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In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone’s daily life and
profoundly altering the course of human society. The intention behind developing AI was and is to benefit humans by reducing labor,
increasing everyday conveniences, and promoting social good. However, recent research and AI applications indicate that AI can
cause unintentional harm to humans by, for example, making unreliable decisions in safety-critical scenarios or undermining fairness
by inadvertently discriminating against a group or groups. Consequently, trustworthy AI has recently garnered increased attention
regarding the need to avoid the adverse effects that AI could bring to people, so people can fully trust and live in harmony with AI
technologies.

A tremendous amount of research on trustworthy AI has been conducted and witnessed in recent years. In this survey, we present
a comprehensive appraisal of trustworthy AI from a computational perspective to help readers understand the latest technologies
for achieving trustworthy AI. Trustworthy AI is a large and complex subject, involving various dimensions. In this work, we focus
on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Nondiscrimination & Fairness, (iii)
Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-being. For each dimension, we review the
recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the
accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in
the future.
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1 INTRODUCTION

Artificial intelligence (AI), a science that studies and develops the theory, methodology, technology, and application
systems for simulating, extending, and expanding human intelligence, has brought revolutionary impact to modern
human society. From a micro view, AI plays an irreplaceable role in many aspects of our lives. Modern life is filled
with interactions with AI applications: from unlocking a cell phone with a face ID, talking to a voice assistant to
buying products recommended by e-commerce platforms; from a macro view, AI creates great economic outcomes. The
Future of Jobs Report 2020 from the World Economic Forum [144] predicts that AI will create 58 million new jobs in
five years. By 2030, AI is expected to produce extra economic profits of 13 trillion U.S. dollars, which contribute 1.2%
annual growth to the GDP of the whole world [58]. However, along with their rapid and impressive development, AI
systems have also exposed their untrustworthy sides. For example, safety-critical AI systems are shown to be vulnerable
to adversarial attacks. Deep image recognition systems in autonomous vehicles could fail to distinguish road signs
modified by malicious attackers [364], posing a great threat to passenger safety. In addition, AI algorithms can cause
bias and unfairness. Online AI chatbots could produce indecent, racist, and sexist content [354] that offends users
and has a negative social impact. Moreover, AI systems carry the risk of disclosing user privacy and business secrets.
Hackers can take advantage of the feature vectors produced by an AI model to reconstruct private input data, such as
fingerprints [26], thereby leaking a user’s sensitive information. These vulnerabilities can make existing AI systems
unusable and can cause severe economic and security consequences. Concerns around trustworthiness have become
a huge obstacle to the boosting of AI usage and increasing of economic value. Hence, how to build trustworthy AI
systems has become a focal topic in both academia and industry.

In recent years, a large body of literature on trustworthy AI has emerged. With the increasing demand for building
trustworthy AI, it is imperative to summarize existing achievements and discuss possible directions for future research.
In this survey, we provide a comprehensive overview of trustworthy AI to help newcomers attain a basic understanding
of what makes an AI system trustworthy and to help veterans track the latest progress in the field. We clarify the
definition of trustworthy AI and introduce six key dimensions of it. For each dimension, we present its concepts and
taxonomies and review representative algorithms. We also introduce possible interactions among different dimensions
and discuss other potential issues around trustworthy AI that have not yet drawn sufficient attention. In addition to
definitions and concepts, our survey focuses on the specific computational solutions for realizing each dimension of
trustworthy AI. This perspective makes it distinct from some extant related works, such as a government guideline
[325], which suggests how to build a trustworthy AI system in the form of laws and regulations, or reviews [55, 337],
which discuss the realization of trustworthy AI from a high-level, non-technical perspective.

According to a recent ethics guideline for AI provided by the European Union (EU) [325], a trustworthy AI system
should meet four ethical principles: respect for human autonomy, prevention of harm, fairness, and explicability.
Based on these four principles, AI researchers, practitioners, and governments propose various specific dimensions
for trustworthy AI [55, 325, 337]. In this survey, we focus on six important and concerning dimensions that have
been extensively studied. As shown in Figure 1, they are Safety & Robustness, Non-discrimination & Fairness,
Explainability, Privacy, Auditability & Accountability, and Environmental Well-Being. These dimensions are
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Fig. 1. Six key dimensions of trustworthy AI.

very vital in real applications. Take the face recognition system as an example, it has been widely adopted in identity
authentication. Thus, the face recognition system is desired to make highly robust and accurate predictions under
any potential risks and attacks. Meanwhile, human face information is very private and crucial biometric information.
It should be carefully protected. Furthermore, it is important to eliminate demographic disparities existent in the
performance of face recognition, so that the system shows no bias towards any certain ethnic groups or genders. Also,
for the reliability of the face recognition system, it is preferred that the recognition result can be explained in a reasonable
way and the system can be audited periodically. In addition, the training process of large-scale face recognition models
and the wide deployment of them require huge energy consumption, which may lead to a great amount of carbon
emission. Thus, how to ensure the environmental friendliness of face recognition systems is important.

The remaining survey is organized as follows. In section 2, we articulate the definition of trustworthy AI and provide
various definitions of it to help readers understand how a trustworthy AI system is defined by researchers from such
different disciplines as computer science, sociology, law, and business. We then distinguish the concept of trustworthy
AI from several related concepts, such as ethical AI and responsible AI.

In section 3, we detail the dimension of Safety & Robustness, which requires an AI system to be robust to the tiny
perturbations of inputs and to be able to make secure decisions. In recent years, numerous studies have shown that AI
systems, especially those that adopt deep learning models, can be very sensitive to intentional or unintentional inputs
perturbations, posing huge risks to safety-critical applications. For example, as described before, autonomous vehicles
can be fooled by altered road signs. Additionally, spam detection models can be fooled by emails with well-designed text
[32]. Thus, spam senders can take advantage of this weakness to make their emails immune to the detection system,
which would cause a bad user experience.

It has been demonstrated that AI algorithms can learn human discrimination through provided training examples
and make unfair decisions. For example, some face recognition algorithms have difficulty detecting faces of African
Americans [297] or misclassifying them as gorillas [178]. Moreover, voice dictation software typically performs better

3



Woodstock ’18, June 03–05, 2018, Woodstock, NY Liu and Wang, et al.

at recognizing a voice from a male than that from a female [294]. In section 4, we introduce the dimension of Non-
discrimination & Fairness in which an AI system is expected to avoid unfair bias toward certain groups or individuals.

In section 5, we discuss the dimension of Explainability, which suggests that the AI’s decision mechanism system
should be able to be explained to stakeholders (who should be able to understand the explanation). For example, AI
techniques have been used for disease diagnosis based on the symptoms and physical features of a patient [306]. In
such cases, a black-box decision is not acceptable. The inference process should be transparent to doctors and patients
to ensure that the diagnosis is exact in every detail.

Researchers have found that some AI algorithms can store and expose users’ personal information. For example,
dialogue models trained on the human conversation corpus can remember sensitive information, like credit card
numbers, which can be elicited by interacting with the model [173]. In section 6, we present the dimension of Privacy,
which requires an AI system to avoid leaking any private information.

In section 7, we describe the dimension of Auditability & Accountability, which expects that an AI system is
assessed by a third party and, when necessary, assign responsibility for an AI failure, especially in critical applications
[325].

Recently, the environmental impacts of AI systems have drawn people’s attention, since some large AI systems
consume great amounts of energy. As a mainstream AI technology, deep learning is moving toward pursuing larger
models andmore parameters. Accordingly, more storage and computational resources are consumed. A study [330] shows
that training a BERT model [116] costs a carbon emission of around 1,400 pounds of carbon dioxide, which is comparable
to that of a round trip trans-America flight. Therefore, an AI system should be sustainable and environmentally friendly.
In section 8, we review the dimension of Environmental Well-Being.

In section 9, we discuss the interactions among the different dimensions. Recent studies have demonstrated that there
are accordance and conflicts among different dimensions of trustworthy AI [325, 352]. For example, the robustness and
explainability of deep neural networks are tightly connected and robust models tend to be more interpretable [128, 342]
and vice versa [269]. Moreover, it is shown that in some cases, a trade-off exists between robustness and privacy. For
instance, adversarial defense approaches can make a model more vulnerable to membership inference attacks, which
increases the risk of training data leakage [326].

In addition to the aforementioned six dimensions, there are more dimensions of trustworthy AI, such as human
agency and oversight, creditability, etc. Although these additional dimensions are as important as the six dimensions
considered in this article, they are in earlier stages of development with limited literature, especially for computational
methods. Thus, in section 10, we discuss these dimensions of trustworthy AI as future directions needing dedicated
research efforts.

2 CONCEPTS AND DEFINITIONS

The word “trustworthy” is noted to mean “worthy of trust of confidence; reliable, dependable” in the Oxford English
Dictionary or “able to be trusted” in the Dictionary of Cambridge. “Trustworthy” descends from the word trust, which is
described as the “firm belief in the reliability, truth, or ability of someone or something” in the Oxford English Dictionary
or the “belief that you can depend on someone or something” in the Dictionary of Cambridge. Broadly speaking, trust
is a widespread notion in human society, which lays the important foundation for the sustainable development of
human civilization. Strictly speaking, some potential risks always exist in our external environment because we cannot
completely control people and other entities [248, 337]. It is our trust in these parties that allows us to put ourselves at
potential risk to continue interacting with them willingly [219]. Trust is necessary among people. It forms the basis of a
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good relationship and is necessary for people to live happily and to work efficiently together. In addition, trust is also
vital between humans and technology. Without trust, humans would not be willing to utilize technology, which would
undoubtedly impede its advancement and prevent people from enjoying the conveniences it brings. Therefore, for a
win-win situation between humans and technology, it is necessary to guarantee that the technology is trustworthy so
people can build trust in it.

The term “artificial intelligence” got its name from a workshop at a 1956 Dartmouth conference [57, 249]. Although
there are numerous definitions for AI [210], AI generally denotes a program or system that is able to cope with a
real-world problem with human-like reasoning, for example, in the field of image recognition within AI, which uses
deep learning networks to recognize objects or people within images [288]. The past few decades have witnessed rapid
and impressive development of AI; there are tons of breakthroughs happening in every corner of this field [301, 332].
Furthermore, with the rapid development of big data and computational resources, AI has been broadly applied to many
aspects of human life, including economics, healthcare, education, transportation, and so on, where it has revolutionized
industries and achieved numerous feats. Considering the important role AI plays in modern society, it is necessary to
make AI trustworthy so that humans can rely on it with minimal concern regarding its potential harm. Trust is essential
in allowing the potential of AI to be fully realized – and humans to fully enjoy its benefits and convenience [98].

Table 1. A summary of principles for Trustworthy AI from different perspectives.

Perspective Principles

Technical Accuracy, Robustness,
Explainability

User Availability, Usability,
Safety, Privacy, Autonomy

Social Law-abiding, Ethical, Fair,
Accountable, Environmental-friendly

Due to its importance and necessity, trustworthy AI has drawn increasing attention, and there are numerous
discussions and debates over its definition and extension [98]. In this survey, we define trustworthy AI as programs and

systems built to solve problems like a human, which bring benefits and convenience to people with no threat or risk of harm.
We further define trustworthy AI from the following three perspectives: the technical perspective, the user perspective,
and the social perspective. An overall description of these perspectives is summarized in Table 1.

• From a technical perspective, trustworthy AI is expected to show the properties of accuracy, robustness, and
explainability. Specifically, AI programs or systems should generate accurate output consistent with the ground
truth as much as possible. This is also the first and most basic motivation for building them. Additionally, AI
programs or systems should be robust to changes so that perturbations would not affect the model outcome. This
is very important, since real environments where AI systems are deployed are usually very complex and volatile.
Last, but not least, trustworthy AI must allow for explanation and analysis by humans, so that potential risks
and harm can be minimized. In addition, trustworthy AI should be transparent so people can better understand
its mechanism.

• From a user’s perspective, trustworthy AI should possess the properties of availability, usability, safety, privacy,
and autonomy. Specifically, AI programs or systems should be available for people whenever they need them,
and these programs or systems should be easy to use for people with different backgrounds. More importantly,
AI programs or systems are expected to avoid harm under any conditions, and to always put the safety of users
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as the first priority. In addition, trustworthy AI should protect the privacy of all users. It should deal with data
storage very carefully and seriously. Last but not least, the autonomy of trustworthy AI should always be under
people’s control. In other words, it is always a human’s right to grant an AI system any decision-making power
or to withdraw that power at any time.

• From a social perspective, trustworthy AI should be law-abiding, ethical, fair, accountable, and environmentally
friendly. Specifically, AI programs or systems should operate in full compliance with all relevant laws and
regulations and comply with the ethical principles of human society. Importantly, trustworthy AI should show
nondiscrimination toward people from various backgrounds. It should guarantee justice and fairness among all
users. Also, trustworthy AI should be accountable, which means it is clear who is responsible for each part of the
AI system. Lastly, for the sustainable development and long-term prosperity of our civilization, AI programs
and systems should be environmentally friendly. For example, they should limit energy consumption and cause
minimal pollution.

Note that the above properties of the three perspectives are not independent of each other. Instead, they complement
and reinforce each other.

There have been numerous terminologies related to AI proposed recently, including ethical AI, beneficial AI,
responsible AI, explainable AI, fair AI, and so on. These terminologies share some overlap and distinction with
trustworthy AI in terms of the intention and extension of the concept.

Next, we briefly describe some related terminologies to help readers enhance the understanding of trustworthy AI.

• Ethical AI [143]: An ethical framework of AI that specifies five core principles, including beneficence, nonmalef-
icence, autonomy, justice, and explicability. Additionally, 20 specific action points from four categories have been
proposed to ensure continuous and effective efforts. They are assessment, development, incentivization, and
support.

• Beneficial AI [271]: AI has undoubtedly brought people countless benefits, but to gain sustainable benefits from
AI, 23 principles have been proposed in conjunction with the 2017 Asilomar conference. These principles are
based on three aspects: research issues, ethics and values, and longer-term issues.

• Responsible AI [2, 4]: A framework for the development of responsible AI consists of 10 ethical principles:
well-being, respect for autonomy, privacy and intimacy, solidarity, democratic participation, equity, diversity
inclusion, prudence, responsibility, and sustainable development. The Chinese National Governance Committee
for the New Generation Artificial Intelligence has proposed a set of governance principles to promote the
healthy and sustainable development of responsible AI. Eight principles have been listed as follows: harmony
and human-friendliness, fairness and justice, inclusion and sharing, respect for privacy, safety and controllability,
shared responsibility, open and collaborative, and agile governance.

• Explainable AI [18]: The basic aim of explainable AI is to open up the "black box" of AI, to offer a trustworthy
explanation of AI to users. It also aims to propose more explainable AI models, which can provide promising
model performance and can be explained in non-technical terms at the same time, so that users can fully trust
them and take full advantage of them.

• Fair AI [403]: Because AI is designed by humans and data plays a key role in most AI models, it is easy for AI to
inherit some bias from its creators or input data. Without proper guidance and regulations, AI could be biased
and unfair toward a certain group or groups of people. Fair AI denotes AI that shows no discrimination toward
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people from any group. Its output should have little correlation with the traits of individuals, such as gender and
ethnicity.

Overall, trustworthy AI has a very rich connotation and can be interpreted from several perspectives. It contains the
concepts of many existing terminologies, including fair AI [403], explainable AI [18], and so on. Huge overlaps also
exist among the concept of trustworthy AI and the concepts of ethical AI [143], beneficial AI [271], and responsible
AI [2, 4]. Although proposed by different organizations, all of them aim at building reliable AI that sustainably benefits
human society and these concepts can be exchangeable in some contexts. Note that Ethical AI [143] was proposed
based on six documents including those where Beneficial AI [271] and Responsible AI [2] were proposed. Nonetheless,
some differences exist among these concepts. For example, in beneficial AI and responsible AI, there are some principles
and requirements for governments around the world, such as to avoid any arms race, but other concepts do not involve
them.

