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Abstract—The use of multiple modalities (e.g., face and fin-
gerprint) or multiple algorithms (e.g., three face comparators)
has shown to improve the recognition accuracy of an operational
biometric system. Over time a biometric system may evolve to add
new modalities, retire old modalities, or be merged with other bio-
metric systems. This can lead to scenarios where there are missing
scores corresponding to the input probe set. Previous work on this
topic has focused on either the verification or identification tasks,
but not both. Further, the proportion of missing data considered
has been less than 50%. In this work, we study the impact of
missing score data for both the verification and identification
tasks. We show that the application of various score imputation
methods along with simple sum fusion can improve recognition
accuracy, even when the proportion of missing scores increases
to 90%. Experiments show that fusion after score imputation
outperforms fusion with no imputation. Specifically, iterative
imputation with K nearest neighbors consistently surpasses other
imputation methods in both the verification and identification
tasks, regardless of the amount of scores missing, and provides
imputed values that are consistent with the ground truth complete
dataset.

I. INTRODUCTION

Biometrics refers to the task of recognizing individuals
based on their unique physical or behavioral traits [1]1. A
typical biometric identification system aims to determine a
potential set of matching identities, while a verification system
aims to determine if a probe’s claimed identity is valid (i.e.,
genuine) or not (i.e., imposter). To accomplish either goal, the
feature set extracted from the probe is compared against a
gallery template to produce a similarity score.

Operational or deployed biometric systems evolve as tech-
nology evolves. For example, new more advanced sensors may
be added to existing systems or outdated sensors removed.
In these updated systems, not all enrolled (gallery) identities
will have data pertaining to all the modalities. Additionally,
consider a scenario where multiple operational biometric sys-
tems are to be merged into a single biometric system. The list
of available gallery identities for the different modalities may
not be the same. In situations like these, the resulting gallery
data is likely to be more sparse than the typical biometric
galleries often studied in literature. In this paper we explore

1The terminology used in this article follows current recommendations for
multibiometric fusion defined by International Organization for Standardiza-
tion [ISO], 2015 [2]

how to handle missing similarity scores of a probe through a
combination of imputation 2 and score fusion.

II. BACKGROUND

A. Biometric Systems

Biometric systems using a single biometric modality are
sometimes referred to as unimodal systems. Relying on a
single biometric cue can negatively impact biometric system
performance when the input data (probe) is of low quality,
such as low-resolution faces, highly distorted fingerprints,
and occluded irides. Additionally, disabilities or illnesses may
prevent some subjects from providing a a biometric cue [3],
[4]. The use of multiple biometric cues in a biometric system is
often referred to as multibiometrics and can help address these
issues. Leveraging multibiometric approaches has shown to
improve recognition performance, enhance system reliability,
combat noisy sensor data, address large variations in user
samples, and improve the system’s security [5]–[8]. However,
there are also potential drawbacks if the multiple biometric
sources are not combined carefully, including an increase
in recognition error, the need for additional sensors, longer
recognition times, and sometimes lower user convenience [9].

Once multiple sources of biometric information are iden-
tified for an application, the critical question is how to best
leverage the information from these sources. Information fu-
sion has been used to improve classification performance in
classical machine learning and has been popular in multi-
biometrics [8], [10], [11]. While fusion can occur at any
point in the biometric system, this paper focuses on fusion
at the similarity score level. Score fusion with multimodal
data has been shown to increase the performance of biometric
systems [12]–[14]. There are many existing methods to fuse
similarity scores across multiple biometric modalities. One
popular fusion technique is the simple sum rule, which takes
the mean of available scores to produce a fused score [1].
The simple sum fusion approach is a transformation-based
approach to fusion, as the scores are first transformed into
a common domain prior to fusing (e.g., scores are normalized
into the range [0-1]). Simple sum fusion is a popular choice
because of its straightforward approach, flexibility in the data

2In statistics, imputation refers to the process of replacing missing values
with an estimated value



it can be applied to, and it often produces desired results. The
work in this paper utilizes the simple sum fusion approach.

When performing multimodal fusion, it should be noted
that auxiliary information may also be combined with score
data to improve performance. This auxiliary information can
include quality measures [15], [16], soft biometrics [17], and
demographic information [18], [19]. Incorporating additional
information into the fusion can require additional design
decisions and computational resources.

