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Abstract

Integration of various ®ngerprint matching algorithms is a viable method to improve the performance of a ®nger-

print veri®cation system. Di�erent ®ngerprint matching algorithms are often based on di�erent representations of the

input ®ngerprints and hence complement each other. We use the logistic transform to integrate the output scores from

three di�erent ®ngerprint matching algorithms. Experiments conducted on a large ®ngerprint database con®rm the

e�ectiveness of the proposed integration scheme. Ó 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

A ®ngerprint is the smoothly ¯owing pattern
formed by ridges and valleys on the tip of a ®nger.
Identi®cation of people based on their ®ngerprints
has a long history and it is the most prevalent
technology in automatic veri®cation and identi®-
cation systems. Fingerprints are matched based on
the local ridge features, called minutiae, i.e., ridge
endings and bifurcations (see Fig. 1). An automatic
authentication system ®rst locates these features
using a minutiae extraction algorithm (see Fig. 2)
and then matches them with the template of the
claimed identity stored in a database. With the
recent availability of solid-state sensors for ®n-

gerprint capture, it is expected that ®ngerprints will
be increasingly used in civilian applications such as
Internet transactions, ATM and border control.
The emerging applications based on automatic
®ngerprint identi®cation demand stringent per-
formance requirements. For example, a high se-
curity access control system requires an extremely
low false accept rate (< 0:01%). Because of the
inexact nature of image acquisition and vulnera-
bility of feature extractor to noise and distortion in
the ®ngerprint images, it is very di�cult to reduce
the false reject rate of a matcher when the speci®ed
false accept rate is extremely low. Many research-
ers have combined multiple biometrics (e.g., ®n-
gerprint and face) to improve the overall system
performance (Big�un et al., 1997; Kittler et al.,
1998; Jain et al., 1998, 1999a), but this involves the
additional cost of sensors and inconvenience to the
user in providing multiple cues.

A number of ®ngerprint veri®cation systems
have been developed and tested on large databases
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but none of them has been able to meet the rigid
performance requirement in high security appli-
cations. Each ®ngerprint veri®cation system uses
di�erent feature extraction and matching algo-
rithms to generate a matching score which is used
for authentication. It has been reported in various
classi®er design studies in pattern recognition lit-

erature that di�erent classi®ers often misclassify
di�erent patterns. This suggests that di�erent
classi®ers o�er complementary information about
the classi®cation task. A combination scheme
which harnesses various information sources is
likely to improve the overall system performance.
The outputs of various classi®ers can be combined
to obtain a decision which is more accurate than
the decisions made by any one of the individual
classi®ers. A combination of multiple classi®ers to
improve the recognition rate has been a common
practice in building successful recognition systems
(Kittler et al., 1998; Ho et al., 1994; Sinha and
Mao, 1998; Lam and Suen, 1994, 1995). Ap-
proaches for combining classi®er outputs include
the Bayesian method (Big�un et al., 1997), the sum
and the product rules (Kittler et al., 1998), the
Borda count (Ho et al., 1994), logistic regression
(Ho et al., 1994) to assign weights to the ranks
produced by each classi®er, the majority vote
(Lam and Suen, 1994), the behavior-knowledge
space method (Lam and Suen, 1995) and
Dempster±Shafer theory for weighted voting (Xu
et al., 1992).

Fig. 2. Flowchart of the minutia extraction algorithm.

Fig. 1. A ®ngerprint image and minutiae features (a ridge

ending (u) and a bifurcation (s)).
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Logistic regression has been widely used in the
analysis of binary data. It can be easily shown that
when the class-conditional densities are Gaussian
with the same covariance matrix, the a posteriori
probability is a logistic function. Logistic regres-
sion has found its application in integration of
multiple classi®ers. Let p�x� � P �Y � 1jx�, where
Y is the binary output response and x � �x1; x2�,
with x1 and x2 being the rank scores from the two
classi®ers. Then the log-odds, or logit p�x�� � �
log p�x�=�1ÿ p�x��, is approximated by a linear
regression, log p�x�=�1ÿ p�x�� � a� bx1 � cx2.
Logistic regression assigns weights to the rank
output of each classi®er. Sinha and Mao (1998)
used logistic function to transform the output
scores of two classi®ers into a single overall score.
The parameters were learned with a multilayer
perceptron using the gradient descent method.

