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Abstract

A scheme is proposed for classi$er combination at decision level which stresses the importance of classi$er selection
during combination. The proposed scheme is optimal (in the Neyman–Pearson sense) when su4cient data are available
to obtain reasonable estimates of the join densities of classi$er outputs. Four di6erent $ngerprint matching algorithms
are combined using the proposed scheme to improve the accuracy of a $ngerprint veri$cation system. Experiments
conducted on a large $ngerprint database (∼ 2700 $ngerprints) con$rm the e6ectiveness of the proposed integration
scheme. An overall matching performance increase of∼ 3% is achieved. We further show that a combination of multiple
impressions or multiple $ngers improves the veri$cation performance by more than 4% and 5%, respectively. Analysis
of the results provide some insight into the various decision-level classi$er combination strategies. ? 2002 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is often observed that di6erent classi$ers with es-
sentially the same overall accuracy misclassify di6erent
test patterns. In an attempt to harness the complemen-
tary decision boundaries constructed by di6erent clas-
si$ers, a large number of information fusion strategies
have been proposed that combine the available informa-
tion at di6erent levels (i.e., sensor level, representational
level, and decision level). Successful “multiclassi$er”
recognition systems [1–7,28,29] have been built in dif-
ferent application domains demonstrating the usefulness
of information fusion. A comprehensive list of classi$er
combination strategies can be found in Refs. [8,2]. How-
ever, a priori it is not known which combination strategy
works better than the others and if so under what circum-
stances.
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In this paper we will restrict ourselves to a particular
decision-level integration scenario where each classi$er
may select its own representation scheme and produces a
con$dence value as its output. A theoretical framework
for combining classi$ers in such a scenario has been de-
veloped by Kittler et al. [2]. However, the product rule
for combination suggested in Ref. [2] implicitly assumes
an independence of classi$ers. The sum rule further as-
sumes that the aposteriori probabilities computed by the
respective classi$ers do not deviate dramatically from
the prior probabilities. The max rule, min rule, median
rule, and majority vote rule have been shown to be spe-
cial cases of the sum and the product rules. Making these
assumptions simpli$es the combination rule but does not
guarantee optimal results and hinders the combination
performance. We follow Kittler et al.’s framework with-
out making any assumptions about the independence of
various classi$ers.
The contributions of this paper are two fold. Firstly,

we propose a general system design for decision-level
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classi$er fusion that uses the optimal Neyman–Pearson
rule and outperforms the combination strategies based on
the assumption of independence amount the classi$ers.
Secondly, we propose a multi-modal biometric system
design based on multiple $ngerprint matchers. The use of
the proposed combination strategy in combining multi-
ple matchers signi$cantly improves the overall accuracy
of the $ngerprint-based veri$cation system. The e6ec-
tiveness of the proposed integration strategy is further
demonstrated by building multi-modal biometric systems
that combine two di6erent impressions of the same $nger
or $ngerprints of two di6erent $ngers.
The rest of the paper is organized as follows: Section

2 gives a brief overview of biometrics and multi-modal
biometric systems. Section 3 presents the proposed
integration design which includes classi$er selection,
non-parametric density estimation, and optimal integra-
tion strategy. Section 4 gives a brief description of the
four di6erent $ngerprint veri$cation systems used in our
case study. The $ngerprint database, experimental res-
ults, and analysis of the results are presented in Section 5.
Finally, Section 6 concludes the paper.

2. Biometrics

A reliable automatic person identi$cation is criti-
cal in a wide variety of forensic, civilian, and com-
mercial applications such as criminal investigation,
issuing driver’s license, welfare disbursement, credit
cards and cellular phone usage, and access control. Bio-
metrics [31], which refers to identi$cation of people
based on their physical or behavioral characteristics is in-
herently more reliable than traditional knowledge-based
(such as a password) or token-based (such as an access
card) systems. A physical or behavioral characteristic
that has universality, distinctiveness, permanence, and
collectability (such as $ngerprint, iris, voice, face, etc.)
is a candidate biometric for designing an automatic au-
thentication system. Biometric-based identi$cation is
preferred over traditional methods because a biometric
cannot be forgotten or lost. A biometric system is essen-
tially a pattern recognition system that may work in two
di6erent modes: (i) veri$cation, and (ii) recognition.
Veri$cation refers to authenticating the claimed identity
of a user while recognition refers to determining the
identity of a user. Recognition is inherently a more dif-
$cult pattern recognition problem as it involves a large
number of classes. Veri$cation is a relatively easier
problem that can be formulated as a simple hypothesis
testing problem. We will focus on only the veri$cation
problem in this paper and will use the words veri$cation,
authentication, and recognition, interchangeably to refer
to the two-class (accept or reject) veri$cation problem.
The biometric veri$cation problem can be formulated

as follows. Let the stored biometric signal (template)

of a person be represented as S and the acquired signal
(input) for authentication be represented by I . Then the
null and alternate hypotheses are:

H0: I �= S, input $ngerprint does not come from the same
$nger as the template,

H1: I = S, input $ngerprint comes from the same $nger
as the template.

The associated decisions are as follows:

D0: person is an imposter,
D1: person is genuine.

The veri$cation involves matching S and I us-
ing a similarity measure. If the matching score is
less than some decision threshold T , then decide
D0, else decide D1. The above terminology is bor-
rowed from communication theory where we want
to detect a message in the presence of noise. H0
is the hypothesis that the received signal is noise
alone and H1 is the hypothesis that the received
signal is message plus the noise. Such a hypothe-
sis testing formulation inherently contains two types
of errors: Type I: false acceptance (D1 is decided
when H0 is true) and Type II: false rejection (D0
is decided when H1 is true). False acceptance rate
(FAR) is the probability that the system makes type
I error (also called signi$cance level of the hy-
pothesis test) and false rejection rate (FRR) is the
probability that the system makes type II error. Note
that (1-FRR) is also called the power of the test.

FAR=P(D1|w0);
FRR=P(D0|w1);
where w0 is the class with H0 = true and w1 is the
class with H1 = true. There is a trade-o6 between
the two types of errors (FAR and FRR) in a bio-
metric system. Di6erent applications may have dif-
ferent requirements on the error rates. For example,
high security access applications have more strict
requirements on the FAR than, say, forensic appli-
cations. A system designer may not know in ad-
vance the particular application for which the sys-
tem may be used (or a single system may be de-
signed for a wide variety of applications). So, it is
a common practice to report the system performance
at all operating points (decision thresholds). This is
done by plotting a receiver operating characteristic
(ROC) curve. A ROC curve is a plot of FAR (sig-
ni$cance level) with 1-FRR (power) for various de-
cision thresholds. The system designer’s challenge
is to minimize the FRRs for various speci$ed FARs.
Several biometric systems have been designed and

tested on large databases. However, in some applications
with stringent performance requirement, no single bio-
metric can meet the requirements due to inexact nature
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Fig. 1. Various multi-modal biometric systems.

of sensing, feature extraction, and matching processes.
This has generated interest in designing multi-modal bio-
metric systems [9]. Multi-modal biometric systems may
work in one of the following $ve scenarios (see Fig. 1):
(i) multiple sensors: for example, optical, ultrasound, and
capacitance-based sensors are available to capture $n-
gerprints; (ii) multiple biometric system: multiple bio-
metrics such as $ngerprint and face may be combined
[1,2,10]; (iii) multiple units of the same biometric: one
image each from both the iris, or both hands, or 10 $n-
gerprints may be combined [11]; (iv) multiple instances
of the same biometric: for example multiple impressions
of the same $nger [11], or multiple samples of the voice,
or multiple images of the face may be combined; (v)
multiple representation and matching algorithms for the
same input biometric signal: for example, combining dif-
ferent approaches to feature extraction and matching of
$ngerprints [12]. The $rst two scenarios require sev-
eral sensors and are not cost e6ective. Scenarios (iii)
causes inconvenience to the user in providing multiple
cues and has a longer acquisition time. In scenario (iv),
only a single input is acquired during veri$cation and
matched with several stored templates acquired during

the one-time enrollment process. Thus, it is slightly bet-
ter than scenario (iii). In our opinion, scenario (v) is
the most cost-e6ective way to improve biometric system
performance.
We propose to use a combination of four di6erent

$ngerprint-based biometric systems where each system
uses di6erent feature extraction and=or matching algo-
rithms to generate a matching score which can be in-
terpreted as the con$dence level of the matcher. These
di6erent matching scores are combined to obtain the low-
est possible FRR for a given FAR.
We also compare the performance of our integration

strategy with the sum and the product rules [2]. Even
though we propose and report results in scenarios (iii)–
(v), our combination strategy could be used for scenarios
(i) and (ii) as well.