3 SAFETY & ROBUSTNESS

A human can trust AI systems in safety-critical scenarios only if the machine learning (ML) systems can achieve stable
and sustained high accuracy under the worst circumstances without any vulnerability. Otherwise, ML systems will cause
severe consequences in safety-critical scenarios. To be specific, payment apps need to verify user identities through
the face recognition system, but the identity theft may create different face images to fool the system and commit the
crime [84]; ML systems are also widely used in developing autonomous driving techniques. Dangers may happen when
the traffic sign recognition process generates a wrong prediction on the stop sign being slightly perturbed by some
white mark [130]. In social networks, someone may pretend to be an important user by connecting with selected people
to fool the social media mining algorithms. To avoid such dangerous behaviors, the ML systems should be robust to
small perturbations since real-world data contains diverse types of noise. In recent years, many studies have shown that
ML models can be fooled by imperceptible perturbations, namely, adversarial perturbations [243, 333]. From traditional
ML classifiers [40] to deep learning models, like CNN [333], GNN [311], or RNN [381], none of the models is sufficiently
robust to such perturbations. This raises huge concerns when ML models are applied to safety-critical tasks, such as
authentication [84], autonomous driving [324], recommendation [132, 137], AI healthcare [142], etc. To build safe and
reliable ML models, studying adversarial examples and the underlying reasons is urgent and essential.

In this section, we aim to introduce the concept of robustness, including how to design threat models and different
types of defense strategies. We first introduce the concept of adversarial robustness. Then, we provide more details
by introducing the taxonomy as well as examples for each category. We then discuss different adversarial attacks and
defense strategies by introducing some representative methods. Next, we introduce how adversarial robustness issues
affect real-world AI systems. We also present related tools and surveys to help readers further explore this field. Finally,
we demonstrate potential future directions in adversarial robustness.

3.1 Concepts and Taxonomy

In this subsection, we describe the common and fundamental concepts and taxonomy in AI robustness to illustrate an
overview of adversarial attacks and defenses.

3.1.1 Threat Models. An adversarial threat model is an adversarial attacker that tries to break the performance of
ML models with fake training or test examples. The existence of adversarial attacks could lead to serious security
concerns in a wide range of ML applications. Attackers use many different types of strategies to achieve their goals.
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Therefore, threat models can be categorized into different types. In this subsection, we introduce different categories of
threat models aiming to attack the ML system from different perspectives, including when the attack happens, what
information of the model the attacker can access, and what the adversary’s goal is.

• Poisoning Attacks vs. Evasion Attacks. Whether an attack is evasion or poisoning depends on whether
attackers modify the training or test samples. A poisoning attack occurs when attackers add fake samples
into the training set of a ML model. These fake samples are designed intentionally to train a bad model, thus
the model would achieve bad overall performance [41] or give wrong predictions on a certain group of test
samples [404]. When an adversary has access to the training data, this type of attack can happen and will
raise realistic safety concerns. For example, the training data for an online shopping recommendation system
is often collected from web users where attackers may exist. A special case of poisoning attacks is backdoor
attack, which aims to only mislead the performance of test samples with a special trigger known by the attacker
[84]. Recently, the connection between poisoning attack and shortcut learning[149, 174, 376] has been noticed.
Shortcut learning summarizes a general phenomenon that machine learning models tend to link spurious features
with the predictions in the training data while they could not generalize well on the test set. This aligns well
with the underlying reason why poisoning attack leads to bad test behaviors.
An evasion attack happens in the test phase. Given a well-trained classifier, attackers aim to design small
perturbations for test samples in order to elicit wrong predictions from a victim model. From Figure 2, we can see
that the image of a panda can be correctly classified by the model, while the perturbed version will be classified
as a gibbon.

Fig. 2. An example of evasion attack. (Image Credit: [160])

• White-box attacks vs. Black-box attacks. According to the adversary’s knowledge, attacking methods can be
categorized into white-box and black-box attacks.White-Box attacks refer to a setting in which the adversary
can utilize all the information of the target model, including the architecture, parameters, gradient information,
etc. Generally speaking, the attacking process can be formulated as an optimization problem to optimize the risk
of wrong predictions [69, 160]. With the ability to access white-box information, this problem is often much
easier to be solved via gradient-based methods. White-box attacks have been extensively studied because the
disclosure of model architecture and parameters helps people understand the weakness of ML models clearly;
thus, they can be analyzed mathematically.
In the black-Box attack setting, no knowledge of ML models is available to the adversaries. Adversaries can only
feed the input data and query the outputs of the models. One of the most common ways to perform black-box
attacks is to keep querying the victim model and approximate the gradient through numerical differentiation
methods. Compared to white-box attacks, black-box attacks are more practical because ML models are less likely
to be white-box due to privacy issues in reality.
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• Targeted Attacks vs. Non-Targeted Attacks. In the image classification problem, threat models can be
categorized by whether the adversary wants to get a pre-set label for a certain image. In targeted attacks, a
specified target prediction label is expected for each adversarial example in the test phase. For example, identity
theft may want to fool the face recognition system and pretend to be a specific important user.
In contrast, non-targeted attacks expect an arbitrary prediction label except for the real one. Note that in other
data domains, like graph data, the definition of targeted attack can be extended to mislead certain groups of
nodes, but not necessary to force the model to give a particular prediction for one node.

3.1.2 Victim Models. Victim models are the models that are attacked by the attacker. The victim model ranges from
traditional machine learning models like SVM [41] to Deep Neural Networks (DNNs), including the Convolution Neural
Network (CNN) [217], Graph Neural Network (GNN) [311], Recurrent Neural Network (RNN) [381], etc. In this section,
we briefly introduce the victim models that have been studied and shown to be vulnerable to adversarial attacks.

• Traditional machine learning models. One of the earliest works about robustness checked the security of
Naive Bayes classifiers [109]. Later, SVM and the naive fully-connected neural networks have been shown to be
vulnerable to attacks [40]. Recently, the adversarial robustness of tree-based models has also been proposed as
an open problem [78].

• Deep learning models. In computer vision tasks, Convolution Neural Networks (CNNs) [212] are one of
the most widely used models for image classification problems. CNN models aggregate local features from
images to learn the representations of image objects and give predictions based on learned representations. The
vulnerability of deep neural networks to attack was first proposed in CNN [333]. Since then, there have been
extensive works indicating that CNNs are not robust against adversarial attacks. As another type of deep learning
model, Graph Neural Networks (GNNs) have been developed for graph-structured data and can be used by
many real-world systems, such as social networks and natural science. People also pay effort into testing GNN’s
robustness [45, 81, 108, 242, 406] and building robust GNNs [190]. Consider the node classification problem as
an example: existing works show that the performance can be reduced significantly by slightly modifying node
features, adding or deleting edges, or adding fake nodes [404]. For sequence models that deal with text data,
there exist studies focusing on evaluating their robustness. In this scenario, attackers need to consider semantic
or phonetic similarity to guarantee unnoticeable perturbation. Therefore, in addition to the commonly used
optimization method used to attack a seq2seq translation model [86], some heuristic approaches are proposed to
find substitute words that attack RNN-based dialogue generation models [268].

3.1.3 Defense Strategies. Under evasion adversarial attacks, there are different types of countermeasures to prevent
the adversary from creating harmful effects. During the training stage, adversarial training aims to train a robust
model by using adversarial samples during the training process. Certified defense works to achieve robustness over all
perturbations within a certain bound. For defenses that happen at inference time, adversarial example detection aims to
distinguish adversarial examples, so users can reject the prediction of harmful examples. To defend against attacks
happening during training, feature extractors trained on auxiliary data have been used to extract useful features and
correspondingly avoid shortcuts that can help prevent poisoning attack [376]. Adversarial training has also been shown
to be effective against poisoning attacks [181, 335] .
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3.2 Representative Attack Methods

In this subsection, we introduce representative attack methods from two aspects: evasion attacks and poisoning attacks.

3.2.1 Evasion Attack. Evasion attacks occur at test time. When attackers want to generate an adversarial example for a
test example, they need to find a distance measure to guarantee the perturbation size is small so that evasion attacks
can be further categorized by how to constraint the perturbation, i.e., pixel constrained adversarial examples with a
fixed 𝑙𝑝 norm bound and adversarial examples under other types of constraints.

• 𝐿𝑝 bound attacks. To guarantee the perceptual similarity between the adversarial example and the natural
example, the perturbation is normally constrained within an 𝑙𝑝 norm bound around the natural example. To find
such perturbation, Projected Gradient Descent (PGD) adversarial attack [243] tries to calculate the adversarial
example 𝑥 ′ that maximizes the loss function:

maximize L(\, 𝑥 ′)

subject to | |𝑥 ′ − 𝑥 | |𝑝 ≤ 𝜖 and 𝑥 ′ ∈ [0, 1]𝑚

Here, 𝜖 is the perturbation budget and𝑚 is the dimension of the input sample 𝑥 . This local maximum is calculated
by the projected gradient ascent algorithm. At each time step, a small gradient step is made towards the direction
of increasing loss value before the new example is projected back to the 𝐿𝑝 norm bound. A representative attack
method to achieve a standardized evaluation of robustness is called Autoattack [104], which is a strong evasion
attack conducted by assembling four attacks, including three white-box attacks and one black-box attack. This
brings a more reliable evaluation of model robustness under evasion attacks.
There are also evasion attacks with special goals. The work [263] devises an algorithm that successfully misleads
a classifier’s decision on almost all test images. It tries to find a perturbation 𝛿 under a 𝜖 constraint satisfying
that for any sample 𝑥 from the test distribution, such a perturbation 𝛿 can misguide the classifier to give wrong
decisions on most of the samples.

• Beyond 𝑙𝑝 bound attacks. Recently people started to realize that 𝑙𝑝 norm perturbation budget is neither
sufficient to cover real-world noise nor a perfect measurement for perceptual similarity. Some studies seek to
find the minimal perturbation necessary to change the class of a given input with respect to the 𝑙𝑝 norm [103].
Other works propose different perturbation measurements, e.g., the Wasserstein distance [358, 360], to measure
the changes of pixels.

3.2.2 Poisoning Attacks. As we introduced, poisoning attacks allow adversaries to take control of the training process.

• Training Time Attack. In the training time attack setting, perturbation only happens during the training time.
For example, the “poisoning frog” attack inserts an adversarial image with the true label to the training set, to
make the trained model wrongly classify target test samples [313]. It generates the adversarial example 𝑥 ′ by
solving the following problem:

𝑥 ′ = argmin𝑥 ∥𝑍 (𝑥) − 𝑍 (𝑥𝑡 )∥22 + 𝛽 ∥𝑥 − 𝑥𝑏 ∥22 .

Here, 𝑍 (𝑥) is the logits of the model for samples 𝑥 , 𝑥𝑡 and 𝑥𝑏 are the samples from the target class and the
original class, respectively. The result 𝑥 ′ would be similar to the base class in the input space while sharing
similar predictions with the target class. As a concrete example, the features of birds are intentionally added into
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training samples of cats but the cats are still labeled as cats in training. As a consequence, it would mislead the
model’s prediction of other bird images that also contain bird features.

• Backdoor Attack. A backdoor attack requires that perturbations happen in both training and test data. A
backdoor trigger only known by the attacker is inserted into the training data to mislead the classifier into giving
a target prediction on all the test examples that contain the same trigger [84]. This type of attack is particularly
dangerous because the model behaves normally on natural samples, which makes it even hard to notice the dark
side of the model.

3.3 Representative Defense Methods

In this subsection, we introduce representative defense methods from the aforementioned categories.

3.3.1 Robust Optimization / Adversarial Training. Adversarial training aims to trainmodels that give resistant predictions
to adversarial examples. The training objective is formulated as a min-max problem that tries to minimize the error
risk on the maximum adversarial loss within a small area around the training data samples [349]. With this bi-level
optimization process, the model achieves partial robustness but still suffers from longer training time, natural accuracy
and robust accuracy trade-offs, and robust overfitting issues. There are several studies making efforts to improve
standard adversarial training from different perspectives. In [342], the trade-off issue is revealed. TRADES [386] takes
a step toward balancing the natural accuracy and robust accuracy by adding a regularization term to minimize the
prediction difference between adversarial samples and natural samples. Other works [314, 357] boost the training speed
by estimating the gradient of the loss by treating the parameters of the last few model layers as constant layers when
generating adversarial samples. They can shorten the training time to one-fourth of the GPU time – or even shorter
with comparable robust performance. To mitigate robust overfitting, different classic techniques, such as early stop,
weight decay, and data augmentations have been investigated [290, 359]. It is evident from recent work [71] that using
data augmentation methods is a promising direction to further boost adversarial training performance.

3.3.2 Certified Defense. Certified defense seeks to learn provably robust DNNs against specific norm-bounded per-
turbations [286, 356]. In empirical defenses, such as adversarial training, robustness is achieved to a certain extent; in
certified robust verification, however, we want to exactly answer the question of whether we can find an adversarial
example for a given example. For instance, a randomized smoothing based classifier [95] aims to build an absolutely
smooth classifier by making decisions according to the majority of predictions of all neighborhood examples around
the original test example. Achieving such smoothness requires considerably greater computation resources, which is a
challenge in practice.

3.3.3 Detection. In order to distinguish the adversarial examples in data distribution and to prevent the harmful
effect, people design detection algorithms. A common way to achieve detection is to build another classifier to predict
whether a sample is adversarial or not. The work [158] trains a binary classification model to discriminate all adversarial
examples apart from natural samples and then builds ML models on recognized natural samples. Other works detect the
adversarial samples based on the statistic property of adversarial sample distribution difference compared to natural
sample distribution. Other work [162] uses a statistical test, i.e., a MaximumMean Discrepancy (MMD) test, to determine
whether two datasets are drawn from the same distribution. It uses this tool to test whether a group of data points are
natural or adversarial; however, it is shown in [68] that evasion adversarial examples are not easily detected. This paper
covers ten detection methods and finds out that those defenses lack thorough security evaluations and there is no clear
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evidence to support that adversarial samples are intrinsically different from clean samples. Recent work [82] proposes a
new direction for black-box adversarial detection. It detects the attacker’s purpose based on the historical queries and
sets a threshold for the distance between two input image queries to detect suspicious attempts to generate adversarial
examples.

3.4 Applications in Real Systems

When machine learning is applied to real-world, safety-critical tasks, the existence of adversarial examples becomes
more dangerous and may cause severe consequences. In the following section, we illustrate the potential threats from
adversarial examples to real-world applications in different domains.

3.4.1 Image Domain. In the autonomous driving domain, road sign detection is an important task. However, with some
small modifications, the road sign detection system [130, 324] in the vehicle would recognize 35 mph as 85 mph and
cannot successfully detect a stop sign as shown in Figure 3. Deep learning is also widely applied in authentication tasks.
An attacker can wear a special glass to pretend to be an authorized identity in order to mislead the face recognition
model; this deceit can be accomplished by labeling a few face samples that wear certain glasses as the target identity
and by inserting those mislabeled samples into the training set [84]. Another example of identity threat is that the
person detection system for images or videos can also be broken by wearing an adversarial T-shirt [364].

Fig. 3. The stop sign could not be distinguished by machines with modifications.

