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A B STR AC T  

Use of biometrics for person identification has increased tremendously over the past decade, e.g., in large scale 
national identification programs, for law enforcement and border control applications, and social welfare 
initiatives. For such large scale applications with a diverse target population, unimodal biometric systems, which 
use a single biometric trait (e.g., fingerprints), are inadequate due to their limited capacity. Multimodal biometric 
systems, which fuse multiple biometric traits (e.g., fingerprints and face), are required for large-scale identification 
applications, e.g., de-duplication where the goal is to ensure that the same person does not have two different 
official credentials (e.g., national ID card) based on different credentials. While multimodal biometric systems 
offer several advantages (e.g., improvement in recognition accuracy, decrease in failure to enroll rate), they require 
large enrollment and de-duplication times. This paper proposes an adaptive sequential framework to automatically 
determine which subset of biometric traits and biographic information is adequate for de-duplication of a given 
query. An analysis of this strategy is presented on a virtual multi-biometric database of 27,000 subjects 
(fingerprints from NIST SD14 dataset and face images from the PCSO dataset) along with biographic information 
sampled from the US census data. Experimental results, using three-fold cross-validation, show that without any 
loss in de-duplication accuracy, on average, for 63.18% (of a total of 27,000) of the queries, only fingerprint 
capture is adequate, for an additional 28.69% of queries, both fingerprint and face are required, and only 8.13% of 
the queries needed biographic information in addition to fingerprint and face. 
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1. Introduction

Biometric systems are becoming ubiquitous for automated
person recognition. These systems are based on the measurement 
of purportedly unique anatomical (e.g. fingerprint) and 
behavioral traits (e.g. handwriting) of an individual [1]. The 
applications of biometric systems range from traditional security 
applications (e.g., forensics and surveillance) to more recent 
applications such as mobile user authentication and social 
welfare programs. 

The growing prevalence of biometrics is evident from the 
large scale deployments at the national level, such as the 
Biometric Identity Management System of the US Department of 
Homeland Security1 and the Aadhaar project of the Government 
of India2. The primary purpose of using biometrics in large scale 
applications is to ensure that no individual is able to assume more 
than one identity, e.g., for obtaining national identity cards and 
social benefits. The process of detecting and removing duplicate 
identities is commonly referred to as de-duplication. Besides, de-
duplication is also required in many other applications, e.g., a 
user may assume duplicate or false identities in border protection 
or law enforcement applications, or to avoid harsher penalties for 
repeat offenders3. In a civilian scenario, multiple identities may 
be used by an individual for tax evasion4. Identity de-duplication 
is also needed when several biometric databases are merged 
together [2], e.g. databases from multiple law enforcement 
agencies.  

Large-scale biometric systems that rely on a single instance of 
biometric evidence (unimodal systems) suffer from limitations 
such as limited capacity to distinguish between a large number of 
identities, non-universality (absence of a biometric trait), noisy 
data, and spoof attacks [3]. These limitations can be overcome to 
a large extent by using multimodal systems5 that fuse information 
from multiple biometric traits [4]. 

In addition to biometric traits, biographic information (e.g. 
) can also be used for de-duplication. A few prior 

studies [5, 6] have shown that fusion of biographic information 
with biometrics can improve the de-duplication accuracy. 
However, biographic information has the following limitations 
[7, 8]: (a) data entry errors by human operators; (b) lack of a 
standard format and standard transliteration; (c) similar 
biographic information (e.g. name) of different individuals; and 
(d) data integrity issues due to change in certain biographic
information e.g., change of address.

De-duplication in multimodal systems is typically performed 
by comparing query biometric and biographic information 
against the records stored in the reference database. The final 
decision on presence of duplicate identity is based on the fusion 
of scores from comparison of biometric and biographic 
information. To maintain the integrity of the biometric system [9, 
10, 11], the identification system should be highly accurate and 
computationally efficient. Consider the scenario of a national 
identification system (e.g., Aadhaar) with a target enrolment of 
over a billion individuals. Even a conservative estimate of false 
positive identification rate (FPIR) of the order of 0.0025% 
translates to tens of thousands of individuals being falsely 
identified as duplicates. 

