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Abstract—We examine the performance of multimodal biometric authentication

systems using state-of-the-art Commercial Off-the-Shelf (COTS) fingerprint and

face biometric systems on a population approaching 1,000 individuals. The majority

of prior studies of multimodal biometrics have been limited to relatively low accuracy

non-COTS systems and populations of a few hundred users. Our work is the first to

demonstrate that multimodal fingerprint and face biometric systems can achieve

significant accuracy gains over either biometric alone, even when using highly

accurate COTS systems on a relatively large-scale population. In addition to

examining well-known multimodal methods, we introduce new methods of

normalization and fusion that further improve the accuracy.

Index Terms—Multimodal biometrics, authentication, matching score,

normalization, fusion, fingerprint, face.
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1 INTRODUCTION

IT has recently been reported [1] to the US Congress that
approximately 2 percent of the population does not have a legible
fingerprint and, therefore, cannot be enrolled into a fingerprint
biometrics system. The report recommends a system employing
dual biometrics in a layered approach for large-scale applications
such as border crossing. Use of multiple biometric indicators for
identifying individuals, known as multimodal biometrics, has been
shown to increase accuracy [2] and population coverage, while
decreasing vulnerability to spoofing.

The key to multimodal biometrics is the fusion of various
biometric modality data at the feature extraction, matching score, or
decision levels [3]. Our methodology focuses on fusion at the
matching score level. This approach has the advantage of utilizing as
much information as possible from each biometric modality, while
at the same time enabling the integration of proprietary Commercial
Off-the-Shelf (COTS) biometric systems. Most vendors of biometric
systems do not like to release the feature values computed by their
systems. Note that a normalization step is generally necessary
before combining scores originating from different matchers.

Majority of published studies examining fusion techniques
have been limited to small populations (a few hundred
individuals at most), while employing low performance non-
commercial (e.g., locally developed) biometric systems. In this
paper, we investigate the performance gains achievable by COTS
multimodal biometric systems using a relatively large (nearly
1,000 individuals) population. Further, we propose new normal-
ization and fusion methods that improve the multimodal system
performance. A preliminary version of this research appeared in

[4]. A version of this paper including color figures can be found
at http://biometrics.cse.msu.edu/publications.html.

2 RELATED WORK

A number of studies showing the advantages of multimodal
biometrics have appeared in the literature. Brunelli and Falavigna
[5] used hyperbolic tangent (tanh) for normalization and weighted
geometric average for fusion of voice and face biometrics. They also
proposed a hierarchical combination scheme for a multimodal
identification system. Kittler et al. [6] have experimented with
several fusion techniques for face and voice biometrics, including
sum, product, minimum, median, and maximum rules and they
have found that the sum rule outperformed others. Kittler et al. [6]
note that the sum rule is not significantly affected by the probability
estimation errors and this explains its superiority.

Hong and Jain [7] proposed an identification system based on
face and fingerprint, where fingerprint matching is applied after
pruning the database via face matching. Ben-Yacoub et al. [8]
considered several fusion strategies, such as support vector
machines, tree classifiers, and multilayer perceptrons, for face and
voice biometrics. The Bayes classifier is found to be the best method.
Ross and Jain [9] combined face, fingerprint, and hand geometry
biometrics with sum, decision tree, and linear discriminant-based
methods. The authors report that the sum rule outperforms others.

It should be noted that the number of samples per subject in the
databases used by researchers affects the complexity of the
appropriate fusion systems. More samples may allow utilizing
complex knowledge-based (e.g., perceptron) techniques.

3 SCORE NORMALIZATION

In this section, we present three well-known normalization
methods, and a new method, which we call adaptive normalization.
We denote a raw matching score as s, from the set S of all scores for
that matcher, and the corresponding normalized score as n.

