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Abstract

Principal component analysis (PCA) is a dimensionality reduction and data analysis tool commonly used in many
areas. The main idea of PCA is to represent high-dimensional data with a few representative components that capture
most of the variance present in the data. However, there is an obvious disadvantage of traditional PCA when it is
applied to analyze data where interpretability is important. In applications, where the features have some physical
meanings, we lose the ability to interpret the principal components extracted by conventional PCA because each
principal component is a linear combination of all the original features. For this reason, sparse PCA has been proposed
to improve the interpretability of traditional PCA by introducing sparsity to the loading vectors of principal
components. The sparse PCA can be formulated as an �1 regularized optimization problem, which can be solved by
proximal gradient methods. However, these methods do not scale well because computation of the exact gradient is
generally required at each iteration. Stochastic gradient framework addresses this challenge by computing an
expected gradient at each iteration. Nevertheless, stochastic approaches typically have low convergence rates due to
the high variance. In this paper, we propose a convex sparse principal component analysis (Cvx-SPCA), which
leverages a proximal variance reduced stochastic scheme to achieve a geometric convergence rate. We further show
that the convergence analysis can be significantly simplified by using a weak condition which allows a broader class
of objectives to be applied. The efficiency and effectiveness of the proposed method are demonstrated on a
large-scale electronic medical record cohort.
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1 Introduction
Principal component analysis (PCA) is a commonly
used dimensionality reduction and data analysis tool in
many areas such as computer vision [1, 2], data mining
[3, 4], biomedical informatics [5, 6], and many others.
The goal of PCA is to learn a linear transformation such
that the learned principal components are the dimensions
retaining the most of the variance in the data. Principal
components are obtained by computing the eigenvalue
decomposition of the covariance matrix, and it can also be
computed by the singular value decomposition of the data
matrix. Let S = 1

n
∑n

i=1 xixTi be the normalized covari-
ance matrix for n training data points where each data
point is in a d-dimensional feature space. The PCA of

*Correspondence: jiayuz@msu.edu
1Computer Science and Engineering, Michigan State University, 48824 East
Lansing, USA
Full list of author information is available at the end of the article

computing the top p components can be written as the
following optimization problem:

max
Z∈Rd×p

‖SZ‖2F , s.t.ZTZ = I, (1)

where Z is an orthogonal projection matrix. In many
applications, we are only interested in a few top principal
components. In this case, the principal components can
be computed in an iterative fashion: the leading princi-
pal component is calculated at each iteration (e.g., using
power methods), and we then deflate the computed com-
ponent and the next principal component now becomes
the leading one [7]. Therefore, we focus on finding the
leading principal component in this paper. In spite of its
advantages, there is an obvious disadvantage of PCA. In
the solution of Eq. (1), the principal components are linear
combinations of all input variables. This means that the
columns of Z matrix, which are called loadings of princi-
pal components, are dense. One important implication of
dense loadings is that we lose the ability to interpret the
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output dimensions of conventional PCA. PCA works well
if we are not interested in the physical meanings of the
features or if the interpretation of principal components is
not crucial for the application. However, the intepretabil-
ity is a significant factor when it comes to many applica-
tions such as biology, finance, and biomedical informatics.
In the domain of biomedical informatics, as more and
more electronic medical records (EMR) [8] of patients are
available, medical researchers are interested in applying
various techniques to analyze the EMR data. Each feature
of the EMR data is a record/event related to a certain diag-
nosis. When the traditional PCA is applied to the data,
those medical features are projected to a low dimensional
space, in which each new feature will be the linear combi-
nation of all the original features. In this case, it is hard to
comprehend the meaning of the new features.
Sparse PCA has been proposed to address this draw-

back. In sparse PCA, we learn sparse loading vectors
which combine only few of the input variables allow-
ing interpretation of the principal components. Sparse
PCA was firstly proposed by Zou et al. in [9], where
PCA was formulated as a regression problem and the
sparse PCA was introduced by imposing the lasso (elas-
tic net) constraint. Other common approaches to solve
the sparse PCA problem are semi-definite programming
[10, 11] and inverse power method [12]. Moreover, a more
recent study [13] investigated sparse PCA with oracle
property. Aforementioned approaches are generally not
scalable enough to work with large-scale datasets. One
way to deal with large sample sizes is using stochastic
methods. We can see an example of stochastic PCA in
[7]. Authors described an algorithm with computationally
cheap stochastic iterations and variance reduction which
was suggested in [14].
In this study, sparse PCA is posed as an �1 regularized

optimization problem. Standard approaches to solve such
sparse learning problems are proximal gradient methods
[15–17], which require computation of the full gradient
at each iteration. These methods generally work with a
composite function including a smooth part and a non-
smooth part. A large family of machine learning problems
[18–23] can be expressed as composite functions. Tradi-
tionally, solving problems with objectives, which are not
continuously differentiable, requires subgradient descent
[24] which has very poor performance [25]. The recently
developed proximal gradient methods can solve these
composite problems with fast convergence rates [26, 27].
However, these methods are hardly scalable to large-scale
problems with large sample sizes because of the computa-
tion of full gradient. Therefore, stochastic gradient-based
methods are preferred in such problems. One major dis-
advantage of the stochastic gradient descent is the low
convergence due to high variance by random sampling.
Johnson and Zhang proposed a solution for this drawback

