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PHENOTREE: Interactive Visual Analytics for Hierarchical
Phenotyping from Large-Scale Electronic Health Records

Inci M. Baytas, Kaixiang Lin, Fei Wang, Anil K. Jain, Life Fellow, IEEE, and Jiayu Zhou

Electronic health records (EHRs) capture comprehensive pa-
tient information in digital form from a variety of sources. In-
creasing availability of EHRs has facilitated development of data
and visual analytic tools for healthcare analytics, such as clinical
decision support and patient care management systems. Many
healthcare analytic tools are used to investigate fundamental
problems, such as study of patient population, exploring com-
plicated interactions among patients and their medical histories,
and extracting structured phenotypes characterizing the patient
population. In this paper, we propose PHENOTREE a novel
data-driven, hierarchical, and interactive phenotyping tool, that
enables physicians and medical researchers to participate in the
phenotyping process of large-scale EHR cohorts. The proposed
visual analytic tool allows users to interactively explore EHR
cohorts, and generate, interpret, evaluate and refine phenotypes
by building and navigating a phenotype hierarchy. Specifically,
given a cohort or sub-cohort, PHENOTREE employs sparse prin-
cipal component analysis (SPCA) to identify key clinical features
that characterize the population. The clinical features provide a
natural way to generate deeper phenotypes at finer granularities
by expanding the phenotype hierarchy. To facilitate the intensive
computation required for interactive analytics, we design an
efficient SPCA solver based on variance reduced stochastic
gradient technique. The benefits of our method are demonstrated
by analyzing two different EHR patient cohorts, a public and
a private dataset containing EHRs of 101, 767 and 223, 076
patients, respectively. Our evaluations show that PHENOTREE
can detect clinically meaningful hierarchical phenotypes.

Index Terms—Electronic health records, interactive visual
analytics, hierarchical phenotyping, sparse principal component
analysis, data-driven phenotyping.

I. INTRODUCTION

ELECTRONIC health records (EHRs) provide digital
means to capture comprehensive patient information from

a variety of data sources, such as inpatient/outpatient encoun-
ters, diagnostic records, medication history, medical images,
lab test panels, etc. The adoption rate of EHR systems in
the United States has significantly increased over the past
decade, from 18% in 2001 to over 78% in 2013 [1]. As
EHR systems become more prevalent and assimilate more
information, it becomes challenging for physicians to draw
clinical conclusions by analyzing raw EHR data. On the
other hand, availability of vast amount of EHR data has
given researchers an unprecedented opportunity to develop
advanced healthcare analytic techniques for improving patient
care. Development of visual and data analytic tools has greatly
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impacted many aspects of healthcare such as clinical care
management and decision support applications.

One of the fundamental challenges in healthcare systems is
to identify clinically important phenotypes1 that characterize
patient cohorts. With the increasing capability of computa-
tional modeling and availability of large medical data archives,
it is now possible to develop data-driven approaches for
computational phenotyping that utilize machine learning al-
gorithms to infer phenotypes from complex historical medical
records [2]–[5]. To increase the impact of computational phe-
notyping in clinical practice, the National Institute of Health
Big Data to Knowledge (BD2K) Initiative [6] has sponsored
the Center for Predictive Computational Phenotyping for de-
veloping advanced computational phenotyping techniques.

An impending challenge in computational phenotyping is

1The term phenotype is generally used to denote a composite of observable
properties of an organism, as a result of sophisticated interactions between its
genotype and environmental surroundings [2].

Fig. 1: An example of PHENOTREE that discovers hierarchical
phenotypes in an EHR cohort. Starting from a large-scale EHR
cohort, the proposed method applies sparse principal compo-
nent analysis (SPCA) to identify the key medical features that
characterize the cohort. These key features provides a natural
way to identify subcohorts whose patients are associated with
one of the features. The PHENOTREE then applies SPCA to the
subcohorts to identify finer levels of granularity of phenotypes.
Each node in this tree gives a structured phenotype and a stable
subcohort characterized by this phenotype.
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to determine the granularity of phenotypes [7], [8]. While
most existing computational phenotyping techniques capture
coarse characteristics of the population and provide high-level
descriptions of the stable subcohorts (i.e., flat phenotypes),
it is often more interesting to explore deeper phenotypes of
finer levels of granularity, as well as hierarchies within the
phenotypes. Such hierarchical phenotypes are comparatively
more complex than traditional flat phenotypes because the
hierarchical phenotypes have complicated interactions among
layered structures. Furthermore, because of the combinatorial
nature of hierarchical phenotypes, a large number of hierarchi-
cal phenotypes are possible in the absence of adequate input
from medical experts. The complexity and the scale of the
hierarchical phenotypes require involvement of human experts,
such as physicians and medical researchers, in phenotyping.
To assist the human experts in interactively exploring, in-
terpreting, evaluating and refining the phenotype hierarchy,
development of visual analytic tools is essential. Although
existing tools can be used to visualize phenotype hierarchies,
they are not specifically designed for interactive phenotyping
where the human experts need to build and navigate through
the hierarchy during cohort exploration, frequently performing
phenotyping on different subcohorts. Long processing times of
existing phenotyping algorithms prohibit interactive analytics
while analyzing large-scale EHR datasets.

To overcome the aforementioned challenges, we introduce
PHENOTREE a novel interactive visual analytics tool for med-
ical experts to perform efficient and effective hierarchical phe-
notyping for large patient cohorts. Specifically, PHENOTREE
enables 1) interactive exploration of large-scale EHR cohorts,
2) hierarchical phenotype discovery by iterative application
of sparse principal component analysis (SPCA), and 3) vi-
sualization of phenotypes at different levels of granularity as
a tree structure that helps medical experts interpret, evaluate
and adjust hierarchical phenotypes. Given cohort/subcohorts,
PHENOTREE employs SPCA to identify key clinical fea-
tures and then generates phenotypes based on these features.
Patients associated with each key clinical feature are then
grouped into individual subcohorts. Through this interactive
process, PHENOTREE helps medical experts to identify sets of
phenotypes and corresponding patient subcohorts at different
granularities. Because existing solvers for SPCA have high
computational complexities and therefore are not suitable for
interactive user experience, we propose to adopt a convex
formulation for sparse PCA and then apply a variance reduced
stochastic gradient technique that achieves fast convergence
rates to overcome the computational challenge of SPCA. We
demonstrate the advantages of PHENOTREE by conducting
experiments on two real-world EHR patient cohorts. We show
that the computational efficiency of the proposed method
significantly outperforms traditional SPCA solvers. We also
discuss some interesting findings about hierarchical pheno-
types obtained using the proposed interactive visual analytic
technique.