3.4.2 Text Domain. Adversarial attacks also happen in natural language processing tasks, such as text classification,
machine translation, and dialogue generation. For machine translation, sentence and word paraphrasing on input texts
are conducted to craft adversarial examples [220]. The attacker first builds a paraphrasing corpus that contains a lot of
words and sentence paraphrases. To find an optimal paraphrase of an input text, a greedy method is adopted to search
for valid paraphrases for each word or sentence from the corpus. Moreover, it proposes a gradient-guided method
to improve the efficiency of the greedy search. Another work [230] treats the neural dialogue model as a black box
and adopts a reinforcement learning framework to effectively find trigger inputs for targeted responses. This type of
black-box setting is stricter but more realistic, while the requirements for the generated responses are properly relaxed.
The generated responses are expected to be semantically identical to the targeted ones but not necessarily exactly
match them.
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3.4.3 Audio Data. The state-of-art speech-to-text transcription networks, such as DeepSpeech [168], can be attacked
by a small perturbation [70]. Given any speech waveform 𝑥 , an inaudible sound perturbation 𝛿 is added to make the
synthesized speech 𝑥 + 𝛿 recognized as any targeted desired phrase. In this work [303], authors propose an adversarial
attack method against the YouTube CopyRight detection system to avoid music with copyright issues being detected
during uploading. The attack uses a neural network to extract features from the music piece to create a fingerprint,
which is used for checking whether the music matches existing copyrighted music. A gradient-based adversarial attack
on the original audio piece can create a large difference in the output fingerprint such that the modified audio can
successfully avoid the detection of YouTube’s CopyRight detection system.

3.4.4 Graph Data. Zügner et al. [404] considers attacking node classification models, graph convolutional networks
[208], by modifying the node connections or node features. In this setting, an adversary is allowed to add or remove
edges between nodes or change the node features with a limited number of operations in order to mislead the GCN
model that is trained on the perturbed graph. The work [405] attempts to poison the graph so that the global node
classification performance of GCN will drop – and even be made almost useless. They optimize the graph structure as
the hyper-parameters of the GCN model with the meta-learning technique. The goal of this attack [44] is to perturb the
graph structure to corrupt the quality of node embedding, affecting the downstream tasks’ performance, including node
classification or link prediction. Pro-GNN [191] tries to jointly learn a structural graph and a graph neural network
from the perturbed graph guided by some intrinsic properties of a real-world graph, such as low-rank and feature
smoothness. The defense method could learn a clean adjacency matrix close to the perturbed one and limit its norm to
guarantee the low-rank property. Meanwhile, a feature smoothness regularizer is also utilized to penalize rapid changes
in features between adjacent nodes. Then a robust GNN would be built upon the learned graph.

3.5 Robustifying Real World System

To make real-world ML systems safer, many strategies can be applied. As we mentioned, the Youtube music copyright
system can be fooled by simply adding some unnoticeable noise. With the help of adversarial training, the problem
could be eased [303]. Also, A chatbot is a commonly used machine learning system, and inappropriate language can
be a safety problem. To mitigate the harmful effect, the work [366] proposes a robust evaluation and enhancement
method to improve the reliability of dialogue systems. Meanwhile, people are seeking methods to create adversarial
autonomous driving environments to enhance the safety of autonomous driving.

3.6 Surveys and Tools

In this subsection, we list related resources about adversarial robustness, including surveys and tools.

3.6.1 Surveys. Xu et al. [364] gives a comprehensive introduction of concepts and covers representative attack and
defense algorithms in different domains, including image classification, graph classification, and natural language
processing. For the surveys in a specific domain, Akhtar and Mian [25] provides a comprehensive introduction to
adversarial threats in a computer vision domain [76]; Jin et al. [190] gives a thorough review of the latest adversarial
robustness techniques in the graph domain; and Zhang et al. [389] focuses on natural language processing and
summarizes important algorithms on adversarial robustness in the text domain.

3.6.2 Tools. Advertorch [118] is a Pytorch toolbox containing popular attack methods in the image domain. DeepRobust
[226] is a comprehensive and up-to-date adversarial attacks and defenses library based on Pytorch that includes not
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only algorithms in the image domain but also the graph domain. This platform provides convenient access to different
algorithms and evaluation functions to illustrate the robustness of image classification models or graph properties.
RobustBench [102] provides a robust evaluation platform by the Autoattack algorithm for different adversarial training
models. This platform also provides well-trained robust models by different adversarial training methods, which can
save resources for researchers. A summary of the above-mentioned open-source toolkits and frameworks on robustness
in AI can be found in Table 2.

Table 2. Representative open-source toolkits and frameworks on robustness in AI.

Toolkit Characteristics

Cleverhans [275] A Tensorflow library for benchmarking the vulnerability of machine learning models
to adversarial examples.

Advertorch [118] A Pytorch toolbox containing attack methods for image classification.
DeepRobust [226] A Pytorch toolbox containing attack and defense methods in image and graph domain.
RobustBench [102] A tool to standardize the evaluation of adversarial robustness.

3.7 Future Directions

For adversarial attacks, people are seeking more general attacking methods to evaluate adversarial robustness. For
black-box attacks, efficiently generating adversarial examples with fewer adversarial queries is often challenging. For
training in adversarial defense methods, an important issue is the robust overfitting and lack of generalization in both
adversarial and natural examples. These problems remain unsolved and need further improvements. Another direction
for adversarial training is to build robust models against more general adversarial examples, including but not limited
to different l-p bound attacks. For certified defenses, one possible direction is to train a model with robust guarantees
more efficiently, since the current certified defense methods require a large number of computational resources.

4 NON-DISCRIMINATION & FAIRNESS

As AI plays an increasingly irreplaceable role in various scenarios closely related to people’s vital interests, such as
recidivism prediction, financial risk assessment and job recommendation, an AI system ought to avoid discriminatory
behaviors in human-machine interactions and ensure fairness in decision making for any individuals or groups.
Otherwise, it would lose the trust from various stakeholders. With the rapid spread of AI in our daily lives, more and
more evidence indicates that AI systems show human-like discriminatory bias or make unfair decisions. For example, a
recidivism prediction software used by U.S. courts often assigns a higher risky score for an African American than a
Caucasian with a similar profile1 [253]; a job recommendation system promotes more STEM employment opportunities
to male candidates than to females [215]. Moreover, Tay, the online AI chatbot developed by Microsoft, produced a
lot of improper racist and sexist comments, which led to its closure within 24 hours of release [354]; dialogue models
trained on human conversations show bias toward females and African Americans by generating more offensive
and negative responses for these groups [229]. Fairness in AI demands considerable attention. Recently, many works
have emerged to define, recognize, measure, and mitigate the bias in AI algorithms. In this section, we aim to give a
comprehensive overview of the cutting-edge research progress addressing fairness issues in AI. In the subsections,
we first present concepts and definitions regarding fairness in AI. We then provide a detailed taxonomy to discuss

1https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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different origins of algorithmic bias, different types of bias, and fairness. We then review and classify popular bias
mitigation technologies for building fair AI systems. Next, we introduce the specific bias issues and the applications of
bias mitigation methods in real-world AI systems. In this part, we categorize the works according to the types of data
processed by the system. Finally, we discuss the current challenges and future opportunities in this field. We expect
that researchers and practitioners can gain a sense of direction and understanding from a broad overview of bias and
fairness issues in AI and deep insight into the existing solutions, so as to advance progress in this field.

4.1 Concepts and Taxonomy

Before we go deep into nondiscrimination and fairness in AI, we need to understand how relative concepts, such as
bias and fairness, are defined in this context. In this subsection, we briefly illustrate the concepts of bias and fairness,
and provide a taxonomy to introduce different sources of bias, different types of bias, and fairness.

4.1.1 Bias. In the machine learning field, the word “bias” has been abused. It conveys different meanings in different
contexts. We first distinguish the concept of bias in the context of AI non-discrimination and fairness from that in other
contexts. There are three categories of bias: productive bias, erroneous bias, and discriminatory bias. Productive
bias exists in all machine learning algorithms. It is beneficial and necessary for an algorithm to be able to model the
data and make decisions [175]. Based on the “no free lunch theory” [355], only a predictive model biased toward certain
distributions or functions can achieve better performance on modeling them. Productive bias helps an algorithm to
solve certain types of problems. It is introduced through our assumptions about the problem, which is specifically
reflected as the choice of a loss function, an assumed distribution, or an optimization method, etc. Erroneous bias can
be viewed as a systematic error caused by faulty assumptions. For example, we typically assume that the distribution of
the training data is consistent with the real data distribution. However, due to selection bias [244] or sampling bias
[253], the collected training data may not be able to represent the real data distribution. Thus, the violation of our
assumption can lead to the learned model’s undesirable performance on the test data. Discriminatory bias is the kind of
bias we are interested in under AI nondiscrimination and fairness. As opposed to fairness, discriminatory bias reflects
an algorithm’s unfair behaviors toward a certain group or individual, such as producing discriminatory content or
performing less well for some people [316]. In the rest of this paper, when we mention bias, we refer to discriminatory
bias.

Sources of Bias. The bias in an AI system can be produced by different sources, namely, the data, the algorithm,
or the evaluation method. Bias within data comes from different phases of data generation, from data annotation
to data collection and data processing [272, 315]. In the phase of data annotation, bias can be introduced due to a
non-representative group of annotators [192], inexperienced annotators [278], or preconceived stereotypes held by the
annotators [309]. In the phase of data collection, bias can emerge due to the selection of data sources or how data from
several different sources are acquired and prepared [272]. In the data processing stage, bias can be generated due to
data cleaning [115], data enrichment [96], and data aggregation [343].

Types of Bias. Bias can be categorized into different classes from different perspectives. It can be explicit or implicit.
Explicit bias, also known as direct bias, occurs when the sensitive attribute explicitly causes an undesirable outcome for
an individual; while implicit bias, also known as indirect bias, indicates the phenomenon that an undesirable outcome
is caused by nonsensitive and seemingly neutral attributes, which in fact have some potential associations with the
sensitive attributes [387]. For example, the residential address seems a nonsensitive attribute, but it can correlate with
the race of a person according to the population distribution of different ethnic groups [387]. Moreover, language
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style can reflect the demographic features of a person, such as race and age [182, 231]. Bias can be acceptable and
unacceptable. Acceptable bias, also known as explainable bias, describes a situation where the discrepancy of outcomes
for different individuals or groups can be reasonably explained by factors. For example, models trained on the UCI
Adult dataset predict higher salaries for males than females. Actually, this is because males work for a longer time per
week than females [200]. Based on this fact, such biased outcomes are acceptable and reasonable. Conversely, bias that
cannot be explained appropriately is treated as unacceptable bias, which should be avoided in practice.

4.1.2 Fairness. The fairness of an algorithm is defined as “the absence of any prejudice or favoritism toward an individual
or a group based on their intrinsic or acquired traits in the context of decision making” [253, 310]. Furthermore, according
to the object of the study, fairness can be further defined as group fairness and individual fairness.

Group Fairness. Group fairness requires that two groups of people with different sensitive attributes receive
comparable treatments and outcomes statistically. Based on this principle, various definitions have been proposed,
such as Equal Opportunity [169], which requires people from two groups to be equally likely to get a positive outcome
when they indeed belong to the positive class; Equal Odds [169], which requires that the probability of being classified
correctly should be the same for different groups; and Demographic Parity [123], which requires different groups to
have the same chance to get a positive outcome, etc.

Individual Fairness.While group fairness can maintain fair outcomes for a group of people, a model can still behave
discriminatorily at the individual level [123]. Individual fairness is based on the understanding that similar individuals
should be treated similarly. A model satisfies individual fairness if it gives similar predictions to similar individuals
[123, 213]. Formally, if individuals 𝑖 and 𝑗 are similar under a certain metric 𝛿 , the difference between the predictions
given by an algorithm𝑀 on them should be small enough: |𝑓𝑀 (𝑖) − 𝑓𝑀 ( 𝑗) | < 𝜖 , where 𝑓𝑀 (·) is the predictive function
of algorithm𝑀 that maps an individual to an outcome, and 𝜖 is a small constant.

4.2 Methods

In this subsection, we introduce bias mitigation techniques. Based on which stage of an AI pipeline is to interfere, the
debiasing methods can be categorized into three types: pre-processing, in-processing and post-processing methods.
Representative bias mitigation methods are summarized in Table 3.

Table 3. Representative debiasing strategies in the three categories.

Category Strategy References

Pre-processing

Sampling [20, 35, 394]
Reweighting [64, 199, 385]
Blinding [79, 94, 170, 380]

Relabelling [101, 164, 199]
Adversarial Learning [19, 141, 195]

In-processing

Reweighting [188, 211]
Regularization [22, 139]

Bandits [126, 236]
Adversarial Learning [75, 231, 232, 384]

Post-processing
Thresholding [169, 184, 254]
Transformation [89, 205, 266]
Calibration [172, 206]
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Pre-processing Methods. Pre-processing approaches try to remove the bias in the training data to ensure the
fairness of an algorithm from the origin [199]. This category of methods can be adopted only when we have access to
the training data. Various strategies are proposed to interfere with training data. Specifically, Celis et al. [74] propose to
adaptively sample the instances that are both diverse in features and fair to sensitive training attributes. Moreover,
reweighting methods [198, 385] try to mitigate the bias in training data by adaptively up-weighting the training
instances of underrepresented groups, while down-weighting those of overrepresented groups. Blinding methods
try to make a classifier insensitive to a protected variable. For example, Hardt et al. [170] force a classifier to have
the same threshold value for different race groups to ensure that the predicted loan rate is equal for all races. Some
works [198, 382] try to relabel the training data to ensure the proportion of positive instances are equal across all
protected groups. Additionally, Xu et al. [362] take advantage of a generative adversarial network to produce bias-free
and high-utility training data.

In-processing Methods. In-processing approaches address the bias at the algorithm level and try to eliminate
bias during the model training process. They often seek to create a balance between performance and fairness [73].
Krasanakis et al. [211] propose an in-processing re-weighting approach. They first train a vanilla classifier to learn
the weights of samples and then retrain the classifier using these weights. Some works [154, 201] take advantage of
regularization methods, where one or more penalty terms are added into the objective function to penalize biased
outcomes. The idea of adversarial learning is also adopted in in-processing debiasing methods. Liu et al. [232] design an
adversarial learning framework to train neural dialogue models that are free from gender bias. Alternatively, bandits
recently have emerged as a novel idea for solving fairness problems. For example, Joseph et al. [193] propose solving
the fairness problem under a stochastic multi-armed bandit framework with fairness metrics as the rewards and the
individuals or groups under investigation as the arms.

Post-processing Methods. Post-processing approaches directly make transformations on the model’s outputs to
ensure fair final outcomes. Hardt et al. [170] propose approaches to determine threshold values via measures such
as equalized odds specifically for different protected groups to find a balance between the true and false positive
rates to minimize the expected classifier loss. Feldman et al. [138] propose a transformation method to learn a new
fair representation of the data. Specifically, they transform the SAT score into a distribution of the rank order of the
students independent of gender. Pleiss et al. [279] borrow the idea of calibration to build fair classifiers. Similar to the
traditional definition of calibration that the proportion of positive predictions should be equal to the proportion of
positive examples, they force the conditions to hold for different groups of people. Nevertheless, they also find that
there is a tension between prediction accuracy and calibration.

4.3 Applications in Real Systems

In this subsection, we summarize the studies regarding bias and fairness issues in real-world AI systems during different
tasks. We introduce the works following the order of different data domains, including tabular data, images, texts,
audios, and graphs. For each domain, we describe several representative tasks and present how AI systems can be
biased on these tasks. A summary of the representative works can be found in Table 4. In addition, we demonstrate
various examples of adopting the debiasing methods from Section 4.2 to mitigate the bias in real-world AI systems.

4.3.1 Tabular Domain. Tabular data is the most common format of data in machine learning; thus, the research on bias
in machine learning is predominantly conducted on tabular data. In the recent decade, researchers have investigated how
algorithms can be biased in classification, regression, and clustering tasks. For classification, researchers find evidence
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Table 4. A summary of bias detection works in different data domains.