in [14]. Their solution reduced the variance by using a
copy of the estimated optimal point and the full gradient
at this point in the gradient step. This approach exploited
the strong convexity property to obtain a geometric con-
vergence rate under expectation. Xiao and Zhang similarly
presented a multi-stage scheme to progressively reduce
the variance of the proximal stochastic gradient (Prox-
SVRG) with a geometric convergence rate under expecta-
tion in [15]. The fundamental assumptions were Lipschitz
continuity of the gradient of smooth part and the strong
convexity of the objective function.
To tackle the aforementioned challenges in this paper,

we introduce a novel stochastic convex sparse PCA (Cvx-
SPCA) method which is extremely efficient and can han-
dle large-scale datasets. Specifically, we propose to adopt a
convex formulation of PCA [28] which provides a strongly
convex function. The problem structure in this design
allows us to leverage efficient scheme of Prox-SVRG [15]
which leads to an exponential (geometric) convergence
rate. We also investigate the convergence analysis of Prox-
SVRG and present a new proof of the convergence rate
which significantly reduces the conditions and assump-
tions required. As such, we show that the optimization
scheme can be applied to a much larger class of problems
to obtain the geometric convergence rate. We conducted
extensive experiments on both synthetic and real datasets
to illustrate the efficiency of the proposed algorithm.
Because of its efficiency, we were able to apply the pro-
posed algorithm to analyze a real EMR cohort with a large
number of patients, which is hardly possible to analyze by
using traditional approaches.

2 Convex sparse principal component analysis
In this section, we introduce the problem formulation and
optimization scheme of the proposed approach. The prob-
lem of finding a sparse loading vector is posed as the
combination of �1 sparsity inducing norm and convex-
ity from the convex principal component analysis, which
allows us to utilize an extremely efficient stochastic prox-
imal gradient approach.

2.1 Convex sparse PCA
The goal of sparse PCA is to learn sparse loading vectors
such that the principal components will be linear combi-
nations of a few key variables instead of all the variables.
We propose the following convex optimization problem:

min
z∈Rd

{P (z) = F (z) + R (z)} , (2)

where the convex PCA loss [28] is given by:

F (z) = 1
2z

T (λI − S) z − wTz

and the regularization term R (z) = γ ‖z‖1 is the �1
norm of the loading vector z, γ ∈ R is the regularization
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parameter controlling the sparsity of the loading vector,
λ > λ1 (S) is the convexity parameter, w ∈ R

d is a ran-
dom vector, and S = 1

n
∑n

i=1 xixTi . Here, λ1 (S) represents
the largest eigenvalue of the covariance matrix S and w
is a vector of normally distributed random numbers. An
upper bound for the regularization term γ can be derived
by using standard subgradient analysis [25]: if the reg-
ularization parameter γ is larger than the maximum of
absolute value of the elements of the vector w, i.e., ‖w‖∞,
we will end up with trivial solutions (solutions with only
zeros). This thus guides us to use a parameter range of
γ ∈[ 0, ‖w‖∞].
In the above approach, we use a convex optimiza-

tion formulation of finding the first principal component
inspired by the work in [28]. Even though R (z) is not
strongly convex, the overall cost function in Eq. (2) is a
strongly convex function in which the strong convexity
comes from F (z). The structure of the problem defined
in Eq. (2) allows us to use gradient based algorithms to
obtain the global solution. Moreover, the strong convexity
usually ensures nice convergence properties for stochastic
gradient schemes as well. Therefore, we can also benefit
from the faster convergence rate of the proximal stochas-
tic scheme proposed in [15]. We note that the objective
function of traditional PCA as shown in Eq. (1) does not
define a convex problem, and thus, the analysis in this
paper cannot be applied to it.
The most common methods to solve problems such

as Eq. (2), where the objective function is comprised of
the average of smooth component functions and a non-
smooth function, are proximal gradient methods. In the
next section, the method used to solve convex optimiza-
tion problem given in Eq. (2) will be explained.

