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ABSTRACT

Many transformation functions have been proposed for geimer
revocable or non-invertible biometric templates. Howetlegir se-
curity analysis either ignores the distribution of bionefeatures
or uses inefficient feature matching. This usually leadstealistic
estimates of security. In this paper we introduce a new rmmeasu
non-invertibility, called the Coverage-Effort (CE) curwdich mea-
sures the number of guesses (Effort) required by an adyetcae-
cover a certain fraction (Coverage) of the original bioncedata. In
addition to utilizing the feature distribution, the CE cemllows esti-
mation of security against partial recovery of biometriattees. We
analyze the CE curves obtained using different instancesroix-

ture of Gaussians based feature transform for fingerpnmplates.
Our analysis shows that knowledge of the fingerprint miruties-
tribution reduces the effort required to obtain a specifiebcage.

Index Terms— biometrics, template security, non-invertibility,

information measure, fingerprint, minutiae

1. INTRODUCTION

Biometric authentication refers to techniques that willuman
traits e.g. fingerprint, face, and iris as authenticatidets which
are matched with the corresponding enrolled tokens, aledca
template or reference. Biometric systems are being initrgigs
deployed due to their security advantages over the traditiau-
thentication mechanisms based on credentials (ID cardasst

based techniques, and ii) biometric cryptosystems (cf. [1]). In fea-
ture transformation, the template is transformed usingeasjecific
key and only the transformed template is stored in the sysBum-
ing authentication, the input biometric is similarly tréorsned and
is matched with the stored template [2, 3, 4, 5]. In a biometryp-
tosystem, an external key is associated with the templatie that
neither the template nor the associated key can be obtaioectiie
stored template. The key can only be recovered when a gehigne
metric is presented to the system [6, 7, 8, 9].

In order to ensure the security offered by these templatiepro
tion schemes, a rigorous analysis is needed. While suclestaxlist
for biometric cryptosystems [10, 8, 11, 12, 13], not mucleratibn
has been paid to the feature transformation techniquestriBecf a
feature transformation technique can be evaluated bassebanain
criteria: i) non-invertibility, and ii) diversity. Non-invertibility refers
to the difficulty in recovering the original biometric givéime secure
template and diversity refers to the difficulty in guessimg secure
template given another secure template generated fronathe kio-
metric. Both these criteria may or may not assume knowlefigfeeo
password by the adversary. Matching performance, say uhing
Receiver Operating Characteristic (ROC) curve, is alsal @sean

evaluation measure where again an impostor may or may net hav

access to the password.

Table 1 lists different evaluation techniques used for abmn-
tioned evaluation criteria. The underlying objective oésh evalu-
ations is to measure the amount of information a transforhied
metric, say.X, can provide about the original biometric (in case of
non-invertibility) or another transformed biometric (iase of di-

words) which can be easily lost, guessed or forged. Largke SCayersity), sayY. To evaluate diversity, ROC corresponding to the

deployments and the associated template storage havetdregh
the need to protect the biometric data stored in the systemeft'T
of biometric data is a compromise of the user’s privacy. frenrtthe

case when the templates generated from the same biometrg us
different keys are considered as different individualobed in the
system is computed (see, e.g., [4, 14]). Non-invertibiliiyen that

stolen biometric data can be used to compromise other bi@met the yser specific key is not available to the adversary, iallyseval-
systems that have the same trait enrolled for the user. l& 6Bs 51eg by estimating the number of different templates that lwe
password authentication, loss of password is managed ki gyessed as the original biometric given the transformechéitc
it and replacing it with a new one. Such a safety mechanismatan (see, e.g., [3, 14]). Both these measures, however, hatarcbmi-
be directly employed in a blom?t“C recognition system duehe  tations. The False Accept Rate (FAR) in evaluating diverisituisu-
small number of human biometric traits. ally zero at a reasonable system threshold due to the lididtbase

One way to impart revocability property to biometric tra#d0  sed in evaluation [4]. Moreover, the biometric matcheesrat op-
avoid an explicit storage of biometric templates in theeystelim-  timized for such experiments. On the other hand, the medsure
inating any possibility of leakage of the original biomettfait. A non-invertibility does not take the distribution of biomietfeatures
number of template protection techniques have been desifgme  nto account which can lead to a significant over-estimatibsecu-
this purpose which can be categorized afeajure transformation ity

In this paper, we present a measure of non-invertibilityfiior
gerprint minutiae based feature transformation techrsg@ssuming
that the user specific key is known to the adversary. The [gexgbo
techniqgue measures the relationship between the numbeiestgs
(effort) required by an adversary to recover a certain fractoorief-
age) of the biometric template given the transformed templatee
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1A biometric is considered stolen if an adversary capturessthred bio-
metric trait.



different (coverage-effort)-tuples are plotted to obthia Coverage-
Effort (CE) curve. The computation of a CE curve consistshoée¢
main steps:

1. Pre-image Computation: Compute the pre-images of each
transformed minutia such that transformation of all the pre
image minutiae would lead to the given transformed minutia.