3. Optimal integration strategy

Let us suppose that pattern Z is to be assigned to one
of the two possible classes, w0 and w1. Let us assume
that we have N classi$ers, and the ith classi$ers outputs a
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single con$dence value �i about class w1 (the con$dence
for the class w0 will be 1 − �i), i=1; 2; : : : ; N . Let us
assume that the prior probabilities for the two classes are
equal. The classi$er combination task can now be posed
as an independent (from the original N classi$er designs)
classi$er design problem with two classes and N features
(�i; i=1; 2; : : : ; N ).

3.1. Classi7er selection

It is a common practice in classi$er combination to
perform an extensive analysis of various combination
strategies involving all the N available classi$ers. In fea-
ture selection, it is well known that the most informative
d-element subset of N conditionally independent features
is not necessarily the union of the d individually most
informative features [13–16]. Cover [17] argues that no
non-exhaustive sequential d-element selection procedure
is optimal, even for jointly normal features. He further
showed that all possible probability of error ordering can
occur among subsets of features subject to a monotonic-
ity constraint. The statistical dependence among features
causes further uncertainty in the d-element subset com-
posed of the individually best features. One could argue
that the combination strategy itself should pick out the
classi$ers that should be combined. However, we know
in practice that the “curse of dimensionality” makes it
di4cult for a classi$er to automatically delete less dis-
criminative features [18,19,30]. Therefore, we propose
a classi$er selection scheme prior to classi$er combina-
tion. We propose to use the class separation statistic [20]
as the feature e6ectiveness criterion. This statistic, CS,
measures how well the two classes (imposter and gen-
uine, in our case) are separated with respect to the feature
vector, X d, in a d-dimensional space, Rd.

CS(X d)=
∫
Rd

|p(X d|w0)− p(X d|w1)| dx; (1)

where p(X d|w0) and p(X d|w1) are the estimated distri-
butions for the w0 (imposter) and w1 (genuine) classes,
respectively. Note that 06CS6 2.
We will use the class separation statistic to obtain the

best feature subset using an exhaustive search of all pos-
sible 2N − 1 feature subsets.

3.2. Non-parametric density estimation

Once we have selected the subset containing
d (d6N ) features, we develop our combination strat-
egy. We do not make any assumptions about the
form of the distributions for the two classes and use
non-parametric methods to estimate the two distribu-
tions. We will later show that this method is superior to
a parametric approach which approximates the form of
the density.

The Parzen window density estimate of an d-dimen-
sional density function based on n observations is given
by [21]

P(X ) =
1
nhd

n∑
j=1

{
1

(2�)d=2|�|1=2

exp
[
− 1
2h2

(X − Xj)t�−1(X − Xj)
]}

; (2)

where n is the number of training samples and h is the
window width. The covariance matrix, �, is estimated
from the n training samples and h˙ n−1=d. The value of
h is usually determined empirically. A large value of h
means a large degree of smoothing and a small value of
h means a small degree of smoothing. A rule of thumb
states that for a small (large) number of training samples
(n), windowwidth should be large (small), and for a $xed
n, the window width should be large (small) for large
(small) number of features (d). When a large number of
samples are available, the density estimated using Parzen
window approach are very close to the true densities.

3.3. Decision strategy

We use the likelihood ratio L=P(X d|w0)=P(X d|w1)
to make the $nal decision for our two-class problem:
Decide D0 (person is an imposter) for high values of L;
decide D1 (person is genuine) for low values of L. If L is
small, the data is more likely to come from class w1; the
likelihood ratio test rejects the null hypothesis for small
values of the ratio. The Neyman–Pearson lemma states
that this test is optimal, that is, among all the tests with
a given signi$cance level, �, the likelihood ratio test has
the maximum power. For a speci$ed �; � is the smallest
constant such that P{L6 �}6 �. The Type II error ( )
is given by P{L¿�}.

4. Matching algorithms

We have developed four di6erent $ngerprint veri$ca-
tion systems which can be broadly classi$ed into two
categories: (i) minutiae-based, and (ii) $lter-based. The
three minutiae-based and one $lter-based algorithms are
summarized in this section.