2.2 Optimization scheme
In this paper, we propose to use a proximal stochas-
tic gradient method with progressive variance reduction
approach [15] to solve the problem in Eq. (2). The func-
tion denoted by F (z) can also be written as the sum of n
smooth functions:

F (z) = 1
n

∑n

i=1
1
2
zT

(
λI − xixTi

)
z − wTz. (3)

When n is very large, calculating the full gradient at
each gradient descent iteration is an expensive opera-
tion. Hence, stochastic gradient methods are preferred
to solve such problems. In stochastic approach, instead
of calculating gradients for all of the data points, one
data point is randomly sampled and the gradient at this
point is calculated at each iteration. Therefore, the num-
ber of calculations decreases. However, the drawback of
the stochastic gradient methods is the high variance intro-
duced because of random sampling. As a result of the

high variance, we suffer from poor convergence rates.
As discussed previously, there are solutions to reduce
the variance and increase the convergence rate. One of
the studies which mitigates the high variance problem
of stochastic gradient method is proximal stochastic gra-
dient method with progressive variance reduction [15].
The study in [15] showed that the variance of the gradi-
ent can be upper bounded by using a multi-stage scheme
which progressively reduces the variance. When the algo-
rithm converges to optimal point, variance also con-
verges to zero. Therefore, this approach can achieve better
convergence rates than conventional stochastic gradient
even with constant step sizes. We refer the readers to
Section 3.1 in [15] for detailed proof of bounding the
variance.
In this paper, we also follow the approach in [15]. The

algorithm used in this study is given in Algorithm 1.

Algorithm 1 The proposed stochastic gradient descent
with variance reduction algorithm for solving Cvx-SPCA
Input: λ, [x1, x2, . . . , xn] , S,w, z0, η, γ ,m,T
Output: z
1: for s = 1, 2, . . .T do
2: z̃ = z̃s−1
3: ṽ = (λI − S) z̃ − w
4: z0 = z̃
5: for k = 1, 2, . . . ,m do
6: Pick xik ∈ {x1k , . . . , xnk} randomly
7: vk = (

λI − xikxTik
) (
zk−1 − z̃

) + ṽ
8: zk = proxηγ

(
zk−1 − ηvk

)

9: end for
10: z̃s = 1

m
∑m

k=1 zk
11: end for
12: return z̃T

In the algorithm, z0 is the initial value for loading vec-
tor z, η is the constant step size, γ is the regularization
term to control sparsity of z, m is the number of itera-
tions for each epoch s, and T is the maximum number of
epochs. At each epoch, full gradient at the point z̃ is calcu-
lated periodically. The cost of calculating the full gradient
is the product of a d×dmatrix and a d dimensional vector.
Therefore, the most time consuming part in our algorithm
is the multiplications with covariance matrix, when the
feature dimension is high. z̃ is an estimate of the optimal
point and it is updated at each epoch to be utilized in gra-
dient calculations. Duringm stochastic gradient steps, we
first sample a data point randomly and compute the gradi-
ent vk . If we take the expectation of the gradient calculated
in Eq. (4), we can see that vk is also an estimate of the full
gradient as in conventional stochastic gradient methods.
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This shows that vk given below is in the same direction as
the full gradient under expectation.

vk = ∇fik
(
zk−1

) − ∇fik (z̃) + ∇F (z̃)

=
(
λI − xikxTik

) (
zk−1 − z̃

) + (λI − S) z̃ − w,
(4)

where∇F (z̃) is the average gradient of functions fi (z) , i =
1, . . . , n or the full gradient at point z̃, ∇fik

(
zk−1

)
is the

gradient of the function calculated by using the data point
xik sampled at the kth iteration and z̃ is the average of
zk, k = 1, ..,m at the end of an epoch.
After the gradient computation, we update zk by using

the proximal mapping for �1 norm as follows.

zk = proxη,γ
(
zk−1 − ηvk

)

= sign
(
zk−1 − ηvk

)
max

(
0, |zk−1 − ηvk| − ηγ

)
.

In this algorithm, variance of the stochastic gradient vk
is reduced progressively, while both z̃ and zk−1 are con-
verging to the optimal point z∗ = argminz P (z) [15].
Since the full gradient is utilized to modify stochastic gra-
dients and function F is an average of smooth component
functions, variance can be bounded. In the next section,
we will give the convergence analysis of the aforemen-
tioned algorithm.

3 Convergence analysis
In this section, we present the convergence analysis of
the proposed algorithm. The objective function used in
this paper is suitable to follow the convergence analysis in
[15]. Therefore, our analysis is mostly adapted from [15].
However, we use much weaker conditions which allow a
broader family of objective functions to fit in this scheme
and to enjoy the geometric convergence. We retain the
following assumption used throughout in [15]:

Assumption 1 The function R (z) is lower semi-
continuous and convex, and its effective domain,
dom(R) := {

z ∈ R
d|R (z) < +∞}

is closed. Each
fi (z) , for i = 1, . . . , n, is differentiable on an open set
that contains dom(R), and their gradients are Lipschitz
continuous. That is, there exist Li > 0 such that for all
z, y ∈ dom(R),

∥
∥∇fi (z) − ∇fi (y)

∥
∥ ≤ Li

∥
∥z − y

∥
∥ ,

which also implies that the gradient of the average function
F (z) is also Lipschitz continuous, i.e., there is an L > 0
such that for all z, y ∈ dom(R),

∥
∥∇F (z) − ∇F (y)

∥
∥ ≤ L

∥
∥z − y

∥
∥ ,

where L ≤ (1/n)
∑n

i=1 Li.