1 www.dhs.gov/obim 
2 uidai.gov.in 
3 www.law.stanford.edu/organizations/programs-and-
centers/stanford-three-strikes-project/three-strikes-basics 
4 businesstoday.intoday.in/story/tax-evaders-hold-multiple-pan-
cards-cag-report/1/14157.html 
5 www.nist.gov/itl/idms/nextgen_biometrics.cfm 

This paper proposes an adaptive sequential fusion of biometric 
and biographic information for efficient de-duplication. For each 
query, the proposed system selects only those biometric traits and 
biographic information deemed necessary, by the sequential 
selection strategy, to maintain de-duplication accuracy. 
Experimental results on a virtual multimodal database6 
(fingerprint images from the NIST SD 14 fingerprint database 
[12], mugshots from the PCSO database [13], along with 
biographic information spawned from the US Census [14] for 
27,000 subjects) show the viability of the proposed scheme. More 
specifically, our system correctly performs de-duplication of 
63.18% of the queries only using fingerprints. For an additional 
28.69% of the queries, fusion of both fingerprint and face scores 
allows for correct de-duplication. Further, incorporation of 
biographic information is able to de-duplicate the identities of the 
remaining queries. 

The rest of the paper is organized as follows. Section 2 briefly 
reviews prior work on biometric and biographic fusion. Section 3 
describes the proposed algorithm and explains the rationale 
behind it. Section 4 presents our experimental results along with 
a comparison with published studies. The system limitations and 
directions for future research have been presented in Section 5. 

2. Background

De-duplication of identities in large-scale applications consists
of comparison and fusion of biometric and biographic 
information. 

2.1. Fusion of multibiometric information 

In most large-scale multi-modal biometric systems, the three 
traits most commonly used for de-duplication are fingerprint, iris 
and face. Fusion of complementary traits, such as a fingerprints 
and iris, is known to provide superior de-duplication performance 
[15]. In general, biometric traits can be fused at different levels: 
sensor level, feature level, match score level, rank level and 
decision level. Score level fusion which is the most widely used 
procedure is adopted here [16]. 

2.2. Matching of biographic information 

Typical biographic information used for de-duplication 
co name, and address. 
While the use of biographic information in conjunction with 
biometric information, has been shown to improve de-duplication 
accuracy [5, 6], biographic information alone can lead to possible 
de-duplication errors. This is because different individuals may 
share the same biographic information, e.g., name and address. 
The choice of biographic similarity score depends on the 
biographic data type. For nominal data (e.g., gender, race), the 
similarity is binary ( On the other hand, 
for textual data approximate string matching distance (e.g., 
Levenshtein distance [17]), is often used. Other metrics specific 
to data types are also sometimes used, e.g., geospatial distance to 
compare addresses. 

2.3. Score normalization 

The similarity scores for individual biometric traits and 
biographic information are generated by different algorithms and, 
therefore, may have different upper and lower bounds (e.g., 
[0,100], [0,1], etc.). The standard practice, in such a case, is to 
normalize the scores to a common range prior to fusion. The 
choice of score normalization scheme (e.g., min-max or z-score 
normalization), in general, depends on the underlying score 

6 Virtual multimodal databases contain records which are created by 
consistently pairing a user from one unimodal database (e.g., face) 
with a user from another database (e.g., fingerprint). The creation of 
virtual users is based on the assumption that different biometric traits 
of the same person are independent [15]. 
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distributions. Given the normalized scores, different fusion 
strategies can be used, e.g., density based, classifier based, 
quality based, or based on a dynamic score selection strategy [4]. 