Domain Task References

Tabular Data
Classification [62, 63, 155, 170, 197, 255]
Regression [21, 38]
Clustering [31, 83]

Image Data
Image Classification [273]
Face Recognition [59, 178]
Object Detection [302]

Text Data

Text Classification [50, 119, 182, 209, 277, 385]
Embedding [46, 56, 156, 246, 274, 396]

Language Modeling [48, 148, 238, 320, 371]
Machine Translation [34, 91, 157, 329, 345]
Dialogue Generation [106, 117, 229]

Audio Data Speech Recognition [72, 178, 294, 336]

Graph Data Node Embedding [51]
Graph Modeling [107]

that machine learning models for credit prediction [197] and recidivism prediction [93] tasks can show significant
prejudice toward certain demographic attributes of a person, such as race and gender. Berk et al. [38] and Agarwal et al.
[21] investigate multiple regression tasks, from salary estimation to crime rate prediction, showing unfair treatment for
different races and genders. Backurs et al. [31] and Chen et al. [83] discover unfairness in clustering algorithms with a
belief that as data points, different groups of people are entitled to be clustered with the same accuracy.

4.3.2 Image Domain. Machine learning models in computer vision have also shown unfair behaviors. In [59, 178], the
authors show that face recognition systems work better for white compared to darker faces, and also show similar bias
in terms of gender. An image classification application developed by Google has been accused of labeling black people as
“gorillas” [273]. In [302], the authors discover the difference in the performances of smiling detection models on different
genders and races. The work [397] tackle the social bias in visual semantic role labeling, e.g., associating cooking roles
with women. They introduce corpus-level constraints for calibrating existing structured prediction models. In the work
[349], a visual recognition benchmark is designed for studying bias mitigation.

4.3.3 Text Domain. A large number of works have shown that algorithmic bias exists in various natural language
processing tasks. Word embeddings often exhibit a stereotypical bias for text data, causing a serious risk of perpetuating
problematic biases in imperative societal contexts. In [47], the authors first shows that popular state-of-the-art word
embeddings regularly mapped men to working roles and women to traditional gender roles, leading to significant gender
bias which is even inherited in downstream tasks. Following the research of word embeddings, the same patterns of
gender bias are discovered in sentence embeddings [247]. In the task of co-reference resolution, researchers demonstrate
in [398] that rule-based, feature-based, and neural network-based co-reference systems all show gender bias by linking
gendered pronouns to pro-stereotypical entities with higher accuracy than anti-stereotypical entities. Language models
can also learn gender discrimination from man-made text data [49], which tend to generate certain words reflecting
gender stereotypes with different probabilities in the context of males and females. As for machine translation, it has
been illustrated that Google’s translation system suffers from gender bias by showing favoritism toward males for
stereotypical fields, such as STEM jobs when translating sentences taken from the U.S. Bureau of Labor Statistics into a
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dozen gender-neutral languages [281]. Dialogue systems, including generative models and retrieval-based models, also
show bias toward different genders and races by producing discriminatory responses [229, 232].

4.3.4 Audio Domain. Voice recognition systems show gender bias by processing the voices of men and women
differently [178]. It is found that medical voice-dictation systems recognize voice inputs from males versus females
with higher accuracy [294]. It is shown in [72] that voice control systems on vehicles worked better for males than
females. Google’s speech recognition software can understand queries from male voices more consistently than those
from females [336].

4.3.5 Graph Domain. AI applications on graph-structured data are ubiquitous in the real world. The fairness issues in
these problems are drawing increasing attention from researchers. Existing graph embedding techniques can learn
node representations correlated with protected attributes, such as age and gender. Consequently, they exhibit bias
toward certain groups in real-world applications, like social network analysis and recommendations [51]. Graph neural
networks (GNNs) also inherit bias from training data and even magnify the bias through GNN’s graph structures and
message-passing mechanism [107].

4.3.6 Debiasing Real Systems. Many attempts have been made to ensure fairness in real-world AI systems. Zhang et al.
[384] utilizes the in-processing adversarial debiasing strategy to train a fair classification model. During the training
process, an adversary is introduced to judge whether the outcomes are fair or not, and the feedback from the adversary
will serve as the guidance to improve the fairness of the classifier. The work [178] introduces a pre-processing method
where training data is balanced to alleviate gender bias in face recognition tasks. In terms of text data, Zhang et al. [385]
developes an instance weighting framework that can effectively mitigate the bias of text classifiers toward demographic
identity-terms, while the prediction capability of the models is not significantly affected.

4.4 Surveys and Tools

In this subsection, we gather the existing surveys, tools and repositories on fairness in AI to facilitate readers wishing
to explore this field further.

4.4.1 Surveys. The problem of fairness has been studied in multiple disciplines other than computer science for more
than a half century. In one survey [183], the authors trace the evolution of the notions and measurements of fairness in
different fields, such as education and hiring, over the past 50 years. They provide a comprehensive comparison between
the past and current definitions to encourage a deeper understanding of modern fairness in AI. Zliobaite [402] provides
an early survey on measuring indirect discrimination in machine learning. In this survey, the authors review early
approaches for measuring bias in data and predictive models. They also analyze the measurements from other fields
and explore the possibility of their use in machine learning. Corbett-Davies and Goel [99] provide a critical review on
the measurements of fairness, showing the limitations of the existing fairness criteria in classification tasks in machine
learning. Mehrabi et al. [253] contribute a comprehensive survey on bias and fairness in machine learning. In this survey,
the authors provide a detailed taxonomy of the bias and fairness definitions in machine learning, and also introduce
the bias observed in the data and algorithms in different domains of AI and the state-of-the-art debiasing methods.
Caton and Haas [73] provide an overview of the existing debiasing approaches for building fair machine learning
models. They organize the extant works into three categories and 11 method areas and introduce them following their
taxonomy. Moreover, there are some surveys regarding bias and fairness in specific domains of AI. Blodgett et al. [43]
review the papers analyzing bias in NLP systems, providing critical comments on such works and indicating that many
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existing works suffer from unclear and inconsistent motivations and irrational reasoning. They also offer suggestions
to normalize future studies on bias in NLP. Chen et al. [80] summarize and organize the works on bias and debias in
recommender systems, and discuss future directions in this field.

4.4.2 Tools. In recent years, some organizations or individual researchers have provided multi-featured toolkits and
repositories to facilitate fair AI. The repository Responsibly [237] collects the datasets and measurements for evaluating
bias and fairness in classification and NLP tasks. The project FairTest [339] provides an unwarranted associations (UA)
framework to discover unfair user treatment in data-driven algorithms. AIF360 [36] collects popular datasets for fairness
studies and provides the implementations of common debiasing methods for binary classification. Aequitas [307] is
released as an audit toolkit to test the bias and fairness of models for multiple demographic groups on different metrics.
The repository Fairness Measurements provides datasets and codes for quantitatively measuring discrimination in
classification and ranking tasks. A summary of the above-mentioned open-source toolkits and frameworks on fairness
in AI can be found in Table 5.

Table 5. Representative open-source toolkits and frameworks on fairness in AI.

Toolkit Characteristics

Responsibly [237] Datasets and measurements for bias and fairness evaluation on classification tasks
and NLP tasks.

FairTest [339] A framework for discovering unfair user treatment in data-driven algorithms.
AIF360 [36] Popular datasets for fairness research and implementations of common debiasing algorithms.

Aequitas [307] An audit framework for testing the fairness of ML models.
Fairness Measurements 2 Datasets and implementations for measuring bias in classification and ranking tasks.

4.5 Future Directions

Fairness research still possesses a number of outstanding challenges.

• Trade-off between fairness and performance. Studies on fairness in different fields have confirmed the
existence of the trade-off between fairness and performance of an algorithm [39, 100, 283]. The improvement of
the fairness of an algorithm typically comes at the cost of performance degradation. Since both fairness and
performance are indispensable, extensive research is needed to help people better understand an algorithm’s
trade-off mechanism between them, so that practitioners can adjust the balance in practical usage based on the
actual demand;

• Precise conceptualization of fairness. Although extensive research has been conducted on bias and fairness in
AI, too much of this work formulates its concerns under a vague concept of bias that refers to any system harmful
to human behaviors but fails to provide a precise definition of bias or fairness specific to their setting [43]. In
fact, different forms of bias can appear in different tasks, even in the same task. For example, in a recommender
system, popularity bias can exist toward both the users and items [80]. In a toxicity detection algorithm, race
bias can exist toward both the people mentioned in texts and the authors of texts [231]. To study any fairness
problem, a precise definition of bias indicating how, to whom, and why an algorithm can be harmful must be
articulated. In this way, we can make the research on AI fairness in the whole community more standardized
and systematic;
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• From equality to equity. Fairness definitions are often associated with equality to ensure that an individual
or a conserved group, based on race or gender, are given similar amounts of resources, consideration, and
results. Nonetheless, the area of equity has been heavily under-examined [253], where this notion pertains to the
particular resources for an individual or a conserved group to be successful [159]. Equity remains an interesting
future direction, since the exploration of this definition can extend or contradict existing definitions of fairness
in machine learning.

5 EXPLAINABILITY

Making the AI techniques transparent can enhance the trustworthiness, where humans can understand how/why it can
work well and when/why/where it doesn’t work, so that users can adopt the AI techniques accordingly and fully trust
them afterward. The improved predictive performance of AI systems has often been achieved through increased model
complexity [120, 262]. A prime example is the paradigm of deep learning, dominating the heart of most state-of-the-art
AI systems. However, deep learning models are treated as black-boxes, since most of them are too complicated and
opaque to be understood and are developed without explainability [227]. More importantly, without explaining the
underlying mechanisms behind the predictions, deep models cannot be fully trusted, which prevents their use in
critical applications pertaining to ethics, justice, and safety, such as healthcare [258], autonomous cars [221], and so on.
Therefore, building a trustworthy AI system requires an understanding of how particular decisions are made [144],
which has led to the revival of the field of eXplainable Artificial Intelligence (XAI). In this section, we aim to provide
an intuitive understanding and high-level insights into the recent progress of explainable AI. First, we provide the
concepts and taxonomy regarding explainability in AI. Second, we review representative explainable techniques for
AI systems according to the aforementioned taxonomy. Third, we introduce real-world applications of explainable AI
techniques. Finally, we provide some surveys and tools and discuss future opportunities for explainable AI.

5.1 Concepts and Taxonomy

In this subsection, we introduce the concepts of explainability in AI. We then provide a taxonomy of different explanation
techniques.

5.1.1 Concepts. In the context of machine learning and AI literature, explainability and interpretability are usually used
by researchers interchangeably [262]. One of the most popular definitions of explainability is the one from Doshi-Velez
and Kim, who define it as “the ability to explain or to present in understandable terms to a human” [120]. Another
popular definition is from Miller, who defines explainability as “the degree to which a human can understand the
cause of a decision” [257]. In general, the higher the explainability of an AI system is, the easier it is for someone to
comprehend how certain decisions or predictions have been made. Meanwhile, a model is better explainable than other
models if its decisions are easier for a human to comprehend than those of others.

While explainable AI and interpretable AI are very closely related, subtle differences between them are discussed in
some studies [153, 300, 391].

• A model is interpretable if the model itself is capable of being understood by humans on its predictions. When
looking at the model parameters or a model summary, humans can understand exactly the procedure on how
it made a certain prediction/decision and, even given a change in input data or algorithmic parameters, it is
the extent to which humans can predict what is going to happen. In other words, such models are intrinsically
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transparent and interpretable, rather than black-box/opaque models. Examples of interpretable models include
decision trees and linear regression.

• An explainable model indicates that additional (post hoc) explanation techniques are adopted to help humans
understand why it made a certain prediction/decision that it did, although the model is still black-box and opaque.
Note that such explanations are often not reliable and can be misleading. Examples of such models would be
deep neural network based models, where the models are usually too complicated for any human to comprehend.

5.1.2 Taxonomy. Techniques for AI’s explanation can be grouped according to various criteria such as model, scope
and method.

• By Model: Intrinsic or Post-hoc. If AI models are considered transparent or interpretable due to their simple
structures, then these interpretable techniques are called a model intrinsic explanation. In contrast, post-hoc
methods refer to the explainability methods that are developed to explain the target AI model after model
training.

• By Scope: Local or Global. If the method provides an explanation only for a specific instance, then it is a local
explanation; if the method explains the whole model, then it is a global explanation.

• By Method: Gradient-based, Perturbation-based, or Others.Most existing explainability methods can be
categorized into two main classes: gradient-based and perturbation-based methods. If the techniques employ the
partial derivatives on input instances to generate attributions, then these techniques are called a gradient-based
explanation. If the techniques focus on the changes or modifications of input data, we name them a perturbation-
based explanation. In addition, there are other explanation techniques beyond gradient/perturbation-based
methods. For example, a counterfactual explanation usually refers to a causal situation in the form, “If 𝑋 had not
occurred, 𝑌 would not have occurred.” In general, counterfactual explanation methods are post-hoc and can be
used to explain predictions of individual instances (local) [262, 346].

5.2 Methods

In this subsection, we introduce some representative explanation techniques according to the aforementioned taxonomy.
A summary of the representative works can be found in Table 6.

5.2.1 By Model: Model-intrinsic or Post-hoc. Any explainable algorithm that is dependent on the model architecture can
fall into the model-intrinsic category. In contrast, post-hoc methods apply to any model for being generally applicable. In
general, there are significant research interests in developing post-hoc methods to explain the predictions of an existing
well-performing neural networks model. This criterion also can be used to distinguish whether interpretability is
achieved by restricting the complexity of the AI model. Intrinsic interpretability refers to AI models that are considered
interpretable (white-box) due to their simple model architecture, while most post-hoc explanations are widely applied
into (black-box) deep neural networks which are highly complicated and opaque due to their millions of parameters.