In [15], convergence analysis was done for general F and
R functions and both of them were assumed to be strongly
convex. On the other hand, we only assume that functions

F (z) and R (z) are convex, but not necessarily strongly
convex. Thus, we are relaxing this strong assumption at
this point. Strong convexity provides good properties and
is relevant for faster convergence rates. However, objec-
tive functions are not always strongly convex in many
cases. Therefore, a simplified version of the analysis will
be preferable, when the objective functions do not have
necessarily strong convexity property.
Although our overall objective function is strongly con-

vex, R (z) is not strongly convex as it was mentioned in
the previous section. Therefore, we drop the strong con-
vexity assumption at two steps in the original analysis of
[15] and obtain the convergence rate given in the following
theorem.

Theorem 1 Under the assumption that Assumption 1
holds and 0 < η < 1/

(
4LQ

)
, where LQ = maxiLi, the

convergence rate is obtained as follows:

ρ = 1
�
(
1 − 4LQη

)
mη

+ 4LQη (m + 1)
(
1 − 4LQη

)
m

< 1,

E {P (z̃s)} − P (z∗) ≤ ρs [P (z̃0) − P (z∗)
]
,

(5)

where z∗ = argminz P (z).

Proof The proof of Theorem 1 starts with investigating
the distance between zk and z∗; ‖zk − z∗‖2. According to
the stochastic gradient mapping definition in [15], zk can
be written as zk−1 − ηgk.

‖zk − z∗‖2 = ∥
∥zk−1 − ηgk − z∗

∥
∥2

= ∥
∥zk−1 − z∗

∥
∥2 − 2ηgkT

(
zk−1 − z∗

)

+ η2
∥
∥gk

∥
∥2 .

(6)

The term
(
−gkT

(
zk−1 − z∗

) + η
2

∥
∥gk

∥
∥2

)
can be

bounded by using the definition of the proximal update as
shown below.

zk = proxηR
(
zk−1 − ηvk

)

= argmin
y

{
1
2

∥
∥y − (

zk−1 − ηvk
)∥
∥2 + ηR (y)

}

According to the optimality condition,

zk − (
zk−1 − ηvk

) + ηξ = 0,

where ξ ∈ ∂R (zk) is the subgradient of R (z) at zk. If
we combine the stochastic gradient mapping definition
with the optimality condition, we obtain the following
expression.

zk − (zk + ηgk − ηvk) + ηξ = 0 ⇒ ξ = gk − vk
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By using the convexity of F (z) and R (z), we can write
the following inequality.

P (y) = F (y) + R (y)

≥ F
(
zk−1

) + ∇F
(
zk−1

)T (
y − zk−1

)

+ R (zk) + ξT (y − zk)

(7)

Convergence analysis of [15] utilized strong convexity of
F and R in 7. However, we will show that strong convexity
is not required at this point. Since F (z) is assumed to be
Lipschitz continuous with Lipschitz constant L, F

(
zk−1

)

can also be bounded by using Theorem 2.1.5 in [29].

F
(
zk−1

) ≥ F (zk) − ∇F
(
zk−1

)T (
zk − zk−1

)

− L
2

∥
∥zk − zk−1

∥
∥2

(8)

If we combine Eqs. (7) and (8), we obtain the following
inequality.

P (y) ≥ F (zk) − ∇F
(
zk−1

)T (
zk − zk−1

)

− L
2

∥
∥zk − zk−1

∥
∥2 + ∇F

(
zk−1

)T (
y − zk−1

)

+ R (zk) + ξT (y − zk)

≥ P (zk) − ∇F
(
zk−1

)T (
zk − zk−1

)

− L
2

∥
∥zk − zk−1

∥
∥2 + ∇F

(
zk−1

)T (
y − zk−1

)

+ ξT (y − zk)

Here, we again use stochastic gradient mapping; zk −
zk−1 = −ηgk to obtain the following inequality.

P (y) ≥ P (zk) + ∇F
(
zk−1

)T
(y − zk)

+ ξT (y − zk) − L
2
η2

∥
∥gk

∥
∥2

If we substitute ξ with gk − vk, then add and subtract
zk−1 from the term (y − zk):

P (y) ≥ P (zk) + (
vk − ∇F

(
zk−1

))T
(zk − y)

+ gkT
(
y + zk−1 − zk−1 − zk

) − L
2
η2

∥
∥gk

∥
∥2

P (y) ≥ P (zk) + gkT
(
y − zk−1

) +
(

η − L
2
η2

)
∥
∥gk

∥
∥2

+ (
vk − ∇F

(
zk−1

))T
(zk − y)

Under the assumption of 0 < η < 1/4LQ < 1/L,(
η − L

2η2
) = η

2 (2 − Lη) can be taken as η/2. Because
(2 − Lη) is between (1, 2) according to the assump-
tion, therefore, eliminating (2 − Lη) does not change the

inequality. Now we will use the result derived above for
the term

(
−gkT

(
zk−1 − z∗

) + η
2

∥
∥gk

∥
∥2

)
in Eq. (6).