2.4. Prior Work 

Tyagi et al. fused biographic information (name and address) 
with biometric similarity scores (fingerprint and face) in NIST 
BSSR1 dataset [5, 18]. They showed that the recognition 
accuracy improves from 94.73% when no biographic information 
is used to 98.93% after fusion. Bhatt et al. [6] fused 

, and address with fingerprint. The 
recognition accuracy when only fingerprint is used is 76.6%, 
which improves to 86.5% when biographic information is fused 
with fingerprints. There are two limitations of [5, 6]: (i) the state-
of-the-art comparison algorithms were not used, and (ii) the 
computational efficiency was not considered. Due to the 
complementary nature of biometric and biographical information, 
a few commercial systems that fuse biometric traits and 
biographic data [19] are available as well. Table 1 compares 
published studies with the proposed study.  

Table 1. Comparison of studies on fusion of biometric and biographic information 

Study 
Target 

application 
Biometric trait and 

database 

Biographic 
information and 

database 

Matching algorithm and fusion 
strategy 

Accuracy Comments 

Bolme et 
al. [20] 

Person 
(celebrity) 
identification 

1,331 face images of 118 
celebrities  

Textual Information 
(~400 words) from 
celebrity websites 

Biometric: EBGM for face 
Biographic: Cosine of angle 
between word frequencies 
Fusion: Weighted sum 

Biometric: 22% 
Biographic: 22% 
Fusion: 35% 

All scores fused for 
every query.  
Small database. 

Tyagi et 
al. [5] 

De-duplication 

Two fingerprint match (left 
and right index) scores of 
3K subset (1.5K each for 
training and testing) from 
NIST BSSR1 [18] 

Names and addresses 
from an electoral 
record dataset  

Biometric: Precomputed 
fingerprint scores in BSSR1 
Biographic: Matching algorithm 
not specified 
Fusion: Log-likelihood ratio 

Biometric: 94.73% 
Biographic: 84.40% 
Fusion: 98.93% 

All scores fused for 
each query 
Small database. 

Bhatt et 
al. [6] 

De-duplication 

Fingerprints of 5,734 
subjects (2K for training and 
3,734 for testing) from 
various datasets.  
Gallery augmented with 
additional 10K fingerprints. 

Name, f or 
h
address 

Biometric: NIST NBIS [21] 
Biographic: Levenshtein distance 
for string matching 
Fusion: SVM 

Biometric: 76.6% 
Biographic: 69.4% 
Fusion: 86.5% 

All scores fused for 
each query.  
Reported accuracy not 
sufficient for de-
duplication. 

Proposed 
study 

De-duplication 

Fingerprints of 27K subjects 
from NIST SD 14 [12] 
augmented with face images 
of 27K subjects from PCSO 
[13]. 

Gender, name and 

derived from US 
Census data [14]. 
Gender is extracted 
from the PCSO face 
dataset. 

Biometric: State of the art COTS 
matchers for fingerprint and face. 
Biographic: Combination of 
Levenshtein [17], Damerau-
Levenshtein [22] and editor 
distances [23]. 
Fusion: Proposed adaptive 
sequential fusion algorithm. 

Biometric: 99.64% 
Biographic: 97.47% 
Fusion: 100.0% 

Fingerprint alone is 
adequate for 63.18% of 
the 27K queries; face 
required for only 
36.82% of the queries; 
biographic information 
required only for 8.13% 
of the queries. 

*Accuracy is the percentage of subjects for whom the true mate is retrieved at rank 1; COTS matcher stands for Commercial Off-the-Shelf matcher. 

3. Proposed de-duplication framework

A drawback of the fusion strategies proposed in the literature,
as well as those commonly used in practice, is that they are static 
in the sense that, once the traits are fixed, all the corresponding 

scores are computed and fused for every query. To address this 
limitation, we present a sequential selection strategy that 
determines, in real time, which subset of biometric and 
biographic information is adequate for a given query. 