• Model-intrinsic Explanations. The model in this category is often called an intrinsic, transparent, or white-box
explanation. Generally, without designing an additional explanation algorithm, this type of interpretable technique
cannot be re-used by other classifier architectures. Therefore, the model intrinsic methods of explanations are
inherently model specific. Such commonly used interpretable models include linear/logistic regression, decision
trees, rule-based models, Generalized Additive Models (GAMs), Bayesian networks, etc.
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Fig. 4. The interpretation of decision tree is simple, where intermediate nodes in the tree represent decisions and leaf nodes can be
class labels. Starting from the root node to leaf nodes can create good explanations on how the certain label is made by decision tree
model. (Image Credit: [262])

(a) Original Image (b) Electric Guitar: 0.32 (c) Acoustic Guitar: 0.24 (d) Labrador: 0.21

Fig. 5. LIME explains deep neural networks on image classification task: top 3 predicted categories and the corresponding scores.
(Image Credit: [289])

For example, the linear regression model [42], which is one of the most representative linear models in ML, aims
to predict the target as a weighted sum of the feature of instances. With this linearity of the learned relationship,
the linear regression model makes the estimation procedure simple and significantly understandable on a modular
level (i.e., the weights) for humans. Mathematically, given one instance with 𝑑 dimension of features x, the linear
regression model can be used to model the dependence of a predicted target 𝑦 as follows:

𝑦 = w𝑇 x + 𝑏 = 𝑤1𝑥1 + ... +𝑤𝑑𝑥𝑑 + 𝑏 (1)

where w and 𝑏 denote the learned feature weights and the bias term, respectively. The predicted target 𝑦 of
linear regression is a weighted sum of its 𝑑 dimension features x for any instance, where the decision-making
procedure is easy for a human to comprehend by inspecting the value of the learned feature weights w.
Another representative method is decision tree [284], which contains a set of conditional statements arranged
hierarchically. Making predictions in a decision tree is also the procedure of explaining the model by seeking the
path from the root node to leaf nodes (label), as illustrated in Figure 4.
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Table 1: Illustration of synthetic datasets (refer to “Synthetic datasets” for details) together with performance
evaluation of GNNEXPLAINER and alternative baseline explainability approaches.
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Figure 3: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for node
classification task on four synthetic datasets. Each method provides explanation for the red node’s prediction.

importance, since a 1-hop neighbor of a node can also be a 2-hop neighbor of the same node due to
cycles. Each edge’s importance is thus computed as the average attention weight across all layers.
Setup and implementation details. For each dataset, we first train a single GNN for each dataset,
and use GRAD and GNNEXPLAINER to explain the predictions made by the GNN. Note that
the ATT baseline requires using a graph attention architecture like GAT [33]. We thus train a
separate GAT model on the same dataset and use the learned edge attention weights for explanation.
Hyperparameters KM , KF control the size of subgraph and feature explanations respectively, which
is informed by prior knowledge about the dataset. For synthetic datasets, we set KM to be the
size of ground truth. On real-world datasets, we set KM = 10. We set KF = 5 for all datasets.
We further fix our weight regularization hyperparameters across all node and graph classification
experiments. We refer readers to the Appendix for more training details (Code and datasets are
available at https://github.com/RexYing/gnn-model-explainer).
Results. We investigate questions: Does GNNEXPLAINER provide sensible explanations? How
do explanations compare to the ground-truth knowledge? How does GNNEXPLAINER perform on
various graph-based prediction tasks? Can it explain predictions made by different GNNs?
1) Quantitative analyses. Results on node classification datasets are shown in Table 1. We have
ground-truth explanations for synthetic datasets and we use them to calculate explanation accuracy for
all explanation methods. Specifically, we formalize the explanation problem as a binary classification
task, where edges in the ground-truth explanation are treated as labels and importance weights given
by explainability method are viewed as prediction scores. A better explainability method predicts
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Figure 4: Evaluation of single-instance explanations. A-B. Shown are exemplar explanation subgraphs for graph
classification task on two datasets, MUTAG and REDDIT-BINARY.
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Fig. 6. GNNExplainer generates an explanation by identifying a small graph of the input graph for graph classification task on
molecule graphs dataset (MUTAG). (Image Credit: [372])

Figure 2: Image-specific class saliency maps for the top-1 predicted class in ILSVRC-2013
test images. The maps were extracted using a single back-propagation pass through a classification
ConvNet. No additional annotation (except for the image labels) was used in training.

5

Fig. 7. Image-specific class saliency maps were extracted using a single back-propagation pass through a DNN classification model.
(Image Credit: [323])

• Post-hoc Explanations. The methods in this category are concerned with black-box well-trained AI models.
More specifically, these methods do not try to create interpretable models, but to interpret already well-trained
models. Such methods have been widely used for explaining complicated models, such as deep neural networks.
That is why they sometimes are referred to as black-box explainability methods in the related scientific literature.
One advantage of post-hoc methods over model-intrinsic ones is their flexibility. Post-hoc methods have also
been applied in a variety of input modalities, such as images, text, graph-structured data, etc. Note that post-hoc
methods can also be applied to intrinsically interpretable models.
One of the most representative works in this category is Local Interpretable Model-Agnostic Explanations
(LIME) [289]. For example, at the image domain, for any trained classifier, LIME is a proxy approach to randomly
permute data by identifying the importance of local contiguous patches with similar pixels in a given instance
and its corresponding label [289]. An illustrative example of LIME on a single instance for the top three predicted
classes is shown in Figure 5.
Additionally, to understand how any graph neural networks (GNNs) make a certain decision on graph-structured
data, GNNExplainer learns soft masks for edges and node features to explain the predictions via maximizing the
mutual information between the predictions of the original graph and those of the newly obtained graph [240, 372].
Figure 6 illustrates explanation examples generated by GNNExplainer for graph-structured data.
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Figure 1: Numerically computed images, illustrating the class appearance models, learnt by a
ConvNet, trained on ILSVRC-2013. Note how different aspects of class appearance are captured
in a single image. Better viewed in colour.
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Fig. 8. Numerically computed images, illustrating the class appearance models. (Image Credit: [323])

5.2.2 By Scope: Local or Global. One important aspect of dividing the explainability techniques is based on the scope
of explanation, i.e., local or global.

• Local Explanations. In general, the goal of locally explainable methods is to express the individual feature
attributions of a single instance of input data 𝑥 from the data population 𝑋 . For example, given a text document
and a model to understand the sentiment of text, a locally explainable model might generate attribution scores
for individual words in the text.
In the Saliency Map Visualization method [323], the authors compute the gradient of the output class category
with regard to an input image. By visualizing the gradients, a fair summary of pixel importance can be achieved
by studying the positive gradients that have more influence on the output [323]. An example of the class model
is shown in Figure 7.

• Global Explanations. The goal of global explanations is to provide insights into the decision of the model
as a whole and to have an understanding of attributions for a batch of input data or a certain label, not just
for individual inputs. In general, globally explainable methods work on an array of inputs to summarize the
overall behavior of the black-box model. Most linear, rule-based and tree-based models are inherently globally
explainable. For example, conditional statements (intermediate nodes) in decision trees can give insight into how
the model behaves in a global view, as shown in Figure 4.
In terms of the DNNs models, Class Saliency Map Visualization [323] is trying to generate a particular image
visualization by maximizing the score of class probability with respect to the input image (i.e., using the derivative
of predicted class score with respect to the image). An example of the class model is shown in Figure 8. SP-LIME
extends the vanilla LIME method (which provides local explanations on an individual instance) to give a global
understanding via submodular optimization [289].

5.2.3 By Method: Gradient-based, Perturbation-based, or Others. This category is mainly defined by answering the
question, "What is the algorithmic approach? Does it focus on the input data instance or the model parameters?"
Based on the core algorithmic approach of the explanation method, we can categorize explanation methods as the ones
that focus on the gradients of the target prediction with respect to input data, and those that focus on the changes
or modifications of input data. Afterward, we also introduce other representative explanation techniques beyond
gradient-based and perturbation-based methods.

• Gradient-based Explanations. In gradient-based methods, the explainable algorithm does one or more forward
passes through the neural networks and generates attributions during the back-propagation stage utilizing partial

25



Woodstock ’18, June 03–05, 2018, Woodstock, NY Liu and Wang, et al.

Learning Deep Features for Discriminative Localization

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, Antonio Torralba
Computer Science and Artificial Intelligence Laboratory, MIT

{bzhou,khosla,agata,oliva,torralba}@csail.mit.edu

Abstract

In this work, we revisit the global average pooling layer
proposed in [13], and shed light on how it explicitly enables
the convolutional neural network (CNN) to have remark-
able localization ability despite being trained on image-
level labels. While this technique was previously proposed
as a means for regularizing training, we find that it actu-
ally builds a generic localizable deep representation that
exposes the implicit attention of CNNs on an image. Despite
the apparent simplicity of global average pooling, we are
able to achieve 37.1% top-5 error for object localization on
ILSVRC 2014 without training on any bounding box anno-
tation.We demonstrate in a variety of experiments that our
network is able to localize the discriminative image regions
despite just being trained for solving classification task1.

1. Introduction

Recent work by Zhou et al [34] has shown that the con-
volutional units of various layers of convolutional neural
networks (CNNs) actually behave as object detectors de-
spite no supervision on the location of the object was pro-
vided. Despite having this remarkable ability to localize
objects in the convolutional layers, this ability is lost when
fully-connected layers are used for classification. Recently
some popular fully-convolutional neural networks such as
the Network in Network (NIN) [13] and GoogLeNet [25]
have been proposed to avoid the use of fully-connected lay-
ers to minimize the number of parameters while maintain-
ing high performance.

In order to achieve this, [13] uses global average pool-
ing which acts as a structural regularizer, preventing over-
fitting during training. In our experiments, we found that
the advantages of this global average pooling layer extend
beyond simply acting as a regularizer - In fact, with a little
tweaking, the network can retain its remarkable localization
ability until the final layer. This tweaking allows identifying
easily the discriminative image regions in a single forward-

1Code and models are available at http://cnnlocalization.csail.mit.edu

Brushing teeth Cutting trees

Figure 1. A simple modification of the global average pool-
ing layer combined with our class activation mapping (CAM)
technique allows the classification-trained CNN to both classify
the image and localize class-specific image regions in a single
forward-pass e.g., the toothbrush for brushing teeth and the chain-
saw for cutting trees.

pass for a wide variety of tasks, even those that the network
was not originally trained for. As shown in Figure 1(a), a
CNN trained on object categorization is successfully able to
localize the discriminative regions for action classification
as the objects that the humans are interacting with rather
than the humans themselves.

Despite the apparent simplicity of our approach, for the
weakly supervised object localization on ILSVRC bench-
mark [21], our best network achieves 37.1% top-5 test er-
ror, which is rather close to the 34.2% top-5 test error
achieved by fully supervised AlexNet [10]. Furthermore,
we demonstrate that the localizability of the deep features in
our approach can be easily transferred to other recognition
datasets for generic classification, localization, and concept
discovery.

1.1. Related Work

Convolutional Neural Networks (CNNs) have led to im-
pressive performance on a variety of visual recognition
tasks [10, 35, 8]. Recent work has shown that despite being
trained on image-level labels, CNNs have the remarkable
ability to localize objects [1, 16, 2, 15, 18]. In this work, we
show that, using an appropriate architecture, we can gener-
alize this ability beyond just localizing objects, to start iden-
tifying exactly which regions of an image are being used for

12921

Fig. 9. Gradient-based Explanation: the CAM model produces class-specific regions of target images for visual explanation. (Image
Credit: [399])

(a) Image captioning explanations (b) Comparison to DenseCap

Figure 5: Interpreting image captioning models: We use our class-discriminative localization technique, Grad-CAM to find spatial support regions for captions
in images. Fig. 5a Visual explanations from image captioning model [23] highlighting image regions considered to be important for producing the captions.
Fig. 5b Grad-CAM localizations of a global or holistic captioning model for captions generated by a dense captioning model [21] for the three bounding box
proposals marked on the left. We can see that we get back Grad-CAM localizations (right) that agree with those bounding boxes – even though the captioning
model and Grad-CAM techniques do not use any bounding box annotations.

(a) Visualizing VQA model from [28]

(b) Visualizing ResNet based Hierarchical co-attention VQA model from [29]

Figure 6: Qualitative Results for our VQA experiments: (a) Given the image
on the left and the question “What color is the firehydrant?”, we visualize
Grad-CAMs and Guided Grad-CAMs for the answers “red", “yellow" and
“yellow and red". Grad-CAM visualizations are highly interpretable and
help explain any target prediction – for “red”, the model focuses on the
bottom red part of the firehydrant; when forced to answer “yellow”, the
model concentrates on it‘s top yellow cap, and when forced to answer
“yellow and red", it looks at the whole firehydrant! (b) Our approach is
capable of providing interpretable explanations even for complex models.

regions required to output a particular answer.
Visualizing ResNet-based VQA model with attention.
Lu et al. [29] use a 200 layer ResNet [16] to encode the
image, and jointly learn a hierarchical attention mechanism
on the question and image. Fig. 6b shows Grad-CAM vi-
sualization for this network. As we visualize deeper layers
of the ResNet we see small changes in Grad-CAM for most

adjacent layers and larger changes between layers that in-
volve dimensionality reduction. Visualizations for various
layers in ResNet can be found in [38]. To the best of our
knowledge, we are the first to visualize decisions made by
ResNet-based architectures.

8. Conclusion
In this work, we proposed a novel class-discriminative

localization technique—Gradient-weighted Class Activation
Mapping (Grad-CAM)—for making any CNN-based mod-
els more transparent by producing visual explanations. Fur-
ther, we combined our Grad-CAM localizations with exist-
ing high-resolution visualizations to obtain high-resolution
class-discriminative Guided Grad-CAM visualizations. Our
visualizations outperform all existing approaches on both
aspects: interpretability and faithfulness to original model.
Extensive human studies reveal that our visualizations can
discriminate between classes more accurately, better reveal
the trustworthiness of a classifier, and help identify biases
in datasets. Finally, we showed the broad applicability of
Grad-CAM to various off-the-shelf available architectures
for tasks including image classification, image captioning
and VQA providing faithful visual explanations for possible
model decisions. We believe that a true AI system should
not only be intelligent, but also be able to reason about its
beliefs and actions for humans to trust it. Future work in-
cludes explaining the decisions made by deep networks in
domains such as reinforcement learning, natural language
processing and video applications.
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Fig. 10. Gradient-based Explanation: the Grad-CAM model localizes image regions considered to be important for producing the
captions. (Image Credit: [312])

derivatives of the activations. This method is the most straightforward solution and has been widely used in
computer vision to generate human-understandable visual explanations.
To understand how a CNN model makes decisions, Class activation mapping (CAM) [399] proposes modifying
fully connected layers of the original CNN architecture using Global Average Pooling and generating important
class-specific regions of the image for visual explanations via the forward passes process. An illustrative example
is provided in Figure 9. Afterward, Gradient-weighted Class Activation Mapping (Grad-CAM) [312] generalizes
the CAM model for any CNN model without requiring architectural changes or retraining and utilizes the
gradient signal flowing into the final convolutional layer of a CNN for highlighting the important regions in the
image. Figure 10 shows a visual explanation via Grad-CAM for an image captioning model.

• Perturbation-based Explanations. Perturbation-based explainable methods focus on variations in the input
feature space to explain individual feature attributions toward the output class. More specifically, explanations are
generated by iteratively probing a trained AI model with different variations of the inputs. These perturbations
can be on a feature level by replacing certain features with zero or random counterfactual instances, picking one
or a group of pixels (super-pixels) for the explanation, blurring, shifting, or masking operations, etc. In general,
only a forward pass is sufficient to generate the attribution representations without the need for back-propagating
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gradients. Shapley Additive explanations (SHAP) [239] visualizes feature interactions and feature importance by
probing feature correlations by removing features in a game-theoretic framework.

• Others.Here, we present other explanation techniques that cannot be easily categorized into gradient/perturbation-
based methods. For example, counterfactual explanations have been designed to answer hypothetical questions
and describe how altering feature values of an instance would change the prediction to a predefined out-
put [260, 262]. Taking the application for a credit card as an example, Peter gets rejected by AI banking systems
and wonders why his application was rejected. To answer the question of "why," counterfactual explanations
can be formulated as "What would have happened to this decision (from rejected to approved), if performing
minimal changes in feature values (e.g., income, age, race, etc.)?" In fact, counterfactual explanations are usually
human-friendly, since they are contrastive to the current instances and usually focus on a small number of
features. To generate counterfactual explanations, Wachter et. al [346] propose Lagrangian style constrained
optimization as follows:

argmin
x̂

max
_

_ · (𝑓 (x̂) − 𝑦)2 + 𝑑 (x̂, x) (2)

where x is the original instance feature, and x̂ is the corresponding counterfactual input. 𝑓 (x̂) is the predicted
result of a classifier. The first term is the quadratic distance between the model prediction for the counterfactual
x̂ and the targeted output 𝑦. The second term indicates the distance 𝑑 (·, ·) between the instance x to be explained
and the counterfactual x̂, and _ is proposed to achieve the trade-off between the distance in prediction and the
distance in feature values. Note that counterfactual explanations can be computed by gradients or perturbation
methods.

Table 6. Summary of Published Research in Explainability of AI Systems.

