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Abstract—Multibiometric systems fuse information from different sources to

compensate for the limitations in performance of individual matchers. We propose a

framework for the optimal combination of match scores that is based on the

likelihood ratio test. The distributions of genuine and impostor match scores are

modeled as finite Gaussian mixture model. The proposed fusion approach is

general in its ability to handle 1) discrete values in biometric match score

distributions, 2) arbitrary scales and distributions of match scores, 3) correlation

between the scores of multiple matchers, and 4) sample quality of multiple biometric

sources. Experiments on three multibiometric databases indicate that the proposed

fusion framework achieves consistently high performance compared to commonly

used score fusion techniques based on score transformation and classification.

Index Terms—Multibiometric systems, score level fusion, Neyman-Pearson

theorem, likelihood ratio test, Gaussian mixture model, image quality.
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1 INTRODUCTION

BIOMETRICS refers to the automatic identification of individuals

based on their anatomical and behavioral characteristics. Biometric

systems based on a single source of information (unibiometric

systems) suffer from limitations such as the lack of uniqueness and

nonuniversality of the chosen biometric trait, noisy data, and spoof

attacks [1]. Multibiometric systems fuse information from multiple

biometric sources in order to achieve better recognition performance

and to overcome other limitations of unibiometric systems [2], [3],

[4]. Fusion can be performed at four different levels of information,

namely, sensor, feature, match score, and decision levels. Score level

fusion is generally preferred because it offers the best trade-off in

terms of the information content and the ease in fusion. Combining

match scores is a challenging task because the scores of different

matchers can be either distance or similarity measure, may follow

different probability distributions, may provide quite different

accuracies and may be correlated. Consider the scores provided by

the two face matchers in the NIST-Face database. The scores from

these two matchers are in the range [�1, 1] and [0, 100] (see Fig. 1)

and the Pearson’s correlation coefficient for the genuine and

impostor scores of the two matchers are 0.7 and 0.3, respectively.

Score fusion techniques can be divided into the following three

categories.

. Transformation-based score fusion. The match scores are first

normalized (transformed) to a common domain and then

combined. Choice of the normalization scheme and

combination weights is data-dependent and requires

extensive empirical evaluation [4], [6], [7].
. Classifier-based score fusion. Scores from multiple matchers

are treated as a feature vector and a classifier is constructed
to discriminate genuine and impostor scores [2], [8], [9].
When biometric score fusion is considered as a classification
problem, the following issues pose challenges: 1) Unba-
lanced training set: The number of genuine match scores
available for training is OðnÞ, but the number of impostor
scores is Oðn2Þ, where n is the number of users in the
database. 2) Cost of misclassification: Depending on the
biometric application, the cost of accepting an impostor may
be very different from the cost of rejecting a genuine user.
For example, a biometric system in security applications
typically requires the false accept rate (FAR) to be less than
0.1 percent. Therefore, the fusion classifier needs to
minimize the false reject rate (FRR) at the specified FAR
values rather than minimizing the total error rate (sum of
FAR and FRR) [3]. 3) Choice of classifier: Given a variety of
admissible classifiers, selecting and training a classifier that
gives the optimal performance (minimum FRR at a specified
FAR) on a given data set is not trivial.

. Density-based score fusion. This approach is based on the
likelihood ratio test and it requires explicit estimation of
genuine and impostor match score densities [3], [10]. The
density-based approach has the advantage that it directly
achieves optimal performance at any desired operating
point (FAR), provided the score densities are estimated
accurately. In fact, a comparison of eight biometric fusion
techniques conducted by NIST [11] with data from
187,000 subjects concluded that “Product of Likelihood
Ratios was consistently most accurate, but most complex to
implement” and “complexity in this implementation is in
the modeling of distributions, rather than fusion per se.”
The statement in [11] about the complexity of density
estimation was based on the use of the kernel density
estimator (KDE). The selection of kernel bandwidth and
density estimation at the tails proved to be the most
complex steps in estimating the score densities using KDE.