Fig. 1. Proposed de-duplication framework. Additional biometric or biographic identifiers are selected at each stage by an ensemble of logistic classifiers; 
fingerprint match scores are used here for illustration. 
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The proposed adaptive fusion algorithm is based on the 
principle of sequential fusion [15]. The order in which the 
biometric traits and biographic information is presented to the 
system is determined according to their discriminability7. Based 
on the comparative discriminability assessment of traits using the 
training data, traits are selected in the following order: (i) 
fingerprint, (ii) face and (iii) biographic information (see footnote 
7). 

Once is presented 
to the system, an ensemble of veto-wielding [24] logistic 
regression classifiers [25] predict whether the corresponding 
rank-1 score represents a genuine match. The number of 
classifiers in the ensemble is chosen based on the trade-off 
between desired accuracy and computational effort. A schematic 
diagram of this prediction model is shown in Fig. 1. 

Decision threshold for the ensemble is based on the 
probability of false accept. It is set to an extremely low value 
(e.g., 10-6) which is learned from a training set. If all the 
classifiers in the ensemble agree that the rank-1 score represents 
a genuine match, no additional biometric trait or biographic 
information is needed to determine the identity of the user in the 
query. 

The dual safeguard of using a small probability of false accept 
as the threshold for prediction, coupled with the authority of each 
classifier to exercise a veto, diminishes the chances of premature 
termination of adaptive fusion. 

3.1. Matching of biometric and biographic Information 

We utilize state-of-the-art commercial-off-the-shelf (COTS) 
matchers to obtain comparison scores for both fingerprint and 
face images. Due to licensing restrictions, we are not able to 
disclose the names of the vendors, but both of these matchers 
rank in the top three in recent NIST evaluations for fingerprint 
and face8. 

Levenshtein [17], Damerau-Levenshtein [22], and Editor 
distances [23] are used as distance metrics for biographic 
information. Levenshtein distance between two strings is the 
minimum number of single-character insertion, deletion or 
substitution operations required to transform one string to the 
other. Damerau-Levenshtein distance also allows for 
transposition between two adjacent characters. Editor distance is 
similar to the Levenshtein distance except that substitutions are 
treated as two separate operations  insert and delete. The edit 
distance is converted to a similarity value by first normalizing it 
in the [0, 1] range by dividing it by the maximum possible edit 
distance between two strings of the same lengths as the given pair 
of strings. The corresponding similarity between two strings is 
simply (1 - normalized edit distance). The final similarity 
measure for the biographic information is the mean of similarities 
derived from Levenshtein, Damerau-Levenshtein, and Editor 
distances. 

3.2. Proposed adaptive fusion algorithm 

Our proposed adaptive fusion algorithm is motivated by Arora 
et al. [26] who proposed a strategy to determine whether the true 
mate of a latent fingerprint query matches at rank-1 out of the 
top-k retrieved images. This was based 
the similarity score distribution, under the assumption that scores 
follow an exponential distribution. Intuitively, the presence of a 
single upper outlier is a strong indication of a true mate at rank-1 
(correct decision) because of the abysmally low probability of 

7 The discriminability here refers to the accuracy of prediction 
whether additional information is required to be considered, and is 
not necessarily the same as identification accuracy. 
8 www.nist.gov/itl/iad/ig/biometric_evaluations.cfm 

two events occurring simultaneously viz., a false match with a 
very high match score and a true mate with an extremely low 
score. Arora et al. adopted this strategy to determine whether 
additional feature markup is needed for the latent query [26]. 

An optimal parametric distribution that fits the biometric and 
biographic match scores may not be available, so a soft 
computing approach is proposed. The proposed model consists of 
an ensemble of m veto-wielding [24] logistic regression 
classifiers [25]. A logistic regression classifier is based on the 
logistic (sigmoid) function used for the two-class classification 
problem. The logistic function of a variable z is given by eq. (1). 

(1) 

The value of the function f(z) lies in (0, 1), and for the purpose 
of classification here, is seen as the probability of the alternate 
hypothesis (H1: additional biometric or biographic information is 
required); the probability of null hypothesis (H0: the information 
presented is sufficient to reach a final decision) is (1  f(z)). 

