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Abstract

We present some results on newborn identification
through high-resolution images of palmar surfaces. To our
knowledge, there is no biometric system currently available
that can be effectively used for newborn identification. The
manual procedure of capturing inked footprints in practice
for this purpose is limited for use inside hospitals and is not
an effective solution for identification purposes. The use of
friction ridge patterns on the hands of newborns is chal-
lenging due to both the small size of newborn’s papillary
ridges, which are, on average, 2.5 to 3 times smaller than
the ridges in adult fingerprints, and their fragility, making
them amenable to deformation. The proposed palmprint
based automatic system for newborn identification is rela-
tively easy to use and shows the feasibility of this approach.
Experiments were performed on images collected from 250
newborns at the University Hospital (Universidade Federal
do Paraná). An image acquisition protocol was developed
in order to collect suitable images. When considering the
good quality palmar images, the results show that the pro-
posed approach is promising.

1. Introduction

Newborn identification is crucial to avoid baby swaps in
hospitals, child kidnapping and illegal adoptions. As an ex-
ample, statistics show that among the millions of births that
occur annually in Brazil there is one baby swap for every
6,000 births. One of the main concerns of the mothers dur-
ing the child birth has to do with newborn swaps.

The identification of newborns is practiced worldwide
through the acquisition of footprints using ink and paper
method and the use of bracelets. DNA testing is an alter-
native identification technique, but it is both expensive and
time consuming.
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According to [11], even with well-trained staff, good
equipment and appropriate techniques, it is very difficult
to collect good quality palmprints or footprints from new-
borns, mainly because the skin is covered with an oily sub-
stance and due to the extreme fragility of the ridges. It is
generally agreed that footprints as currently captured (ink
and paper) are not useful for identification purposes. Fur-
ther, the results in [11] show that palmprints yield better
quality images than footprints despite being more difficult
to acquire, since newborn babies do not willingly open their
hands.

Despite the maturity of biometrics technology, there is
no biometric system, to the best of our knowledge, that has
been developed for newborn identification purposes. The
commercial biometric systems that are used for adult iden-
tification [1, 9], are not feasible when applied to newborns,
since biometric features (e.g., fingerprint and iris) are diffi-
cult to capture for babies. Another limitation is that most
biometric traits, for example face, undergo change during
child growth, making the collected data worthless for later
identification.

One of the most well-known and commonly used bio-
metric technology is based on friction ridge patterns. The
papillary ridges on the fingers, palms and soles of the hu-
man embryo are completely formed after the 18th week of
gestation [3]. So, in principle, it should be possible to col-
lect dactyloscopic information of all newborns. However,
newborns’ papillary ridges are, on average, 2.5 to 3 times
smaller than in adults, very fragile, and easily deformed
upon contact. According to initial estimates presented in
[11], fingerprint images of newborns must be acquired at
1500ppi resolution to clearly observe their ridges.

This paper presents a new approach to the challenging
problem of newborn identification. Our work is based on
high-resolution images of the palm dactyloscopic informa-
tion and its main contribution is the development of appro-
priate techniques for acquiring, processing and recognizing
these challenging images. In our experiments, we collected
newborn images within 48 hours after the birth. The re-
sults show that our methodology based on palmprints can
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be used for comparison purposes in case of doubt about the
baby identity, provided the images are carefully acquired to
ensure their resolution and quality.

2. Image Acquisition
We propose a methodology for newborn identification

based on high-resolution palmprint images. To conduct pre-
liminary studies with the objective of developing an auto-
matic system for newborn identification, we used a com-
mercially available sensor (CrossMatch LSCAN 1000P)
that best matched our needs. Despite the main disadvantage
of providing only 1000ppi images instead of the required
1500ppi, the Crossmatch sensor is not ergonomically suit-
able for newborns either, making it difficult to acquire pal-
mar images. However, we found that a subset of the ac-
quired images is indeed suitable for identification.