The rest of this paper is organized as follows: In Section II
we overview related work on data-driven phenotyping, sparse
principal component analysis and stochastic proximal opti-
mization, and visual analytics for EHR. We then present our

proposed approach in Section III. We present and discuss our
experimental results in Section IV and Section V concludes
the paper.

II. RELATED WORK

This work builds upon three major research directions: data-
driven phenotyping, sparse principal component analysis with
stochastic proximal optimization and visual analytic tools for
analyzing EHRs.

A. Data-Driven Phenotyping

The clinical data used in this study is electronic health
records which comprise of ICD9 2 diagnoses of each patient.
Working with EHR can be quite challenging, since the data
is generally very sparse and noisy. Therefore, more stable
and robust ways to describe patients is a necessity. One way
of representing patients is phenotyping. Phenotyping patients
by using clinical records is a commonly studied problem in
recent years. As it was discussed in [2], extracting phenotypic
patterns of patients is an important task which can contribute
to the development of personalized medicine.

One of the studies, where a data driven phenotyping
framework was proposed by using a longitudinal electronic
health data, is by Zhou et al. in [2]. They developed a
phenotyping framework which called PACIFIER, and showed
that the proposed approach improves predictive performance
in two real world EHR cohorts. The main assumption in
their study was that the medical features of EHR data can
be mapped to a much lower dimensional latent space. Thus,
each medical concept was assumed to be the combination
of several observed medical features which were called as
macro-phenotypes. The two formulations, called Individual
Basis Approach and Shared Basis Approach, were developed
to obtain a compact representation of the patients. As a
summary, PACIFIER was proposed to perform temporal matrix
completion via low- rank factorization. This paper suggests to
densify the sparse EHR data by making use of the longitudinal
information.

Deep learning has received significant attention and has
now been applied to many areas. So it is not surprising that
deep networks have also used for phenotyping. For instance,
Che et al. proposed to use deep learning for the discovery
and detection of characteristic patterns in clinical data in [9].
Some modifications to standard neural net training were done
to be able to utilize deep learning for medical data. Their
experiments on two real world health care data sets showed
that neural networks can learn relevant features for medical
applications. Che et al. stated that the proposed deep learning
framework improves the multi-label classification performance
such as predicting ICD9 codes. In this study, neural networks
were trained on windows of multivariate clinical time series
data. Time information was incorporated as in [2]. Existing
domain knowledge was used as a prior which was transformed
into a regularizer in the learning phase to deal with the

2The International Conference for the Ninth Revision of the International
Classification of Diseases
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limited data. Deep learning is currently used as an effective
method for supervised problems, whereas our problem has an
unsupervised flavor.

Another interesting study of phenotyping is [4] where
a sparse non-negative tensor factorization method was pro-
posed to obtain some phenotype candidates. The approach
suggested in [4], called Marble, is based on decomposing
the observed tensor into two terms as bias and interaction
tensors. Phenotypes were defined by the interaction tensor
without any human supervision. Ho et al. also defined the
properties of an ideal phenotype as being representative of the
complex interactions between several sources, being compact
and comprehensible to medical professionals and ability of
mapping to domain knowledge. According to this definition,
each phenotype was suggested as a latent space and pheno-
typing was thought as a dimensionality reduction approach.
This was how the relationship between phenotyping and the
tensor factorization was established. Tensor factorization can
also be thought as a dimensionality reduction method. Since
the tensor-derived phenotypes introduced redundancy, a sparse
non-negative tensor factorization was utilized to obtain concise
phenotypes. Marble was proposed as a basis for an automated
high-throughput phenotyping tool.

In this paper, we are dealing with an unsupervised problem
with no prior information. In the same spirit, the problem of
discovering the patterns in EHR data was modeled as an unsu-
pervised problem in [10]. Marlin et al. addressed the temporal
sparsity of EHR data by developing a probabilistic clustering
model with an empirical prior distribution which was used
to deal with the sparsity of data. The proposed approach
was developed for multidimensional, sparse and uncertain
physiological time series data collected from real world EHRs.
Marlin et al. stated that their model can capture physiological
patterns, and the clusters generated by the proposed model
indicate clear differences in the path of different physiological
variables. Some limitations of the proposed framework which
are mostly related to time aspect of the health care data were
also discussed.

B. Sparse Principal Component Analysis and Stochastic
Proximal Optimization

Zou et al. proposed the sparse PCA for the first time
in [11]. Authors posed the problem of learning sparse loading
vectors as a regression problem with the lasso (elastic net)
constraint. On the other hand, d’Aspremont et al. had a sparse
PCA solution by utilizing semi-definite programming in [12].
Results showed that proposed approach helps to improve the
sparsity of the solution. However, these approaches are not
scalable in terms of number of samples. Journee et al. in
2010 introduced two types of sparse PCA algorithms namely
single unit and block sparse PCA in [13]. Their formulations
were based on maximizing a convex function on a compact set
using `1 or `0 norms. Authors showed that their algorithms are
faster when the objective function or feasible set are strongly
convex. In both cases, large scale and high dimensional data
is difficult to handle. In [14], a generalization of the inverse
power method was derived by using constrained optimization

problems with non-quadratic objective and constraints. An
inverse power method was used for the sparse PCA and the
spectral clustering.

