU Rigidity - RUE(Right Upper Extremity)
NP3FTAPR Finger Tapping Right Hand
NP3TTAPR Toe tapping - Right foot
NP3PRSPR Pronation-Supination - Right Hand
NP3HMOVR Hand movements - Right Hand
NP3RIGN Rigidity - Neck
NP2DRES Dressing
PN3RIGRL Rigidity - RLE (Right Lower Extremity)
DFBRADYP Bradykinesia present and typical for PD
NP3RTARU Rest tremor amplitude - RUE
NP3PTRMR Postural tremor - Right Hand
MCATOT MoCA Total Score

non-motormanifestations such as depression, anxiety, cognitive sta-
tus, sleep disorders, imaging assessment such as DaTScan, as well
as cerebrospinal �uid (CSF) biomarkers were taken into account. In
order to interpret the clustering results in terms of subtyping, we
compared the clusters using Chi-square test for the categorical fea-
tures, F-test for the normal continuous features, Kruskal-Wallis test
for the non-normal continuous features, and Fisher�s exact test for
the high sparsity features. According to the previous Parkinson’s
disease studies, if the p-values of the aforementioned features are
less than 0.05, a signi�cant group e�ect is considered for the asso-
ciated features [15]. �us, if a method can obtain higher number
of features with small p-values, it means that method provides a
more sensible patient subtyping result.

Since we do not know the ground truth groups of the patient
population, we tried several k values for the k-means algorithm.
We o�en observed that there were two main clusters, therefore we
reported the clustering results for k = 2. We conducted several tests
with di�erent parameters. According to our observation, LSTM
yielded very few features with p-values less than 0.05 and most of
the patients were generally grouped into one cluster. In Table 6,
features of small p-values and cluster means of the features are
presented for T-LSTM, MF1-LSTM and MF2-LSTM. As it can be
seen from the table, T-LSTM has more discriminative features than
MF1-LSTM and MF2-LSTM.

In Table 6, high cluster mean indicates that the symptoms of the
corresponding feature are more severe for that cluster and the PD
patients have lower cluster mean for DaTScan feature. Note that
one of the observed features of T-LSTM in Table 6 is MoCA which
was predicted be�er by T-LSTM in the target sequence prediction
experiment. Finally, we illustrate the patient subtyping results of
T-LSTM with heat map illustration in Figure 6. In this �gure, shade
of red color represents the cluster mean which is higher than the
total mean of the patients and the shades of blue color show lower
mean values for the corresponding feature with the p-value< 0.05.
Subtypes and features which are signi�cant for each subtype can
be observed from the heat map. For instance, DaTSCAN features
were found to be signi�cant for subtype I, whereas subtype II was
de�ned by BJLO (Benton Judgement Line Orientation) and MoCA

Table 6: Results of the statistical analysis for T-LSTM,
MF1-LSTM and MF2-LSTM. DaTScan1 corresponds to
DaTScan SBR-CAUDATE RIGHT, DaTScan2 is DaTScan
SBR-CAUDATE LEFT, and DaTScan4 is DaTScan SBR-
PUTAMEN LEFT.

Feature P-Value Cluster1 Mean Cluster2 Mean
T-LSTM
BJLO 9.51 × 10−8 16.5 24.7
MoCA 0.001 40.0 41.2

DaTScan1 0.042 2.29 2.07
DaTScan2 0.027 2.31 2.08
DaTScan4 0.001 1.4 1.1
MF1-LSTM
CSF-Total tau 0.007 87.9 46.72

MoCA 2.16 × 10−17 47.5 41.05
SDM 0.005 58.5 41.5

MF2-LSTM
HVLT-Retention 0.03 0.84 0.83

SDM 0.007 36.61 41.68

Figure 6: Heat map illustration of the patient subtyping re-
sults of T-LSTM for two clusters. Shade of red represents
the cluster mean which is higher than the total mean of the
patients and the shades of blue show lower mean values for
the corresponding feature with p-value< 0.05.
features. Note that the dataset contains healthy subjects as well. It
is known that PD patients have lower DaTScan SBR values than
healthy subjects [29]. Hence, we can conclude from Figure 6 that
subtype II can be considered as PD patients. We can also observe
from Figure 6 that cluster means of BJLO and MoCA are very low
(darker shades of blue) for subtype I compared to subtype II.

5 CONCLUSION
In this paper, we propose a novel LSTM unit, called time-aware
LSTM (T-LSTM) which can deal with irregular elapsed times be-
tween the successive elements of sequential data. Examples include
medical records which are complex temporal data with varying se-
quence lengths and elapsed times, and video sequence with missing
frames. T-LSTM does not have any assumption about the elapsed
time measure such that the time gap does not have to be measured
in days or years and thus it can be adopted by other domains deal-
ing with di�erent types of sequences. T-LSTM adjusts the previous
memory content of an LSTM unit by a decaying function of the
elapsed time in a way that longer the time lapse, less the in�uence
of the previous memory content on the current output. �e pro-
posed T-LSTM was tested for supervised and unsupervised tasks
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on synthetic data and real world datasets. Patient subtyping, which
can be de�ned as clustering sequential patient records, was ana-
lyzed on a publicly available real world dataset called Parkinson’s
Progression Markers Initiative (PPMI). For the subtyping purpose,
T-LSTM auto-encoder was used to learn powerful representations
for the temporal patient data, and the learned representations were
used to cluster the patient population. In future work, we plan
to apply the proposed approach to several other real datasets to
observe the behaviour of our method for patient populations with
di�erent characteristics.
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