We collected 1,221 palmprints (4964× 5120 pixels, 256
gray levels, 1000ppi) from 250 newborns at the Univer-
sity Hospital (Universidade Federal do Paraná) to create a
database (NB ID). All images were acquired between one
to 48 hours after birth. We set up to five image acquisition
sessions per baby. In each session, three palmprint images
from the right palm were collected. In order to automati-
cally assess the quality of the images in the database, we use
the method proposed in [12] to classify the images into five
levels: (1) good, (2) normal, (3) dry, (4) wet and (5) spoiled
(Fig. 1). The quality assessment results showed that only
5% of palmprint images had sufficient quality (e.g., images
classified as good) to satisfy the requirements for automatic
matching and recognition. The main reasons for this low
rate of images classified as good or normal are the low sen-
sor resolution(1000ppi), and difficulties in holding the new-
born’s palmar surface at the correct position and pressure
(to avoid ridge deformation). We also classify the images
manually into these five quality levels and the manual clas-
sification also showed that only 4.3% of palmprints images
were classified as good.

After testing a variety of images for recognition pur-
poses, we concluded that only images classified as “good”
are useful to ensure the identity of the child before he/she
leaves the hospital.

In order to develop a suitable image acquisition proto-
col to obtain good images, the first step is to appropri-
ately prepare the palmprint of newborns to remove the oily
substance and generate a clean surface. To this end, the
images were collected after using different cleaning tech-
niques (e.g., only soap and water, only alcohol (Hidrated
Ethanol with alcoholic graduation of 70%) or both). In ad-
dition, we performed experiments regarding pressure (e.g.,
high or low) and exposure time (e.g., one second of ac-
quisition or approximately four seconds using image pre-
processing techniques during the acquisition) in an effort to
acquire good quality images.

(a) (b)

(c) (d)

(e)
Figure 1. Image classification based on quality: (a) good, (b) nor-
mal, (c) dry, (d) wet, (e) spoiled.

As indicated earlier, a large fraction of collected im-
ages are not suitable for identification. Besides the fact
that the 1000ppi sensor resolution is not adequate for new-
borns, there are some additional reasons for poor quality im-
ages: (1) during the scanning process, the babies move their
foot/hand, leading to spoiled images or ridges deformation;
(2) the pressure applied on the foot/hand is too high, caus-
ing ridges deformation or too low, resulting in non-visible
ridges; (3) the skin is very dry when only alcohol is used
for cleaning, even though, the alcohol provides good skin
cleansing; (4) the oily substance on the palm is not com-
pletely removed when only soap and water is used and the
skin is too wet if not properly dried. To collect good quality
images, we concluded that the best protocol should be as
follows: (1) it is necessary to use alcohol as the first clean-
ing step; (2) to ensure good skin cleansing, a second clean-
ing step must be applied, using soap and water; (3) the hand
needs to be dried using paper towel; (4) it is very important
to have a fast exposure time and to apply the right pressure
of the palm on the sensor surface.



3. Image Preprocessing
The proposed palmprint image processing framework

consists of the following stages: (1) Minimum Bounder
Rectangle (MBR) definition, (2) orientation correction, (3)
finger removal, (4) Region of Interest (ROI) segmentation,
(5) image classification and equalization [12], (6) Short
Time Fourier Transform [2], (7) directional field (DF) es-
timation, (8) frequency estimation, (9) recoverable ridges
detection, (10) Gabor Filtering and (11) delta point(s) de-
tection.

In stage 1, the MBR is detected to cut down the compu-
tational burden in the subsequent stages. The image size is
reduced, on average, from 4964× 5120 to 1600× 1500. In
stage 2, we automatically estimate a rotation angle to rectify
the image orientation, similar to the procedure in [10]. In
the finger removal stage, points b and c are used to divide
the palmprint into 3 areas of equal size (Fig. 2a) to define
point e (new origin) similar to [10]. At the origin, we fit
a parabola that least intercepts the palmprint, which is used
to remove the fingers from the captured image (Fig. 2b -
green parabola). The first point on the palmprint is found in
each column inside of a1. Point f is the lowest point among
all the detected points. The whole image below and to the
left of f is then cropped (Fig. 2c). This preprocessing
stage is necessary to extract the palmprint ROI just below
the fingers.