Naikal et al., 2011 [15] proposed a sparse PCA approach for
informative feature selection. The experiments indicated that
using sparse PCA improves the object recognition accuracy.
Sparse PCA was formulated a semi-definite programming
problem with augmented Lagrangian method. A more recent
study [16] investigated sparse PCA with oracle property. Their
proposed method has a family of estimators based on semi-
definite relaxation of sparse PCA and the algorithm esti-
mates k-dimensional principal subspace of a population matrix
based on sample covariance matrix. Finally, a stochastic PCA
algorithm with exponential convergence rate was proposed
in [17]. Authors defined an efficient algorithm for inexpen-
sive stochastic iterations and variance reduction which was
suggested in [18]. Optimization scheme used in [17] requires
strong convexity. Since PCA is a non-convex problem, authors
utilized a different convergence analysis than the convergence
analysis of [18].

In this paper, we utilize a stochastic approach which is
advantageous for dealing with large number of samples com-
pared to the studies summarized above. We also use the convex
optimization formulation of finding the leading eigenvector,
which was proposed in [19], to be able to exploit well defined
convergence analysis of proximal stochastic method with
variance reduction. In the literature, there are several proximal
gradient based methods [20], [21] developed recently. One of
the representative works is FISTA by Beck and Teboulle [20].
FISTA provided the fastest convergence rate among first order
methods for full gradient descent. However, when the number
of samples is very large, approaches using full gradient will not
be scalable enough. Therefore, stochastic gradient methods are
generally used in problems with large sample sizes. However,
the problem of stochastic algorithms is the low convergence
because of the high variance of the gradient.

Nitanda [22] proposed a variance reduction framework
combined with Nesterov’s acceleration method to mitigate
the aforementioned drawback of traditional stochastic gradi-
ent methods. Another approach proposed in [23], studied a
stochastic gradient method that provides exponential conver-
gence rate. Furthermore, Johnson and Zhang also proposed
a progressive variance reduced proximal gradient method
in [18]. Variance reduction mechanism computes the gradient
by making use of the full gradient and the estimated optimal
point at each iteration. Strong convexity of the objective
function was assumed to achieve a geometric convergence
rate under expectation. Xiao and Zhang presented another
variance reduced stochastic approach for proximal algorithms
in [24]. A multi-stage scheme was proposed to reduce the
variance of the stochastic gradient progressively. Similar to
[18], strong convexity and the Lipschitz continuity were the
basic assumptions.

C. Visual Analytics for EHR

EHRs contain huge amount of information and it is not
straightforward to explore patterns and structures from raw
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electronic records for medical experts by using conventional
methods. Visualization helps the experts to understand, inter-
pret, and discover undercover information in EHRs. Therefore,
numerous studies have been done on developing methods for
visual analysis of patients records. In one of the studies,
Perer et al. proposed a system for mining and visualizing the
frequent event sequences from EHR data in [25]. Developed
system was called as Care Pathway Explorer, which presents a
technique to mine frequent sequences from EHR patient traces
and to visualize the mined patterns with an interactive user
interface.

Gotz et al. also proposed a visualization technique with
mining exploratory data within EHRs in [26]. Their method
provided on-demand analysis of clinical sequence data and
an interactive visual interface that users can retrieve patient
cohorts easily. Wang et al. studied a visual analysis method
to improve cohort studies of EHR for chronic kidney disease
in [27]. Their proposed system, which allows users to make
visual aggregation, provided an interactive visual mining inter-
face to support explorative analysis of high dimensional EHR
data.

Another study which proposed a standardized data analysis
process for cohort studies by using EHR data is [28]. Huang
et al. utilized an interactive approach to classify patients
into different subsets, which are used for visualization along
with user feedback. Authors developed a visually rich web-
based application that can help physicians and researchers to
comprehend and study patient cohorts over time.

III. METHODOLOGY

A. Electronic Health Records
Electronic health records consist of diagnostics information

of patients collected over a period of time [29]. Diagnostic
information in EHRS is generally coded according to ICD9,
for each patient. Each ICD9 code corresponds to a specific
diagnosis and every diagnosis belongs to a broader diagnosis
group. For instance, ICD9 (001-139) corresponds to infectious
and parasitic diseases, and one of the subgroup is ICD9
(010-018), tuberculosis. Thus, ICD9 codes have a hierarchical
nature. Some of the ICD9 codes are directly related to gender
or patients of a certain age. For instance, ICD9 (630-679) are
defined as complications of pregnancy and childbirth and ICD9
(600-608) stands for diseases of male genital organs. Thus,
some demographic information can be extracted by looking at
the ICD9 codes of the patients.

Data mining and analysis tools can be applied to EHR
data to extract useful information such as computational
phenotypes. However, most of the results from these com-
putational tools will not be transformed to have practical
clinical implications unless they can be inspected and validated
by medical experts. It is therefore of utmost importance to
design visual analytic tools to involve medical experts for
interactive analysis of the extracted information, refinement of
their analysis based on their domain expertise, and ultimately
clinical decision making. In this paper, a sparse PCA based
visual analytics tool is proposed for medical experts to analyze
EHR data and allow them to interactively generate, interpret
and refine computational phenotypes.

TABLE I: Notations used in this paper.

Notation Explanation
d Number of input dimensions
p Number of output dimensions
X d× d covariance matrix
Z d× p orthogonal projection matrix
‖.‖F Frobenius norm
λ1 (.) Largest eigenvalue of the input matrix
z Loading vector of the leading principal component
w A d× 1 vector of normally distributed random numbers
γ Regularization parameter
‖.‖1 `1 norm

B. Phenotyping via Sparse PCA

Before we explain the details of the proposed phenotyping
approach, we summarize the notations of this paper in Table I.