In this paper, we show that 1) the finite Gaussian mixture model

(GMM) is quite effective in modeling the genuine and impostor

score densities and is easier to implement than KDE, 2) fusion based

on the resulting density estimates achieves consistently high

performance on three multibiometric databases involving face,

fingerprint, iris, and speech modalities, and 3) biometric sample

quality can be easily incorporated in the likelihood ratio-based

fusion framework.

2 LIKELIHOOD RATIO-BASED SCORE FUSION

2.1 Likelihood Ratio Test

Let XX ¼ ½X1; X2; � � � ; XK � denote the match scores of K different

biometric matchers, where Xk is the random variable representing

the match score of the kth matcher, k ¼ 1; 2; � � � ; K. Let fgenðxxÞ and

fimpðxxÞ be the conditional joint densities of the K match scores

given the genuine and impostor classes, respectively, where

xx ¼ ½x1; x2; � � � ; xK �. Suppose we need to assign the observed match

score vector XX to genuine or impostor class. Let � be a statistical

test for testing H0: XX corresponds to an impostor against H1: XX

corresponds to a genuine user. Let �ðxxÞ ¼ i imply that we decide in

favor of Hi, i ¼ 0; 1. The probability of rejecting H0 when H0 is true

is known as the false accept rate (size or level of the test). The

probability of correctly rejectingH0 whenH1 is true is known as the

genuine accept rate (power of the test). The Neyman-Pearson theorem

[12] states that
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1. For testing H0 against H1, there exists a test � and a
constant � such that

P �ðXXð Þ ¼ 1jH0Þ ¼ � ð1Þ

and

�ðxxÞ ¼
1; when

fgenðxxÞ
fimpðxxÞ � �;

0; when
fgenðxxÞ
fimpðxxÞ < �:

8<
: ð2Þ

2. If a test satisfies (1) and (2) for some �, then it is the most
powerful test for testing H0 against H1 at level �.

According to the Neyman-Pearson theorem, given the false accept

rate (FAR) �, the optimal test for deciding whether a score vector XX

corresponds to a genuine user or an impostor is the likelihood ratio

test given by (2). For a fixed FAR, we can select a threshold � such that

the likelihood ratio test maximizes the genuine accept rate (GAR). Based

on the Neyman-Pearson theorem, we are guaranteed that there does

not exist any other decision rule with a higher GAR. However, this

optimality of the likelihood ratio test is guaranteed only when the

underlying densities are known. In practice, we estimate the

densities fgenðxxÞ and fimpðxxÞ from the training set of genuine and

impostor match scores, respectively, and the performance of

likelihood ratio test will depend on the accuracy of these estimates.

2.2 Estimation of Match Score Densities

It is well known that the Gaussian density is not appropriate for

modeling biometric match scores because the score distributions

generally have a long tail and may have more than one mode.

Moreover, the presence of discrete score values and correlation

among match scores of different biometric matchers makes density

estimation a challenging task. Nonparametric techniques like

density histogram and kernel density estimator require a careful

choice of histogram bin width or kernel bandwidth [11], [13] that is

critical to the fusion performance. Gaussian mixture model (GMM)

has been successfully used to estimate arbitrary densities and the

theoretical results in [14], [15] show that the density estimates

obtained using finite mixture models indeed converge to the true

density when a sufficient number of training samples are available.

For these reasons, we use GMM for estimating the genuine and

impostor score densities.
Let �Kðxx;��;�Þ be the K-variate Gaussian density with mean

vector �� and covariance matrix �, i.e., �Kðxx;��;�Þ ¼ ð2�Þ�K=2j�j�1=2

exp ð� 1
2 ðxx� ��Þ

T��1ðxx� ��ÞÞ. The estimates of fgenðxxÞ and fimpðxxÞ
are obtained as a mixture of Gaussians as follows:

f̂genðxxÞ ¼
XMgen

j¼1

pgen;j�
K xx;��gen;j;�gen;j

� �
; ð3Þ

f̂impðxxÞ ¼
XMimp

j¼1

pimp;j�
K xx;��imp;j;�imp;j

� �
; ð4Þ

where MgenðMimpÞ is the number of mixture components used

to model the density of the genuine (impostor) scores,

pgen;j ðpimp;jÞ is the weight assigned to the jth mixture

component in f̂genðxxÞðf̂impðxxÞÞ,
PMgen

j¼1 pgen;j ¼
PMimp

j¼1 pimp;j ¼ 1.

