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ABSTRACT 
 
We describe the design and development of a prototype 
whole-hand imaging system. The sensor is based on 
multispectral technology that is able to provide hand shape, 
fingerprints and palmprint modalities of a user’s hand by a 
single user interaction with the sensor. A clear advantage of 
our system over other unimodal sensors for these modalities 
include: (i) faster acquisition time, (ii) better quality images, 
and (iii) ability to provide spoof detection. Initial results on 
a medium-size database show good recognition performance 
based on individual modalities as well as after fusing 
multiple fingers and fusing finger and palm. The prototype 
is being refined in order to improve performance even 
further.  
 

1. INTRODUCTION 
 
Multibiometric systems utilize several biometric traits (e.g., 
fingerprint, face, iris, etc.) together in order to increase the 
overall system recognition accuracy, decrease the false 
rejects and increase user convenience. A comprehensive 
overview of such systems can be found in [1]. 
Multibiometric systems can be differentiated based on the 
specific traits they fuse (e.g., fingerprint and face), on the 
level of fusion taking place (e.g., matching score level, 
decision level), and on the method of fusing the multiple 
sources of information together (e.g., majority voting, score 
averaging).  

We report on the design and development of a 
multibiometric sensor that captures multispectral images of 
the user’s entire hand. The system described here is the first 
prototype of a sensor designed to collect useable multimodal 
biometric information under typical operating conditions, 
and additionally, in instances in which some or all of the 
hand is not in direct optical contact with the sensor platen. 
The resulting multispectral data is rich in biometric 
information providing multiple characteristics of the hand, 
including: 

 
• All four fingerprints as well as a partial thumb print 
• Major characteristics of the palm, including 

principal lines and wrinkles 
• Palm ridges and minutiae 
• Hand shape 

• Skin texture 
 

The potential advantage of a multibiometric system 
based on whole-hand imaging is that only a single user 
interaction is needed to collect the multibiometric data 
(finger, palm and hand). In addition, in our design, a single 
sensor can collect several different biometric traits, reducing 
the overall size and complexity of the multibiometric system 
when compared to other systems that use multiple sensors, 
one per trait. A comparison of the advantages of collecting 
different biometric traits (modalities) using the proposed 
multispectral sensor and conventional unimodal methods is 
summarized in Table 1. The multibiometric sensor 
described in this paper has many advantages relative to the 
corresponding conventional unimodal biometric acquisition 
methods. One minor disadvantage is an increase in 
computational requirements due to multispectral processing 
of data. However, the computational requirements are still 
quite tractable and will not be a factor as the sensor adopts 
new design methodologies and next generation of 
microprocessors. Further, the end-to-end transaction time of 
the proposed sensor is less than that of conventional 
unimodal acquisition (comprised of multiple, disjoint 
insertions for each trait) as only a single insertion and 
processing step is necessary.   

The applications for a multibiometric whole-hand 
sensor that we envisage range from commercial physical-
access applications to field deployments by various 
government organizations in providing a highly secure 
multibiometric system that is easy to use, reliable, robust 
and compact, and suitable for adverse environments. 
Further, the same system can also be used to simply acquire 
dermatoglyphic features of the hand, which can then be 
matched against latent prints in various applications.   

 
2. SENSOR CHARACTERISTICS 

 
2.1. Principles of Operation 
 
A drawing of the major optical elements of the multispectral 
whole-hand imager is shown in Fig. 1. The illumination 
source is a white-light light emitting diode (LED) which 
directly illuminates the hand resting on the platen. A portion 
of this light is diffusely reflected from the hand into the 
imaging system, which comprises an imaging lens and a 
color digital imaging array.  



Table 1. A comparison of advantages of acquiring multiple 
biometric traits using the proposed multispectral, multibiometric 
sensor vs. conventional unimodal sensors. 

 Multispectral 
Multibiometric Method 

Conventional 
Unimodal 
Acquisition 
Methods 

Fingerprints  • Robust acquisition 
under adverse 
conditions 

• Integrated acquisition 

Reduced 
computational 
requirements 

Palmprint 
(major features 
and ridges) 

• Reduced need to 
manipulate hand or 
pre-treat the skin  

• Integrated acquisition 

Reduced 
computational 
requirements 

Hand shape • Integrated acquisition Reduced 
computational 
requirements 

Skin texture • Incorporates strong 
spoof detection 

• Integrated acquisition 

N/A 

 

 
Fig. 1. Major optical components and layout of the multispectral 
whole-hand imaging system. 