In our experiments, logistic regression outper-
forms the Neyman±Pearson rule (Jain et al.,
1999a). In the integration of multiple ®ngerprint
matching algorithms, the two types of errors
(False Acceptance Rate (FAR) and False Rejec-
tion Rate (FRR)) are not equal. The integration
involves minimizing the FRR for a speci®ed level
of FAR and hence the sum and the product rules
(Kittler et al., 1998) are not directly applicable. In
this paper we use logistic regression to integrate
multiple ®ngerprint matching algorithms. The

three parameters a, b and c are tuned so that the
FRR is minimized for a given FAR. This method
is di�erent from the approach of Ho et al. (1994)
and Sinha and Mao (1998). Ho et al. (1994) ap-
plied logistic regression to p̂�x�, the estimate of
p�x�: logitfp̂�x�g � a� bx1 � cx2, while Sinha and
Mao (1998) used a known analytical cost function.
Our optimization problem directly links the three
unknown parameters a, b and c to FAR and FRR
and the function to be optimized has an unknown
analytical form.

The rest of the paper is organized as follows.
Section 2 presents our integration strategy and the
problem formulation. Section 3 gives a brief de-
scription of the three ®ngerprint matching algo-
rithms to be integrated. The integration algorithm
is given in Section 4. The experimental results are
reported in Section 5. Finally, Section 6 concludes
the paper.

2. Integration strategy

Let Ii�xi� and Gi�xi� be the imposter and genuine
distributions of the ith matcher, i � 1; 2. We use
logistic function to map the output scores x1 and x2

of these two matching algorithms into a single
overall score x. The integration scheme is shown in
Fig. 3. The logistic transform can be expressed as

Fig. 3. Integration of two ®ngerprint matching algorithms using a logistic transform with tunable parameters a, b and c.

A.K. Jain et al. / Pattern Recognition Letters 20 (1999) 1371±1379 1373



x � l�a� bx1 � cx2�

� exp�a� bx1 � cx2�
1� exp�a� bx1 � cx2� ; �1�

where a, b and c are the three parameters. The
objective of the integration is to estimate the pa-
rameters a, b and c such that the FRR is mini-
mized for a speci®ed level of FAR.

Assuming that x1 and x2 are independent, the
joint imposter and genuine distributions I�x1; x2�
and G�x1; x2�, respectively, can be represented as

I�x1; x2� �
ZZ

I1�x1�I2�x2�dx1 dx2 �2�

and

G�x1; x2� �
ZZ

G1�x1�G2�x2�dx1 dx2: �3�

Therefore, the new probability distribution func-
tions I�x� and G�x� of imposter and genuine indi-
viduals, respectively, after logistic transform, can
be written as

I�x� �
ZZ

I1�x1�I2�x2�d�a� bx1

� cx2 ÿ lÿ1�x��dx1 dx2

�4�

and

G�x� �
ZZ

G1�x1�G2�x2�d�a� bx1

� cx2 ÿ lÿ1�x��dx1 dx2;

�5�

where d��� is the delta function. In other words, I�x�
and G�x� are line integrals of I�x1; x2� and G�x1; x2�,
respectively, along the line a� bx1 � cx2 � lÿ1�x�
on the �x1; x2� plane. The FRR, pfrr, for a given a, b,
c and FAR, tfar, is

pfrr�a; b; c; tfar� � pfrr�t� �
Z t

ÿ1
G�x�dx; �6�

where t � argx infx pfar�x�P tfarf g � argx infxR�1
x I�x�dx P tfar

� 	
, and pfrr�t� and pfar�t� are the

FRR and FAR levels at the threshold t.
The integration of two ®ngerprint matching

algorithms can be formulated as follows. For
speci®ed FAR levels t�i�far, i � 1; 2; . . . ; L, compute

the set of parameters �ai; bi; ci; ti� which satisfy the
following optimization criterion:

fai; bi; cig � arg min
a;b;c

pfrr�a; b; c; t�i�far�
n o

�7�

and

ti � arg
x

inf
x

pfar�x�
n

P t�i�far

o
� arg

x
inf

x

Z �1

x
I�x�dx

�
P t�i�far

�
: �8�

The minimization criterion estimates parameters
�ai; bi; ci� such that the FRR is minimized at each
given FAR level. Since we do not know the ana-
lytical form of I�x� and G�x�, it is not possible to
solve the minimization problem analytically.
However, the minimization of Eq. (7) can be
solved by e�cient numerical algorithms.