The papers discussed above focus on the verification task
(one-to-one comparison), which is a binary classification prob-
lem (e.g., “accept” or “reject”). Identification tasks (one-to-
many comparisons) are often more complex due to the multi-
class nature of the problem. Nandakumar et al. successfully
extend the likelihood ratio fusion from verification tasks to
identification tasks [20]. However, to achieve competitive
performances on the identification task, the authors propose a
hybrid fusion approach which not only leverages the similarity
scores but also incorporates the rank information in the fusion.
The authors demonstrate the ability of this approach to handle
sparse data by randomly dropping 5%, 10%, and 25% of all
partitions in the NIST BSSR1 dataset.

B. Fusion with Missing Scores

Missing scores can present a challenge when designing
a multibiometric system since many fusion methods require
score data to be complete. In deciding how to handle missing
data, it is important to consider why the data is missing.
Patterns of missing values are defined by Rubin in [21]:

• Missing Completely at Random (MCAR): MCAR
describes missing values where the probability that a
value is missing is unaffected by other data, whether
observed or unobserved. For example, a patient’s missing
weight value cannot be explained by observed data such
as their sex or age, or unobserved data such as a scale’s
battery malfunctioning. This missing value is MCAR.

• Missing at Random (MAR): Values that are MAR are
influenced by observed data. Bhaskaran and Smeeth high-
light MAR by providing the example of blood pressure
records [22]. Records for older people are more likely
to be documented because it is more often a regimen
of their care. While blood pressure records for younger
people may be more sparse compared to their elderly
counterparts, this difference can be explained by the
observable data of age.

• Missing Not at Random (MNAR): If values are neither
MCAR nor MAR, missing values are MNAR. An exam-
ple of a value MNAR is if a patient’s drug test is missing
because they intentionally skipped in order to prevent a
positive test value.

Many methods of addressing missing data require the data
to be either MCAR or MAR because MNAR has the potential
to skew the data. If data can be assumed to be either MCAR
or MAR, the following approaches may be applied.

One option for missing data is to simply ignore probes
with incomplete scores, i.e., probes which do not have scores

TABLE I: A simple example of a score dataset with missing
values, denoted as ?.

Subject Face Fingerprint Iris
Subject 1 ? 0.74 1.00
Subject 2 0.41 0.89 0.47
Subject 3 0.27 ? 0.03
Subject 4 0.85 0.00 0.31

corresponding to all the modalities. This approach works
if there are only a small proportion of missing data and
that missing data is truly MCAR. Additionally, this approach
may not be an effective use of available data if otherwise
usable scores are dropped. For example in the multibiometrics
context, consider a probe that obtains a similarity score for the
face and iris modalities, but is missing a fingerprint similarity
score. When the entire probe is removed from consideration,
a valid face similarity score and a valid iris similarity score
are dropped from the dataset. Ignoring an entire probe from
analysis is referred to as Listwise Deletion [23]. When deleting
data, it is also important to consider if deleting said data would
result in bias. For example, if a sensor in a biometric system
is more likely to fail than other sensors in the system, missing
scores are not missing at random, but rather likely missing
due to the sensor used to collect the data.

Another option to handling missing data is to simply fill
missing scores with the modality’s mean or median score
value. This univariate approach only requires information
about the missing modality’s scores and is unaffected by other
modalities. Again consider a situation like that described above
and presented in Table I. Using mean substitution, for example,
would replace the face modality’s missing score with 0.51 (the
mean of the given score: 0.51= 0.41+0.27+0.85

3 ) and the missing
fingerprint score would be replaced with 0.54. Likewise, the
missing scores may be imputed with the median. For this
example the face modality’s missing score is replaced with
the median of the face scores 0.25 and the missing fingerprint
score would be replaced with 0.74.

Multivariate imputation schemes attempt to map relation-
ships between the modalities. Multiple Imputations by Chained
Equations (MICE) is a popular approach to multiple impu-
tations, where missing values are temporarily filled with a
placeholder value and then iteratively updated using a trained
machine learning model [24]. In the given example, shown
in Table I, both the face and iris missing values are initially
filled with each modality’s mean or median. The scores of
individual modalities are sequentially and iteratively updated
with a specified machine learning classifier. Once the classifier
has been trained, the missing values are updated from the
initial placeholder value to the value predicted by the trained
classifier, and then the next modality’s scores are fixed and
the classifier is trained again to update the placeholder values.
This process is repeated for a specified number of iterations,
or until the imputed values stop changing between iterations.

Missing data within individual biometrics can occur in many
different ways, as described in the introduction. In order to
better understand the role of missing scores in multibiometric



TABLE II: Summary of the scores present in set1 of the NIST
BSSR1 multimodal dataset.