Given a patient cohort, identifying stable sub-populations,
or phenotyping patients according to their health conditions
characterized by their historial EHR (e.g., diagnoses and
medication) can reveal important insights about the population.
There are two prominent aspects of this process: 1) to explore
deeper phenotypes at different levels of granularity, where phe-
notypes are naturally organized in a hierarchy, and 2) to closely
and interactively involve medical experts in the generation,
analysis, validation and refinement of the phenotyping process.
Otherwise, the phenotypes may not be informative and thus
lack the capability to generalize and provide further clinical
guidance.

From the machine learning perspective, the problem of
identifying patient sub-populations falls in the category of
unsupervised learning since it does not depend on population
related labels. To obtain patient populations, we can identify
frequent clinical features and cluster patients accordingly.
Since records in EHRs are encounters, some key clinical
features such as diagnosis and medication can be identified
based on their frequencies. However, we note that results from
such univariate analysis do not consider complicated inter-
dependencies among the features.

Principal component analysis (PCA) is a commonly used
tool for unsupervised data analysis. Mathematically, finding
the principal components is given by the following problem:

max
Z∈Rd×p

‖XZ‖2F , s.t. ZTZ = I, (1)

In PCA, columns of the matrix Z are dense. It means that
the transformation with Z corresponds to the linear combi-
nation of all original features. These dense loading vectors
of conventional PCA make it harder to interpret the output
dimensions. When the purpose is dimensionality reduction and
the features do not have specific meanings, this drawback is
not critical. However, when the goal is to analyze and interpret
the data by using PCA, it would be useful to know which of
the original features contribute to the output dimensions. If the
loading vectors are sparse, then only a few input features will
be combined and this will make it easy to interpret the output
dimensions. PCA with sparse loading vectors, that correspond
to the columns of Z in Eq. (1), is called as Sparse PCA
(SPCA) [11].

SPCA provides an integrated approach for phenotyping, for
examples non-zero locations in the loading vector of the first
principal component give a set of key clinical features for the
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Fig. 2: An example of hierarchical phenotyping with stochastic Cvx-SPCA. The left most graph shows the first, the middle
shows the second and the right most shows the third level features of the patient population. This procedure can be applied
repeatedly until the desired number of levels is reached. When there are too many leaf phenotypes, users can manually inspect
the properties of each phenotype and decide whether or not to expand it.

population. These key clinical features naturally define a set of
subcohorts, each of which includes the patients associated with
one of the features. Therefore, SPCA can be used as a relevant
tool to obtain phenotypes and identify stable subcohorts, and
its sparsity aids us to have a hierarchical representation which
leads to a visualization approach. In the next section, we will
show how SPCA can be used for phenotyping patients and how
we visualize the obtained phenotypes in a way that physicians
and medical researchers can easily interpret and refine the
results.

C. Interactive Hierarchical Phenotyping via PHENOTREE

In this section, a phenotyping framework, PHENOTREE, is
introduced to provide a visual analytic tool for analyzing,
interpreting and refining computed hierarchical phenotypes.
The proposed procedure for obtaining a two-level hierarchical
structure using SPCA is explained in detail below:

Step 1: We apply SPCA to the whole patient population
and obtain the non-zero loading values. Clinical features
corresponding to the non-zero loading values are the input
dimensions which contribute to the leading principal compo-
nent. Therefore, these clinical features are selected as key
features and a set of phenotypes within the population is
defined starting with these key features. Thus, first level of
the hierarchy is obtained using the key features determined in
Step 1.

Step 2: First level features obtained in the previous step
are used to define sub-populations containing the patients
who have these key clinical features. Thus, the number of
sub-populations in the second level equals to the number of
first level features. In the second step, we use these sub-
populations associated with each first level feature to expand
their phenotype. Same procedure in Step 1 is applied to
each sub-population and second level key clinical features are
obtained for each first level feature.

By iteratively applying the method above to expand the
phenotypes, we are able to build a phenotype hierarchy and
organize it in a tree structure. Depending on how medical

experts would like to explore the cohort, they can either 1)
automatically grow all leaves of the tree, where the number
of steps is identified by the size of the tree and the size of the
tree can be determined by a physician, or 2) manually grow
each phenotype leaf after investigating the properties associ-
ated with the phenotype (e.g., composition of the population,
or according to a specific medical condition). More details
about the interactive interface will be elaborated later. An
important feature of the proposed phenotyping approach is the
visualization ability of the hierarchical structure that medical
researchers can easily observe the structures of the subcohorts,
generate and refine phenotypes, and make clinical decisions.
Otherwise, the aforementioned analysis is not possible with a
text based representation of obtained phenotypes for a human
since the number of patients and phenotypes are generally very
large. For this purpose, PHENOTREE utilizes radial Reingold-
Tilford tree [30] based on the work by J. Heer and J. Davies
as given in Figure 2, where the outputs of steps 1, 2, and 3
for a three-level structure are shown.

Each node of this tree gives a structured phenotype and
a stable subcohort characterized by this phenotype. We note
that as we are expanding the phenotypes, the children are not
independent from their parents because of the populations are
conditioned on the parent phenotypes. For example, if the
phenotype characterized by the diagnosis ICD9 92 Syphilis
has a parent phenotype 808 Pelvis, we denote the phenotype
as ICD9 92 → 808. A patient may have a feature from
only the first level, first two levels or from all three levels.
For instance, in Figure 2, there are 3 patients who have
ICD9 373 and ICD9 185, 32 patients who have ICD9 373
and ICD9 626, and one patient with ICD9 373, ICD9 185
and ICD9 761 features together. Same patients may have
different hierarchical phenotypes as well. For example, one
patient could simultaneously possess two phenotypes: ICD9
373 → 185 → 761 and ICD9 373 → 185. If we need
to assign patients exclusively to one of the phenotypes, the
deepest hierarchy could be used. Thus, PHENOTREE provides
an interesting, informative, and visually interactive way of
phenotyping the patients by their diagnoses information. These
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phenotypes can be used to cluster patients or can be used as
side information for classification tasks.

The proposed approach to construct PHENOTREE is given
in Algorithm 1, where the subroutine PatientSampling
selects a sub-population in data with a specific phenotype,
and ExpandPhenotype identifies a set of phenotypes of a
finer level of granularity by solving the SPCA.