The variable z is a weighted sum of k input features used for 
classification, as given by eq. (2). 

, (2) 
where si is the ith feature and i is the weight assigned to si. The 
bias term s0 is set to unity. 

The proposed algorithm uses the top k scores (with the highest 
scores for the subject being de-duplicated against enrolled 
subjects) as inputs si to the logistic function. The value of k is 
chosen to avoid overfitting. The output f(z) is interpreted as the 
probability that the rank-1 score does not represent a genuine 
match. Additional biometric or biographic information is deemed 
to be necessary if this probability is above a pre-determined 
threshold . Each of the m classifiers in the ensemble is trained 
on different training subsets obtained via bootstrapping [27]. 
Each individual classifier in the ensemble wields a veto such that 
the process of further matching and fusion of available biometric 
and biographic information is terminated only when all classifiers 
in the ensemble unanimously [24] predict that additional 
information is not required. A high level algorithm of the 
proposed adaptive fusion method is given in Table 2. 

Table 2. High level description of proposed adaptive fusion algorithm 

Input: Training set 

Output: Whether or not  is at rank-1 

Normalization: z-score normalize: 

Training: 
for 

 top  scores from  

Train ensemble of  logistic regression classifiers 

to predict 

end 
Implementation: 
Set logistic regression prediction threshold  to an arbitrarily low value (e.g., 

) 
Initialize: 
do: 

 top  scores from 

while  and 

Result: Duplicate, if exists, is at rank-1. 
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In Table 2, is the vector consisting of raw (not 
normalized) match scores for training example (probe)  against 
the gallery for biometric or biographic information  and 
denotes the true identity of the subject. The total number of 
identifiers per subject is denoted by . Since different matching 
algorithms generate scores in different ranges and with different 
distributions [15], score normalization is essential in score level 
fusion. To avoid upper outlier scores from compressing a 
majority of the biometric score distribution to a small range, z-
score normalization (as opposed to min-max), as illustrated in 
Table 2, was used. Fusion of scores for all scenarios discussed in 
this and the subsequent sections have been performed on z-score 
normalized scores by employing the sum fusion rule [4]. 

A separate ensemble is trained at each stage of the algorithm 
using bootstrap aggregation with the same number of training 
examples for each classifier as the size of the training set. 
Suppose the available identifiers include a fingerprint, face and 
subject name. If the training data indicates that fingerprint has the 
best discriminability, followed by face, and finally subject name, 
then the ensemble for the first stage is trained using the 
fingerprint training scores, followed by score fusion of 
fingerprint and face. 

4. Experimental evaluation and analysis

Below we describe the experiments to show the accuracy and
efficiency of the proposed algorithm on a large scale benchmark 
dataset under various unimodal and multimodal scenarios. 

4.1. Dataset 

The biometric database used for experiments consists of two 
fingerprint images for each of 27,000 subjects from the NIST 
Special Database 14 [12] and two mugshot face images for each 
of 27,000 subjects sampled from the PCSO dataset [13]. The 
virtual bi-modal database was created by randomly coupling a 
face in the PCSO database with a finger in the NIST SD14 
database. The first impression of each finger is used to form the 
gallery while the second impression is used as probe. For face, 
the image acquired at a younger age was used as the gallery and 
the one at an older age as probe. The biometric databases used 
here have been anonymized. Since no large scale benchmark 
datasets for biographic information is available, the biographic 
information was assigned to each subject first using the gender 
information in the face database and then randomly drawing the 

 by mimicking statistics 
from the US Census [14]. An example of a virtual subject is 
shown in Fig. 2. 

(a) (b) 

KAROLE ABLEMAN ALONSO ABLEMAN
(c) (d) 

Fig. 2. Examples of biometric and biographic information collected during 
enrollment. (a) Fingerprint [12]; (b) face [13]  [14]; and (d) 

 [14]. 