Representative Models Intrinsic vs. Post-hoc Scope Methodology
Linear model Intrinsic Global Others
LIME [289] Post-hoc Local Perturbation

SP-LIME [289] Post-hoc Global Perturbation
CAM [399] Post-hoc Local Others

Grad-CAM [312] Post-hoc Local Gradient
SHAP [239] Post-hoc Both Perturbation

Saliency Map Visualization [323] Post-hoc Local Gradient
Class Saliency Map Visualization [323] Post-hoc Global Gradient

GNNExplainer [372] Post-hoc Local Perturbation
Surveys [16, 29, 37, 110, 120, 121, 163, 189, 227, 257, 262, 338, 379, 391]

5.3 Applications in Real Systems

When a prediction is complemented with explanations to understand how particular decisions are made, AI systems will
gain more trust from humans. Various explanations techniques are proposed to integrate into real-world AI systems for
enhancing the trustworthiness. In this subsection, we discuss representative real-world applications where explainability
is crucial.

5.3.1 E-commerce. The explosive popularity of e-commerce sites has attracted an increasing number of people to
spend more time shopping online. Recommender systems (RecSys) as intelligent systems have become increasingly
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important in mitigating the information overload problem in e-commerce [134, 135]. These systems provide personalized
information to help human decisions and have been widely used in various user-oriented online services [132], such as e-
commerce item recommendations for everyday shopping (e.g., Amazon, Taobao), job recommendations for employment
markets (e.g., LinkedIn), and friend recommendations to make people better connected (e.g., Facebook, Weibo) [131, 136].
Recently, in order to increase the trustworthiness, increasing attention has been paid to understanding why certain
items have been recommended by deep learning-based recommender systems for end-users, because providing good
explanations of personalized recommender systems can sufficiently motivate users to interact with items, help users
make better and/or faster decisions, and increase users’ trust in the intelligent recommender systems [241, 393]. For
example, to achieve explainability in recommender systems, RuleRec [241] proposes a joint learning framework for
accurate and explainable recommendations by integrating induction of several explainable rules from item association,
such as, Also view, Buy after view, Also buy, and Buy together, where such explanations can sufficiently affect users
online behaviors in e-commerce platforms.

5.3.2 Healthcare. Recently, AI techniques have demonstrated their significant impact on healthcare (e.g., drug discovery,
disease diagnosis, gene analysis, etc.) in which decisions need to be carefully made based on solid evidence. For example,
explainable AI has been proven to significantly accelerate the process of computer-assisted drug discovery [189, 344],
such as molecular design, chemical synthesis planning, protein structure prediction, and macromolecular target
identification. Explanations of graph neural networks have been conducted on a set of molecules graph-labeled for their
mutagenic effect on the Gram-negative bacterium Salmonella typhimurium, with the goal of identifying several known
mutagenic functional groups 𝑁𝐻2 and 𝑁𝑂2 [240, 372, 378]. A recent work [282] studies how the interpretation of
filters within message-passing networks can lead to the identification of relevant toxicophore- and pharmacophore-like
sub-structures for explainability, so as to help increase their reliability and foster their acceptance and usage in drug
discovery and medicinal chemistry projects in the healthcare domain. In disease diagnosis, When AI models meet
doctors who are experts in their sector for disease diagnosis, explanations should be made by considering the doctor’s
knowledge, application domain, the disease, patient conditions, etc. What’s more, explanations should give doctors
confidence in AI models’ prediction that can lead to higher quality service [16].

5.3.3 Natural Language Processing. As one of the most broadly applied areas of AI, Natural Language Processing (NLP)
investigates the use of computers to process or understand human (i.e., natural) languages [114]. Applications of NLP
are everywhere, including dialogue systems, text summarization, machine translation, question answering, sentiment
analysis, information retrieval, etc. Recently, deep learning approaches have obtained very promising performance
across many different NLP tasks, which comes at the expense of models becoming less explainable [110, 265]. As a
consequence, these NLP systems cannot be fully trusted, and humans might doubt how particular decisions are made.
To address the issue, LIME [289] proposes to generate random input perturbations for a given document to explain the
predicted categories for text classification in SVM models. CAML [265] employs an attention mechanism to select the
segments that are most relevant for medical codes (ICD) from clinical text.

5.4 Surveys and Tools

In this subsection, we introduce existing surveys, tools and repositories on explainability in AI to facilitate the readers
who wish to further explore this field.

28



Trustworthy AI: A Computational Perspective Woodstock ’18, June 03–05, 2018, Woodstock, NY

5.4.1 Surveys. In the book [262], the author focuses on interpretable machine learning by introducing fundamental
concepts to advanced interpretable models. For example, it first details related concepts of interpretability, followed by
intrinsically interpretable models, such as linear regression, decision tree, rule-based methods, etc. Afterward, the book
provides general post-hoc tools for interpreting black-box models and explaining individual predictions. Doshi-Velez et
al. [120] raises the importance of intractability in machine learning and introduces a comprehensive survey at this field.
There are surveys [29, 37, 121, 153, 163, 227] summarizing explanation approaches in machine learning. In addition,
comprehensive surveys for specific applications also exist, such as recommender systems [391], medical information
systems [338], natural language processing [110], graph neural networks [379], drug discovery [189], etc.

5.4.2 Tools. In this subsection, we introduce several popular toolkits that are open-sourced in the GitHub platform
for explainable AI. AIX3603 (AI Explainability 360) [30] is an open-source Python toolkit featuring state-of-the-art
explainability methods and some evaluation metrics. Meanwhile, AIX360 also provides educational materials for non-
technical stakeholders to quickly become familiar with interpretation and explanation methods. InterpretML4 [270]
is also an open-source python toolkit that exposes machine learning interpretability algorithms to practitioners and
researchers. InterpretML exposes two types of interpretability: glass-box for machine learning models with model-
intrinsic explanations, and black-box explainability techniques for explaining any existing AI systems. The package
DeepExplain [27] mainly supports various gradient-based techniques and perturbation-based methods5. In addition,
DIG [233] provides python toolkit for explaining graph deep learning6. A summary of the above-mentioned open-source
toolkits and frameworks on explainable AI can be found in Table 7.

Table 7. Representative open-source toolkits and frameworks on explainable AI.

Toolkit Characteristics
InterpretML7 [270] A python toolkit for supporting intrinsically transparent models and black-box models.

AIX3608 [30] A python toolkit with comprehensive set of explainability methods and datasets.

DeepExplain9 [27] A Tensorflow as well as Keras with Tensorflow backend toolkit for mainly supporting
various gradient-based techniques and perturbation-based methods.

DIG10 [233] A PyTorch toolkit for supporting explainability of graph neural networks.

5.5 Future Directions

In this subsection, we discuss potential directions for future research in explainable AI. Since the interpretability of AI
is a relatively new and still a developing area, many open problems need to be considered.

• Security of explainable AI. Recent studies have demonstrated that due to their data-driven nature, explanations
of AI models are vulnerable to malicious manipulations. Attackers attempt to generate adversarial examples that
can not only mislead a target classifier but also deceive its corresponding interpreter [152, 390], naturally raising
potential security concerns on interpretations. Therefore, learning how to defend against adversarial attacks on
explanations would be an important future direction for research.

• Evaluation Methodologies. Evaluation metrics are crucial for studying explanation methods; however, due
to the lack of ground truths and human subjective understandings, evaluating whether the explanations are

3https://aix360.mybluemix.net
4https://github.com/interpretml/interpret
5https://github.com/marcoancona/DeepExplain
6https://github.com/divelab/DIG
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reasonable and correct in regard to certain predictions is becoming intractable. The widely used evaluation
methodology is based on human evaluations based on visualizing explanations, which is time-consuming and
biased toward subjective human understandings. Although there are some initial studies on the evaluation of
interpretability [120], it is still unclear how to measure what constitutes a good Explanation?". It is crucial to
investigate qualitative and quantitative evaluations of interpretability.

• Knowledge to Target model: fromwhite-box to black-box.Most existing explanation techniques require full
knowledge of the explained AI system (denoted as white-box). However, knowledge regarding target AI systems
is often limited in many scenarios due to privacy and security concerns. Therefore, an important direction is to
understand how an explanation can be generated for making decisions in black-box systems.

6 PRIVACY

The success of modern AI systems is built upon data, and data might contain private and sensitive information – from
credit card data to medical records and from social relations to family trees. To establish trustworthy AI systems, the
safety of private and sensitive information carried by the data and models that could be potentially exposed throughout
the AI system must be guaranteed. Therefore, increasing attention has been paid to the protection and regulation of
data privacy. From a legal perspective, laws from the state level to the global level have begun to provide mandatory
regulations for data privacy. For instance, the California Consumer Privacy Act (CCPA) was signed into law in 2018 to
enhance privacy rights and consumer protection in California by giving consumers more control over the personal
information that businesses collect; the Health Insurance Portability and Accountability Act (HIPAA) was created in
1996 to protect individual healthcare information by requiring authorization before disclosing personal healthcare
information; the European Union announced General Data Protection Regulation (GDPR) to protect data privacy by
giving the individual control over personal data collection and usage.

From the perspective of science and technology, although most AI technologies haven’t considered privacy as the
fundamental merit when they are first developed, to make modern AI systems trustworthy in privacy protection, a
subfield of AI, privacy-preserving machine learning (PPML), has set privacy protection as the priority and has begun
to pioneer principled approaches for preserving privacy in machine learning. Specifically, researchers uncover the
vulnerabilities of existing AI systems from comprehensive studies and then develop promising technologies to mitigate
these vulnerabilities. In this section, we will provide a summary of this promising and important field. Specifically, the
basic concepts and taxonomy will be first discussed, and the risk of privacy breaches will be explained through various
privacy attacking methods. Mainstream privacy-preserving technologies, such as confidential computing, federated
learning, and differential privacy will be included, followed by discussions on applications in real systems, existing
surveys and tools, and the future directions.

6.1 Concepts and Taxonomy

In the context of privacy protection, the adversarial goal of an attacker is to extract information about the data or
machine learning models. According to the accessible information the adversary has, the attacker can be categorized
into white-box or black-box. In a white-box setting, we assume that the attacker has all information except the data that
we try to protect and the attacker aims to attack. In a black-box setting, the attacker has very limited information, for
example, the query results returned by the model. Based on when the attack occurs, the privacy breach could happen
in the training phase or inference phase. In the training phase, the adversary might be able to directly access or infer
the information about the training data when she inspects or even tampers with the training process. In the inference
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phase, the adversary might infer the input data of the model by inspecting the output characteristics. According to the
capability of the adversary, the attacker may be honest-but-curious or fully malicious. An honest-but-curious attacker
can inspect and monitor the training process while a fully malicious attacker can further tamper the training process.
These taxonomies are not exclusive since they view the attacker from different perspectives.

6.2 Methods

We will highlight the risk of privacy leakage by introducing some representative privacy attack methods. Then, some
mainstream techniques for privacy-preserving will be introduced.

6.2.1 Privacy Attack. Privacy attacks can target training data, input data, properties of data population, and even the
machine learning model itself. We introduce some representative privacy attacks to reveal the risk of privacy breaches.

Membership Inference Attack. To investigate how machine learning models leak information about individual
data within the training data, the membership inference attack aims to identify whether a data record is used in the
training of model learning models. For instance, given the black-box access to the model, an inference model can be
trained to recognize whether the given inputs are used in its training or not based on the predictions of the target
model [321]. Empirically, it is shown that commonly used classification models can be vulnerable to membership
inference attacks. Therefore, private information can be inferred if some user data (e.g., medical records and credit
card data) is used in training the model. Please refer to the survey [179] for a comprehensive summary of membership
inference attacks.

Model Inversion Attack. Model inversion attack [145, 146] aims to use the model’s output to infer the information
of the input data that often contain sensitive and private information. For instance, in pharmacogenetics, machine
learning models are used to guide medical treatments, given the patient’s genotype and demographic information.
However, it has been shown that severe privacy risk exists because a patient’s genetic information can be disclosed given
the model and the patient’s demographic information [146]. In facial recognition with neural networks, the images of
people’s faces can be recovered given their names, prediction confidence values, and access to the model [145]. In [392],
generative adversarial networks (GANs) are used to guide the inversion process of neural networks and reconstruct
high-quality facial images from face recognition classifiers. In a recent study, researchers found that the input data can
be perfectly recovered through the gradient information of neural networks [401], which highlights the privacy risk
in distributed learning where gradient information needs to be transmitted when people used to believe that it can
preserve data privacy.

Property Inference Attack. Given the machine learning model, the property inference attack aims to extract global
properties of the training dataset or training algorithm that the machine learning models do not intend to share. One
example is to infer the properties that only hold for a subset of the training data or a specific class of the training data.
This type of attack might leak private statistical information about the population, and the learned property can be
used to exploit the vulnerability of an AI system.

Model Extraction. An adversary aims to extract the model information by querying the machine learning model in
a black-box setting such that he can potentially fully reconstruct the model or create a substitute model that closely
approximates the target model [341]. Once the model has been extracted, the black-box setting translates to the
white-box setting, where other types of privacy attacks become much easier. Moreover, the model information typically
contains an intelligent property that should be kept confidential. For instance, ML-as-a-service (MLaaS) systems, such
as Amazon AWS Machine Learning, Microsoft Azure Machine Learning Studio, and Google Cloud Machine Learning
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Engine, allow users to train the models on their data and provide publicly accessible query interfaces on a pay-per-query
basis. The confidential model contains users’ intelligent property but suffers from the risk of functionality stealing.
Since the trained ML model is often considered as an intellectual property (IP), researchers recently have proposed IP
protection solutions to protect ML models from infringement. The taxonomy, attacks, and evaluations in this research
direction are summarized in a recent survey [367].

6.2.2 Privacy Preservation. The privacy-preserving countermeasures can be roughly categorized into three mainstream
and promising directions, including confidential computing, federated learning, and differential privacy, as shown
in Figure 11. Confidential computing attempts to ensure data safety during transmission and computing. Federated
learning provides a new machine learning framework that allows data to be local and decentralized and avoid raw data
transmission. Differential privacy aims to utilize the information about a whole dataset without exposing individual
information in the dataset. Next, we review these techniques and discuss how they preserve privacy.

Fig. 11. An Overview of Privacy Preserving Techniques

Confidential Computing. There are mainly three types of techniques for achieving confidential computing,
including Trusted Executive Environment (TEE) [304], Homomorphic Encryption (HE) [17], and Multi-party Secure
Computation (MPC) [129].

Trusted Execution Environments. Trusted Execution Environments focus on developing hardware and software
techniques to provide an environment that isolates data and programs from the operator system, virtual machine
manager, and other privileged processes. The data is stored in the trusted execution environment (TEE) such that it is
impossible to disclose or operate on the data from outside. The TEE guarantees that only authorized codes can access
the protected data, and the TEE will deny the operation if the code is altered. As defined by the Confidential Computing
Consortium [12], the TEE provides a level of assurance of data confidentiality, data integrity, and code integrity that
essentially states that unauthorized entities cannot view, add, remove, or alter the data while it is in use within the TEE,
and cannot add, remove or alter code executing in the TEE.

Secure Multi-party Computation. Secure multi-party computation (MPC) protocols aim to enable a group of data
owners who might not trust one another to jointly perform a function computation that depends on all of their private
input without disclosing any participant’s private data. Although the concept of secure computation was primarily a
theoretical interest when it was first proposed [370], it has now become a practical tool to enable privacy-preserving
applications in which multiple distrusting data owners seek to compute a function cooperatively [129].
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Homomorphic Encryption. Homomorphic Encryption (HE) enables computation functions on the data without
accessing the plaintext by allowing mathematical operations to be performed on ciphertext without decryption. It
returns the computation result in the encrypted form, which can be decrypted just as the computation is performed on
the decrypted data. With partially homomorphic encryption schemes, only certain operations can be performed, which
limits them to specialized problems that can be reduced as the supported operations. Fully-homomorphic encryption
(FHE) schemes aim to provide support for a universal set of operations so that any finite function can be computed. The
first FHE scheme was proposed by Gentry [150], and was based on lattice-based cryptography. There have been a lot of
recent interests in implementing FHE schemes [90, 151], but to build a secure, deployable, scalable system using FHE is
still challenging.