Min-Max (MM): This method maps the raw scores to the [0, 1]
range. The quantities maxðSÞ and minðSÞ specify the end points of
the score range:

n ¼ s�minðSÞ
maxðSÞ �minðSÞ : ð1Þ

Z-score (ZS): This method transforms the scores to a distribu-
tion with mean of 0 and standard deviation of 1. The operators
meanðÞ and stdðÞ denote the arithmetic mean and standard
deviation operators, respectively:

n ¼ s�meanðSÞ
stdðSÞ : ð2Þ

Tanh (TH): This method is among the so-called robust statistical
techniques [10]. It maps the raw scores to the (0, 1) range:

n ¼ 1

2
tanh 0:01

ðs�meanðSÞÞ
stdðSÞ

� �
þ 1

� �
: ð3Þ

Adaptive (AD): The errors of individual biometric matchers
stem from the overlap of the genuine and impostor score
distributions. We characterize this overlap region by its center c
and its width w. To decrease the effect of this overlap on the fusion
algorithm, we propose to use an adaptive normalization procedure
that aims to increase the separation of the genuine and impostor
distributions, while still mapping the scores to [0, 1] range.

Previously, test normalization (T-norm) [11] that can be thought
of as adaptive normalization considering impostor scores was
proposed.

Our adaptive normalization is formulated as nAD ¼ fðnMMÞ,
where fðÞ denotes the mapping function that is applied to the MM
normalized scores, nMM . We have considered the following three
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choices for the function fðÞ. These functions use two parameters of
the overlapping region, c and w, which can be either provided by
the vendors or estimated by the system integrator. In this work, we
estimate these parameters.

. Two-Quadrics (QQ): This function is composed of two
quadratic segments that change the concavity at c (Fig. 1a):

nAD ¼
1
c n

2
MM; nMM � c

cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� cÞðnMM � cÞ

p
; otherwise:

�
ð4Þ

For comparison, the identity function, nAD ¼ nMM , is also

shown by the dashed lines in Fig. 1.
. Logistic (LG): Here, fðÞ takes the form of a logistic

function. The general shape of the curve is similar to that
shown for function QQ in Fig. 1a. It is formulated as

nAD ¼ 1

1þA � e�B�nMM
; ð5Þ

where the constants A and B are calculated as A ¼ 1
� � 1

and B ¼ lnA
c . Here, fð0Þ is equal to the constant �, which is

selected to be a small value (0.01 in this study). Note that,
due to this specification, the inflection point of the logistic
function occurs at c, the center of the overlap region.

. Quadric-Line-Quadric (QLQ): The overlap zone, with
center c and width w, is left unchanged while the other
regions are mapped with two quadratic function segments
(Fig. 1b):

nAD¼

1

c�w
2ð Þn

2
MM; nMM � c� w

2ð Þ
nMM; c� w

2ð Þ<nMM � cþw
2ð Þ

cþ w
2ð Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c� w

2ð Þ nMM � c� w
2ð Þ;

p
otherwise:

8><
>: ð6Þ

4 BIOMETRIC FUSION

We experimented with five different fusion methods, namely,
simple-sum, min-score, max-score, matcher weighting, and user
weighting. The first three are well-known fusion methods; the last
two are new and they take into account the performance of
individual matchers in weighting their contributions. The
quantity nm

i represents the normalized score for matcher m
(m ¼ 1; 2; . . . ;M, where M is the number of matchers) applied to
user i (i ¼ 1; 2; . . . ; I, where I is the number of individuals in the
database). The fused score for user i is denoted as fi.

. Simple-Sum (SS): fi ¼
PM

m¼1 n
m
i ; 8i.

. Min-Score (MIS): fi ¼ minðn1
i ; n

2
i ; . . . ; n

M
i Þ;8i.

. Max-Score (MAS): fi ¼ maxðn1
i ; n

2
i ; . . . ; n

M
i Þ; 8i.

. Matcher Weighting (MW): Weights are assigned to the
individual matchers based on their Equal Error Rates

(EERs). Denote the EER of matcher m as rm,
m ¼ 1; 2; . . . ;M . Then, the weight wm associated with
matcher m is calculated as

wm ¼
1

�PM
m¼1

1
rm

� �

rm
: ð7Þ

Note that 0 � wm � 1;8m,
PM

m¼1 w
m ¼ 1 and the weights

are inversely proportional to the corresponding errors; the

weights for more accurate matchers are higher than those of

less accurate matchers. The MW fused score for user i is

calculated as

fi ¼
XM
m¼1

wmnm
i ;8i: ð8Þ

. User Weighting (UW): The User Weighting fusion method

assigns weights to individual matchers that may be

different for different users. Jain and Ross [12] proposed

a similar scheme, but they exhaustively searched a coarse

sampling of the weight space, where weights are multiples

of 0.1 in the range [0, 1]. Their method can be prohibitively

expensive if the number of fused matchers, M, is high,

since the weight space is <M ; further, coarse sampling as

used in [12] may not find the optimal weight set. In our

method, the UW fused score for user i is calculated as

fi ¼
XM
m¼1

wm
i n

m
i ;8i; ð9Þ

where wm
i represents the weight of matcher m for user i.