4.1. Minutiae-based 7ngerprint matching algorithms

In this type of matching algorithms, minutiae ($n-
gerprint ridge bifurcations and endings) are used as
features. Each feature is characterized by its location and
the direction of the ridge on which it resides. For each
of the three matchers considered here in this category,
the minutiae are extracted using the same algorithm.
The extraction algorithm has four main components
(see Fig. 2): (i) orientation $eld estimation, (ii) ridge
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Fig. 2. Flowchart of the minutia extraction algorithm and matching. Any of the three matching algorithms described in Sections
4.1.1–4.1.3 can be used to match the template minutiae set and the detected minutiae set.

detection, (iii) ridge thinning, and (iv) minutiae detec-
tion. The orientation $eld is estimated using the method
in Ref. [22]. The second stage binarizes the $ngerprint
image by convolving the image with local $lters ori-
ented in the direction estimated in step (i). The ridges
in the binary image are thinned using a standard thin-
ning algorithm and minutiae are detected on the thinned
ridges as those points which have either one or more
than two neighbors. The minutiae features obtained from
the two $ngerprint images can be matched using one of
the three matching algorithms brieNy described below.

4.1.1. Hough transform-based matching (Algorithm
Hough)
The $ngerprint matching problem can be regarded as

template matching [23]: given two sets of minutia fea-
tures, compute their matching score. The two main steps

of the algorithm are: (1) compute the transformation pa-
rameters "x; "y; �; and s between the two images, where
"x and "y are translations along x-and y-directions, re-
spectively, � is the rotation angle, and s is the scaling
factor; (2) align two sets of minutia points with the esti-
mated parameters and count the matched pairs within a
bounding box; (3) repeat the previous two steps for the
set of discretized allowed transformations. The transfor-
mation that results in the highest matching score is be-
lieved to be the correct one. The $nal matching score is
scaled between 0 and 99. Details of the algorithm can be
found in Ref. [23].

4.1.2. String distance-based matching (Algorithm
String)
Each set of extracted minutia features is $rst con-

verted into polar coordinates with respect to an anchor
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point. The two-dimensional (2D) minutia features are,
therefore, reduced to a one-dimensional (1D) string by
concatenating points in an increasing order of radial
angel in polar coordinate. The string matching algorithm
is applied to compute the edit distance between the two
strings. The edit distance can be easily normalized and
converted into a matching score. This algorithm [22] can
be summarized as follows: (1) Rotation and translation
are estimated by matching ridge segment (represented as
planar curve) associated with each minutia in the input
image with the ridge segment associated with each minu-
tia in the template image. The rotation and translation
that results in the maximum number of matched minutiae
pairs within a bounding box is considered the correct
transformation and the corresponding minutiae are la-
beled as anchor minutiae, A1 and A2, respectively. (2)
Convert each set of minutia into a 1D string using polar
coordinates anchored at A1 and A2, respectively; (3)
Compute the edit distance between the two 1D strings.
The matched pairs are retrieved based on the minimal
edit distance between the two strings; (4) Output the nor-
malized matching score which is the ratio of the number
of matched-pairs and the number of minutiae points.

4.1.3. 2D dynamic programming-based matching
(Algorithm Dynamic)
This matching algorithm is a generalization of the

above-mentioned string algorithm. The transformation of
a 2D pattern into a 1D pattern usually results in a loss of
information. Chen and Jain [24] have shown that $nger-
print matching using 2D dynamic time warping can be
done as e4ciently as 1D string editing while avoiding the
above-mentioned problems with algorithm String. The
2D dynamic time warping algorithm can be characterized
by the following steps: (1) Estimate the rotation between
the two sets of minutia features as in Step 1 of algorithm
String; (2) Align the two minutia sets using the esti-
mated parameters from Step 1; (3) Compute the maximal
matched minutia pairs of the two minutia sets using 2D
dynamic programming technique. The intuitive interpre-
tation of this step is to warp one set of minutia to align
with the other so that the number of matched minutiae
is maximized; (4) Output the normalized matching score
which is based on only those minutiae that lie within the
overlapping region. A penalty term is added to deal with
unmatched minutia features.