Per Modality Total
Total Number of Scores 267,289 1,069,156
Genuine Scores 517 2,068
Imposter Scores 266,772 1,067,088

settings, researchers often are required to simulate datasets
with missing score values [20], [25]–[29]. In each of these
prior studies, missing scores are simulated by randomly drop-
ping scores from complete datasets. The percentage of dropped
scores range from 5% to 50%. Simulating missing scores
allows researchers to know that missing values truly are MAR,
and allows for a fine degree of control over the amount
of missing data. However, in real world situations, such as
the example of incorporating a new modality to an existing
biometric system, the proportion of missing data is likely to
exceed 50%. In addition to the likelihood estimation approach
proposed by [12], additional proposed multimodal imputation
methods include classifier based methods such as SVM [30],
or Naı̈ve Bayes [31], and deep learning approaches [32].

In this work, we focus on Listwise Deletion, Mean (and
Median) Substitution, and MICE to understand how perfor-
mances may vary between simulated missing score data and
real world datasets that naturally contain missing score values.
We explore how these methods perform as the amount of
missing score data increases in multiple biometric system
evolution scenarios.

III. EXPERIMENTS

We present 3 sets of experiments modelling 3 real-world
biometric scenarios: adding a new modality to an existing
multimodal biometric system, merging separate biometric sys-
tems into one, and retiring a modality from an existing multi-
modal system. To facilitate these experiments, we leverage the
NIST BSSR1 dataset [33].3 This publicly available multimodal
dataset is comprised of similarity scores for 4 modalities:
one score for the comparison of the user’s right index finger
to each gallery identity’s right index finger, one score for
comparison of the user’s left index finger to each gallery
identity’s left index finger, and two scores reported from two
facial comparators (referred to as Face Algorithm C and Face
Algorithm G).

The NIST BSSR1 Set 1 dataset contains complete score
vectors for each of the 517 user comparisons to the 517
templates in the gallery. Table II provides a summary of the
scores in this dataset. Figure 3 shows the receiver operating
characteristic (ROC) curves for the complete NIST BSSR1
dataset.

In addition to the NIST BSSR1 dataset, we generate from
the BIOCOP2008 Ocular dataset. Similarity scores were ob-
tained for both the ocular image and iris image using a trained

3NIST BSSR1 dataset is available at https://www.nist.gov/itl/iad/
image-group/nist-biometric-scores-set-bssr1

Multi-Channel CNN.4 Figure 1 summarizes this breakdown of
the provided images.

Provided Image

Iris ImageOcular Image

Fig. 1: Breakdown of provided Ocular image in the BIO-
COP2008 dataset

If we consider “Ocular” and “Iris” as the two modalities
in this dataset, the resulting score dataset is complete. That
is, for every iris image, there is a corresponding ocular image
and vice versa. This is logical, as each iris image is a subset
of a corresponding ocular image. This 2-modality formatting
is described in Table III. Figure 4 shows the ROC curves for
the complete BIOCOP2008 dataset.

TABLE III: Summary of the scores present in the BIO-
COP2008 ocular dataset.

Per Modality Total
Total Number of Scores 312,606 625,212
Genuine Scores 998 1,996
Imposter Scores 311,608 623,216

Each experiment is described in detail below. The experi-
mental design for all experiments is summarized in Table IV
and a diagram of the experiments is presented in Figure 2. To
perform score fusion, we opt to apply the simple sum fusion
as described in Section II. This fusion technique allows us
to compare the performance of fusion with imputed scores
to the performance of incomplete score vectors. Many other
fusion methods (e.g., score fusion with SVM [30], or Naı̈ve
Bayes [31]) a complete score vector is required and incomplete
score vectors would have to be ignored (listwise deletion). We
divide the data into train and test sets, and randomly drop
the specified proportion of scores 5 times to obtain mean and
standard deviation (s.d.) values.

A. Experiment 1: Adding a New Modality to an Existing
Biometric System

To simulate adding a new modality to a biometric system,
we set all but one modality with complete score data, and
incrementally introduce scores from the remaining modality.
We consider the scenario where we introduce the best per-
forming modality, or the worst performing modality. For the
NIST BSSR1, the best modality for both the identification and

4Note that scores here are generated using a sub-optimal technique for the
purposes of this experiment.

https://www.nist.gov/itl/iad/image-group/nist-biometric-scores-set-bssr1
https://www.nist.gov/itl/iad/image-group/nist-biometric-scores-set-bssr1
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Fig. 2: Experiment contexts for NIST BSSR1 dataset.