3. Fingerprint matching algorithms

The features (minutiae) are extracted from a
®ngerprint image using a minutiae extraction al-
gorithm. Each feature is characterized by its lo-
cation and the direction of the ridge on which it
resides. The features obtained from two ®ngerprint
images can be matched using one of the three
matching algorithms described in this section to
yield a matching score. A brief description of the
three algorithms used in our integration is given
below.

3.1. Hough transform based matching (Algorithm A)

Hough transform and its variant, generalized
Hough transform, are often used in line or curve
detection. The equivalence between Hough trans-
form and template matching was ®rst stated by
Stockman and Agrawala (1977). The ®ngerprint
matching problem can be regarded as template
matching (Ratha et al., 1996): Given two sets
of minutia features, compute their matching
score. The two main steps of the algorithm are:
(1) Compute the transformation parameters dx, dy ,
dh and s, where dx and dy are translations along x-
and y-directions, respectively, h is the rotation
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angle, and s the scaling factor; (2) Align two sets
of minutia points with the estimated parameters
and count the matched pairs within a bounding
box.

3.2. String distance based matching (Algorithm B)

Dynamic programming has been commonly
used in speech processing to deal with the time
warping problem. Similar ideas can be used to
solve the elastic distortion problem in ®ngerprint
matching (Jain et al., 1997). Each set of extracted
minutia features is ®rst converted into polar co-
ordinates with respect to an anchor point. The
2D minutia features are, therefore, reduced to a
1D string. The string matching algorithm is ap-
plied to compute the edit distance between two
strings. The edit distance can be easily normal-
ized and converted into a matching score. This
algorithm can be summarized as follows: (1)
Estimate the rotation h between the two sets of
minutia features and the anchor minutia of each
set A1 and A2. Rotation is estimated through a
least-squares ®tting. The values of parameters h,
A1 and A2 which result in the maximum number
of matched minutia pairs within a bounding box
are chosen as the best estimates; (2) Convert each
set of minutia into a 1D string using polar co-
ordinates anchored at A1 and A2, respectively; (3)
Compute the edit distance between the two 1D
strings. The matched pairs are retrieved based on
the minimal edit distance between the two
strings; (4) Output the normalized matching score
as

No: of matched-pairs

O1 � 1

�
�No: of matched-pairs

O2 � 1

�
;

where O1 and O2 are the cardinalities of the two
minutia sets, respectively.

3.3. 2D Dynamic programming based matching
(Algorithm C)

A ®ngerprint and its extracted minutia features
are 2D patterns. The transformation of a 2D
pattern into a 1D pattern usually results in a loss
of information. For example, if there is more than

one minutia along the same direction, then usually
only one minutia is retained in the transformation.
Furthermore, the transformation of 2D minutia
into 1D pattern causes another problem: due to
elastic distortion, some minutiae could change
their placement orders in the template minutia and
the input minutia. This will create a problem in
subsequent string editing operation which usually
restricts the warping function so that the order of
string components is preserved to ensure a good
matching performance.

Chen and Jain (1998) have shown that ®n-
gerprint matching using 2D dynamic time warp-
ing can be done as e�ciently as 1D string editing
while avoiding the above mentioned problems
with algorithm B. The 2D dynamic time warping
algorithm can be characterized by the following
steps: (1) Estimate the rotation between the two
sets of minutia features as in Step 1 of algorithm
B; (2) Align the two minutia sets using the esti-
mated parameters from Step 1; (3) Compute the
maximal matched minutia pairs of the two mi-
nutia sets using 2D dynamic programming tech-
nique. The intuitive interpretation of this step is
to warp one set of minutia to align with the other
so that the number of matched minutiae is
maximized; (4) Output the normalized matching
score as

NMP� NMP ÿ 0:20�O1 ÿNMP�
O1 � 1

� �
� NMPÿ 0:20�O2 ÿNMP�

O2 � 1

� �
;

�9�

where NMP is the number of matched-pairs and
O1 and O2 are the number of minutia features
within the overlapped region of the two minutia
sets.