In practice, the name may not always be identical because of 
possible human data entry errors (see Figs. 9, 10 for example). 
To simulate these errors, a crowdsourcing experiment on 
Amazon Mechanical Turk9 was conducted by us with about a 

9 www.mturk.com 

hundred workers. Each worker was required to enter the textual 
data by looking at the data presented to them as an image (so that 
they do not simply copy-paste the text). A simple statistical 
model that embodies the characteristics of textual variations and 
human errors was created. The probabilistic model consists of 
insertion, deletion and replacement of random characters, 
swapping of adjacent characters in different parts of the name, 
and replacement of parts of name with only the initials.  

4.2. Matching of unimodal information 

Two state of the art commercial matchers (COTS-A for 
fingerprint and COTS-B for face) were used to compute the 
biometric similarity scores; the average similarity value of 
Levenshtein, Damerau-Levenshtein, and Editor Distances (see 
section 3.1) was used for matching of biographic information. 

The average similarity value of edit distances outperforms the 
Levenshtein distance which was used in a previous study [6]. 
This is primarily because in [6], variation in name spellings was 
assigned a similarity value based not only on the number of 
character differences but also on the length of the name. 
Intuitively, two long names with a single character distance have 
a higher similarity than two short names with the same character 
distance. The proposed algorithm for matching of biographic 
information outperforms the Levenshtein distance by about 4% 
for top-10 ranks (including rank-1 accuracy) on the data derived 
from the US census information [14]. 

The cumulative match characteristic (CMC) curves for all the 
unimodal identifiers used in this study (fingerprint, face, 

and fa . As 
expected, the two biometric identifiers, face and fingerprint, 
outperform the two biographic identifiers, subject
father's name. Face and fingerprint matching performance are 
comparable with rank-1 accuracy of ~95%. In earlier studies 
(e.g., [6]) these accuracies were significantly lower. It should be 
noted that two state-of-the-art COTS were used for the 
experiments and recognition performance depends on the quality 
of data. 

Fig. 3. CMC curves for unimodal identifiers. 

An example where the rank-1 fingerprint score represents a 
true mate is shown in Fig. 4, while another example where 
fingerprint matching is not sufficient, i.e., the rank-1 fingerprint 
score does not represent a true mate, is shown in Fig. 5. An 
example where the rank-1 face score represents a true mate is 
shown in Fig. 6, while another example where face matching is 
not sufficient is shown in Fig. 7. The two face mugshot images 
per subject in Fig. 6 and 7 above have varying time lapses; the 
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age of the subject at the time of image acquisition is noted in the 
caption. 

(a) (b) 

Fig. 4. Example of successful fingerprint match where the rank-1 score 
represents a true mate. (a) Probe image, and (b) rank-1 retrieved gallery 
image. 

(a) (b) (c) 

Fig. 5. Example where fingerprint match alone is not sufficient. (a) Probe 
image; (b) rank-1 gallery image of a different subject; and (c) gallery image 
of true mate retrieved at rank 24,684. 

(a) (b) 

Fig. 6. Example of successful face match where the rank-1 score represents a 
true mate. (a) Probe image, age 31.0 years; and (b) rank-1 gallery image, age 
28.6 years. 

(a) (b) (c) 

Fig. 7. Example where face match alone is not sufficient. (a) Probe image, 
age 47.6 years; (b) rank-1 gallery image of a different subject, age 47.4 years; 
and (c) gallery image of true mate, age 44.5 years, retrieved at rank 16,372. 

4.3. Information fusion 

A comparative evaluation, where only the biographic 
information or the biometric information is used, is shown in the 
CMC curves in Fig. 8. This figure also shows the performance 
gain when both the biometric traits (face and fingerprint) are 

An example where the rank-1 retrieved biographic match is a 
genuine match is shown in Fig. 9, and an example where 
biographic matching alone does not retrieve the true mate at 
rank-1 is shown in Fig. 10. 