Stage 5 improves the image quality based on [12].
The image is locally equalized through the technique
known as Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [13] (Fig. 2c), which overcomes the limita-
tions of the standard histogram equalization (HE).

An image enhancement operation based on the Short
Time Fourier Transform (STFT) [2] (Fig. 2d) is per-
formed in stage 6. This technique is more effective for
newborn palmprint image enhancement than Gabor filter-
ing [4] that is based on the use of contextual filters whose
parameters depend on the local ridge frequency and orien-
tation. The STFT is able to simultaneously yield more ro-
bust local ridge orientation and ridge frequency information
through a probabilistic approach. However, to further in-
crease the image quality, we apply the Gabor filtering, using
the most robust ridge orientation and ridge frequency infor-
mation obtained after performing STFT, resulting in more
well-defined ridges (Fig. 3d). An approach to Gabor filter-
ing improvement, using more robust ridge orientation and
ridge frequency information, is also proposed in [5].

Stages 7, 8 and 10 of our approach are the same as the
ones presented in [4]. In stages 7 and 8, the image is di-
vided into a set of 16×16 non-overlapping blocks to extract
local information [4]. The local ridge orientation is defined
for each block (Fig. 2e) and a window oriented along a
direction normal to the local ridge orientation is defined for
each block to estimate the local ridge frequency.

(a) (b)

(c)

(d)

(e)

(f)
Figure 2. Image processing stages: (a) MBR, (b) finger removal,
(c) region of interest, (d) STFT, (e) DF, (f) delta points.

In stage 9, the image is classified into two categories: re-
coverable and unrecoverable regions. Firstly, a global Otsu
threshold (GOT) is calculated according to [8]. In addition,
the image is divided into a set of 5 × 5 non-overlapping
blocks to extract local information [4]. The recoverable
blocks are identified to avoid false ridges or minutiae in the
background or in very noisy/spoiled areas. The recoverable
blocks correspond to the white area in Figs. 4b and 4d.
To detect these recoverable blocks, the gray level variance
is locally computed for each block centered at pixel (x , y)



(a) (b)

(c) (d)
Figure 3. Enhancement process: (a) a region of the original image;
(b) Gabor filtering; (c) STFT; (d) Gabor + STFT.

and oriented along DF[x,y], using the following equation:

Vi =
1

ni

 ni∑
j=1

(Fij −Mi)
2

 , (1)

where Fij is the gray level value of pixel j in block i, ni is
the number of pixels in block i and Mi is the mean of the
pixel values in block i.

A global gray level variance of the image is estimated us-
ing these local values according to the following equation:

VG =
1

nb

(
nb∑
i=1

Vi

)
, (2)

where nb is the number of blocks in the image.
The blocks with variance values (Vi) higher than the av-

erage of global variance and Otsu threshold ((VG+GOT)/2)
are selected as recoverable. This is because usually finger-
print area presents higher variance than the background or
noisy/spoiled areas.

(a) (b)

(c) (d)
Figure 4. Recoverable area detection process: (a) and (c) Original
images, (b) and (d) Recoverable areas in white.

The Gabor filtering in stage 10 improves the visibility
of ridges structure in recoverable regions to generate an en-
hanced image (Fig. 2f). Finally, in stage 11, the Poincare-
Index algorithm [1] extracts the delta points (Fig. 2f).

Stages 2 and 11 are very important to improve the perfor-
mance of palmprint matching by reducing the orientation
and translation differences between two palmprints.