Fig. 1 also shows linear polarizers in both the 
illumination and imaging paths. These polarizers are 
oriented such that they are nearly orthogonal (“crossed”) so 
that any light that passes through the illumination polarizer 
and undergoes a specular (e.g. surface) reflection into the 
imaging system is substantially attenuated by the imaging 
polarizer. This arrangement emphasizes light that has passed 
into the skin and been subjected to multiple optical 
scattering events before being imaged. In practice, as 
described later in this paper, the system has multiple direct 
illumination LEDs that turn on sequentially. Some of the 
LEDs do not have polarizers in front of them causing the 
hand to be illuminated with essentially randomly polarized 
light. Such an illumination state allows a greater portion of 
surface-reflected light to be imaged.  

In addition to the polarized and unpolarized direct 
illumination LEDs, this system also has one additional 
illumination state. This illumination state uses light from 
LEDs that illuminate the edge of the platen. A portion of 
this light is trapped within the platen due to total-internal-
reflectance (TIR) phenomena and propagates through the 
platen. At points where the skin is in contact with the platen 
the TIR effect is negated and light is able to enter the skin. 
Some of the light is diffusely reflected back out of the skin 
into the imaging system, producing an image of the contact 
regions. We refer to this illumination state as TIR 
illumination.   

A proof-of-concept system was designed and built to 
enable the collection of multibiometric, multispectral whole-
hand data. The system is illustrated in Fig. 2. The imager is 
a 14MP (4560x3048) CMOS color imager (CCAM, part 
#FCi4-14000) coupled to a F-mount 28-75mm lens 
(Tamron, part #AF09N-700). The imaging system was set to 
provide 500dpi resolution over a platen area of 
approximately 9”x6”. There are 4 different, randomly 
polarized direct illuminators at approximately 90 degree 
intervals. There is also a single cross-polarized direct 
illuminator. All direct illuminators are 5W white-light LEDs 
(Lumileds, part # LXHL-LW6C). The TIR illumination is 
provided by 28 T1-3/4 LEDs (Kingbright part # 
WP7114RWC/J) distributed around the edge of the acrylic 
platen.  
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Fig. 2. Prototype multibiometric, multispectral whole-hand 
system. 
 

Each time a hand is placed on the sensor platen, a series 
of six raw multispectral images (MSI) are collected: four 
images from the four unpolarized direct LEDs in four 
different orientations, one image collected with the cross-
polarized white-light illumination, and one image collected 
with the TIR illumination. Each of the raw, uncompressed 
8-bit images represented approximately 14MB of data. An 
example of the six raw images is shown in Fig. 3. It is 
important to note that conventional techniques for collecting 
whole-hand data are often based on just TIR methods. In 
those cases image data is collected only where the skin 
directly touches the sensor, which often represents only a 
small portion of the hand. The difference in coverage 
between direct and TIR illumination can be seen by 



comparing the TIR image (lower right) to the other five 
images in Fig. 3. 

  
Fig. 3.  Raw multispectral whole hand images. The three images 
in the top row as well as the lower left image correspond to 
unpolarized illumination conditions. The lower middle image is 
generated with cross polarization, and the lower right image is due 
to TIR illumination.  
 

3. MULTISPECTRAL HAND PROCESSING 
 

3.1. Preprocessing 
 
The initial processing step for the whole-hand MSI data 
converts the raw Bayer data (which encodes the individual 
red, green and blue color plane components into a single 
array) into a gray-scale image using a method based on local 
averages of the Bayer pattern. In this approach, the original 
pixel values are adjusted by applying spatially varying scale 
factors that are derived from the ratio of the averages and a 
smoothed version of the original Bayer pattern. In contrast 
to most common methods, e.g. [2],  which aim to restore the 
three color planes, this approach directly converts the Bayer 
pattern to a single gray-scale image.   

The next processing step segments the image into 
foreground and background portions, which is needed to 
identify the shape and region occupied by the hand. We 
performed the segmentation on the five direct-illumination 
raw images (the TIR plane did not provide useful 
information for this phase) and then combined the resulting 
segmentations into a single, overall segmentation mask, as 
illustrated in Fig. 4. 

Once the hand is segmented, localization of the 
fingertips was performed as follows: first, points on the 
perimeter of the binary segmentation map are found. After 
downsampling this list of points (in order to decrease 
computational time), associated curvatures are calculated, 
based on the cosine of angles spanned by a point and its 

neighbors in the list. Finally, the points with maximum 
curvature (that do not correspond to sections between the 
bases of two fingers) are identified as fingertips. The 
resulting (x,y) coordinates could then be used to locate a 
fixed-sized region (640x468) that localizes these fingertips, 
as illustrated in Fig. 5. 
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Fig. 4. Segmentation of the five individual raw images (upper 
row) and the resulting combined segmentation map (lower row). 

 

 
Fig. 5.  Fingertip localization based on locations of local maxima 
of the curvature of perimeter map (left). The resulting localization 
result is shown on the right. 
 