‖zk − z∗‖2 ≤ ∥
∥zk−1 − z∗

∥
∥2 + 2η (P (z∗) − P (zk))

− 2η	T (zk − z∗) ,
(9)

where 	 = vk − ∇F
(
zk−1

)
and z∗ corresponds to

y. The term −2η	T (zk − z∗) can further be bounded
by using the proximal full gradient update z̄k =
proxηR

(
zk−1 − η∇F

(
zk−1

))
, If Cauchy-Schwarz inequal-

ity and the non-expansiveness of the proximal mapping(∥
∥proxηR(x) − proxηR(y)

∥
∥ ≤ ∥

∥x − y
∥
∥
)
are utilized, the fol-

lowing expression can be derived.

−2η	T (zk − z∗) = −2η	T (zk − z∗ + z̄k − z̄k)
≤ 2η ‖	‖ ‖zk − z̄k‖

− 2η	T (z̄k − z∗)

If we insert the definitions of zk = (
zk−1 − ηvk

)
and

z̄k = (
zk−1 − η∇F

(
zk−1

))
, we will have:

−2η	T (zk − z∗) ≤ 2η2 ‖	‖2 − 2η	T (z̄k − z∗) .

If we combine the result shown above with Eq. (9):

‖zk − z∗‖2 ≤ ∥
∥zk−1 − z∗

∥
∥2 − 2η (P (zk) − P (z∗))

+ 2η2 ‖	‖2 − 2η	T (z̄k − z∗) .

Now, expectations of both sides are taken with respect
to zk.

E {‖zk − z∗‖} ≤ ∥
∥zk−1 − z∗

∥
∥2 + 2η2E

{‖	‖2}

− 2η (E {P (zk)} − P (z∗))

− 2ηE
{
	T (z̄k − z∗)

}

Since z̄k and z∗ are independent from the variable zk;
E

{
	T (z̄k − z∗)

} = E
{
	T}

(z̄k − z∗) = 0. Because
E

{
	T} = E

{
vk − ∇F

(
zk−1

)} = E {vk} − ∇F
(
vk−1

) =
0. The variance of the gradient E

{‖	‖2} is upper
bounded in Prox-SVRG algorithm and we will use the
result of Corollary 3 in [15] which is E

{‖	‖2} ≤
4LQ

[
P

(
zk−1

) − P (z∗) + P (z̃) − P (z∗)
]
, where LQ =

maxi Li, z̃s = 1
m

∑m
k=1 zk, and z̃ = z̃s−1 = z0 for a fixed

epoch. After incorporating the bound of the variance of
the gradient into the analysis, the following expression is
obtained.

E
{‖zk − z∗‖2

} ≤ ∥
∥zk−1 − z∗

∥
∥2

− 2η (E {P (zk)} − P (z∗))
+ 8η2LQ

[
P

(
zk−1

) − P (z∗)
]

+ 8η2LQ
[
P (z̃) − P (z∗)

]

Now, if we apply the inequality above repeatedly for
k = 1, . . . ,m and the expectation with respect to previous
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random variables z1, . . . , zm are taken, then we can obtain
the following inequality.

E
{‖zm − z∗‖2

} + 2η [E {P (zm)} − P (z∗)]

+ 2η
(
1 − 4ηLQ

)m−1∑

k=1
[E {P (zk)} − P (z∗)]

≤ ‖z0 − z∗‖2
+ 8η2LQ

[
P (z0) − P (z∗) + m (P (z̃) − P (z∗))

]

Since 2η
(
1 − 4ηLQ

)
< 2η, z0 = z̃ and P is convex,

therefore, P (z̃s) ≤ 1
m

∑m
k=1 P (zk), and we can write the

following inequality.

2η
(
1 − 4ηLQ

)
m

[
E {P (z̃s)} − P (z∗)

]

≤ ‖z̃s−1 − z∗‖2
+ 8η2LQ (m + 1) (P (z̃s−1) − P (z∗))

By using Lemma 1 which is a weaker condition then using
the strong convexity and by applying the above inequality
recursively, we derive the convergence rate as follows:

[
E {P (z̃s) − P (z∗)}

]

≤
(( 2

�
+ 8η2LQ (m + 1)

)

2η
(
1 − 4ηLQ

)
m

)s
[
P (z̃0) − P (z∗)

]
.

Lemma 1 Consider the problem of minimizing the sum
of two convex functions:

min
z∈Rd

{P (z) = F (z) + R (z)} .

A standard method for solving the above problem is the
proximal gradient method. Given an initial point z0, using
the proximal mapping, which is shown below, iteratively
generates a sequence that will converge to the optimal
solution.

proxR (y) = arg min
z∈Rd

{
1
2

∥
∥z − y

∥
∥2 + R(z)

}

Since R (x) is a convex function, the optimal solution of
above problem is also an optimal solution of the following
problem using a tuning parameter μ [30] [Theorem 1].

min
1
2

∥
∥z − y

∥
∥2
2 s.t. R (z) ≤ μ

By utilizing the optimal strong convexity condition which
is a weaker condition than strong convexity [31] for a con-
vex function R, we have the following inequality for all
z ∈ 
:

P (z) − P
(
proxE (z)

) ≥ �

2
∥
∥z − proxE (z)

∥
∥2

where the proxE is the Euclidean projection on to set E and
� is a positive parameter.