Selecting the appropriate number of components is one of the
most challenging issues in mixture density estimation; while a
mixture with too many components may result in overfitting, a
mixture with too few components may not approximate the true
density well. The GMM fitting algorithm proposed in [16]1

automatically estimates the number of components and the
component parameters using an EM algorithm and the minimum
message length criterion. This algorithm is also robust to
initialization of parameter values (mean vectors and covariance
matrices) and can handle discrete components in the match score
distribution by modeling the discrete scores as a mixture
component with very small variance. This is achieved by adding
a small value (regularization factor) to the diagonal of the
covariance matrices. The actual value of this variance does not
affect the performance as long as it is insignificant compared to the
variance of the continuous components in the match score
distribution. For example, the lowest value of variance in the
match score data used in our experiments is of the order of 10�3.
Hence, we used the value of 10�5 as the lower bound for the
variance. Our experiments indicate that a value smaller than 10�5

(say, 10�7 or 10�9) does not change the performance of GMM. Since
we do not place any restrictions on the component covariance
matrices �gen;j and �imp;j, the estimates of the joint densities f̂genðxxÞ
and f̂impðxxÞ also take into account the correlation between the
match scores. Fig. 2 shows that Gaussian mixture model reliably
estimates the 2D genuine and impostor densities of the two face
matchers in the NIST-Face database.

We now define the likelihood ratio (LR) fusion rule as follows:
Given a vector of K match scores xx ¼ ½x1; . . . ; xK � and estimated
densities f̂genðxxÞ and f̂impðxxÞ, compute the likelihood ratio
LRðxxÞ ¼ f̂genðxxÞ=f̂impðxxÞ.

Assign xx to the genuine class if LRðxxÞ � �; ð5Þ

where � is the decision threshold that is determined based on the
specified FAR.

2.3 Incorporating Image Quality in Fusion

It is well known that the quality of biometric samples has a
significant impact on the accuracy of a matcher [17]. Several schemes
have used biometric sample quality for improving the performance
of a multibiometric system [8], [18], [19], [20] by assigning weights to
individual match scores. To incorporate sample quality in the
likelihood ratio framework, we first make the following observation:
Since a poor quality sample will be difficult to classify as genuine or
impostor (see Fig. 3), the likelihood ratio for such a sample will be
close to 1. On the other hand, for good quality samples, the
likelihood ratio will be greater than 1 for genuine users and less than
1 for impostors. Hence, if we estimate the joint density of the match
score and the associated quality, the resulting likelihood ratios will
be implicity weighted by the respective sample quality.

Let QQ ¼ ½Q1; Q2; � � � ; QK � be the quality vector, where Qk is the
quality of the match score provided by the kth matcher, k ¼ 1; . . . ;K.
Let f̂genðxx; qqÞ and f̂impðxx; qqÞ be the joint densities of theK-dimensional
match score vector and the K-dimensional quality vector estimated
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Fig. 1. Nonhomogeneity in the match scores provided by the two face matchers in

the NIST-Face database [5]. Note that about 0.2 percent of the scores output by

matcher 1 are discrete scores with value �1 which are not shown in this plot.

1. The MATLAB code for this algorithm is available at http://
www.lx.it.pt/~mtf/mixturecode.zip.



from the genuine and impostor template-query pairs, respectively.
The quality-based likelihood ratio, QLRðxx; qqÞ, is given by

QLRðxx; qqÞ ¼ f̂genðxx; qqÞ
f̂impðxx; qqÞ

: ð6Þ

The decision rule based on QLRðxx; qqÞ is similar to the one used

in (5). Note that the joint density estimation of ðXX;QQÞ now involves

2K variables which may not be very reliable with limited training

data. To avoid the curse of dimensionality, we assume indepen-

dence of K matchers and write (6) as f̂ðxx; qqÞ ¼
QK

k¼1 f̂kðxk; qkÞ. So,

now we estimate K two-dimensional densities for both genuine

and impostor classes. To perform quality-based fusion based on

(6), we use quality metrics proposed in [21] for fingerprint and iris.