Skin Feature Extraction 

Some of the sources of biometric signal such as 
fingerprints and palmprints are best represented by a single 
processed image generated from the MSI data rather than by 
the raw images directly. A method for generating such 
composite images was developed and applied to the whole-
hand data. This method is based on a modification of the 
wavelet fusion technique proposed in [3]. The results of 
generating the composite image are illustrated in Figures 6 
and 7. Fig. 7, in particular, demonstrates the advantage of 
using multispectral techniques to extract skin features even 
in regions of the hand where a conventional sensing 
technology (TIR) fails. 
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Fig. 6. Fingerprint image (c) extracted from the MSI data 
consisting of directly illuminated raw images (a) and a TIR image 
(b). The minutiae (shown in cyan) in (c) are identified by NEC 
fingerprint extraction software. 
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           (a)                          (b)                                (c) 
Fig. 7.  Metacarpal skin feature (c) extracted from the MSI data 
((a)). Note the ability of our imaging system to extract high quality 
features even in regions where conventional images (TIR shown in 
(b)) contain little or no information. 
 
3.2. Experimental Data 
 
An investigation was conducted to ensure that usable 
biometric information could be extracted and matched from 
such features. In order to demonstrate this ability, a 
medium-size data set was collected on 50 volunteers over 
two different days. During each visit that a volunteer made, 
3 MSI datasets were collected for both the left and right 
hands. This resulted in 600 MSI datasets corresponding to 
100 unique hands. 
 
3.3. Fingerprint Matching 
 
Each of the 5 fingerprint regions on the composite images 
generated from the study described previously was 
automatically identified and the fingerprints were extracted, 
resulting in composite fingerprint images similar to the one 
illustrated in Fig. 6. Resulting fingerprint images were then 
processed with a commercial feature extractor (NEC PID) to 
identify and record a minutiae template. This algorithm is 
shown to be extremely accurate in third party evaluations 
(e.g., [4]). The generated templates were then matched to 
each of the other corresponding images in the dataset. Fig. 8 
shows five ROC curves, one for each finger and thumb. As 
seen here, ring finger results in the best performance for a 
large section of the ROC. As expected, the performance of 

the thumb is degraded relative to that of the other fingers 
since the system captures only a partial thumbprint due to 
the hand placement geometry on the platen.  
 

 
Fig. 8. ROC curves for individual fingerprint matches.  
 

A simple method of multibiometric fusion was applied 
by summing the scores from all the five fingerprint matches 
corresponding to each pair of images. This resulted in a 
perfect separation of genuine and imposter matches on this 
dataset. 
 
3.4. Palmprint Matching 
 
Palmprints have a long history in forensics, but they have 
only recently been recognized as a viable and useful 
biometric in civilian applications. Unlike palmprint 
identification systems used in forensics, the systems used in 
access control types of applications can work effectively 
with low-resolution palmprint images (~100 ppi). According 
to the features used for palmprint representation, we can 
categorize the various palmprint identification methods into 
three categories [5]: (i) structural feature-based, (ii) 
appearance-based, and (iii) texture-based. The best 
palmprint matching approach, in terms of authentication 
accuracy, was introduced by Sun et al. [5]. The main idea of 
this method is to compare two line-like image regions and to 
generate one-bit feature code representing the outcome of 
the comparison (at each image location). One of the 
advantages of using this approach is that even if the image 
intensities vary due to, say, non-uniform illumination, the 
ordinal relationship among the neighborhood regions in the 
image maintains some stability. We have adapted this 
approach in our experiments since the whole hand MSI 
sensor does introduce a non-uniform illumination effect 
across different bands of the multispectral hand image. 
 
Preprocessing 

The palmprint preprocessing stage first enhances the 
image contrast and binarizes the gray scale image. A single 



binary hand image is obtained by utilizing a voting scheme 
for each pixel in individual binarized band images. 
Morphological operators are then applied to remove the 
noise in the background and fill in the holes in the hand 
region, producing a binary image of the hand. This binary 
image helps us to remove the thumb region since it is not of 
interest in this phase. The mean radial distance from the 
points on the hand contour to the hand centroid is computed; 
the points with the minimum mean radial distance are 
selected as the anchor points.  

The two anchor points that we detect help us in two 
major tasks: (i) alignment of hand image. The origin of the 
coordinate system, after the alignment, is defined to be the 
midpoint of two anchor (inter-finger) points: the point 
between index and middle finger and the point between the 
middle and pinky finger. The slope of the line, α, passing 
through the anchor points is determined and each band 
image is rotated in the direction of α around the anchor 
midpoint; (ii) extracting a region of interest (ROI) that is the 
1000x1000 region which lies on the horizontal line passing 
through the midpoint of each band image (Fig. 9); the 
average size of the palmprint image is 1500x1300. 
  