Fig. 8. CMC curves for biometric and biographic fusion. Fingerprint and face 
scores are fused for biometric traits, while subject's name and father's name 
are fused for biographical traits. 

LARRY GRYANTHAN 
WARREN GRYANTHAN 

LARRY GRANTHAN 
WARREN GRANTHAN 

(a) (b) 

JFFREY RUSSELL 
DEOUGLAS RUSSELL 

JEFFREY RUSSELL 
DOUGLAS RUSSELL 

(c) (d) 

Fig. 9. Examples of successful biographic match where rank-1 score 
represents a genuine match. (a) Probe subject  name an
biographic example 1; (b) rank-1 subject  name an ; (c) probe 
subject  or biographic example 2; and (d) rank-1 
subject  name an . 

R SMIT 
M SMTH 

CARL SMITH 
MARK SMITH 

ROSEMARIE SMITH 
MICHAEL SMITH 

(a) (b) (c) 

Fig. 10. Example where biographic match alone is not sufficient. (a) Probe 
subject  name an ; (b) rank-1 ; 
and (c) 

4.4. Analysis and performance evaluation of adaptive fusion 

The 27,000 subjects in our database were randomly 
partitioned into three subsets (9,000 in each subset) for three-fold 
cross-validation. One of the three subsets was retained for testing 
the model, by turn, and the remaining two subsets were used as 
training data. We report the average performance across the three 
folds. In our experiments, each fold provides exactly the same 
performance, so the variance is zero. The ensemble in both stages 
(training and testing) consisted of m = 100 classifiers, with top k 
= 5 highest scores being supplied to each of the classifiers as 
input. The values of m and k have been determined empirically 
from the performance on training set. Note that the training and 
test sets here have similar characteristics. 

Table 3. Identification Accuracy and Efficiency of Fusion Algorithms 

Fusion Algorithm 
Rank-1 

Accuracy 

Face matching 
required 

(% queries) 

Biographic 
Information 

required 
(% queries) 

Static fusion of all traits 100.0% 100.0% 100.0% 
Adaptive fusion with single 
outlier detection [26] 

100.0% 47.29% 18.64% 

Proposed adaptive fusion 
algorithm  

100.0% 36.82% 8.13% 

The adaptive fusion with single outlier detection proposed by 
Arora et al. [26], which is based on standard statistical test, was 
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also implemented with significance level10 = 0.99 for 
comparison. The exponential distribution was determined to be 
the best fit11. The evaluation, in terms of fusion efficiency, is 
presented in Table 3 and Fig. 11. Note that adaptive fusion with 
single outlier detection does not require any training. 

Fig. 11. Comparative evaluation of number of subjects that require matching and 
fusion of various biometric traits and biographic information. Total no. of subjects is 
27,000. Rank-1 identification accuracy after fusion is 100% in all cases. 

Example query where fingerprint alone is sufficient by itself 
for decision was illustrated in Fig. 4, while example query where 
fingerprint alone is insufficient was shown in Fig. 5. The 
ensemble of classifiers correctly predicts that no further 
information beyond fingerprint is necessary in the former case, 
while concludes that evidence from fingerprint is inadequate in 
the latter case. An example where fingerprint alone is not 
sufficient for rank-1 retrieval, but its fusion with face lends 
adequate confidence for rank-1 retrieval is shown in Fig. 12. No 
biographic information is needed here. Another example where 
fusion of fingerprint and face are not adequate for rank-1 
retrieval is shown in Fig 13. Fusion of fingerprint, face and 
biographic information does lead to correct rank-1 retrieval. 