The proposed approach provides a novel way to investigate
patient populations and to visualize the structure in a com-
prehensible way that medical researchers and physicians can
observe the hidden information inside the EHR. Sparsity of
the loading vector makes the interpretation possible because
sub-populations are determined by the key clinical features
which are the ones with non-zero loadings. Moreover, applying
SPCA iteratively allows us to identify hierarchical phenotype
structures and leads to an integrated way to visualize the
structured phenotypes as well as different patient groups at
various levels of granularity. Analyzing the various levels
of granularity without visualization is a complicated and
challenging task for a human expert.

As it was also discussed in [25], [27] and [28], cohort
studies require interactive visualization approaches to provide
insights of EHR datasets in a comprehensible way. Otherwise,
medical researchers may face a risk of missing the signifi-
cant information present in cohorts. As mentioned earlier, an
interactive mode allows medical researchers to manually in-
vestigate and expand each phenotype. Therefore, an interactive
interface has also been designed for hierarchical visualization
shown in Figure 3. The purpose of this interactive interface
is to provide a visual analytic tool for medical researchers
so that they can generate the phenotypes, change parameters,
interpret the results visually, and refine the findings. Refine-
ment process has also an important role in medical research.
In PHENOTREE, phenotypes do not have to be expanded
uniformly. In the hierarchy in Figure 2, for example, not every
key feature is expanded to the third level. In such cases,
expertise of the medical researchers should be incorporated
into the analysis process to expand the phenotypes further.
Users of the interactive interface can upload an EHR dataset
with features corresponding to the frequencies of the ICD9
diagnoses and generate a hierarchical visualization of the
dataset by using this interface. Users can filter the records with

Algorithm 1 Construction of a PHENOTREE

Input: Data: D, solver parameters for CvxSPCA: O, number of
levels: N

Output: N -level PHENOTREE T and a set of phenotypes P
1: Initialize tree T = ∅
2: Add pseudo phenotype to phenotype stack S: p0 → S
3: while S 6= ∅ do
4: Pop one phenotype p from stack S.
5: if depth of p is less than N then
6: S = PatientSampling (D, p)
7: Compute phenotypes of a finer level of granularity P(p,S)

= ExpandPhenotype (p,S;O)
8: Update T with phenotypes P(p,S)

9: Push phenotypes in P(p,S) to S
10: end if
11: end while

respect to some properties such as demographic information of
the dataset. Optimization technique and the SPCA formulation
can also be selected according to the user’s preference.

With the proposed interactive interface, PHENOTREE can
involve the medical researchers in the loop of computational
phenotype. However, the interactive analytics and visualization
constantly require performing deeper phenotyping on new
identified stable sub-cohorts, and thus the phenotyping proce-
dure will be invoked repeatedly. When applying the proposed
method to analyze large- scale EHR cohorts, the efficiency of
the SPCA will be critical. Unfortunately, existing formulations
and optimization algorithms for SPCA are very sensitive to the
scale of data, and the prohibitive computation time will cause
huge delays when PHENOTREE is used interactively, and make
the interactive phenotyping less practical. Therefore, we now
propose an efficient SPCA method that is capable of exploring
hierarchical phenotypes of large-scale EHRs.

D. Stochastic Convex Sparse PCA (Cvx-SPCA)

One concern about traditional SPCA methods is scalability
with respect to huge amount of data points. Stochastic methods
are generally preferred to deal with large sample sizes since
only one gradient is calculated at each iteration. Therefore, we
propose to use an efficient stochastic convex SPCA approach
(Cvx-SPCA) studied in [31]. In this section, we summarize
important points of Cvx-SPCA and refer readers to [31] for
full details.

SPCA can be posed as an `1 norm regularized optimization
problem as given in 2.

min
z∈Rd

−zTXz+ γ ‖z‖1 , (2)

A typical solution of such a problem with a composite
smooth part and a non-smooth part is the proximal gradient
descent such as [20], [21]. Even though methods such as [20]
provide fast convergence properties, they compute the full
gradient in each iteration. Therefore, the computation time
increases drastically for large scale data with hundreds of
thousands points such as EHRs. Therefore, stochastic proximal
gradient descent (Prox-SGD), where only one gradient is
computed at each iteration, is more suitable to deal with large
scale datasets. However, stochastic methods generally suffer
from low convergence compared to the full gradient methods.
The reason of low convergence is the high variance due to
random sampling. Therefore, a diminishing step size has to
be used and that is why more iterations are required for the
convergence of traditional stochastic methods. In literature,
stochastic proximal gradient methods, which decrease the
variance of the gradient computation and eventually lead
to higher convergence rates, are also studied. For instance,
proximal stochastic variance reduced gradient (Prox-SVRG)
has been proposed to alleviate the low convergence downside
of Prox-SGD in [24].

Prox-SVRG mitigates the effects of high variance by re-
ducing it progressively and provides a geometric convergence
rate. In Prox-SVRG, the important steps in gradient computa-
tion, which provide variance reduction, are using the average
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Fig. 3: An interactive interface for hierarchical visualization. User can upload a healthcare dataset whose features correspond
to ICD9 diagnoses and generate a hierarchical visualization of the dataset by using this interface. Users can filter the records
with respect to demographic information as needed. Optimization technique and sparse PCA formulation such as convex and
non-convex can be selected.

gradient and incorporating the estimate of the optimum point.
Estimate of the optimum point is the average of the points
calculated during iterations and it is calculated at the end
of each epoch to be used in the next epoch. Expectation of
the gradient calculated in Prox-SVRG gives the full gradient
which means that we are still in the direction of the full
gradient under the expectation. However, the variance of the
gradient is upper bounded since the variance is progressively
reduced. As shown in [24], when the algorithm converges to
the optimal point, variance of the gradient also converges to
zero. Therefore, this approach can achieve better convergence
rates than conventional stochastic gradient methods. We refer
to [24] for detailed proof of bounding the variance.