4.2. Texture-based matching

The minutiae-based representation is widely used in
$ngerprint veri$cation but does not utilize a signi$cant
component of the rich discriminatory information avail-
able in the ridge structures of the $ngerprints. Local
ridges cannot be completely characterized by minutiae.
Further, minutiae-based matching has problems in e4-
ciently matching two $ngerprint images containing dif-

ferent numbers of unregistered minutiae points. The $n-
gerprint image can be viewed as an oriented texture.
Texture-based representation of $ngerprint image over-
comes some of the problems with minutiae-based repre-
sentation and captures both the local and the global in-
formation in a $ngerprint as a compact FingerCode [25].

4.2.1. Filterbank-based matching (Algorithm Filter)
The four mains steps in the $lter-based feature extrac-

tion algorithm are (see Fig. 3): (i) determine a reference
point and region of interest for the $ngerprint image.
The reference point is taken to be the center point in a
$ngerprint which is de$ned as the point of maximum
curvature of the ridges in a $ngerprint. The region of
interest is a circular area around the reference point. The
algorithm rejects the $ngerprint images for which the
reference point could not be established. (ii) tessellate
the region of interest. The region of interest is divided
into sectors and the gray values in each sector are nor-
malized to a constant mean and variance. (iii) $lter the
region of interest in eight di6erent directions using a
bank of Gabor $lters (eight directions are required to
completely capture the local ridge characteristics in a
$ngerprint while only four directions are required to
capture the global con$guration). Filtering produces a
set of eight $ltered images. (iv) compute the average
absolute deviation from the mean (AAD) of gray values
in individual sectors in each $ltered image. AAD value
in each sector quanti$es the underlying ridge structures
and is de$ned as a feature. A feature vector, which we
call FingerCode, is the collection of all the features (for
every sector) in each $ltered image. Thus, the feature
elements capture the local information and the ordered
enumeration of the tessellation captures the invariant
global relationships among the local patterns. The rep-
resentation is invariant to translation of the image. It is
assumed that the $ngerprint is captured in an upright po-
sition and the rotation invariance is achieved by storing
10 representations corresponding to the various rotations
(−45:0◦; −45◦; −33:75◦; −22:5◦; −11:25◦; 0◦; 11:25◦,
22:5

◦
; 33:75

◦
; 45:0

◦
) of the image. Euclidean distance

is computed between the input representation and the 10
templates to generate 10 matching distances. Finally, the
minimum of the 10 distances is computed and inverted
to give a matching score. The matching score is scaled
between 0 and 99 and can be regarded as a con$dence
value of the matcher.

5. Experimental results

Fingerprint images were collected in our laboratory
from 167 subjects using an optical sensor manufac-
tured by Digital Biometrics, Inc. (image size=508 ×
480; resolution =500 dpi). A single impression each of
the right index, right middle, left index, and left middle
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Fig. 3. Flowchart of the $lterbank-based feature extraction and matching algorithm.

$ngers for each subject was taken in that order. This
process was then repeated to acquire a second impres-
sion. The $ngerprint images were collected again from
the same subjects after an interval of 6 weeks in a sim-
ilar fashion. Thus, we have four impressions for each
of the four $ngers of a subject. This resulted in a total
of 2672 (167 × 4 × 4) $ngerprint images. We call this
database MSU DBI. A live feedback of the acquired
image was provided and the subjects were guided in
placing their $ngers in the center of the sensor in an
upright position. A total of 100 images (about 4% of
the database) was removed from the MSU DBI because
the $lter-based $ngerprint matching algorithm rejected
these images due to failure in locating the center or due
to a poor quality of the images. We matched all the
remaining 2572 $ngerprint images with each other to
obtain 3,306,306 (2572× 2571=2) matchings and called
the matchings genuine only if the pair are di6erent im-
pressions of the same $nger. Thus, we have a total of

3,298,834 (3,306,306–7472) imposter and 7472 gen-
uine matchings per matcher from this database. For the
multiple matcher combination, we randomly selected
half the imposter matching scores and half the genuine
matching scores for training and the remaining samples
for test. This process was repeated 10 times to give 10
di6erent training sets and 10 corresponding independent
test sets. All performances will be reported in terms
of ROC curves computed as an average from the 10
ROC curves corresponding to the 10 di6erent training
and test sets. For the multiple impression and multiple
$nger combinations, the same database of 3,298,834
imposter and 7472 genuine matchings computed using
the Dynamic matcher was used.
The ROC curves computed from the test data for the

four individual $ngerprint matchers used in this study
are shown in Fig. 4. The class separation statistic com-
puted from the training data was 1.88, 1.87, 1.85 and
1.76 for the algorithms Dynamic, String, Filter, and
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Fig. 4. Performance of individual $ngerprint matchers.