The calculation of these user-dependent weights is based on the

wolf-lamb concept introduced by Doddington et al. [13] for

unimodal speech biometrics. They label the users who can be

imitated easily as lambs (namely, impostors can provide biometric

data similar to that of lambs); wolves on the other hand are those

who can successfully imitate some other users. Lambs and wolves

decrease the performance of biometric systems since they lead to

false accepts. We extend these notions to multimodal biometrics by

developing a metric of lambness for every pair of user and matcher,

(i, m). This lambness metric is then used to calculate the weights

for biometric fusion. Thus, if user i is a lamb (can be imitated easily

by some wolves) in the space of matcher m, the weight associated

with this matcher is decreased for user i. The main aim is to

decrease the lambness of user i in the space of combined matchers.

We assume that, for every (i, m) pair, the mean and standard

deviation of the associated genuine and impostor distributions are

known (or can be estimated, as is done in this study). Denote the
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Fig. 1. Mapping functions for (a) QQ and (b) QLQ adaptive normalizations.



means of these distributions as �m
i ðgenÞ and �m

i ðimpÞ, respectively,
and denote the standard deviations as �mi ðgenÞ and �mi ðimpÞ,
respectively. We use the d-prime metric [14] as a measure of the

separation of these two distributions in formulating the lambness

metric for user i and matcher m as:

dmi ¼ �m
i ðgenÞ � �m

i ðimpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�mi ðgenÞÞ

2 þ ð�mi ðimpÞÞ2
q : ð10Þ

If dmi is small, user i is a lamb for some wolves and if dmi is large, i is

not a lamb. We structure the user weights to be proportional to this

lambness metric as follows:

wm
i ¼ 1

PM
m¼1

dmi

� dmi : ð11Þ

Note that 0 � wm
i � 1; 8i; 8m, and

PM
m¼1 w

m
i ¼ 1;8i.

Fig. 2 shows the location of potential wolves for a specific (i, m)

pair with a block arrow, along with the associated genuine and

impostor distributions. This user-dependent weighting scheme

addresses the issue ofmatcher-user relationship: Namely, a user can

be lamb for a specific matcher, but also she can be a wolf for some

other matcher. We find the user weights by measuring the

respective threat of wolves living in different matcher spaces for

every user. Different biometric modalities or matchers can affect the

lambness of each user differently.

5 EXPERIMENTAL RESULTS

We used the FERET image database [15] for face matching. The

fingerprint image database that we used is proprietary and we

cannot reveal many of its details; the fingerprint images were

obtained with a live-scan, 500 dpi sensor, and their characteristics

(e.g., size) are similar to those of public fingerprint databases. We

had two fingerprint images for each of the 972 individuals, and we

used two frontal face images of 972 individuals from the FERET

database. Assuming that face and fingerprint biometrics are

statistically independent for an individual, a widely accepted

and reasonable practice in multimodal biometrics research, we

associated an individual from the face database with an individual

from the fingerprint database, to create a virtual subject. Continu-

ing in this fashion consistently, we arrived at our database

consisting of 972 subjects, each having two face and two fingerprint

images. One face and one fingerprint image for each subject are

labeled as target, the remaining face and fingerprint image are

labeled as query. For determining the normalization and fusion

parameters we used the entire database. The need for virtual

subjects arises since there is no real multimodal database (where

multiple biometrics attributes are measured on the same indivi-

dual) of comparable size available in the public domain.