2. Minutiae Likelihood Computation: Estimate the relative
probability of each of the minutiae in the pre-image using

kernel density estimation.
3. Non-invertibility Measure Computation: Sort the preaiges

according to their likelihoods and compute the coverage i.e
the number of true pre-images guesses given that the adver-

sary checks only a certain portion of the pre-images.

We note that the proposed measure is sufficiently generie tseful
for any feature transformation technique such that thesfeaimation
can be evaluated at any given point and is piecewise diffiatae.

| Evaluation Criteria

Evaluation Technique |

Diversity Match different transformed templates
obtained from the same biometric [4,
14]

Non-invertibility Number of neighboring minutiae that
change after the transformation [3]

Non-invertibility Number of different templates that cgn

with unknown key generate the given transformed tem-
plate ([3]) and number of impostor big-
metric templates that can be accepted
as corresponding to the given trans-
formed template by a matching algo-
rithm ([14])

Matching perfor-| ROC [3, 14, 2]
mance

Table 1 Different evaluation criteria and evaluation techniqussd
for feature transformation of a fingerprint template.

2. MINUTIAE TEMPLATE TRANSFORMS

Minutiae are the most common and distinctive represemtatio

m
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Fig. 1. Two fingerprint images from the same finger with extracted
minutiae.
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Fig. 2. Feature transformation. (a), (b), and (c) show the cantesi
polar, and Gaussian mixture based transformations [3].

kinds of transformations i.e. cartesian, polar, and fuumzti as illus-
trated in Figure 2. The many-to-one nature of these tramsfqro-
vides non-invertibility even for the case when the adversaows
the user specific key. A cartesian transformation tesssilldte im-
age plane into rectangles and then shuffles the rectangbes! fwen
the user password such that any two rectangles can map orirto a s
gle rectangle. Instead of rectangles, a polar transforsetieges the
image plane into sections of annular regions around a ceoiat.

A functional transformation, however, transforms the rtiereibased
on a function evaluated over a minutiae configuration.

a fingerprint. These are the points on the finger surface where

the friction ridges end or bifurcate. Figure 1 shows two {zrin
from the same finger with minutiae overlaid. Note that there i
significant intra-class variation in the fingerprint remetions;
multiple acquisitions of the same finger lead to differentnau
ber of minutiae as well as their positiofx,y) and orientation
(). It is this property that makes it difficult to match finger-
prints in the encrypted domain. Note that a minutiae basegkfin
print template, sayl", consists of a collection ofr minutiae i.e.
T = {(z1,y1,01), (z2,92,02), ..., (Tn,Yn,0n)}. The transfor-
mation function considered herg(.), takesT to another set ofi
minutiae i.e.¢(T) = {(}, 9}, 0;), (b, yh, 04), . (2, Y 02) .
Thus a measure of non-invertibility should estimate théadifty in
obtainingT given¢(T).

A desirable transformation should account for the intessl
variation while at the same time providing a reasonable tatap
security. A number of minutiae based feature transformatich-
nigues have been proposed (see [3, 15, 14]) where the caatfigur
of each minutia is changed according to a user specific kegtairo
the transformed template. Ratha et al. [3] proposed thiféereint

3. NON-INVERTIBILITY MEASURE

The security of the feature transformation based templategtion
schemes is based on tihen-invertibility of the transform. Thus
it is important to design a measure of the non-invertibilithich
estimates the likelihood of an adversary being able to gtiess
original template given the transformed template. For wespro-
pose a three-stage procedure for estimating the non-ibiigyt i)
pre-image identification, ii) pre-image likelihood evaioa, and iii)
non-invertibility measure computation.

3.1. Mixture of Gaussians based Transform

Due to its generic nature and acceptable performance [3]usge
the functional transformation technique based on a mixtfif@aus-
sians to compute a measure of non-invertibility. In ordetréms-
form a minutia, functions consisting of a mixture of Gaussiand
its derivatives are evaluated at the position of minutia tesh the
minutia is translated according to the values obtained.tf®sake
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3.2. Pre-image Computation

In order to compute the pre-image of a minutia, all 4-pixéghbor-
hoods of the form(s, 5), (¢ + 1,5), (4,5 + 1), (¢ + 1,5 + 1) from

the original fingerprint image space are transformed andbties
that cover a particular transformed minutia are used to obtain can-
didate pre-images of that minutia. Any one out of the foumpmoi

in the covering neighborhood is taken as the pre-image mainulit
multiple pre-image points are sufficiently close to eactegtonly
one of them is included in the pre-image set. Complete linktelr-

ing [16] is used for this purpose with a splitting criterigpdading

on the precision required in the guessed pre-image. An sixten

to incorporate change khwill involve an 8-point 3D neighborhood
including 8 instead of a 2D neighborhood. In some cases depending
on the transform, if the 4-pixel neighborhood is severebtatied,
certain pre-images might not be detected. Such cases oever,

not arise if the pre-image is computed as a closed form soluti a
sufficiently fine grid is used.