4. Matching Algorithm
We propose a hybrid approach that combines two differ-

ent strategies based on image registration using Simulated
Annealing (SA) [7] and oriented texture fields (Finger-Code
- FC) [6]. The hybrid approach has two stages. In the first
stage, we look for the best matches of the input image in the
gallery using the FC. The SA-based matcher then verifies if
one of these matches is the best.

To create the authentication template, a thinning algo-
rithm is performed on the enhanced image to generate a
ridge map in order to extract the minutiae, as in [4]. The
template includes (n + C(n,2)) sub-templates (i.e., reference
points), where n is the number of delta points detected and
C(n,2) is the number of possible combinations of n delta
points to choose from; we set n to 2 (no repetition; the or-
der does not matter). We call these C(n,2) sub-templates as
Middle Regions (MR), i.e., the average coordinates between
two delta points.

The sub-templates only include the information inside a
ROI with a radius of 200 pixels around each one. Fig. 2f
shows only the ROI around the delta points. Each sub-
template includes all ridge points (coordinates, orientation
(DF) and radial distance to the reference point), minutiae
(coordinates, orientation, radial distance to the reference
point, number of other minutiae inside a region with a radius
of 20 pixels around the correspondent minutia), and refer-
ence point (coordinates and orientation). In addition, 8 ori-
ented components (0o, 22.5o, 45o, 67.5o, 90o, 112.5o, 135o

and 157.5o) are extracted using a directional bank of Gabor
filters on the ROI tessellated with respect to the reference
point (five concentric bands segmented into sixteen sectors
(5× 16 = 80 sectors)), generating a feature vector [6] (eight
oriented components (8 × 80 = 640 features)).

In the FC approach, the palm is divided into four regions
of equal size. Theoretically, there is a delta point in a palm-
print below each finger, i.e. four interdigital regions [3]. In
order to calculate the similarity between two images, the
matching (Euclidean distance) is performed only between
feature vectors within the same region and of same type
(delta point or middle region), resulting in (n + C(n,2)) pos-
sible tests. Among these (n + C(n,2)) resulting scores, the
lowest one is selected.

In the SA-based matching approach, the palm is also di-
vided into four regions and we only perform the matching
between sub-templates within the same region and of the
same type. Among the possible results, the matching that
generates the highest similarity is selected. The verification
stage performs the registration between ridges and minu-
tiae by using a SA-based search technique [7]. Starting



from a coarse alignment obtained by registering the refer-
ence points (Fig. 5a), the SA analyzes neighboring matches
to look for a better alignment, which is computed as the
number of overlapping points with the same direction. Two
corresponding points are considered to be overlapping if
they satisfy the following properties: (I) they must be in-
side a bounding circle of radius rP = 1 (Fig. 6); (II) they
must have similar directions, i.e., the difference between the
orientations (θ1 and θ2) must be smaller than θ = 10o; and
(III) they must have similar radial distance, i.e., the differ-
ence between the radial distance (rad1 and rad2) must be
smaller than rad dist = 10. These thresholds were empir-
ically selected based on the images in our database. Fig. 5
shows examples of the registration result using the proposed
approach, where one can see the pre-alignment efficiency
(Fig. 5a), the final alignment precision (Fig. 5b), a false
matching (Fig. 5c) and true matching (Fig. 5d).

(a) (b)

(c) (d)
Figure 5. Registration process: (a) pre-alignment, (b) final align-
ment, (c) false matching and (d) true matching.

Figure 6. Registration process: overlapping area.

After registration, the similarity between two sub-
templates is defined as a combination of the number of over-
lapping points with the same direction SR and the number
of overlapping minutiae SM . Two corresponding minutiae

Figure 7. Recognition Results.

are considered to be overlapping if they satisfy the follow-
ing properties: (I) they must be inside a bounding circle
of radius rM = 10; (II) they must have similar directions,
i.e., the difference between the orientations (θ1 and θ2) must
be smaller than θ = 10o; (III) they must have similar ra-
dial distance, i.e., the difference between the radial distance
(rad1 and rad2) must be smaller than rad dist = 10;
and (IV) they must have similar number of other minu-
tiae around them, i.e., the difference between the number of
other minutiae (nMin1 and nMin2) must be smaller than
num min = 3. These thresholds also were empirically se-
lected.