Hough, respectively, and is found to be highly correlated
to the matching performance on the independent test set.
Fig. 4 shows that matcher Filter is better than the other
three matchers at high FARs while it is worst at very low
FARs. Matcher Hough is the worst at most operating
points except at very low FARs. At an equal error rate
of 3.5%, the matchers Dynamic, String, and Filter are
equivalent while the matcher Hough has an equal error
rate of about 6.4%.
In general, biometrics applications demand very low

error rates. Small errors in estimation of the imposter and
genuine distributions can signi$cantly e6ect the perfor-
mance of a system. Consider the empirical imposter den-
sity and a normal approximation to the imposter density
for the algorithm Filter shown in Fig. 5(a). One would
expect to get very accurate estimates of the parameters
of a one-dimensional density from over 1.6 million data
points. In fact, visually the normal approximation to the
imposter density seems to $t the empirical density very
well (see Fig. 5(a)). At equal error rate, using either the
normal approximation or the nonparametric approxima-
tion of the imposter density give similar results. How-
ever, a signi$cant decrease in performance is observed at
low FARs when a normal approximation to the density
is used in place of the nonparametric estimate of the den-
sity (see Fig. 5(b)). This is because the normal approx-
imation to the imposter density has a heavier tail than
the empirical density. To achieve the same low FAR, the
system will operate at a higher threshold when the nor-
mal density is used than when the empirical density is
used. The FRR, which is the area under the genuine den-
sity curve less than the threshold, increases signi$cantly.
So, we would like to stress that a parameterization of the
density should be avoided.
Next, we combine the four available $ngerprint

matchers in pairs of two. It is well known in classi$er
combination studies that the independence of classi$ers

Fig. 5. Normal approximation for the imposter distribution for
the matcher Filter: (a) imposter and genuine distributions; (b)
ROC curves. Visually, the normal approximation seems to be
good, but causes signi$cant decrease in the performance com-
pared to nonparametric estimate.

plays an important role in performance improvement
[26]. A plot of the scores in a 2D space from the train-
ing data for the String + Filter combination is shown
in Fig. 6. The correlation coe4cient, (; between the
matching scores can be used as a measure of diver-
sity between a pair of matchers [27]. A positive ( is
directly proportional to the measure of “dependence”
between the scores from the two matchers. Table 1
lists the correlation coe4cients for all possible pair-
ing of the four available $ngerprint matchers. It can
be observed from this table that the minutiae-based
$ngerprint matchers have more dependence among
themselves than with the $lter-based $ngerprint matcher.
The ranking of combination by the amount of increase
(R ROC) in performance with respect to the better of
the two component matchers, listed in the last column
in Table 1, is found to be coarsely related to (.
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Fig. 6. Plot of joint scores from matchers String and Filter.

Table 1
Combining two $ngerprint matchers. CS is the class separa-
tion statistic. CS and ( are computed from the training data.
Ranks by ROC and ranks by R ROC are computed from the
independent test data

Combination CS (rank) Rank ( Rank
by ROC by R ROC

String+ Filter 1.95 (1) 1 0.52 2
Dynamic + Filter 1.95 (1) 2 0.56 3
String+ Dynamic 1.94 (3) 2 0.82 3
Hough+ Dynamic 1.93 (4) 4 0.80 6
Hough+ Filter 1.91 (4) 6 0.53 1
Hough+ String 1.90 (6) 5 0.83 5

To combine two $ngerprint matchers, we $rst estimate
the 2D genuine and imposter densities from the training
data. The 2D genuine density was computed using the
Parzen density estimation method. The value of window
width (h) was empirically determined to obtain a smooth
density estimate and was set at 0.01. We used the same
value of h for all the two-matcher combinations. As a
comparison, the genuine density estimates obtained from
the normalized histograms were extremely peaky due to
unavailability of su4cient data (only about 3780 gen-
uine matching scores were available in the training set to
estimate a 2D distribution in 10; 000 (100× 100) bins).
However, for estimation of the 2D imposter distribution,
over 1.6 million matching scores were available. Hence,
we estimated the 2D imposter distribution by computing
a normalized histogram using the following formula:

p(X d|w0)= 1n
n∑

j=1

"(X; Xj); (3)

where " is the delta function that equals 1 if the raw
matching score vectors X and Xj are equal, 0 otherwise.
Here n is the number of imposter matchings from the

Fig. 7. Two-dimensional density estimates for the genuine and
imposter classes for String+Filter combination. Genuine den-
sity was estimated using Parzen window (h=0:01) estimator
and the imposter density was estimated using normalized his-
tograms.