We have thus removed the strong convexity condition
so that we are able to apply the algorithm in [15] to more
generic convex objectives.

4 Results
In this section, we present the results of two types of
experiments. First, the proposed algorithm was tested
on synthetic datasets to investigate the convergence of
the variance reduced proximal stochastic gradient com-
pared to traditional proximal stochastic gradient descent.
In addition, running times of the proposed stochastic Cvx-
SPCA and other sparse PCA methods were compared to
emphasize the advantage of using a stochastic approach,
when there are large number of samples. In our experi-
ments, step size η was chosen by the following heuristic
according to 0 < η < 1/

(
4LQ

)
and LQ was taken as

the largest eigenvalue of the covariance matrix. Iteration
number m was chosen as �

(
LQ/ (λ − λ1 (S))

)
which is

suggested in [15]. Secondly, we presented our experiments
on an electronic medical records data.

4.1 Synthetic dataset
In this section, we present some results of the proposed
stochastic Cvx-SPCA algorithm on synthetic datasets.
Synthetic datasets used in this section were all randomly
generated by normally distributed random numbers with
N (0, 1). For this purpose, synthetic data with varying
sample sizes were prepared by random sampling. First of
all, we would like to compare the convergence of proxi-
mal stochastic gradient with variance reduction and tra-
ditional proximal stochastic gradient for our algorithm.
In Fig. 1, objective versus number of epochs are plotted
for using traditional proximal stochastic gradient (prox-
SGD) and proximal stochastic variance reduced gradient
(Prox-SVRG) methods.
In Fig. 1, convergence is observed when the maximum

number of epochs is fixed to 50. We also would like to
investigate how many epochs are necessary for both algo-
rithms to converge. Therefore, we made another exper-
iment to see how fast Cvx-SPCA with Prox-SVRG con-
verges to a similar sparsity as Cvx-SPCA with prox-SGD.
We generated another synthetic dataset with 100,000
instances and 10,000 dimensions. The result of the exper-
iment is shown in Fig. 2. Cvx-SPCA with traditional SGD
took 3646.94 s and Cvx-SPCA with SVRG took 644.60 s to
converge to similar sparsity patterns.
Secondly, running times of other sparse PCA methods

and the proposed method were compared in Table 1. In
experiments, feature dimension was chosen as 1000. Algo-
rithms ran until they reached similar sparsity patterns.
The proposed Cvx-SPCA algorithm is more scalable, since
only one gradient is computed at a time and there are no
eigenvalue decomposition or SVD steps during iterations.
For instance, [9] requires singular value decomposition at
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Fig. 1 Convergence for synthetic data. Convergence of the proposed stochastic Cvx-SPCA with (Prox-SVRG) and without variance reduction
(prox-SGD). Proximal stochastic gradient with variance reduction has a faster convergence rate, since the variance caused by random sampling is
bounded in Prox-SVRG

each iteration, which is a bottleneck in terms of running
time, [12] is an inverse power method based approach,
and [11] uses semi-definite programming. Therefore, scal-
ability with respect to sample size and dimension is an
issue for the aforementioned methods.
We also investigate the regularization path for the pro-

posed algorithm. Regularization path illustrates how the

Fig. 2 Convergence of sparse pattern in the log scale. Cvx-SPCA with
Prox-SGD takes 275 iterations, whereas Cvx-SPCA with Prox-SVRG
takes 45 iterations to converge a similar sparsity pattern

solution changes for different values of regularization
parameters γ which specify the level of sparsity. In order
to have a suitable level of sparsity, γ should be tuned. One
common way of finding an appropriate γ is the regular-
ization path. We first generated a random sample with ten
features and applied the proposed Cvx-SPCA algorithm
to obtain the principal component. Then, the covariance
matrix was reconstructed by using the first principal com-
ponent corresponding to the largest eigenvalue with a lit-
tle random noise. Loading values of principal components
were computed with varying regularization parameters γ

by using the reconstructed covariance matrix. We started
with small γ values, and the loading vector learned from
the previous step is used as the initialization for each new
Cvx-SPCA step. The result is given in Fig. 3.