Algorithm C uses a di�erent normalized score
than algorithm B because the matching score
should be based on the minutiae that lie within the
overlapping region, rather than the entire set of
minutiae. A penalty term is added to deal with
unmatched minutia features. Furthermore, the
normalized score is the product of matched pairs
and the goodness of match between the two mi-
nutia sets.
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4. Integration algorithm

Given the discrete probability distribution
functions of I1�x1�, and G1�x1�, {x1 � 0; 1; . . . ;
N ÿ 1}, and I2�x2� and G2�x2�, {x2 � 0; 1; . . . ;
N ÿ 1}, the following algorithm computes the set
of parameters �ai; bi; c; ti� for a set of speci®ed
FARs, t�i�far, i � 1; 2; . . . ; L.

for i� 1 to L
{
1. Compute I�x� and G�x�

for (x� 0; x < N ; x++) I [x] � G[x] � 0;
for (x1� 0; x1 < N ; x1++)
for (x2� 0; x2 < N ; x2++)
{

x � l�ai � bix1 � cix2�;
I �x� +� I1�x1� � I2�x2�;
G�x� +� G1�x1� � G2�x2�;

}
Normalize I�x� and G�x� so that

PNÿ1
k�0 I �k� � 1

and
PNÿ1

k�0 G�k� � 1.
2. Apply Brent's algorithm to obtain ai, bi, ci

and ti by solving the following minimization
problem:
fai; bi; cig � arg mina;b;c pfrr�a; b; c;f t�i�far�g
and
ti � argx infx

PNÿ1
k�x I �k�P t�i�far

n o
which is the discrete version of the optimization
functions in Eqs. (7) and (8),
pfrr�ai; bi; ci; t

�i�
far� �

Pti
k�0 G�x�.

}

Step 2 is computed using Brent's algorithm
(Brent, 1973; Press et al., 1992) for minimization
without the use of derivatives. Brent's algorithm is
suited for minimization of a function f with a rel-
atively small number of parameters (typically less
than 10) and when the evaluation of f 0 is di�cult
or expensive. Brent's algorithm is well suited for
our application here as the minimization function
pfrr has only four parameters and its derivative is
not available. Brent's algorithm usually needs a
small number of function evaluations and con-
verges in two to three steps. However, similar to
other gradient descent methods, Brent's algorithm
needs an initial guess of the solution and an initial
searching direction. While there is no guarantee of

convergence to a global minimum, the algorithm
converges to good solutions after a few trials with
di�erent initial guesses of the solution. When we
used N � 200, the CPU time to compute ten sets of
parameters �ai; bi; ci; ti�, i � 0; 1; . . . ; 9, took about
1.5 minutes on a SUN Ultra-10. When more than
one set of parameters needs to be computed and
two consecutive speci®ed FARs are close to each
other, the solution of �ai; bi; ci� can be used as the
initial guess for estimating �ai�1; bi�1; ci�1�.

5. Experimental results

Fingerprint images were collected in our labo-
ratory from 167 subjects. The images were cap-
tured using an optical sensor manufactured by
Digital Biometrics, Inc. (image size � 508� 480,
resolution � 500 dpi). A single impression each of
the right index, right middle, left index and left
middle ®ngers for each subject was taken in that
order. This process was then repeated to acquire a
second impression. The ®ngerprint images were
collected again from the same subjects after an
interval of six weeks in a similar fashion. Thus, we
have four impressions for each of the four ®ngers
of a subject. This resulted in a total of 2672
(167� 4� 4) ®ngerprint images. We partitioned
the dataset into two subsets: the ®rst subset con-
sists of ®ngerprints from the ®rst 83 subjects, while
the second consists of ®ngerprints from the re-
maining 84 subjects. We used the ®rst subset for
training and the second subset for testing.

A Receiver Operating Characteristic (ROC)
curve is a plot of genuine acceptance rate (1-FRR)
against FAR for all possible system operating
points (i.e., matching score threshold) and mea-
sures the overall performance of the system. Each
point on the curve corresponds to a particular
decision threshold. In the ideal case, both the error
rates, i.e., FAR and FRR, should be zero and the
genuine distribution and imposter distribution
should be disjoint. In such a case, the ``ideal'' ROC
curve is a step function at the zero false acceptance
rate. On the other extreme, if the genuine and
imposter distributions are exactly the same, then
the ROC is a line segment with a slope of 45° with
an end point at zero false acceptance rate. In
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practice, the ROC curve shape is in between these
two extremes.