3 EXPERIMENTAL RESULTS

The performance of the likelihood ratio-based fusion rule was

evaluated on two public-domain databases, namely, NIST-BSSR1

[5] and XM2VTS-Benchmark databases [22]. The performance of

the quality-based product fusion rule was evaluated only on the

WVU-Multimodal database since the two public databases did not

contain raw images to estimate the quality. The three databases

used in our study are summarized in Table 1.

For each experiment, half of the genuine and half of the impostor

match scores were randomly selected to form the training set for

density estimation. This training-test partitioning was repeated

m times ðm ¼ 20Þ and the reported ROC curves correspond to the

mean GAR values over them trials at different FAR values. We also

report the 95 percent confidence interval for the improvement in
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Fig. 2. Density estimation based on Gaussian mixture models for the NIST-Face database. (a) Scatter plot of the genuine scores along with the fitted mixture
components, (b) density estimates of the genuine scores, (c) scatter plot of the impostor scores along with the fitted mixture components, and (d) density estimates of the
impostor scores. In this example, the estimated number of mixture components is 12 for the genuine density and 19 for the impostor density. The discrete score in the
first matcher at value �1 is modeled as a separate mixture component as shown in (a) and (c).

Fig. 3. Variation of match score with quality for fingerprint modality in the WVU-
Multimodal database. We observe that the genuine and impostor match scores
are well-separated only for good quality (with quality index > 0.5) samples.



GAR achieved by likelihood ratio-based fusion at specific FAR

values.2

The receiver operating characteristic (ROC) curves of the

individual matchers and the LR fusion rule for the three partitions

of the NIST-BSSR1 and XM2VTS databases are shown in Fig. 4. The

LR fusion leads to significant improvement in the performance

compared to the best single modality on all the four databases. At a

false accept rate (FAR) of 0.01 percent, the improvement in the

genuine accept rate (GAR) achieved due to LR fusion is presented in

Table 2. We observe that the 95 percent confidence intervals
estimated in Table 2 are fairly tight which indicates that the
performance improvement is consistent across the 20 cross-valida-
tion trials. We also observe that multimodal fusion (face and two
fingers) in NIST-BSSR1 results in larger improvement in GAR than
two-finger fusion or multialgorithm fusion (two face matchers).

The performance of the LR fusion rule is first compared to fusion
based on the Support Vector Machine (SVM) classifier. While the
performance of SVM-based fusion is comparable to LR fusion on the
NIST-Fingerprint and XM2VTS-Benchmark databases (see Figs. 4b
and 4d), it is inferior to LR fusion on the NIST-Multimodal and NIST-
Face databases (see Figs. 4a and 4c). Moreover, the kernel function
and the associated parameters for SVM must be carefully chosen in
order to achieve this performance. For example, while linear SVM
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Fig. 4. Performance of the likelihood ratio-based fusion rule and SVM-based fusion on the (a) NIST-Multimodal, (b) NIST-Fingerprint, (c) NIST-Face, and (d) XM2VTS-
Benchmark databases. Although there are eight matchers in the XM2VTS-Benchmark database, only the ROC curves of the best face matcher (DCTb-GMM) and the
best speech matcher (LFCC-GMM) are shown in (d) for clarity. A linear SVM was used in (a) and (d) and a SVM with radial basis function kernel was used in (b) and
(c) (with � ¼ 0:005 and � ¼ 0:1, respectively).

2. For experiments on the XM2VTS-Benchmark database, we do not
randomly partition the scores into training and test sets because this
partitioning is already defined in [22]. Hence, confidence intervals are not
estimated for this database.

TABLE 1
Summary of Multibiometric Databases

Note that the NIST-Multimodal, NIST-Fingerprint, and NIST-Face databases are different partitions of the NIST Biometric Score Set Release-1 (BSSR1).



gave good performance on the NIST-Multimodal and XM2VTS-
Benchmark databases, we had to use a radial basis function kernel
with different parameter values for the NIST-Fingerprint ð� ¼
0:005Þ and NIST-Face ð� ¼ 0:1Þ databases to obtain the results
reported in Fig. 4.