Matching scores were generated from four COTS biometric
systems—three fingerprint systems and one face system. For each
of these four systems, all query set images were matched against
all target set images, yielding 972 genuine scores (where images
are from the same subject) and 943,812 (972� 971) imposter scores.
The normalization and fusion operations are carried out using the
generated similarity matrices to arrive at the final fused matching
scores. The performance of individual matchers and different
(normalization, fusion) permutations are presented via EER values,
number of false rejections for subjects, and Receiver Operating
Characteristics (ROC) curves. Among the three adaptive normal-
ization methods (QQ, LG, and QLQ) proposed before, the
QLQ method gave the best results in our experiments, so it is
selected as the representative adaptive normalization method. We
carried out all possible permutations of (normalization, fusion)
methods on our database of 972 subjects. Table 1 shows the
EER values for these permutations. Note that EER values for the
three individual fingerprint matchers (ordered Vendor 1, Vendor 2,
and Vendor 3) and the face matcher are found to be 3.96 percent,
3.72 percent, 2.16 percent, and 3.76 percent, respectively. The best,
namely, the lowest, EER values in individual columns are
indicated with bold typeface; the best EER values in individual
rows are indicated with a star (*) symbol.

As seen in Table 1, all of the fusion methods, except MIS fusion,

lead to better performance than any of the individual matchers.

Generally, MM and QLQ normalization methods outperform other

normalization methods; SS, MW and UW fusion methods outper-

form other fusion methods.

Further, we analyzed the system performance in terms of the

number of falsely rejected subjects: At 1 percent and 0.1 percent

FAR (False Accept Rate) values, we counted the number of false

rejects for the individual matchers and QLQ/SS (namely, scores

are normalized with QLQ method, and they are combined using SS

fusion method) multimodal system. As shown in Table 2, the

number of false rejects is considerably lower for the multimodal

system compared to all of the unimodal matchers.

5.1 Normalization

Fig. 3 shows the effect of each normalization method on system

performance for different (but fixed) fusion methods. The

ROC curves for the three fingerprint matchers and the face matcher

are also shown for comparison. ForMWfusion (Fig. 3d), thematcher
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Fig. 2. Score distributions for a (user, matcher) pair: The arrow indicates the

location of wolves for lamb i.

TABLE 1
EER Values for (Normalization, Fusion) Permutations (%)

TABLE 2
Number of False Rejects with Matchers Operating

at 1 Percent and 0.1 Percent FAR



weights, calculated according to (7), are: 0.2, 0.22, 0.37, and 0.21, for

the three fingerprint matchers and the face matcher, respectively.

For UW fusion (Fig. 3e), the mean user weights for these four

individual biometric matchers, calculated from (11), are 0.14, 0.64,

0.17, and 0.05, respectively. This implies that, on average, fingerprint

matcher V2 (corresponding to a mean user weight of 0.64) is the
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Fig. 3. Effects of normalization methods on system performance for different fusion methods: (a) SS fusion, (b) MIS fusion, (c) MAS fusion, (d) MW fusion, and
(e) UW fusion.



safest matcher for the lambs; whereas the space of the face matcher

(corresponding to a mean user weight of 0.05) is filled with wolves

(i.e., thosewaiting to be falsely accepted as some of the lambs). From

Fig. 3 and Table 1, we see that QLQ andMMnormalizationmethods

lead to the best performance, except for MIS fusion. Between these

two normalization methods, QLQ is better than MM for fusion

methods MAS and UW; and about the same as MM for the others.

5.2 Fusion

Fig. 4 shows the effect of each fusionmethod on systemperformance

for different (but fixed) normalization methods. From Fig. 4 and

Table 1, we see that fusion methods SS, MAS, and MW generally

perform better than the other two (MIS and UW). But for FAR in the

range of [0.01 percent, 10 percent], UW fusion is better than the

others. One reason that the performance of UW fusion drops below

0.01 percent FAR may be that the estimation errors become

dominant.

Note that parameter update (for normalization and/or fusion

methods) can be employed for addressing the time varying

characteristics of the target population. For example, the matcher

weights can be updated every time a new set of EER figures is

estimated; the user weight can be updated if the fusion system

detects changes in the vulnerability of that user due to fluctuations

in their lambness, etc.