Federated Learning. Federated learning (FL), as shown in Figure 12, is a popular machine learning paradigm where
many clients, such as mobile devices or sensors, collaboratively train machine learning models under the coordination
of a central server, while keeping the training data from the clients decentralized [250]. This paradigm is in contrast
with traditional machine learning settings, where the data is first collected and transmitted to the central server for
further processing. In federated learning, the machine learning models are moving between the server and clients while
keeping the private data locally within the clients. Therefore, it essentially avoids the transmission of private data and
significantly reduces the risk of privacy breaches.

Fig. 12. Federated Learning

Next, we briefly describe a typical workflow for a federated learning system [250]:

• Client selection: The server samples a subset of clients from those active clients according to some eligibility
requirements.

• Broadcast: The server broadcasts the current model and the training program to the selected clients.
• Local computation: The selected clients locally compute the update to the received model based on the local
private data. For instance, the stochastic gradient descent (SGD) update can be run with the stochastic gradient
computed based on local data and the model.

• Aggregation: The server collects the updated local models from the selected clients and aggregates them as an
updated global model.

This workflow represents one round of the federated learning algorithm, and it will repeat until reaching specific
requirements, such as convergence accuracy or performance certificates.

In addition to protecting data privacy by keeping the data local, there are many other techniques to further secure
data privacy. For instance, we can apply lossy compression before transferring the models between server and clients
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such that it is not easy for the adversary to infer accurate information from the model update [401]. We also can apply
secure aggregation through secure multi-party computation such that no participant knows the local model information
from the other participants, but the global model can still be computed [23, 261]. Additionally, we can also apply noisy
perturbation to improve the differential privacy [351].

Federated learning is becoming an increasingly popular paradigm for privacy protection and has been studied,
developed, and deployed in many applications. However, federated learning still faces many challenges, such as the
efficiency and effectiveness of learning, especially with non-IID data distributions [203, 204, 223, 224, 234].

Differential Privacy. Differential Privacy (DP) is an area of research that aims to provide rigorous statistical
guarantees for reducing the disclosure about individual information in a dataset [122, 125]. The major idea is to
introduce some level of uncertainty through randomization or noise into the data such that the contribution of
individual information is hidden while the algorithm can still leverage valuable information from the dataset as a
whole. According to the definition [125], let’s first define that the datasets 𝐷 and 𝐷 ′ are adjacent if 𝐷 ′ can be obtained
from 𝐷 by altering the record of a single individual. A randomized algorithm A is (𝜖, 𝛿)-differentially private if for all
S ⊂ Range(A) and for all adjacent datasets 𝐷 and 𝐷 ′ such that

Pr[A(𝐷) ∈ S] ≤ 𝑒𝜖Pr(A(𝐷 ′) ∈ S) + 𝛿.

(𝜖, 𝛿) quantifies how much information can be inferred about an individual from the output of the algorithm A on
the dataset. For instance, if 𝜖 and 𝛿 are sufficiently small, the output of the algorithm will be almost identical, i.e.,
Pr[A(𝐷) ∈ S] ≈ Pr(A(𝐷 ′) ∈ S), such that it is difficult for the adversary to infer the information of any individual
since the individual’s contribution on the output of the algorithm is nearly masked. The privacy loss incurred by the
observation b is defined as

Lb

A,𝐷,𝐷′ = ln
( Pr[A[𝐷] = b]
Pr[A[𝐷 ′] = b]

)
.

(𝜖, 𝛿)-differential privacy ensures that for all adjacent datasets 𝐷 and 𝐷 ′, the absolute value of the privacy loss is
bounded by 𝜖 with probability at least 1 − 𝛿 . Some common methods to provide differential privacy include random
response [350], Gaussian mechanism [125], Laplace mechanism [124], exponential mechanism [252], etc. Different from
other techniques, differential privacy provides provable guarantees and measurements for privacy protection, but the
challenge is to increase the utility under the given budget, especially for high-dimensional models.

6.3 Applications in Real Systems

Privacy-preserving techniques have been widely used to protect sensitive information in real systems. In this subsection,
we discuss some representative examples.

6.3.1 Healthcare. Healthcare data can be available from patients, clinical institutions, insurance companies, pharmacies,
and so on. However, the privacy concern of personal healthcare information makes it difficult to fully exploit the
large-scale and diverse healthcare data to develop effective predictive models for healthcare applications. Federated
learning provides an effective privacy-preserving solution for such scenarios since data across the population can be
utilized while not being shared [3, 196, 291, 319, 365, 383]. Differential privacy has also gained significant attention as a
general way of protecting healthcare data [111].

6.3.2 Biometric Data Analysis. Biometric data is mostly non-revocable and can be used for identification and authenti-
cation. Therefore, it is critical to protect private biometric data. To this end, confidential computing, federated learning,
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and differential privacy techniques have become widely applied to protect people’s biometric data such as face images,
medical images, and fingerprint pattern [53, 196, 305, 347].

6.3.3 Recommender Systems. Recommender systems utilize users’ interactions on products such as movies, music,
and goods to provide relevant recommendations. The rating information has been shown to expose users to inference
attacks, leaking private user attributes such as age, gender, etc [24, 251, 322]. To protect user privacy, recent works [202,
251, 267, 388] have developed privacy-preserving recommender systems via differential privacy.

6.3.4 Distributed Learning. In distributed learning, it is possible to recover a client’s original data from their gradient
information or model update [395, 401]. Secure multiparty computing is applied to protect the information of locally
trained models during aggregation [23, 261, 298]. The Differentially Private SGD [15, 186, 327] provides an effective
and provable manner to protect the input data by adding noise in gradient and has been popular in the training of deep
learning models.

For models with a large number of trainable parameters, the differentially private models degrade the utility drastically
since the added noise suffers from dimensional dependency [33]. Various subspace methods [194, 374, 375, 400] have
been proposed to circumvent the dependence on the ambient dimension by leveraging the empirical observation on
the low-dimensional structure of gradient space in deep networks, and they have been shown to increase the utility
significantly. It is shown in [340] that transfer learning of public data from a similar domain helps improve the utility of
private learning. There also exist discussions on the interplay between memorization and privacy leakage in machine
learning [54, 66, 140].

6.3.5 Natural Language Processing. Recent studies [67] that can extract private data from large language models such
as GTP-2 have exacerbated the privacy concerns. To mitigate these concerns, differentially private SGD (DP-SGD)
has been applied to the training of large-scale training of language models such as BERT [28, 225, 373], and many
techniques and tricks have been proposed to mitigate the performance drop and improve the training efficiency. It is
suggested that privately learning with a pre-trained model tends to not suffer from dimension-dependent performance
degradation [225, 373].

6.4 Surveys and Tools

We collect some surveys and tools relevant to privacy in AI systems for further exploration.

6.4.1 Surveys. The general concepts, threats, attack, and defense methods in privacy-preserving machine learning are
summarized in several surveys [26, 112, 292]. Federated learning is comprehensively introduced in the papers [250, 368].
Differential privacy is reviewed in the surveys [122, 125, 187].

6.4.2 Tools. Popular tools and repositories in federated learning include TensorFlow Federated (TFF) [13], FATE [5],
FedML [171], PaddleFL [11] and LEAF [6]. Popular tools in differential privacy include Facebook Opacus [10], TensorFlow-
Privacy [14], OpenDP [9] and Diffpriv [299]. Keystone Enclave [218] is an open framework for designing Trusted
Execution Environments. Popular tools in Secure Multiparty Computing and Homomorphic Encryption are summarized
in the lists [7, 8]. These tools are also summarized in Table 8.
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Table 8. Representative open-source toolkits and frameworks on private AI.

Toolkit Characteristics

TensorFlow Federated [13] An open-source framework for machine learning and other computations on
decentralized data.

FedML [171] A versatile Edge-Cloud Ecosystem for federated learning and analytics at scale.

FATE [5] An open-source framework that supports federated learning and secure
computation protocols.

LEAF [6]
A benchmarking framework for federated learning, with applications including
federated learning, multi-task learning, meta-learning, and on-device learning.

Facebook Opacus [10] A high-speed library for training PyTorch models with differential privacy.

TensorFlow-Privacy [14] A Python library that includes implementations of TensorFlow optimizers for
training machine learning models with differential privacy.

OpenDP [9] A modular collection of statistical algorithms that adhere to the definition of
differential privacy.

Diffpriv [299] An R Package for easy differential privacy.
Keystone Enclave [218] An open-source framework for trusted execution environments.

6.5 Future Directions

Confidential computing, federated learning, and differential privacy are three effective ways to improve privacy
protection. However, they are far away from being extensively used and require more development. For instance, the
computation efficiency and flexibility of confidential computing are not mature enough to support the applications
of AI systems in our society. There are also great challenges to improve the efficiency and effectiveness of federated
learning when deploying in large-scale and heterogeneous environments. It would be desirable to achieve a better
trade-off between utility and privacy loss in differential privacy. Most importantly, a versatile and reliable system design
for achieving privacy protection and different techniques should be integrated to enhance the trustworthiness of AI
systems by reducing the risks of privacy leakages from multiple perspectives.

7 ACCOUNTABILITY & AUDITABILITY

In general, accountability for AI indicates how much we can trust these AI technologies and who or what we should
blame if any parts of the AI technologies perform below expectation. It is about a declaration of responsibility. It is not
trivial to explicitly determine the accountability for AI. On the one hand, most AI-based systems act as "black-box", due
to the lack of explainability and transparency. On the other hand, real-world AI-based systems are very complex, and
involve numerous key components, including input data, algorithm theory, implementation details, real-time human
control, and so on. These factors further complicate the determination of accountability for AI. Although difficult and
complex, it is necessary to guarantee accountability for AI. Auditability, which refers to a set of principled evaluations
of the algorithm theories and implementation processes, is one of the most important methodologies in guaranteeing
accountability.

It is very important to achieve a balance between accountability and innovation in AI. The overall aim is for humans
to enjoy the benefits and conveniences of AI with a reliable and guarantee of safety. Additionally, however, we do not
want to heavily burden the algorithm designer or put too many restrictions on end-users of AI-based systems. In this
section, we discuss the accountability and auditability of AI. First, we introduce the basic concept of accountability
and some key roles within it. We then describe the definition of auditability for AI and two kinds of audits. Finally, we
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summarize existing surveys and tools, and discuss some future directions to enhance accountability and auditability in
AI.

7.1 Concepts and Taxonomy

In this subsection, we will introduce the key concepts and taxonomies of accountability and auditability in AI.

7.1.1 Accountability. Accountability in AI has a broad definition. On the one hand, accountability can be interpreted as a
property of AI. From this perspective, accountability can be improved if breakthroughs can be made in the explainability
of AI algorithms. On the other hand, accountability can be referred to as a clear responsibility distribution, which focuses
on who should take the responsibility for each impact of AI-based systems. Here we mainly focus on discussing the
second notion. As indicated above, it is not trivial to give a clear specification for responsibility, since the operation of
an AI-based system involves many different parties, such as the system designer, the system deployer, and the end-user.
Any improper operation from any parties may result in system failure or potential risk. Also, all kinds of possible cases
should be taken into consideration to ensure a fair distribution of responsibility. For example, the cases when an AI
system does harm when working correctly versus working incorrectly should be considered differently [245, 377]. To
better specify accountability, it is necessary to determine the roles and the corresponding responsibility of different
parties in the function of an AI system. In [353], three roles are proposed: decision-makers, developers, and users.
By refining these three roles, we propose five roles, and introduce their responsibilities and obligations as follows:
System Designers: system designers are the designers of the AI system. They are supposed to design an AI system that
meets the user requirements and is transparent and explainable to the greatest extent. It is their responsibility to offer
deployment instructions and user guidelines, and to release potential risks. Decision Makers: decision-makers have
the right to determine whether to build an AI system and what AI system should be adopted. Decision-makers should be
fully aware of the benefits and risks of the candidate AI system, and take all the relevant requirements and regulations
into overall consideration. System Deployers: system deployers are in charge of deploying an AI system. They should
follow the deployment instructions carefully and ensure that the system has been deployed appropriately. Also, they
are expected to offer some hands-on tutorials to the end-users. System Auditors: system auditors are responsible for
system auditing. They are expected to provide comprehensive and objective assessments of the AI system. End Users:
end-users are the practical operators of an AI system. They are supposed to follow the user guidelines carefully and
report emerging issues to system deployers and system designers in a timely fashion.

7.1.2 Auditability. Auditability is one of the most important methodologies in ensuring accountability, which refers to
a set of principled assessments from various aspects. In the IEEE standard for software development [1], an audit is
defined as “an independent evaluation of conformance of software products and processes to applicable regulations,
standards, guidelines, plans, specifications, and procedures.” Typically, audits can be divided into two categories as
follows:

External audits: external audits [161, 308] refer to audits conducted by a third party that is independent of system
designers and system deployers. External audits are expected to share no common interest with the internal workers
and are likely to provide some novel perspectives for auditing the AI system. Therefore, it is expected that external
audits can offer a comprehensive and objective audit report. However, there are obvious limitations to external audits.
First, external audits typically cannot access all the important internal data in an AI system, such as the model training
data and model implementation details [60], which increases the auditing difficulty. Additionally, external audits are
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always conducted after an AI system is deployed, so that it may be costly to make adjustments over the system, and,
sometimes, the system may have already done harm [264].

Internal audits: internal audits refer to audits conducted by a group of people inside the system designer or system
deployer organizations. SMACTR [287] is a recent internal auditing framework proposed by researchers from Google
and Partnership on AI and consists of five stages: scoping, mapping, artifact collection, testing, and reflection. Compared
with external audits, internal audits can have access to a large amount of internal data, including the model training data
and model implementation details, which makes internal audits much more convenient. Furthermore, internal audits
can be conducted before an AI system is deployed, thus avoiding some potential harm after the system’s deployment.
The internal audit report can also serve as an important reference for the decision-maker to make a decision. However,
an unavoidable shortcoming for internal audits is that they share the same interest as the audited party, which makes it
challenging to give an objective audit report.

7.2 Surveys and Tools

In this subsection, we summarize existing surveys and tools about accountability and auditability of AI, to facilitate
readers who want to explore this field further.

7.2.1 Surveys. A recent work on algorithmic accountability is presented in [353]. It takes Boven’s definition of
accountability [52] as the basic concept and combines it with numerous literature in algorithmic accountability to build
the concept’s definition.

7.2.2 Tools. The other five dimensions (safety & robustness, non-discrimination & fairness, explainability, privacy,
environmental well-being) discussed in this survey are also important aspects to be evaluated during algorithm auditing.
Therefore, most tools introduced in section 3.6, 4.4.2, 5.4.2, 6.4, and 8.3 can also be used for the purpose of auditing.

7.3 Future Directions

For accountability, it is important to further enhance the explainability of the AI system. Only when we have a deep and
thorough understanding of its theory and mechanism can we fully rely on it or make a well-recognized responsibility
distribution scheme. For auditability, it is always a good option to conduct both external audits and internal audits, so
that we can have a comprehensive and objective overview of an AI system. Furthermore, we need to be aware that an
AI system is constantly dynamic. It can change with input data and environment. Thus, to make an effective and timely
audit, it is necessary to audit the system periodically and to update auditing principles with the system changes [228].