We also compared the performance of LR fusion rule with a

commonly used transformation-based score fusion technique,

namely, the sum of scores fusion method, which can be derived

as an approximation to the LR fusion rule under a set of conditions

[23]. However, in order to use the sum of scores fusion method, we

need to choose a score normalization method. After an empirical

evaluation, we found that the min-max normalization [7] is the

best for the datasets used here. The ROC curves for the LR rule and

sum of scores fusion rule with min-max normalization are shown

in Fig. 5. While the sum rule is quite comparable to the LR rule for

the NIST-Multimodal database, it does not perform well on the

XM2VTS-Benchmark database (see Fig. 5b).
The reason for the inferior performance of the sum rule in the

case of the XM2VTS-Benchmark database is that the score
distributions of the face and speech matchers are very different
(see Fig. 6). The min-max normalization is not effective for the face
scores in Fig. 6a because the genuine and impostor scores are
peaked around 1 and �1, respectively. This is because the face
match scores were the output of a multilayer perceptron classifier
that used a tanh nonlinearity function. However, if we first
transform the distribution in Fig. 6a by applying an inverse tangent
function to these scores followed by min-max normalization, then
the performance of the sum rule improves and it is now
comparable to the LR fusion as observed in Fig. 5b. These results

demonstrate that while, it is possible to achieve good fusion

performance for a specific database using the simple sum rule by

carefully choosing the normalization scheme, the proposed LR

fusion rule is a general approach that consistently provides good

performance.
Fig. 7 shows the performance of the LR and QLR fusion rules on

the WVU-Multimodal database. For this data, the LR fusion rule

improves the GAR compared to the best single modality (iris) and

the quality-based fusion (QLR) rule further improves the GAR. For

example, at a FAR of 0.001 percent, the mean GAR of the iris

modality is 66.7 percent, while the GAR values of the LR and QLR

fusion rules are 85.3 percent and 90 percent, respectively. The

95 percent confidence interval for the improvement in GAR

obtained by using QLR fusion instead of LR fusion is [4.1 percent,

5.3 percent].

346 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 2, FEBRUARY 2008

TABLE 2
Performance Improvement Achieved by Likelihood Ratio-Based Fusion

Fig. 5. Performance of the likelihood ratio-based fusion rule and sum of scores fusion rule with min-max normalization on the (a) NIST-Multimodal database and

(b) XM2VTS-Benchmark database. In (b), IT-MM denotes that an inverse tangent function is applied only to the match scores of the MLP classifiers prior to normalizing

all the match scores using min-max normalization.

Fig. 6. Distribution of genuine and impostor match scores in the XM2VTS-

Benchmark database for (a) MLP-face classifier and (b) speech.



4 CONCLUSIONS

We have proposed a framework for the fusion of match scores in a
multibiometric system based on the likelihood ratio test. This
approach is general and is able to minimize the FRR at a specified
FAR. In practice, one needs to reliably estimate the genuine and
impostor match score densities from the available training set of
match scores. Due to the availability of relatively large multi-
biometric databases and the low dimensionality of the score vectors,
the density estimation problem in the proposed LR fusion rule is
quite tractable. We show that densities estimated using a mixture of
Gaussian models lead to good performance on several multi-
biometric databases. Based on these experiments, our conclusions
are as follows:

. The likelihood ratio-based fusion rule with GMM-based
density estimation achieves consistently high recognition
rates without the need for parameter tuning by the system
designer.

. While other fusion schemes such as sum rule and SVM can
provide performance comparable to that of LR fusion, these
approaches require careful selection of parameters (e.g.,
score normalization and fusion weights in sum rule, type of
kernel and kernel parameters in SVM) on a case-by-case
basis. The LR rule does not need to make these choices.

. Biometric sample quality information can be incorporated
within the likelihood ratio-based fusion framework leading
to improvements in the performance of multibiometric
systems.
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Fig. 7. Performance of LR and QLR fusion rules on the WVU-Multimodal

database.
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