Fig. 8. ROC curves for all possible two-matcher combinations.

training data. The computation time for Parzen window
density estimate depends on n and so, it is considerably
larger than the normalized histogram method for large
n. The smooth estimates of the two-dimensional genuine
and imposter densities thus computed for String+ Filter
combination are shown in Fig. 7. The class separation
statistic for all pairs of matcher combination is shown in
the second column of Table 1; the number in parenthesis
is the predicted ranking of the combination performance
based on CS. The actual ranking of performance obtained
from the independent test set is listed in the third column
marked ROC (see Fig. 8 for ROC curves). As can be
seen, the predicted ranking is very close to the actual
rankings on independent test data.
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Fig. 9. Comparison of the proposed combination scheme with
the sum and the product rules for the String+Filter combina-
tion.

The following observations can be made from the
two-matcher combinations:

• Classi$er combination improvement is directly related
to the “independence” (lower values of () of the clas-
si$ers.

• Combining two weak classi$ers results in a large per-
formance improvement.

• Combining two strong classi$ers results in a small per-
formance improvement.

• The two individually best classi$er do not form the
best pair.

The proposed combination scheme either outperforms
or matches the performance of the sum rule and out-
performs the product rule in all the two- three- and
four-matcher combinations. However, we provide illus-
trations of the comparison in two-matcher combinations
as it is easier to visualize the decision boundaries in two
dimensions. We choose the String+ Filter combination
which involves a strong and a weak classi$er. The re-
sults of this combination and a comparison with the sum
and the product rules is shown in Fig. 9. By assuming
that the errors in estimation of a posteriori probabilities
(matching scores) are very small, Kittler et al. [2] math-
ematically showed that the sum rule is less sensitive to
these errors than the product rule. In our case, instead of
considering the scores from two classi$ers as estimates
of a posteriori probability, we consider them as features
in a separate classi$cation problem. In such a case, the
decision boundaries corresponding to the sum and the
product rules can be drawn and visualized. In Fig. 6,
the decision boundaries corresponding to three di6erent
thresholds are shown for the sum and the product rules
by solid and dotted lines, respectively. The product rule
has a strong bias for low values of the two component
classi$er outputs. This is undesirable in most practical

Fig. 10. The performance of the best individual matcher
Dynamic is compared with the various combinations. The
String + Filter is the best two-matcher combination and
String + Dynamic + Filter is the best overall combination.
Note that addition of the classi$er Hough to the combination
String+ Filter results in a degradation of the performance.

situations and the product rule is not expected to perform
well in most cases. The sum rule decision boundary is
very restrictive (a line at 135

◦
slope) and sum rule per-

forms well only when combining two classi$ers of equal
strength (two weak or two strong classi$ers). When a
weak and a strong classi$er is combined, the decision
boundary should bend towards the axis of the strong
classi$er. Weighted sum rule can adapt the slope of
its decision boundary but the decision boundary is still
linear. The proposed technique can produce a decision
boundary that is non-linear and is expected to perform
better than the sum and the product rules. However, the
disadvantage of the proposed technique is that it requires
su4cient training data to obtain reasonable estimates of
the densities while the sum rule is a $xed rule and does
not require any training. Weighted sum rule can perform
better than the sum rule but it is di4cult to determine
the weights. In summary, the proposed scheme performs
the best, followed by the sum rule and the product rule
performs the worst when combining a weak and a strong
classi$er (Fig. 9).
Finally, we combine the matchers in groups of three

and then combine all the four matchers together. From
the tests conducted on the independent data set, we make
following observations (see Fig. 10).

• Adding a classi$er may actually degrade the perfor-
mance of classi$er combination. This degradation in
performance is a consequence of lack of independent
information provided by the classi$er being added and
$nite size of the training and test database.