Table 1 Running times (in seconds) of different SPCA algorithms

Sample size Cvx-SPCA [9] [12] [11]

n = 50 k 20.9 207.1 48.7 3002

n = 100 k 26.2 466.9 78.3 3237.4

n = 500 k 35.6 2737.06 2661.7 5276.93

n = 1m 35.8 3408.59 3568 5274.26

Since proposed Cvx-SPCA does not depend on eigenvalue decomposition or
semi-definite programming, it is more scalable in terms of the sample size. It also
requires less iterations to reach a desired sparsity
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Fig. 3 Regularization path for Cvx-SPCA. We checked whether the
known principal component can be recovered through the path to
be able confirm that this is a valid regularization path. When
regularization term was around −0.11 (dashed line) in logarithmic
scale, we could exactly recover the non-zero loading values of the
known principal component which was used to generate the data

4.2 Large-scale healthcare dataset
We applied our Cvx-SPCA algorithm to analyze disease
patterns in a general patient population. The dataset we
used is a real world electronic medical record (EMR)
warehouse including the records of 223,076 patients over
4 years. We used the diagnosis information (in terms of

ICD9 codes [32]) in our investigation, which resulted in
11,982 features in total. In this dataset, we do not have
demographic information of patients explicitly. However,
we investigated patient groups with different gender and
age by looking at the descriptions of the ICD9 codes. We
draw histograms of the number of patients with respect
to the number of diagnoses each patient has in different
demographic groups and in the general population as in
Figs. 4 and 5, from which we can observe that the majority
of the patients just have very few records. In our exper-
iments, we eliminated the patients who have less than
five records, and this resulted in 177,856 patients. As it
was mentioned earlier, some of the diseases are specifi-
cally related to gender and age that let us have an idea
about the demographic information of the dataset. For
instance, complications of pregnancy, female genital dis-
orders, and abortion are some of the diagnoses which are
explicitly about women. Similarly, maternal complications
affecting newborn and diseases such as chickenpox and
measles are related to children. There are also ICD9 codes
which have terms indicating the age. For instance, some
of the diagnoses have the term “senile” which points out
patients at least above 60 years old. Thus, we sampled
female, male, old, and child patients by taking the def-
initions of the ICD9 codes into account. The age range
of child patients can be given as from babyhood to ado-
lescence and age of old patients can be thought as above
60 years old. In Table 2, number of patients and number

Fig. 4 Patient distribution of demographic groups. We used only diagnoses/diseases which have explicit information about demographic of the
patient while sub-sampling the patients. We can observe that each group of patient has a similar trend. Most of the patients have 1–50 diagnoses
entered into the record
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Fig. 5 Patient distribution. We observe that the majority of the
patients just have very few records

of features related to female, male, people above 60 years
old and children groups are given. We should note that
there may be female, male, old, and child patients who we
did not include into these demographic groups. For exam-
ple, there should be female/male patients with diagnoses
which are not gender- or age-specific. It is not always pos-
sible to guess the gender or age from diagnosis such as
hypertension or infectious diseases which can be encoun-
tered in both genders. Therefore, we are reporting the
demographic groups whose ICD9 codes have clear terms
indicating the demographic information.
As can be seen from Table 2, the number of female-

specific diseases and the number of female patients are
more than other groups in the EMR dataset we used in
this paper. Number of old patients is given less than other
groups in the table. However, it may not mean that there
are less number of old people in the whole patient pop-
ulation. We could not exactly extract age information of
every diagnoses/diseases. For instance, hypertension or
Alzheimer’s were diseases commonly encountered among
the people above a certain age in the past. However, these
problems can be occurred in younger ages recently. For

Table 2 We sample patients who have female, male, child, and
old people related features. These samples may overlap with each
other. For instance, a patient may have dementia and a prostate
problem together. We did not include other problems such as
hypertension or kidney problems which can be encountered in
every age and both genders into these groups of patients

Demographic Number of features Number of patients

Female 1268 130,035

Male 106 24,184

Old 66 2060

Child 596 38,434

this reason, we used only diagnoses/diseases which have
explicit information about demographic of the patient,
while sub-sampling the patients. Distributions of different
patient groups in Table 2 are given in Fig. 4.
In our experiments, we further aggregated all diagnoses

belong to the same ICD9 group together, so that each
patient is represented by a 918 dimensional feature vector.
The value on its ith dimension represents the frequency
of the ith diagnosis code appearing in the EMR of the cor-
responding patient. Since every patient will have a limited
number of diseases, patient vectors are very sparse.
We would like to emphasize that existing sparse PCA

algorithms cannot be used to analyze a dataset at this
scale. We carried out both quantitative and qualitative
evaluations on this dataset. We studied the convergence
of the algorithm with varying number of patients, and we
observe that the proposed Cvx-SPCA can still achieve a
good convergence even when the sample size is very large,
as shown in Fig. 6.
Next, we conducted an experiment to show how the

proposed algorithm helps us to analyze the EMR data.
We applied our algorithm to the whole data set and
got the output features which correspond to the non-
zero loading values of the leading principal component.
These output features are inferred as key medical features.
One of the results is summarized in Table 3. Diseases
shown in this table are the features which have non-zero
loadings whose absolute values are greater than a heuris-
tic threshold. In our experiments, we observed that the
most frequently encountered output features were infec-
tious diseases, problems related to pregnancy and labor,
injuries, and cancer types. This result tells us that the pro-
posed algorithm can provide insight about the diagnoses
encountered in the patient population.
We further examined the data set and divided the fea-

tures into groups in terms of gender and age. We sampled
the patients who have gender- and age-related problems
separately and applied our algorithm to those samples