The two matching scores (SR and SM ) are combined to
form the final score SR+M = α1SM+α2SR, where α1 and
α2 ∈ [0, 0; 1, 0]. Fig. 7 shows the SA results using the best
α1 and α2 values (SA - 0.66 ∗ SM + 0.18 ∗ SR), SM and
SR results and the FingerCode results.

5. Experimental Results
To test the performance of the proposed approach, ex-

periments were conducted on the NB ID database. How-
ever, due to image quality problems, only palmprint images
from 20 newborns could be used. These palmprints have
sufficient ridge/minutiae information for recognition. We
selected the three best palmprints from each one of the 20
newborns, totaling 60 palmprints. To verify the viability
of automatic identification for these 20 newborns, we per-
formed verification and identification experiments (see Ta-
ble 1) based on retrieval rank and FAR critera [1].

It is important to report that in order to obtain better
recognition rates, we must have visible ridges structure,
minutiae and delta points. Unfortunately, many images,
even those classified as good, using the image quality mea-
sure, do not meet these requirements. Some images present
only one, two or three visible delta points, although they all
should have four. We believe this problem mainly occurs
due to the 1000ppi sensor resolution of Crossmatch used to



capture the newborns’ dactyloscopic features.
The delta points were chosen based on automatic analy-

sis of the number of core and delta points detected in sam-
ples of the 20 babies. In most cases there was either no
or only one core point. Moreover, in more than 80% sam-
ples three or more delta points were detected. However,
another problem occurs when using delta points instead of
core points: the ridges and oriented components around the
delta points tend to form structures that are very similar
among different individuals (as shown in Fig. 5c), adversely
affecting both the recognition algorithms. As a result, we
also decided to use the regions between two neighboring
delta points (middle regions or MR). Figure 8 shows the
improved results obtained using delta points (DP) and MR
compared to the results obtained using only DP or MR.

Figure 8. Identification Results.

As shown in Fig. 8, the SA approach gives the best re-
sults in both experiments. However, this approach is com-
putationally costly compared to the FC method. We, there-
fore, decided to use FC for filtering the database and the SA
only for verification purposes. The FC looks for the five
best matches (Rank 5) of the input sample. Then the SA
attests if one of these matches belongs to the subject associ-
ated with the input sample. Considering Rank 5 for FC and
0% FAR for SA (0% FAR ensures that the SA will only ac-
cept true mates), we obtained 78% correct recognition rate.
The hybrid approach improves the genuine accept rate when
compared to the results of FC or SA methods individually.

6. Summary

This paper presents preliminary results on using 1000ppi
dactyloscopic images for automatic newborn identification.
Initial experiments on palmprints of 20 newborns show that
the automatic identification process is fully executable, al-
though difficult. To further improve the recognition per-
formance, two main requirements are necessary: (1) the
palmprint images of the newborns’ dactyloscopic charac-
teristics must have a higher resolution (> 1500ppi), and

(2) an appropriate protocol must be followed for acquir-
ing the images (e.g., cleaning the palmar surface and ap-
plying the right pressure between the palm and the sensor).
However, it is important to point out that there is no com-
mercially available equipment as of now that is capable of
satisfying this application requirement. Despite the limita-
tions of the CrossMatch sensor, it was able to acquire palm-
prints images with sufficient quality for newborn identifica-
tion for some of the newborns. Compared to DNA testing,
the proposed approach is acceptable for newborn identifica-
tion since it is non invasive. Using the knowledge gained
so far on this project, we have started a new phase of image
acquisition in one of the largest maternity hospitals in Cu-
ritiba. In this new protocol, we aim to collect good quality
images of at least 100 babies and their mothers’ fingerprints.
In order to collect these images, we are using the best image
acquisition protocol developed in this research.
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