Performance of Prox-SVRG is based on two main assump-
tions namely strong convexity and Lipschiz continuity of the
gradient. Typically traditional PCA formulation is non-convex
in nature as it can be seen from Eq. (1). A non-convex
objective function is not suitable to leverage high convergence
properties of Prox-SVRG. Therefore, we proposed to formu-
late the SPCA as the following convex optimization problem
in [31]:

min
z∈Rd

(
1

2
zT (λI−X) z−wT z

)
+ γ ‖z‖1 , (3)

where λ > λ1 (X) is the convexity parameter. Even though w
is a random vector, we note that γ = ‖w‖∞ provides an upper
bound of the minimal γ that gives trivial solution of an all-zero
solution of z, by subgradient analysis [32]. As such the sparsity
tuning parameter can be normalized into a range of [0, 1] by
multiplying γ. This formulation without `1 norm regularization
has been proposed in [19] as an approximation of learning

the leading principal component. Eq. 3 provides a strongly
convex formulation which transforms non-convex problem into
a convex optimization problem. Thus, we can utilize Prox-
SVRG for the solution of the optimization problem given
above. One point we should note that it is usually hard to
find strongly convex objective functions in many application
domains. On the other hand, it is possible to show that the
strong convexity assumption can be relaxed by using weaker
conditions and a geometric convergence rate can still be
achieved. For detailed convergence proof of stochastic Cvx-
SPCA see [31].

In summary, we use an iterative stochastic gradient based
framework to find the first principal component by learning
a sparse loading vector. This approach is very convenient for
large scale healthcare datasets, since it utilizes a stochastic
framework. A comparison of the running times of our method
with different SPCA algorithms is given in Figure 4. The
efficiency of the proposed algorithm framework enables the
interactive analytics and phenotyping via Cvx-SPCA. In the
interface, we have shown users the approximate waiting time
to expand a node in the phenotype tree (i.e., perform phe-
notyping based on the current population/sub-population). To
achieve this, we use the data Table II to fit a linear regression
model to predict the computation time (shown in Eq. (4)),
which is then used to generate predictions.

Time = 10.95 + 0.0015× Sample Size (4)

For this purpose, several experiments with varying sample
sizes are conducted and the execution times to construct a three
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TABLE II: Running times (in seconds) for different sample
sizes to construct a 3 level hierarchical visualization. Number
of features affects the running time as well. This algorithm is
not scalable in terms of feature dimensionality, since we need
to calculate the covariance matrix. Therefore, running times
shown here is for a fixed dimensionality of 500. A machine
with 2.8GHz Intel(R) Xeon(R) CPU and 141.666 GB memory
was used in the experiment.

Sample size Running time (in sec.)
1,000 6.42
5,000 6.62

10,000 12.63
55,000 78.22

Fig. 4: Running times in seconds are compared to obtain
similar cardinality of loading vector. A machine with 2.8GHz
Intel(R) Xeon(R) CPU and 141.666 GB memory was used in
the experiment. The method denoted by Reg-SPCA from [11],
by InvPow-SPCA from [14] and SPCA- ALM from [15].
Reg-SPCA poses SPCA as an elastic net regression problem.
InvPow-SPCA uses a generalization of the inverse power
method with constraint optimization problems. On the other
hand, SPCA-ALM uses semi-definite programming. Accord-
ing to experiments with randomly generated data with sample
sizes of 100, 000, 500, 000 and 1, 000, 000, we see that Cvx-
SPCA can better handle large datasets than other methods.

level hierarchy are computed. Some example of sample sizes
and their corresponding running times are given in Table II.
Thus, we can estimate the running time of constructing a stan-
dard 3 level hierarchy by using the aforementioned regression
model.

IV. EXPERIMENTS

In this section, we will present the experiments conducted
by using the proposed approach. The purpose of our ex-
periments was to gain insight of the EHR dataset by il-
lustrating the behavior of different patient populations. In
the experiments, we applied the proposed visually interactive
hierarchical phenotyping algorithm PHENOTREE to two real-
world EHR datasets to build a hierarchical structure of the
populations and visualize the obtained phenotypes.

A. Electronic Health Records Dataset

We used a private large scale EHR dataset comprising of
223, 076 patients and 11, 982 diagnoses. This EHR ware-
house has records of patients over 4 years. Each diagnosis
is represented by ICD9 codes. We do not have any explicit
demographic information of the patients and we also do not

know their admission/readmission times. Besides, some of the
ICD9 codes have particular terms which give us a clue about
gender and age of the patients. For instance, diagnoses about
pregnancy, female/male genital organs, problems of newborns
or diagnoses which have the term senile in their explanations
can be used to group patients as female, male, child and old,
respectively. However, it was observed that there are some
patients who have records for both female and male specific
diagnoses and some patients have diagnoses as being both
newborn and senile. Since we do not have any control on
the data collection phase, the main reason of this situation
could not be resolved. Therefore, these kind of patients were
eliminated in our experiments. There are also patients who
have very few records in the dataset. Patients who have fewer
than five records were also discarded. In the end, experiments
were conducted with 168, 431 patients in total. Each patient
has a sparse feature vector where the i-th value gives the
frequency of the i-th diagnosis code for the corresponding
patient. ICD9 codes correspond to different diagnoses and
each diagnosis has its own sub-groups. For instance, 278
corresponds to Obesity and 278.01 is given for Morbid Obesity
and 278.02 for Overweight, etc. Thus, sub-groups are all
related to a main diagnosis. In our experiments, all the sub-
groups related to a particular diagnosis were combined. As a
result, the feature dimensionality was 927 in the experiments.