TABLE IV: Summary of settings used in the experiments.

Experimental Parameter Settings
Training, Testing Split 80%, 20%
# of Missing Score Simulations 5

% Missing [0, 10, 20, 30, 40,
50, 60, 70, 80, 90]

Univariate Imputations Mean
Median

Multivariate Imputations
Bayesian Regression [34]
Decision Tree [35]
K Nearest Neighbors [36]

Fusion Applied Simple Sum Fusion

verification tasks is the right fingerprint. While Face Algorithm
C is the poorest performing modality on the verification
task, it is the second best on the identification task. Face
Algorithm G performs relatively poorly on both verification
and identification tasks. So we select Face Algorithm G as the
worst modality. For the BIOCOP2008 dataset, performance
between the 2 modalities are comparable; we consider the
Ocular modality the best and the Iris modality the worst
performing.

B. Experiment 2: Merging Biometric Systems

When merging separate biometric systems, it is very un-
likely that the systems share the same gallery of subjects. For
this reason, the merged score data can be very sparse and
scores can be missing randomly across all modalities. For this

Fig. 3: ROC Curves for the complete NIST BSSR1 dataset

Fig. 4: ROC Curves for the complete BIOCOP2008 dataset

experiment, there is no constraint on the number of missing
modalities other than to ensure that each probe has at least
one score. For context, in the NIST BSSR1 with 90% missing
scores, out of the 1,069,156 probes only 145,383 (±) 257
probes contain scores for all 4 modalities, and up to 296 probes
contain only 1 score.

C. Experiment 3: Retiring a Modality

The first 2 scenarios describe situations where biometric
systems grow larger either through the addition of a new
modality or by combining separate biometric systems into
one. Conversely, experiment 3 models a scenario where a
biometric system loses a modality. An old sensor might begin
malfunctioning or the modality data itself might be outdated.
To simulate this situation, we train models on a full training
score dataset and use these models to impute missing scores
for the missing modalities in the testing set.

The following describes the questions addressed with this
experiment:

• If a modality is retired, is it better to continue using
imputed scores or retrain the biometric system without
the retired modality?

• When a modality is starting to malfunction, is there a
limit on the number of times imputation can be applied
before it is no longer helpful?

IV. RESULTS

In our experiments, we find that imputation and fusion
drastically boosts biometric performance for the NIST BSSR1
dataset, both for the verification and identification tasks. Even
when 90% of probes are incomplete, NIST BSSR1 recognition
performance is drastically improved in all three scenarios. The
BIOCOP2008 dataset did not show such strong recognition
performance gains, however imputation does appear to bridge
the gap between a complete score dataset and analysis per-
formed on an incomplete score dataset. We highlight a few of
the results below 5.

5Complete results can be viewed https://melissadale.github.io/ICPR2022/

https://melissadale.github.io/ICPR2022/


Fig. 5: ROC curves for imputation methods on the 10%
missing in the NIST BSSR1 dataset scenario in Experiment
1. The curves corresponding to fusion with imputed values
overlap near the top with the 0% missing baseline curve, which
is shown in pink.

A. Experiment 1: Adding a New Modality to an Existing
Biometric System

Verification Tasks For the NIST BSSR1 dataset, all impu-
tation methods provide recognition performance competitive
to the complete dataset, even when 90% of scores are missing
from either the best performing modality (Right Index Fin-
gerprint) or the worst performing modality (Face Comparator
G), while the fusion performance on the incomplete dataset is
very poor across all amounts of missing data, as can be seen in
Figure 5, where only 10% of the Right Fingerprint modality’s
scores are missing.

Figure 6 provides the ROC plot for the BIOCOP2008
dataset analysis for experiment 1 when 40% of scores are
missing from the ocular modality. We see that no one approach
is significantly better than the other, however we see that gen-
erally the performance of imputed score values lies between
the complete score dataset and the incomplete, non-imputed
score dataset.

These findings suggest that verification performance can
be improved when adding a new modality to an existing
biometric system, regardless of the individual performance of
the modality, by imputing the modality’s missing scores before
performing fusion.

Identification Tasks Identification tasks in experiment 1
in particular appear to benefit from analysis with imputed
values for both the NIST BSSR1 dataset and the BIOCOP2008
dataset. In fact, the Rank 1 identification accuracy for the
BIOCOP2008 dataset is improved over the performance of
the complete dataset, as shown in Figure 7.