3.3. Pre-image Likelihood Computation

Let ¥ be a transformed minutia angdt, @2, ..., @™ be them pre-

Fig. 3. Feature transform based on mixture of Gaussians; (a) minumages ofi under the transformatiop. Further, let, € 1,2,...,m

tiae template, (b) and (c) transformed minutiae template @i= 30

be a random variable indicating which of the pre-images isf the

andg = 60. (d), (e), and (f) depict the transformation functions cor- true one. We are interested in computing the probabfity, =

responding to the images shown in (a), (b), and (c), respdgti

of simplicity, we restrict the transformation function thange only
thex andy coordinates of a minutia.

r|U = @ = (zv, yv, 0v)). Using the Bayes theorem,

p(T=d|ly=r)*P(ly=r)
Y i=1...m P(U=a[ly=10)*P(ly=1)"

P(l, =r|v=a) (4)

Taking the prior probability?(l, = i) = 1/m,Vi =1,2,....,m

The mixture of Gaussians used to obtain the transformatior&no preference for any particular pre-image) and comemify =

function is given by:

K
F(@) = Z timie— 3 @—m)ET @)

1=1

@

where K is the number of components, ang, ¢;, u;, andX; cor-
respond to the mixing probabilities, the signs (+ or -), ngand
covariance matrices of the different components, respegtir is a
vector representation of a minutia consisting of onlythendy co-
ordinates of the minutiae. In our experiments, where thesfimints
are captured &i69 ppi resolution and aré60 x 296 in size, K is

taken to be24, ¥, is taken to be a diagonal matrix with each diagonal

entry equal td50? for each component. The remaining parameter
are determined using the user specific key.

The transformation of each minutia is represented as dreof
minutia translation (denoted ki) and magnitude of minutia trans-
lation (denoted byp,). The two components of the transformation
can be obtained as:

[y

@)
G

@
©)

Po(T) =
pa(@) = p{1+[0E b

arctan (

where f, (.) and f..(.) are thex andy derivatives off anda <
[0, 360) is a random offset in direction is used to manipulate the
overall translation of minutiae. Figure 3 shows the fingatpminu-
tiae transformed according to the functional transfororatiener-
ated using different values fat (30 and60).

S

dlly =r)top(d"),

p(a")/Js(d")
Dok=0,...,m—1 P(@)/ Js (@)’

P(l=r|i=3d) = ()

whereJ (") is the Jacobian (cf. [17], page 234) of the transforma-
tion ¢ which can be computed either numerically or in a functional
form depending on the complexity of

In order to compute(@”), we perform a kernel density estima-
tion of minutiae represented as the y, 0)-tuple using a Gaussian
kernel with a leave-one-out estimate of the bandwidBefore es-
timating the probability density, we align all the fingergs using
their high curvature points based on the Trimmed lteratil@s€st
Point (ICP) algorithm [9]. Note that an alignment of fingénps
prior to density estimation leads to a more distinctive pimlity
density with a low entropy. Figure 4 shows the estimated gibdiby
density.

3.4. Non-invertibility Measure Computation

We compute a measure of non-invertibility as the number af-co
putations required by an adversary to guess the originaltiaia set
using a specific attack strategy. Let therernbdifferent minutiae in
the transformed template whose pre-image needs to be cethput
An attack strategy includes the order in which an adversaesges
the variousn-tuples corresponding to the selection of a particular
pre-image for each of the minutiae. Note that if there ane,; pre-
images of the®” minutia then the number of-tuples that the ad-
versary needs to prioritize I$,=1,..,,m; which could be very large.

2We use the Kernel Density Estimation Toolbox for Matlab fed by
Alexander lhler (Available at: http://www.ics.uci.ediMeér/code/kde.html).
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Fig. 4. Marginal densities of minutiae itx,y), (z,0), and(y, 6)
planes.

In order to make the analysis feasible, we assume that thstba
guessing from all the pre-images of a minutia, the advergaegses
only from some of the more probable pre-images of each naauti
In the limiting case, the adversary will just select the mrstbable
pre-image for each minutiae.