10 -off between desired
robustness and computational effort required for fusion of additional 
information. The nominal value of 0.99 is empirically chosen here 
from the training set based on 100.0% rank-1 accuracy requirement. 
11 www.mathworks.com/help/stats/model-data-using-the-
distribution-fitting-tool.html 

(a) (b) 

(c) (d) 

Fig. 12. Example where fingerprint alone is not sufficient for retrieval at rank-1. 
After score level fusion of fingerprint and face, rank-1 retrieval is successful. 
Biographic information is not needed for this query. (a) Probe fingerprint image; 
(b) gallery fingerprint image of genuine subject retrieved at rank 4; (c) probe face 
image, age 36.5 years; and (d) gallery face image of genuine subject, age 31.0 
years, retrieved at rank 1. 

(a) (b) 

(c) (d) 

Fig. 13. Example of adaptive fusion. (a) Probe fingerprint image; (b) gallery 
fingerprint image of genuine subject retrieved at rank 697; (c) probe face 
image, age 34.5 years; and (d) gallery face image of genuine subject, age 24.3 
years, retrieved at rank 17. After fusion of fingerprint, face and biographic 
information, true mate is retrieved at rank 1. 

4.5. Predicted effort to error trade-off curve 

While biometric fusion has widely been studied, to our 
knowledge, there has not been a systematic study of the trade-off 
between the effort required in computing and fusing match scores 
for individual traits and the benefit extended through reduction in 
error rates due to fusion. A new metric, called the predicted effort 
to error trade-off (PEET) curve, is defined here to study the 
relative efficiency of fusion algorithms. 

The PEET curve charts the predicted effort as the percentage 
of subjects where fusion of additional information was predicted 
to be required, against the recognition error (in terms of rank-1 
identification accuracy). The PEET curve comparing the 
efficiency of the proposed adaptive fusion algorithm to the 
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adaptive fusion algorithm with single outlier detection using 
standard statistical test [26] is shown in Fig. 14 after the first 
stage (fingerprint). It may be observed from the figure that the 
proposed adaptive fusion algorithm converges to the minimum 
error at a faster rate. 

Fig. 14. PEET curve after the first stage (fingerprint) comparing the adaptive 
fusion with single outlier detection [26] with the proposed algorithm. 

4.6. Consolidated results 

name as the available identifiers, match scores were normalized 
and fused by using the various identifiers and their combinations. 

Table 4. A comparison of rank-1 identification rates of individual 
identifiers and various combinations*.  

Identifier or subset Rank-1 identification rate 
Fingerprint 94.93% 
Face** 95.56% 
Name 89.00% 

ame 89.02% 
Fingerprint + face 99.64% 

97.47% 
Fi 99.84% 

99.98% 
100.00% 

Proposed adaptive fusion algorithm*** 100.00% 
*Total 27,000 queries with gallery consisting of another instance of the 
same 27,000 subjects; Sum fusion of z-score normalized scores.
**Some of the face images in the PCSO [13] dataset are mislabeled, but 
have been used to replicate a realistic scenario.
***Aggregate results of three-fold cross validation.

A summary of rank-1 identification rate for the various 
identifiers alone and their combinations is presented in Table 4. 

5. Summary

The de-duplication of identities is necessary in any biometric
identification system. We have proposed an algorithm that 
adaptively and sequentially fuses scores from biometric and 
biographic information for identity de-duplication. Experimental 
results show the proposed algorithm not only achieves high 
accuracy but also results in computational efficiency. In 
particular, our system correctly predicts that for 63.18% of the 
queries (in total 27,000 queries) only fingerprint is sufficient to 
be identified at rank-1. For an additional 28.69% of the queries, 
fusion of fingerprint and face scores is needed, while biographic 
information is needed only for the remaining 8.13% of the 
queries. 

It would be desirable to extend this study for databases 
involving a larger number of subjects. Operational databases, 
such as the Aadhaar Project in India, typically have ten-print 

fingerprints, both irises, face, and biographic information. 
Another avenue for further study would be to incorporate 
biometric quality in the proposed fusion algorithm. For example, 
the sequence in which the identifiers are considered for a subject 
may also be based on the quality of the individual identifiers 
captured for that particular subject, instead of the globally most 
reliable identifier. Another avenue for research is open set 
identification. 
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