We conducted several experiments to visualize the structure
of the patient population using the procedure explained in the
previous section. A three-level PHENOTREE was generated as
shown in Figure 6, where the ICD9 description of each disease
is also included. In this visualization, it was observed that the
following relationship can be established between layers. The
first level diagnosis with ICD9 code 239 denotes Neoplasm
Of Unspecified Nature. If we look at the output features
of the patients who have ICD9 239, we can see ICD9 176
Karposi’s Sarcoma, 196 Secondary and Unspecified Malignant
Neoplasm of Lymph Nodes, 693 Dermatitis Due To Drugs,
702 Other Dermatoses, and ICD9 957 Injury to Other and Un-
specified Nerves. Corresponding branches of the PHENOTREE
can be seen in Figure 5. Karposi’s Sarcoma is a type of cancer.
Unfortunately, neoplasms or abnormal growth of tissue can
spread out to different parts of the body. Therefore, patients
who have diagnosis of neoplasm of unspecified nature may
have other types of neoplasms as well. In addition, we can
also see dermatological problems in the second level. Cancer
treatments such as chemotherapy and radiation therapy can
have side effects on skin and other organs. Especially, radiation
dermatitis is one of the side effects of the radiation therapy.
Another example can be the ICD9 344 Paralytic Syndromes
whose second level were found as ICD9 669 Complications of
Labor and Delivery, 744 Congenital Anomalies of Eye, Face
and Neck, 820 Fracture of Neck of Femur and ICD9 891
Open Wound of Knee, Leg and Ankle. Paralytic conditions
may not occur during delivery so much. However, methods
like epidural may have the risk of paralysis. If we look at the
second level features, we can also see that there are features
related to neck or femur whose serious injuries can be a reason
for paralysis. In the cohort, fractures and injuries were typical.
Other most commonly encountered diagnoses were neoplasms
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Fig. 5: A branch of the PHENOTREE. The first level diagnosis
with ICD9 code 239 denotes Neoplasm Of Unspecified Nature.
If we look at the output features of the patients who have
ICD9 239, we can see ICD9 176 Karposi’s Sarcoma, 196
Secondary and Unspecified Malignant Neoplasm of Lymph
Nodes, 693 Dermatitis Due To Drugs, 702 Other Dermatoses,
and ICD9 957 Injury to Other and Unspecified Nerves.
Karposi’s Sarcoma is a type of cancer. Patients who have
diagnosis of neoplasm of unspecified nature may have other
types of neoplasms as well. In addition, we can also see
dermatological issues in the second level. Cancer treatments
such as chemotherapy and radiation therapy can have side
effects on skin and other organs.

(cancer), infectious diseases, and problems of newborns caused
by complications of mothers.

After general patient population was analyzed, different pa-
tient groups in terms of age and gender were also investigated.
Hierarchical representations of female, male, child, and old
patient groups are given in Figures 7, and 8, respectively.
Female and male groups were obtained by sampling the
patients who have female and male diagnoses which are
explicitly specified in ICD9 codes. However, we did not
include all of the diagnoses that can be encountered among
both females and males. Old and child patient groups were
obtained in a similar manner. It is not possible to have an
exact information about age of a patient from ICD9 codes.
Some standard diseases which are mostly seen in children such
as measles and problems of newborns are straightforward to
classify as child. On the other hand, young patients, who are
assumed to be adults younger than 70 years old in this paper,
may have diseases such as hypertension which are mostly
associated with people older than a certain age. Therefore,
we picked patients with diagnoses that have the term senile
in the ICD9 description as the old patients. As it is discussed,
old and child patient groups are not defined by a certain
age range. Child patients are assumed to be newborns and
children before adolescence and the old patients are people
older than 70. According to our observations, different patient
groups tend to have the common diseases which was illustrated
for general population earlier. On the other hand, different
patient groups also yielded their specific diagnoses as well. For
instance, one of the first level features in Figure 7a is ICD9
636, Illegal Abortion. Illegal abortion has many health risks
for women such as infections and urinary tract disorders. In the
second level, we can see diagnoses like ICD9 596, Disorders
of Bladder, and 37, Tetanus, which could be side effects of
illegal abortion.

Another example can be gleaned from the visualization of
old patient population in Figure 8b. We observe diagnoses such
as dislocation and fracture of bones. People older than a certain

Fig. 6: Hierarchical stratification via Cvx-SPCA. Cvx-SPCA is
applied on the entire patient population and the features with
largest absolute loading values on the leading principal com-
ponent are selected. Each feature dimension corresponds to a
specific disease. A patient cohort is constructed by performing
Cvx-SPCA repeatedly. Existing sparse PCA algorithms are
unable to perform such analysis due to the scale of data.
age such as 80 commonly suffer from fractures especially in
femur and pelvis. For example, ICD9 821 fracture in femur is
one of the first level features of old patient group. In the second
level of ICD9 821, diagnoses such as ICD9 268 Vitamin D
deficiency, 332 Parkinson’s Disease, some infectious diseases
and ICD9 701 skin disorder were obtained. These diagnoses
are commonly encountered among old patients. In the experi-
ments with different groups of patients, not all of the diagnoses
obtained were necessarily only about that specific group of
patients. For instance, hierarchical stratification of female/male
patients does not contain only female/male specific diagnoses.
This is an expected outcome because we know that these
patients may have records for other problems as well. As
a summary, our results show that the proposed method can
be used to understand and visualize the relationship between
patient groups. PHENOTREE also provides a visual analysis of
commonly encountered diagnoses and helps to understand the
structure of the patient population for the EHR data.

B. Diabetes Dataset

Next set of experiments were conducted for a public avail-
able EHR dataset which represents clinical data collected
between (1999-2008) at 130 US hospitals [33]. There are
101, 767 patients in total and each patient has 50 features
representing race, gender, age, number of medications, test
results, diagnoses and other patient and hospital outcomes.
Age distribution of the diabetes data is given in Figure 9. There
is an age range for each patient, such as [0,10), [10,20), etc.
In the figure, each age represents the corresponding range, for
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(a) Female (b) Male

Fig. 7: Hierarchical stratification via Cvx-SPCA for female and male patients. Female groups were obtained by sampling the
patients who have diagnoses pertinent to females which are explicitly specified in ICD9 codes. The same procedure was applied
to obtain male patients. One of the first level features in Figure 7a is ICD9 636, Illegal Abortion. In the second level, we see
diagnoses like ICD9 596 Disorders of Bladder, and 37 Tetanus, which could be some of the side effects of illegal abortion.