In our experiments, we consider an adversary that checks onl
the 2¥¢ most probable pre-imagésf the minutiav;,i = 1...n.
Here H; is the entropy or the difficulty in guessing the true pre-

. . 0 0.‘5 1I 1 .‘S
image given by Effort (Bits per minutia)

(b)

Coverage (%)

Hy == P(lo; = r[0})logy(P(lu, = r|57)), (6)
r=1 Fig. 5. Coverage-Effort curves for the mixture of Gaussians based

wherem; is the number of pre-images of. In this scenarioll; 2 feature transformation. (a) and (b) CE curves for the casenwh

different guesses will be made simultaneously for eachviddal e_quals3() and 6(_), respectht_aIy keeplng the remaining para_meters

minutia leading to an effort equivalent tgn 3, H; bits per minu- fixed. In each figure fc_Jur dlﬂerent mstances of the trar_rslmlon

tia. The corresponding coverage is computed as the fractioinu- are shown with four different solid lines. _ The dotted I_|nemre-

tiae whose true pre-images lie among the searched space tigot  SPONd to random guesses of the true pre-image. The size obthe

these two values, i.e. effort and coverage, provide onlpglsipoint pred regions indicate variance in the security imparted iffgrént

on the Coverage-Effort curve. In order to increase or deerghe  inStances of the transform.

coverage, we assume that adversary searchesifofm;, [27:17])

most probable pre-images per minutia, wheres [—max(H;),

max(H;)]. Note that in this case, the adversary is makia@™" shown in Figure 5, the curves obtained using the uniform tiaeu

times more (or less if) is negative) guesses than the previous casedistribution depict significantly greater security as camgal to when

This leads to the complete CE curves as shown in Figure 5. the true minutiae distribution is taken into consideratiohis is due

to the fact that the minutiae with low pre-image entropy hthe

correct pre-image among the first few highly probable prages.

Also, it can be observed that different parameter valuedezhto

significantly different security for a transformed templalote that

2Ihe proposed approach can be used to compute the coverage eff

4. EXPERIMENTS

To demonstrate the effectiveness of the proposed nontibiigy
measure, we evaluated it on the publicly available FVC200 oo - b .
database-2 which contains 800 fingeFr)print iymages (100 fnger curve for |nd|V|duaI fl_nge_rprlnts. Flg_ure 6 S.hOWS the CE auand
8 impressions/finger) of size60 x 296 captured ab69 ppi reso- the corresponding minutiae from aflngfe_rprlnt. )
lution. There are abouts minutiae per fingerprint in the database. ~ Ve used the Neurotechnology Verifinger SDK [18] in order to
The experiments are based on mixture of Gaussians basdibhaic  Perform the minutiae matching. The genuine matches were per
transformation technique. formed by matching each of the eight impressions of a fingén wi
Figure 5 shows the Coverage-Effort curves corresponditigeto each other impression leading to 2,800 genuine mgtch'eshanmt
mixture of Gaussians based transformation with two diffeyga- ~ POStor matches were performed by matching the first impoassh
rameter settings. For each parameter setting, four diffeemdomly each flng_er with the first impression of the remaining fingeasling
generated transformation instances were used, say condisg to {0 4,950 impostor matching scores. The matching resultsrregp
using four different passwords. We also obtain the CE cucoes- here are for the case when the impostor knows the true user spe

sponding to the case when the minutiae distribution is umifoAs  cific key i.e. all the templates in the database have beesftraned
using the same user specific key. Figure 7 shows the ROC curves

3Note that for a random variablg with m equally likely pre-images, ~corresponding to the transformed templates based on tveretit
m = 2Hz whereH is its entropy. parameter settings of the mixture of Gaussians transfoamésas
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Fig. 7. ROC curves for the mixture of Gaussians based transforma-

tion of fingerprint template. Four random instances of the tases
whereg (see eq. (3)) equal® and60 are shown as solid and dotted
lines, respectively. The size of colored regions indicaeance in

performance of different instances of the transform.

(11]

(12]

those used in computing the CE curves). It can be observed tha

the parameter setting that leads to lower security hasrbatthing
performance verifying the trade-off between security aradaming

performance as expected.

5. CONCLUSIONS

As noted in [19], proper evaluation is essential to motivhee de-
velopment and acceptance of good security techniquesisipaiper
we have identified the shortcomings in the existing measusesl
to evaluate non-invertibility of a minutiae transformatitechnique.
We propose a new evaluation measure, the CE curve, thatitakes
account the distribution of biometric features therebyvyatiog a
quite realistic estimate of security. Note that a templat tan be
easily inverted not only compromises the associated systéralso
some systems that use different features extracted frosathe bio-
metric. We have also validated the measure using the Gauskia

mixture based transformation technique on a public databas
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