While performance is not maintained across increasing
proportions of missing score data, fusion with imputed values
consistently outperforms fusion with incomplete score data.

Fig. 6: ROC curves for imputation methods on the 40%
missing scenario on the BIOCOP2008 dataset in Experiment
1.

Fig. 7: Rank 1 accuracies for imputation methods on the 10%
missing scenario for the BIOCOP2008 dataset in Experiment
1.

B. Experiment 2: Merging Biometric Systems

The score data simulated in Experiment 2 turns out to be
more complicated than the score data in Experiment 1, because
each probe may have up to N −1 scores missing, where N is
the number of modalities in the biometric system. While the
recognition performance is not as strong as the performance
in Experiment 1, we can see that both verification and identi-
fication tasks benefit from applying imputation methods, even
when 90% of the probe data is incomplete.

Verification Tasks The verification performance for exper-
iment 2 closely mirrors the verification performance seen in
experiment 1 for both NIST BSSR1 dataset and BIOCOP2008
dataset. For example, Figure 8 shows the ROC plot for the
BIOCOP2008 dataset when 30% of the probes are incomplete.

Identification Tasks Figure 9 provides the identification
accuracies across the first 10 ranks in the NIST BSSR1 dataset.
We can see that when 90% of probes are incomplete, with



Fig. 8: ROC curves for imputation methods on the 30%
missing scenario on the BIOCOP2008 in Experiment 2.

Fig. 9: Identification accuracies over the first 10 Ranks for the
90% missing scenario on NIST BSSR1 in Experiment2.

some incomplete probes containing only 1 similarity score
out of a possible 4 modalities, performance is improved with
imputation, especially for the KNN and Decision Tree iterative
imputation techniques.

C. Experiment 3: Retiring a Modality

When removing a modality from the biometric system,
we again see that using imputed scores perform better than
applying simple sum fusion without imputation. However, we
also see that retraining without the retired modality often
yields performances similar to the complete dataset. , as
seen in Figure 10 for verification tasks and Table V for
identification tasks. This suggest that it may be prudent to
retrain a biometric system when retiring a modality.

V. CONCLUSIONS

In this study, we show that applying imputation to in-
complete score data in a multimodal biometric system can
improve the performance of both verification and identification
tasks. The small, well-groomed multimodal NIST BSSR1

Fig. 10: ROC plot for NIST BSSR1 dataset for experiment 3
when 90% of the probes are incomplete.

TABLE V: The Rank 1, Rank 2, and Rank 3 identification
accuracies for the imputation methods on 90% missing data
in Experiment 3 on the NIST BSSR1 dataset.

Method Rank1 Rank2 Rank3
Bayesian 97.12% ± 1.52 98.85% ± 1.05 98.85% ± 1.05
Decision Tree 95.38 % ± 2.49 98.85% ± 1.05 98.85 % ± 1.05
KNN 97.12 % ± 1.52 98.85 % ± 1.05 98.85% ± 1.05
Mean 98.27% ± 1.43 98.85% ± 1.05 98.85 % ± 1.05
Median 98.27 % ± 1.43 98.85 % ± 1.05 98.85% ± 1.05
No Imputation 11.35% ± 3.15 12.12% ± 3.09 12.31% ± 3.22
Retraining 99.81 99.81 99.81
0% Missing 100 100 100

dataset benefits greatly from simple sum fusion, with nearly
100% identification Rank 1 accuracy on the complete dataset.
While all imputation methods produced strong recognition
performances, iterative imputation with KNN provided the best
results in both verification and identification tasks. For the
BIOCOP2008 dataset, recognition performance gains over the
complete data are not as pronounced, however the recognition
performance does not decrease due to the imputed values. Fur-
thermore, in a few situations, fusion with imputed similarity
score values outperforms fusion with incomplete score vectors.
To better understand how biometric systems are impacted by
sparse data, larger multimodal datasets are required. Addi-
tionally, multimodal datasets that naturally contain missing
score data can better illuminate how these methods perform
in situations where the data may not be missing at random.

VI. FUTURE WORK

This study was applied to missing scores, however as
mentioned in Section II, it is possible scores are considered
missing due poor quality data. Further research is needed to
understand the impact of score quality when invoking impu-
tation in multibiometric systems. Additionally, this research
has focused on score-level fusion. Further research should be
conducted on other levels of the biometric system.
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