8 ENVIRONMENTALWELL-BEING

A trustworthy AI system should be sustainable and environmentally friendly [325]. In fact, the large-scale development
and deployment of AI systems bring a huge burden of energy consumption, which inevitably affects the environment.
For example, Table 9 shows the carbon emission (as an indicator of energy consumption) of training NLP models and
that of daily consumption [330]. We find that training a common NLP pipeline has the same carbon emissions as a
human produces in seven years. Training and fine-tuning a large Transformer model costs five times more energy
consumption than a car over its lifetime. Besides model development, in other areas, such as data center cooling,11

there is also a huge energy cost. The rapid development of AI technology further challenges the tense global situation

11https://www.forbes.com/sites/forbestechcouncil/2020/08/17/why-we-should-care-about-the-environmental-impact-of-ai/?sh=b90512e56ee2
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of energy shortage and environmental deterioration. Hence, environmental friendliness becomes an important issue to
consider in building trustworthy AI systems. In this section, we review the existing works regarding the environmental
impacts of AI technologies. Existing works mainly focus on the impact of AI systems’ energy consumption on the
environment. We first present an overview of the strategies for reducing energy consumption, e.g., model compression,
and then introduce the works on estimating the energy consumption and evaluating the environmental impacts of
real-world AI systems in different domains. Finally, we summarize the existing surveys and tools on this dimension.

Consumption CO2e (lbs)
Air travel, 1 passenger, NY↔SF 1984
Human life, avg, 1 year 11,023
American life, avg, 1 year 36,156
Car, avg incl. fuel, 1 lifetime 126,000

Training one model (GPU)
NLP pipeline (parsing, SRL) 39

w/ tuning & experimentation 78,468
Transformer (big) 192

w/ neural architecture search 626,155
Table 9. Comparsions between estimated CO2 emissions produced by daily lives and training NLP models. (Table Credit: [330])

8.1 Methods

In this subsection, we summarize the techniques developed for reducing the energy use of AI algorithms. Improving the
energy efficiency of AI systems involves algorithm-level and hardware-level solutions. We will introduce two common
classes of algorithm-level approaches: model compression and adaptive design, as well as hardware-level energy-saving
methods.

8.1.1 Model Compression. Model compression is a hot topic in deep learning that receives continuous attention
from both academia and industry. It studies how to reduce the size of a deep model to save storage space and the
energy consumption for training and deploying models, with an acceptable sacrifice on model performance. For
CNN models in the image domain, parameter pruning and quantization [92, 167], low-rank factorization [185, 293],
transferred/compact convolutional filters [97, 318], and knowledge distillation have been proposed [176, 296]. Similarly,
in the text domain, researchers borrow and extend these methods: pruning [65, 256], quantization [88, 177], knowledge
distillation [207, 331, 334], and parameter sharing [113, 216], to compress popular NLP models, such as Transformer
and BERT.

8.1.2 Adaptive Design. Another line of research focuses on adaptively designing a model architecture to optimize the
energy efficiency of a model. Yang et al. [369] propose a pruning approach to design CNN architectures to achieve an
energy-saving goal. In their method, the model is pruned in a layer-by-layer manner, where the layer that consumes
the most energy is pruned first. Stamoulis et al. [328] propose a framework to adaptively design CNN models for
image classification under energy consumption restrictions. They formulate the design of a CNN architecture as a
hyperparameter optimization problem and solve it by Bayesian optimization.
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8.1.3 Hardware. In addition to the algorithm level, endeavors are also conducted to improve the energy efficiency of AI
from the design of the hardware. Computing devices or platforms specially designed for AI applications are proposed
to maximize the training and inference efficiency of AI algorithms. Specifically, hardware designed for DNN models
are called DNN accelerators [85]. Esmaeilzadeh et al. [127] design a neural processing unit (NPU) to execute the fixed
computations of a neuron such as multiplication, accumulation, and sigmoid, on chips. Later, Liu et al. [235] proposed
RENO, which is a more advanced on-chip architecture for neural network acceleration. There is also hardware designed
for specific NN structures. Han et al. [166] investigate how to design an efficient computation device for a sparse neural
network, where weight matrices and feature maps are sparse. They [165] also devise an efficient speech recognition
engine that is dedicated to RNN models. Furthermore, ReGAN [77] is developed to accelerate generative adversarial
networks (GANs).

8.2 Applications in Real Systems

As described before, the environmental impacts of AI systems mainly come from energy consumption. In this subsection,
we introduce the research on evaluating and estimating the energy consumption of real-world AI systems in different
domains.

In the field of computer vision, Li et al. [222] first investigate the energy use of CNNs on image classification tasks.
They provide a detailed comparison among different types of CNN layers, and also analyze the impact of hardware
on energy consumption. Cai et al. [61] introduce the framework NeuralPower which can estimate the power and
runtime across different layers in a CNN, to help developers to understand the energy efficiency of their models before
deployment. They also propose evaluating CNN models with a novel metric “energy-precision ratio”. Based on it,
developers can trade off energy consumption and model performance according to their own needs, and choose the
appropriate CNN architecture. In the field of NLP, Strubell et al. [330] examine the carbon emissions of training popular
NLP models, namely, Transformer, ELMo, and GPT-2, on different types of hardware, and shed light on the potential
environmental impacts of NLP research and applications.

8.3 Surveys and Tools

In this subsection, we collect related surveys and tools on the dimension of environmental well-being.

8.3.1 Surveys. From the algorithm-level perspective, García-Martín et al. [147] present a comprehensive survey on
energy consumption estimation methods from both the computer architecture and machine learning communities.
Mainly, they provide a taxonomy for the works in computer architecture and analyze the strengths and weaknesses
of the methods in various categories. Cheng et al. [87] summarize the common model compression techniques and
organize them into four categories, and then present a detailed analysis on the performance, application scenarios,
advantages, and disadvantages of each category. In the hardware-level perspective, Wang et al. [348] compares the
performance and energy consumption of the processors from different vendors for AI training. Mittal and Vetter [259]
review the approaches for analyzing and improving GPU energy efficiency. The survey [85] summarizes the latest
progress on DNN accelerator design.

8.3.2 Tools. SyNERGY [295] is a framework integrated with Caffe for measuring and predicting the energy consumption
of CNNs. Lacoste et al. [214] develop a Machine Learning Emissions Calculator as a tool to quantitatively estimate
the carbon emissions of training an ML model, which can enable researchers and practitioners to better understand
the environmental impact caused by their models. Accelergy [361] and Timeloop [276] are two representative energy
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estimation tools for DNN accelerators. A summary of representative open-source tooklits on environmental well-being
in AI can be found in Table 10.

Table 10. Representative open-source toolkits and frameworks on environmental well-being in AI.

Toolkit Characteristics
SyNERGY [295] A Caffe-based framework for CNN energy consumption estimation.
MLEC [214] A tool for estimating the carbon emissions of training a ML model.

Accelergy [361] An architecture-level energy estimation tool for DNN accelrators.
Timeloop [276] A systematic DNN accelerator evaluation tool that supports energy estimation.

8.4 Future Directions

Research on reducing the energy consumption of AI systems for environmental well-being is on the rise. At the
algorithmic level, automated machine learning (AutoML), which aims to automatically design effective and efficient
model architectures for certain tasks, emerges as a novel direction in the AI community. Existing works in AutoML focus
more on designing an algorithm to improve its performance, but don’t usually treat energy consumption savings as the
highest priority. Using AutoML technologies to design energy-saving models needs further exploration in the future. At
the hardware level, current research on DNN accelerators pays more attention to devising efficient deployment devices
to facilitate model inference, but the procedure of model training is overlooked. The design of efficient customized
training devices for various DNN models is a practical and promising direction to investigate in the future.

9 INTERACTIONS AMONG DIFFERENT DIMENSIONS

An ideal trustworthy AI system should simultaneously satisfy the six dimensions discussed above. In reality, the six
dimensions are not independent of one another. The satisfaction of one dimension can promote the pursuit of another
dimension. Meanwhile, conflicts exist among different dimensions. The realization of one dimension could violate
another dimension, which makes it impossible for two or more dimensions to be met simultaneously in some scenarios.
Researchers and practitioners should be aware of the complicated interactions among different dimensions. Knowing
the accordance between two dimensions brings us an alternative idea to achieve one dimension: we can try to satisfy
one dimension by realizing the other. Moreover, when two dimensions are contradictory, we can make a trade-off
between them according to our needs. In this section, we discuss some known accordance and conflict interactions
among different dimensions.

9.1 Accordance

Two dimensions are accordant when the satisfaction of one dimension can facilitate the achievement of the other, or
the two dimensions promote each other. Next, we show two examples of accordance interactions among dimensions.

Robustness & Explainability. Studies show that deep learning models’ robustness against adversarial attacks
positively correlates with their explainability [128, 133, 269]. Etmann et al. [128] find that models trained with robustness
objectives show more interpretable saliency maps. Specifically, they prove rigorously in mathematics that Lipschitz
regularization, which is commonly used for robust training, forces the gradients to align with the inputs. Noack et al.
[269] further investigate the opposite problem: will an interpretable model be more robust? They propose Interpretation
Regularization (IR) to train models with explainable gradients and empirically show that a model can be more robust to
adversarial attacks if it is trained to produce explainable gradients.
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Fairness & Environmental Well-being. Fairness in the field of AI is a broad topic, which involves not only the
fairness of AI service providers and users, but also the equality of AI researchers. As mentioned in section 8, the
development trend of deep learning models toward larger models and more computing resource consumption not
only causes adverse environmental impact but also aggravates the inequality of research [330], since most researchers
cannot afford high-performance computing devices. Hence, the efforts for ensuring the environmental well-being of
AI techniques, such as reducing the cost of training large AI models, are in accordance with the fairness principle of
trustworthy AI.

9.2 Conflict

Two dimensions are conflicting when the satisfaction of one dimension hinders the realization of the other. Next, we
show three examples of the conflicting interactions among dimensions.

Robustness & Privacy. Recent studies find tensions between the robustness and the privacy requirements of
trustworthy AI. Song et al. [326] check how the robust training against adversarial attacks influences the risk of a
model against membership inference attack. They find that models trained with adversarial defense approaches are
more likely to expose sensitive information in training data via membership inference attacks. The reason behind this
is that models trained to be robust to adversarial examples typically overfit to training data, which makes training data
easier to be detected from models’ outputs. From the perspective of the victims of unauthorized AI applications, the
conflict between robustness and privacy is not always bad. Many large-scale AI applications, such as face recognition
systems, are trained on data collected from people without their explicit consent, which raises concerns about the
disclosure of personal information [280]. Thus, recent studies propose to take advantage of the defects in robustness
of unauthorized AI models to prevent them from exploiting private data [180, 317, 335]. Specifically, Shan et al. [317]
introduce imperceptible noise into users’ photos, so that it is hard for anyone who collects such images to train a
face recognition model to correctly identify the users. Huang et al. [180] propose to add an error-minimizing noise
into private training examples to fool the deep learning models into “believing there is nothing to learn from these
examples”. It is worth mentioning that such poisoning attacks cannot solve the privacy issue once and for all. Models
trained adaptively against the perturbed examples or new technologies developed after the attacks still have potential
for nullifying the attacks [285].

Robustness & Fairness. Robustness and fairness can also conflict with each other in particular scenarios. As
discussed in section 3, adversarial training is one of the mainstream approaches for improving the robustness of a
deep learning model. Recent research [363] indicates that adversarial training can introduce a significant disparity of
performance and robustness among different groups, even if the datasets are balanced. Thus, the adversarial training
algorithm improves the robustness of a model at the expense of its fairness. Accordingly, the work [363] proposes a
framework called Fair-Robust-Learning (FRL) to ensure fairness while improving a model’s robustness.

Fairness & Privacy. Cummings et al. [105] investigate the compatibility of fairness and privacy of classification
models, and theoretically prove that differential privacy and exact fairness in terms of equal opportunity are unlikely to
be achieved simultaneously. By relaxing the condition, this work further shows that it is possible to find a classifier that
satisfies both differential privacy and approximate fairness.

Addressing the Conflicts among Dimensions.As discussed in this subsection, different dimensions of trustworthy
AI can interact with one another in a conflicting manner. The conflicts make different dimensions restrict each other so
sometimes we cannot meet them simultaneously to build a completely trustworthy AI system. Thus, how to deal with
the conflicts among dimensions becomes a future research direction that draws increasing attention. There are two
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potential directions. First, a direct problem to be solved is how to alleviate the conflict so as to meet both sides to the
greatest extent [363]. Second, if the tension is proven to be unsolvable, more research on this field is needed for us to
better understand how one dimension impacts one another, and how we can sacrifice one for another based on our
actual needs [105].

10 FUTURE DIRECTIONS

In this survey, we elaborate on six of the most concerning and crucial dimensions an AI system needs to meet to be
trustworthy. Beyond that, some dimensions have not received extensive attention, but are worth exploring in the future.
In this section, we will discuss several other potential dimensions of trustworthy AI.

10.1 Human agency and oversight

The ethical guidelines for trustworthy AI proposed by different countries and regions all emphasize the human autonomy
principle of AI technology [325]. Human autonomy prohibits AI agents from subordinating, coercing, or manipulating
humans, and requires humans to maintain self-determination over themselves. To achieve the principle of human
autonomy, the design of AI systems should be human-centered. Specifically, human agency and oversight should be
guaranteed in the development and deployment of AI systems. Human agency enables humans to make decisions
independently based on the outputs of an AI system, instead of being totally subject to AI’s decisions. A desirable
human agency technology encourages users to understand the mechanism of an AI system and enables users to evaluate
and challenge the decisions of an AI system, and make better choices by themselves. Human oversight enables humans
to oversee AI systems throughout their life cycle, from design to usage. It can be achieved through human-in-the-loop,
human-on-the-loop, and human-in-command governance strategies.

10.2 Creditability

With the wide deployment of AI systems, people increasingly rely on content produced or screened by AI, such as
an answer to a question given by a question-answering (QA) agent or a piece of news delivered by a recommender
system. However, the integrity of such content is not always guaranteed. For example, an AI system that exposes users
to misinformation should not be considered trustworthy. Hence, additional mechanisms and approaches should be
incorporated in AI systems to ensure their creditability.

10.3 Interactions among Different Dimensions

The research on the interactions among different dimensions is still in an early stage. Besides the several instances
shown in this paper, there are potential interactions between other dimension pairs remaining to be investigated. For
example, people may be interested in the relationship between fairness and interpretability. In addition, the interaction
formed between two dimensions can be different in different scenarios, which needs further exploration. For example,
an interpretable model may promote its fairness by making its decision process transparent. On the contrary, techniques
to improve the interpretability of a model may introduce a disparity of interpretability among different groups, which
leads to a fairness problem. Although there are numerous problems to study, understanding the interactions among
different dimensions is very important in building a trustworthy AI system.
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11 CONCLUSION

In this survey, we present a comprehensive overview of trustworthy AI from a computational perspective and clarify
the definition of trustworthy AI from multiple perspectives, distinguishing it from similar concepts. We introduce six of
the most crucial dimensions that make an AI system trustworthy; namely, Safety & Robustness, Nondiscrimination &
Fairness, Explainability, Accountability & Auditability, Privacy, and Environmental Well-being. For each dimension, we
present an overview of related concepts and a taxonomy to help readers understand, how each dimension is studied, and
summarize the representative technologies, to enable readers to follow the latest research progress in each dimension.
To further deepen the understanding of each dimension, we provide numerous examples of applications in real-world
systems and summarize existing related surveys and tools. We also discuss potential future research directions within
each dimension. We then analyze the accordance and conflicting interactions among different dimensions. Finally, it is
important to mention that outside of the six dimensions elaborated in this survey, there still exist some other potential
issues that may undermine our trust in AI systems. Hence, we discuss several possible dimensions of trustworthy AI as
future research directions.
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