 
Fig. 9.  The ROI in the rotated hand image, anchor points and the 
anchor midpoint.  
 

Since the ordinal feature representation [5] is based on 
the coarse level palmprint information, we downscale the 
ROI image from 1000x1000 to 256x256 (Fig. 10). This 
reduces the feature extraction and matching time 
significantly. 

 
Feature Extraction 

To extract palmprint features, each ROI is filtered with 
an orthogonal line ordinal filter (OF) introduced in [5] 
 

)2/,,(),,()( πθθθ +−= yxfyxfOF ,      
        

where f is the 2D Gaussian function with orientation θ. In 
our experiments, we choose three filters with values of θ as 
0, π/6 and π/3; the horizontal and vertical scales of the 
Gaussian filter, δx and δy, are set to 0.5 and 0.1, respectively. 
The filtered images are quantized to binary images 
according to the sign of the filter response at each pixel 
(Fig. 11). 

 

 
Fig. 10.  The original ROI and the down-sampled ROI. 

 

 
Fig. 11. Ordinal feature vectors for θ equal to 0, π/6 and π/3 for 
the ROI shown in Fig. 10. 
 
Matching 

The matching of two palmprints is done separately for 
each raw MSI image. The dissimilarity score for each band 
is obtained by averaging the normalized Hamming distances 
of the three corresponding feature vectors. To minimize the 
alignment related problems, the features are translated 
vertically and horizontally in the range of [-5, 5] pixels; the 
minimum distance score obtained from the translated 
images is considered to be the final score for that specific 
band. Since for each palmprint pair, we have five distance 
scores in the range [0,1], one per band, a score level fusion 
is needed. Among the various score level fusion methods 
that we tried, the product-rule provided the best 
performance of 91.5% genuine acceptance rate (GAR) at a 
false acceptance rate (FAR) of 0.01%.   

 
3.5. Fusion of Fingerprint and Palmprint  
 
To demonstrate fusion of information from different 
biometric modalities, we chose to fuse the match scores 
from a single finger (ring) to the scores generated by the 
palms. Score level fusion of fingerprint and palmprint was 
achieved by employing a weighted sum-rule method 
(palmprint weight: 0.15, fingerprint weight: 0.85). Before 
summing the scores, the palm print match scores were 
converted from distance to similarity by multiplying them 
by -1. Both fingerprint and palmprint match scores were 
normalized to the scale of [0,1] by utilizing min-max 
normalization technique [1]. The resulting ROC curves 
corresponding to the individual finger and palm biometrics 
as well as the fused result are shown in Fig. 12. Fusing the 
information from a single fingerprint and a palm print 
resulted in match performance that clearly exceeds that of 
either of the individual biometric traits. 



 
 

Fig. 12. ROC curve for fusion of index finger and palm. 
 

While a number of previous attempts have been made 
to fuse all or a subset of palmprint, hand shape and 
fingerprint information [6], our device is the only one that 
captures all the modalities simultaneously using a single 
sensor/device. As an example, in [7], the palmprint and 
hand shape came from one sensor, but the fingerprints were 
captured by a different sensor. Unlike some other 
palmprint/hand shape sensors, our integrated sensor does 
not constrain the user in placement of his hand (e.g., with 
pegs). Another significant difference between our fusion 
study and previous studies involving the same three 
modalities is that our database is a true multimodal and not 
virtual one as in [7]. In other words, the same users are 
providing all the three biometric modalities in our database 
whereas in [7], the fingerprint images came from a different 
user population than the hand shape and palmprints. Further, 
the recognition results of our study are significantly better 
than other studies because in addition to fusion, our sensor 
is based on multispectral imaging technology that provides 
higher quality images [8]. 

 
4. CONCLUSIONS 

 
A prototype of a multibiometric, multispectral whole-hand 
sensor system was designed, built and used to collect a 
medium-size set of data. Analysis of these data demonstrate 
that multiple biometric features can be extracted from the 
multispectral images of the hand including fingerprints, 
principle lines and wrinkles of the palm, ridges and minutia 
on the palm, skin texture, and hand shape. A demonstration 
of the ability to perform biometric fusion was conducted in 
two different ways. First, biometric fusion was performed 
across match scores produced by the five fingers, which 
produced perfect classification for the dataset. Second, the 
scores from a single finger were fused with scores generated 
from the major features of the palm, resulting in greatly 

improved performance relative to either of the individual 
biometrics. 

Our future work will concentrate on developing and 
refining each of the individual biometrics as well as the 
fusion techniques used to combine them. Larger evaluation 
studies will be conducted to better estimate the performance 
of this multispectral multibiometric sensing system.  
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