(a) Child (b) Old

Fig. 8: Hierarchical stratification via Cvx-SPCA for child and old patients. According to our observations, different patient
groups tend to have common diseases which was illustrated for general population before. On the other hand, they also yielded
their specific diagnoses as well. The age range is not defined precisely, since it is not possible to have an information about
age from ICD9 codes.

instance, 10 indicates the range [0,10), 30 indicates the range
[20,30), so on.

Each patient has 3 diagnoses with corresponding ICD9
codes. In the experiments, patients were represented by 729-
dimensional feature vectors. First 697 features were corre-
sponding to 697 unique ICD9 codes in the dataset. The value
of the feature is 1, if the patient has that specific diagnosis.
Therefore, the first 697 portion of the feature vectors is quite
sparse. Rest of the features are provided with the dataset
such as number of time in hospital, lab procedures, number
of medications, and some test results about diabetes which
are binary values. In addition, the readmission status of the
patients is also given. Readmission attribute of the original

dataset has three values such as not readmitted, < 30, and
> 30 which correspond to readmission before and after 30
days of discharge [33]. We used this information to group
patients as readmitted and not readmitted to see how the
hierarchical structures differ.

We followed the same procedure as in electronic medical
records dataset and we similarly aggregated the features be-
longing to the same ICD9 groups, resulting in 696 features
in total. The results for the whole patient population are
shown in Figure 10. Output features were observed as insulin
and some ICD9 diagnoses such as neoplasm, heart disease,
hormonal problem and so on. Insulin controls the blood sugar
and therefore the existence of insulin indicates diabetes. If
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Fig. 9: Age distribution of diabetes dataset. We were not
sure about the age distribution of the patients in the private
dataset used previously. However, demographic information
of diabetes dataset is available. Each age represents an age
range, for instance, 10 indicates the range [0,10), 30 indicates
the range [20,30), and so on.

Fig. 10: Hierarchical representation of diabetes data. Proposed
approached was applied to the whole patient population.
Output features were observed as insulin and some ICD9
diagnoses such as neoplasm, heart disease, hormonal problem
and so on. Existence of insulin indicates diabetes. Disorder of
adrenal glands and stomach problems are commonly encoun-
tered among diabetes patients.

we further examine the diagnoses obtained from the patient
groups who were prescribed insulin, we can see a wide range
of diagnoses such as kidney problems, disorders of stomach,
bacterial infections, and disorders of adrenal glands. Stomach
problems are also commonly encountered among diabetes
patients because of medications. Other than diabetes, it is
possible to observe different kind of diagnoses as well. For
instance, diagnoses such as 398 and 415 are related to the
heart diseases which are frequently encountered problems.

Similarly, we examine the results of patients who are

readmitted and not readmitted which are shown in Figure 11.
Readmitted group has patients who were readmitted before
and after 30 days of their discharge. The readmission is not
only relevant for medical purposes but also for insurance
companies [33]. From our point of view, we investigated
how the types of diagnoses and the hierarchical structure of
readmitted patients differ from the patients who were not
readmitted. We should emphasize that the same regularization
parameter was used for both patient populations. According to
our observations, it is hard to distinguish these two populations
by looking at the type of output diagnoses. For instance,
diseases which may require the patient to get medical care
regularly such as cancer are encountered in both results.
However, if we look at the Figures 11a and 11b, we can
see that the graph of readmitted patients has more nodes
in the second level. The interpretation of this result can be
made as follows: Readmitted patients may have several records
for different diagnoses. Therefore, we could sample enough
patients with specific diseases compared to not readmitted
patient population, while we were constructing the levels.
Graphs of female, male, old, teen and adult patients can also
be seen in Figures 12 and 13, respectively. Patient groups with
respect to gender and age were provided by the dataset.

As a summary, we can see that exploring the insights and
interpreting the findings about the EHR data visually are
possible by using the proposed PHENOTREE approach. This
kind of a system can be helpful for clinical decision support
systems since it aids physicians to understand diagnoses and
subcohort relationships in a visually interactive way.

V. CONCLUSION

In this paper, a hierarchical phenotyping approach for
visualizing electronic health records is proposed by utilizing
stochastic convex sparse PCA. The stochastic framework of
the proposed approach enables applying PHENOTREE to large
scale real world EHRs. Results show that proposed frame-
work can be helpful to understand and analyze the patient
populations and the relationship between them. Proposed
approach also provides a way to visualize the relationships
between patient groups with different diagnoses. In addition,
it is shown that PHENOTREE can be used to detect clinical
hierarchical phenotypes. We do not consider any temporal
information of the records. In the future, we will incorporate
the time stamps of the medical events in EHRs in our solution.
When temporal information is considered, EHR data can be
represented as multi-dimensional tensors, and we will extend
SPCA to the tensor case and apply Prox-SVRG to obtain
solutions efficiently. We will also design visualization for
temporal phenotypes.
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(a) Readmitted (b) Not Readmitted

Fig. 11: Hierarchical Stratification via Cvx-SPCA for patients who were readmitted and not readmitted in diabetes data. Injury
and poisoning are commonly encountered features for not readmitted patients. However, wider range of diagnoses such as
neoplasms and diabetes melitus are observed for readmitted patients compared to not readmitted patients. In Figures 11a
and 11b, we see that the graph of readmitted patients has more nodes in the second level, which may because that the
readmitted patients have more diversed diagnoses.

(a) Female (b) Male

Fig. 12: Hierarchical Stratification via Cvx-SPCA for female and male patients in diabetes data. The information provided
by the dataset was used to discriminate patients with respect to gender. We can observe female/male diagnoses along with
common diseases. For instance, Figure 12b has ICD9 602 disorder of prostate and 401 hypertension. The number of nodes in
Figures 12a and 12b are also different in this example.
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