• Classi$er selection based on a “goodness” statistic is
a promising approach.
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• Performance of combination is signi$cantly better than
the best individual matcher.

Among all the possible subsets of the four $ngerprint
matchers, the class separation statistic is maximum for
String+Dynamic+Filter combination. Hence, our fea-
ture selection scheme selects this subset for the $nal com-
bination and rejects the matcher Hough. This is consis-
tent with the nature of the Hough algorithm, which is
basically the linear pairing step in algorithms String and
Dynamic, without the capability of dealing with elastic
distortions. Therefore,Hough does not provide “indepen-
dent” information with respect to String and Dynamic.
Fig. 11 shows the small overlap in the scores from the
genuine and the imposter classes for the best combina-
tion involving $ngerprint matchers String,Dynamic, and
Filter. The performance of the various matcher combina-
tions on an independent test supports the prediction that
String+Dynamic+ Filter is the best combination.
Our $nal multi-modal biometric system design is de-

picted in Fig. 12. The performance of the combined
system is more than 3% better than the best individual
matcher at low FARs (see Table 2). The equal error rate is

Fig. 12. Proposed architecture of multi-modal biometrics system based on sever $ngerprint matchers.

Fig. 11. Matching scores for the best combination involving
String, Dynamic, and Filter matchers. Visually, one can see
the small overlap between the genuine (©) and the imposter
(∗) classes. The class separation statistic is 1.97 for the 3D
genuine and imposter densities estimated from these scores.
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Table 2
Comparison of the performance of the best matcher combina-
tion with the best individual matcher. GAR refers to the gen-
uine acceptance rate that is plotted on the ordinate of the ROC
curves

FAR GAR GAR GAR
Dynamic String+ Dynamic Improvement
(%) +Filter (%) (%)

Mean (Var) Mean (Var)

1.00% 95.53 (0.08) 98.23 (0.02) 2.70
0.10% 92.96 (0.05) 96.16 (0.04) 3.20
0.01% 90.25 (0.04) 93.72 (0.05) 3.47

Table 3
Equal error rate improvement due to combination

String Dynamic Filter Combination

Equal error 3.9 3.5 3.5 1.4
rate (%)

more than 2% better than the best individual matcher (see
Table 3). The matcher combination takes about 0:02 s
on an Sun Ultra 1 in the test phase. In an authentication
system, this increase in time will have almost no e6ect
on the veri$cation time and the overall matching time is
still bounded by the slowest individual matcher.
The performance improvement due to combination of

two impressions of the same $nger and the combination
of two di6erent $ngers of the same person using the pro-
posed strategy is shown in Fig. 13(a) and (b), respec-
tively. The matcher Dynamic was used. The correlation
coe4cient between the two scores from two di6erent

Fig. 13. (a) Combining two impressions of the same $nger, and (b) combining two $ngers of the same person.

impressions of the same $nger is 0.42 and between
two di6erent $ngers of the same person is 0.68 and is
directly related to the improvement in the performance
of combination. The CS for individual impressions is
1.84 and 1.87, respectively, and for the combination is
1.95. The CS for individual $ngers is 1.87 and 1.86,
respectively, and for the combination is 1.98. Combi-
nation of two impressions of the same $nger or two
$ngers of the same person using the proposed combi-
nation strategy is extremely fast. Therefore, the overall
veri$cation time is same as the individual matcher
Dynamic.

6. Summary and conclusions

We have presented a scheme for combining multi-
ple matchers (classi$ers) at decision level in an optimal
fashion. Our design emphasis is on classi$er selection
before arriving at the $nal combination. It was shown
that one of the $ngerprint matchers in the given pool of
matchers is redundant and no performance improvement
is achieved by utilizing this matcher. This matcher was
identi$ed and rejected by the matcher selection scheme.
In case of a larger number of classi$ers and relatively
small training data, a classi$er may actually degrade the
performance when combined with other classi$ers, and
hence classi$er selection is essential. We demonstrate
that our combination scheme improves the performance
of a $ngerprint veri$cation system by more than 3%. We
also show that combining multiple instances of the same
biometric or multiple units of the same biometric charac-
teristics is a viable way to improve the veri$cation sys-
tem performance. We observe that independence among
various classi$ers is directly related to the improvement
in performance of the combination.
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