Fig. 6 Convergence for 20 epochs of Cvx-SPCA for different number
of patients
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Table 3 EMR data features which contributes the output
dimensions after Cvx-SPCA algorithm was applied to the whole
patient population. Most frequently observed problems are
infections, injuries, pregnancy, and delivery related problems and
cancer types

ICD9 code Description

7 Balantidiasis/infectious

72 Mumps orchitis/infectious

115 Infection by histoplasma capsulatum

266 Ariboflavinosis/metabolic disorder

507 Pneumonitis/bacterial

695 Toxic erythema/dermatological

697 Lichen planus/dermatological

761 Incompetent cervix affecting fetus or newborn

795 Abnormal glandular papanicolaou smear of cervix

924 Contusion of thigh/injury

to analyze the output dimensions. Examples from each
group are shown in Tables 4, 5, 6, and 7. We can see
plausible results for the output features of each group in
the tables. For example, diagnoses such as female geni-
tal disorders, perinatal problems, and anemia, which are
more common among women, appeared in Table 4 where
the algorithm was applied to the subset of patients who
have female-related problems. Similarly, we can see from
Table 5 that a subset of male patients generates prostate
cancer along with other diagnoses which can be frequently
seen in the general patient population as well. Cancer is
a commonly encountered problem in nearly every age.
We can come across cancer in the results of children and
old patients as well. Another observation is that tuber-
culosis and bacterial infections are quite common among
children.

5 Discussion
Throughout the paper, advantage of using a convex opti-
mization approach for sparse PCA is emphasized. In this
section, we would like to discuss about our conjuring of

Table 4 Output EMR data features which contributes the output
dimensions after applying the proposed algorithm to the subset
of patients who have female-related problems. We could observe
female-specific problems and other common diseases such as
heart problems and anemia

ICD9 code Description

281 Pernicious anemia

392 Valvular and rheumatic heart disease

614 Female genital disorders

778 Serious perinatal problem affecting newborn

905 Major head injury

Table 5 Output EMR data features which contributes the output
dimensions after applying the proposed algorithm to the subset
of patients who have male related problems. We could observe a
prostate problem which is directly related male patients. In
addition, we can also see other common problems such as
injuries

ICD9 code Description

185 Malignant neoplasm of prostate

298 Depressive type psychosis

719 Effusion of joint

800 Closed fracture of vault of skull

811 Closed fracture of scapula

860 Traumatic pneumothorax

the convergence of non-convex stochastic sparse PCA by
using the same framework. One surprising finding we
have is if we use this non-convex PCA to construct a non-
convex sparse PCA (by adding �1-norm), we still benefit
from a much faster convergence rate using the stochas-
tic scheme studied in this paper. A similar result is also
presented in [7], where the authors propose a stochastic
PCA approach with an exponential convergence rate by
using variance reduced stochastic gradient presented in
[14]. These results lead us to ask the following question:
Can we generalize the convergence analysis of proximal
variance reduced stochastic gradient method further for
non-convex settings? We will investigate this problem in
the future work.

6 Conclusions
In this paper, a convex stochastic sparse PCA method
is proposed. Since the problem of finding the leading
eigenvector is formed as convex optimization, a well-
defined convergence rate can be applied to the proposed
algorithm. A proximal stochastic gradient method with
variance reduction is preferred to avoid low convergence
rates of traditional stochastic methods. Although strong
convexity is usually required in literature, we simplify the
convergence analysis of the existing Prox-SVRG algorithm

Table 6 Output EMR data features which contributes the output
dimensions after applying the proposed algorithm to the subset
of patients who have old age-related problems. Cancer is a
commonly encountered problem in nearly every ages. In
addition to this, we could observe disorders of nervous system
and visual problems in the results

ICD9 code Description

153 Malignant neoplasm of colon

173 Other malignant neoplasm of skin

337 Disorders of the autonomic nervous system

368 Visual disturbance
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Table 7 Output EMR data features which contributes the output
dimensions after applying the proposed algorithm to the subset
of patients who have child related problems. According to our
observation, tuberculosis and bacterial infections are quite
common among children. Unfortunately, leukemia is also a
cancer type that is seen even in small kids

ICD9 code Description

8 Intestinal infection due to other organisms

11 Pulmonary tuberculosis

78 Other diseases due to viruses and Chlamydiae

10 Primary tuberculous infection

204 Lymphoid leukemia

by using weaker conditions. According to the experi-
ments on several synthetic data, the proposed algorithm
is shown to be more scalable due to stochastic approach.
In addition, an application of sparse PCA is presented to
show how sparse PCA can help to interpret electronic
medical records. In future work, we would like to investi-
gate whether sparse PCA can be used to cluster patients
with respect to their medical records. For instance, we
propose to apply the proposed algorithm to analyze medi-
cal records and derive clinically meaningful and structural
phenotypes, which can further be helpful for patient risk
stratification and clustering.
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