6 CONCLUSIONS

We have examined the performance of multimodal biometric

authentication systems using state-of-the-art Commercial Off-the-

Shelf (COTS) fingerprint and face biometric matchers on a

population approaching 1,000 individuals, which is considerably

larger than previous studies. We have introduced new normal-

ization and fusion methods to accomplish matching score level

fusion of multimodal biometrics. Our work shows that COTS-

based multimodal fingerprint and face biometric systems can

achieve better performance than unimodal COTS systems. How-

ever, the performance gains are smaller than those reported by

prior studies of non-COTS based multimodal systems. This was
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Fig. 4. Effects of fusion methods on system performance for different normalization methods: (a) MM normalization, (b) ZS normalization, (c) TH normalization,

and (d) QLQ normalization.



expected, given that higher-accuracy COTS systems leave less

room for improvement via fusion. Further, if we consider relative

performance gains, an EER improvement of 1 percent will mean

halving of false accept and false reject numbers when we have a

highly accurate system (e.g., originally having 2 percent EER). But,

this 1 percent EER decrease may not translate to a large

improvement if the underlying system was less accurate (e.g.,

originally having 5 percent EER), as it will lead to just 20 percent

decrease in false accept and false reject numbers.

Our analysis of normalization and fusion methods suggests that

for authentication applications that normally deal with open

populations (e.g., airports), whose specific characteristics are not

known in advance, Min-Max normalization and Simple-Sum

fusion methods can be employed. For applications that deal with

closed populations (e.g., an office environment), where repeated

user samples and their statistics can be accumulated, the proposed

QLQ adaptive normalization and UW user weighting fusion methods

can be used.

REFERENCES

[1] “Summary of NIST Standards for Biometric Accuracy, Tamper Resistance,
and Interoperability,” NIST Report to the United States Congress, Nov.
2002.

[2] Biometrics: Personal Identification in Networked Society, A.K. Jain, R. Bolle, and
S. Pankanti, eds., Kluwer Academic, 1999.

[3] D. Maltoni, D. Maio, A.K. Jain, and S. Prabhakar, Handbook of Fingerprint
Recognition. Springer, 2003.

[4] M. Indovina, U. Uludag, R. Snelick, A. Mink, and A. Jain, “Multimodal
Biometric Authentication Methods: A COTS Approach,” Proc. MMUA 2003,
Workshop Multimodal User Authentication, pp. 99-106, Dec. 2003.

[5] R. Brunelli and D. Falavigna, “Person Identification Using Multiple Cues,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 17, no. 10, pp. 955-
966, Oct. 1995.

[6] J. Kittler, M. Hatef, R.P.W. Duin, and J. Matas, “On Combining Classifiers,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 3, pp. 226-
239, Mar. 1998.

[7] L. Hong and A.K. Jain, “Integrating Faces and Fingerprints for Personal
Identification,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20,
no. 12, pp. 1295-1307, Dec. 1998.

[8] S. Ben-Yacoub, Y. Abdeljaoued, and E. Mayoraz, “Fusion of Face and
Speech Data for Person Identity Verification,” IEEE Trans. Neural Networks,
vol. 10, no. 5, pp. 1065-1075, 1999.

[9] A. Ross and A.K. Jain, “Information Fusion in Biometrics,” Pattern
Recognition Letters, vol. 24, no. 13, pp. 2115-2125, 2003.

[10] P.J. Huber, Robust Statistics. Wiley, 1981.
[11] R. Auckenthaler, M. Carey, and H. Lloyd-Thomas, “Score Normalization

for Text-Independent Speaker Verification Systems,” Digital Signal Proces-
sing, vol. 10, pp. 42-54, 2000.

[12] A.K. Jain and A. Ross, “Learning User-Specific Parameters in a Multi-
biometric System,” Proc. IEEE Int’l Conf. Image Processing, pp. 57-60, Sept.
2002.

[13] G. Doddington, W. Liggett, A. Martin, M. Przybocki, and D. Reynolds,
“Sheeps, Goats, Lambs and Wolves: A Statistical Analysis of Speaker
Performance in the NIST 1998 Speaker Recognition Evaluation,” Proc.
ICSLD 98, Nov. 1998.

[14] R.M. Bolle, S. Pankanti, and N.K. Ratha, “Evaluation Techniques for
Biometrics-Based Authentication Systems (FRR),” Proc. 15th Int’l Conf.
Pattern Recognition, vol. 2, pp. 831-837, Sept. 2000.

[15] “The Facial Recognition Technology (FERET) Database,”http://
www.itl.nist.gov/iad/humanid/feret/feret_master.html, 2004.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 3, MARCH 2005 455