The integration results of all three di�erent
pairwise combinations of matching algorithms are
reported as ROC curves in Figs. 4±6. In these
®gures, the dash-dot and the dash curves indicate
the performance of two individual algorithms,
while the solid curve indicates the performance
after integration. From Figs. 4 and 5, we can see
that the performance improvement by integrating
algorithm A with either B or C is not signi®cant.
This is consistent with the nature of algorithm A,
which is basically the linear pairing step in algo-
rithms B and C, with very little capability of

dealing with elastic distortions. Fig. 6 shows that
the integration of algorithms B and C results in
a signi®cant performance improvement, even
though both the algorithms apply dynamic pro-
gramming to deal with elastic distortions.

6. Conclusions and discussions

This paper presents a scheme to integrate the
output scores of three di�erent ®ngerprint match-
ers to improve the performance of a ®ngerprint
veri®cation system. Logistic regression makes use
of the conditional probability of Y given x, and
can improve the accuracy of ®ngerprint veri®ca-
tion by using more observations (output scores)
from multiple matchers under the assumption that
these observations are not totally redundant. Our
experimental results show that the performance
improvement by integrating algorithms B and C is
signi®cant, even though both the algorithms are
minutia-based and make use of dynamic pro-
gramming to deal with elastic distortion. Integra-
tion of all the three algorithms A, B and C involves
solving a minimization problem with more number
of parameters (four) but results in the same per-
formance improvement as by integration of algo-
rithms B and C alone. This is because algorithm A
is substantially inferior to algorithms B and C and
does not o�er complementary information to al-
gorithms B and C.

Fig. 4. ROC curves for integration of algorithms A and B.

Fig. 5. ROC curves for integration of algorithms A and C.

Fig. 6. ROC curves for integration of algorithms B and C.
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Integration of matching algorithms which
utilize di�erent types of information, e.g., minutia-
based and non-minutia-based, could be an inter-
esting future research. We are currently working
on development of a non-minutiae-based match-
ing algorithm (Jain et al., 1999b) and the prelimi-
nary results of matcher combination are very
encouraging. We must point out that integration
of two matching algorithms may not always result
in a better performance. A poor matching algo-
rithm may not improve the overall performance
after the integration.

Discussion

Bunke: Could you comment on e�ciency and
scalability of the approach? You use a Hough
transform with four parameters and 2D pro-
gramming. How would this scale up in the case of
thousands of users?

Prabhakar: It is important to point out that we
are addressing the problem of ®ngerprint veri®-
cation, and not ®ngerprint identi®cation. So, a
given ®ngerprint is not matched with a large
number of ®ngerprints in the database; the given
®ngerprint is matched with only one (or a few)
template(s) of the claimed identity stored in the
database. Since we are doing one-to-one matching,
we do not have to worry about the scalability issue
in veri®cation.

Bunke: How much time does the 4D Hough
transform and the 2D dynamic programming
take?

Prabhakar: All the matchers are very e�cient
and take less than two seconds on a Sun Ultra 1 to
match two ®ngerprints.

Szir�anyi: How robust is your system against
®ngerprint defects?

Prabhakar: If there is a signi®cant change in the
®ngerprint impression since the time of enrollment
(due to cuts and bruises), it could pose a problem
to the veri®cation system and lead to false rejects.
A possible solution is to update the template of a
user in the database, each time a user is positively
veri®ed.

Gimel'farb: Did you check the system on
real ®ngerprints? Given by FBI or minister of
justice?

Prabhakar: Yes, we have tested our system on
real ®ngerprints, but these did not come from the
FBI. We collected our own database, using live-
scan ®ngerprint capture devices. We have also
tested our algorithms on a standard ®ngerprint
database, called NIST-9, which is available in the
public domain and contains several thousand im-
ages.

Kanal: In Caltech they use a very small chip to
capture ®ngerprints.

Prabhakar: The Caltech sensor is based on ul-
trasound. Several commercial chip-based sensors
that are very small are available for capturing
®ngerprints. These sensors are being embedded
in devices such as laptop computers and cellular
phones.
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