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ABSTRACT

Many transformation functions have been proposed for generating
revocable or non-invertible biometric templates. However, their se-
curity analysis either ignores the distribution of biometric features
or uses inefficient feature matching. This usually leads to unrealistic
estimates of security. In this paper we introduce a new measure of
non-invertibility, called the Coverage-Effort (CE) curvewhich mea-
sures the number of guesses (Effort) required by an adversary to re-
cover a certain fraction (Coverage) of the original biometric data. In
addition to utilizing the feature distribution, the CE curve allows esti-
mation of security against partial recovery of biometric features. We
analyze the CE curves obtained using different instances ofa mix-
ture of Gaussians based feature transform for fingerprint templates.
Our analysis shows that knowledge of the fingerprint minutiae dis-
tribution reduces the effort required to obtain a specified coverage.

Index Terms— biometrics, template security, non-invertibility,
information measure, fingerprint, minutiae

1. INTRODUCTION

Biometric authentication refers to techniques that utilize human
traits e.g. fingerprint, face, and iris as authentication tokens which
are matched with the corresponding enrolled tokens, also called
template or reference. Biometric systems are being increasingly
deployed due to their security advantages over the traditional au-
thentication mechanisms based on credentials (ID cards andpass-
words) which can be easily lost, guessed or forged. Large scale
deployments and the associated template storage have heightened
the need to protect the biometric data stored in the system. Theft1

of biometric data is a compromise of the user’s privacy. Further, the
stolen biometric data can be used to compromise other biometric
systems that have the same trait enrolled for the user. In case of
password authentication, loss of password is managed by revoking
it and replacing it with a new one. Such a safety mechanism cannot
be directly employed in a biometric recognition system due to the
small number of human biometric traits.

One way to impart revocability property to biometric traitsis to
avoid an explicit storage of biometric templates in the system, elim-
inating any possibility of leakage of the original biometric trait. A
number of template protection techniques have been designed for
this purpose which can be categorized as i)feature transformation
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1A biometric is considered stolen if an adversary captures the stored bio-
metric trait.

based techniques, and ii) biometric cryptosystems (cf. [1]). In fea-
ture transformation, the template is transformed using a user specific
key and only the transformed template is stored in the system. Dur-
ing authentication, the input biometric is similarly transformed and
is matched with the stored template [2, 3, 4, 5]. In a biometric cryp-
tosystem, an external key is associated with the template such that
neither the template nor the associated key can be obtained from the
stored template. The key can only be recovered when a genuinebio-
metric is presented to the system [6, 7, 8, 9].

In order to ensure the security offered by these template protec-
tion schemes, a rigorous analysis is needed. While such studies exist
for biometric cryptosystems [10, 8, 11, 12, 13], not much attention
has been paid to the feature transformation techniques. Security of a
feature transformation technique can be evaluated based ontwo main
criteria: i)non-invertibility, and ii)diversity. Non-invertibility refers
to the difficulty in recovering the original biometric giventhe secure
template and diversity refers to the difficulty in guessing one secure
template given another secure template generated from the same bio-
metric. Both these criteria may or may not assume knowledge of the
password by the adversary. Matching performance, say usingthe
Receiver Operating Characteristic (ROC) curve, is also used as an
evaluation measure where again an impostor may or may not have
access to the password.

Table 1 lists different evaluation techniques used for abovemen-
tioned evaluation criteria. The underlying objective of these evalu-
ations is to measure the amount of information a transformedbio-
metric, sayX, can provide about the original biometric (in case of
non-invertibility) or another transformed biometric (in case of di-
versity), sayY . To evaluate diversity, ROC corresponding to the
case when the templates generated from the same biometric using
different keys are considered as different individuals enrolled in the
system is computed (see, e.g., [4, 14]). Non-invertibility, given that
the user specific key is not available to the adversary, is usually eval-
uated by estimating the number of different templates that can be
guessed as the original biometric given the transformed biometric
(see, e.g., [3, 14]). Both these measures, however, have certain limi-
tations. The False Accept Rate (FAR) in evaluating diversity is usu-
ally zero at a reasonable system threshold due to the limiteddatabase
used in evaluation [4]. Moreover, the biometric matchers are not op-
timized for such experiments. On the other hand, the measurefor
non-invertibility does not take the distribution of biometric features
into account which can lead to a significant over-estimationof secu-
rity.

In this paper, we present a measure of non-invertibility forfin-
gerprint minutiae based feature transformation techniques assuming
that the user specific key is known to the adversary. The proposed
technique measures the relationship between the number of guesses
(effort) required by an adversary to recover a certain fraction (cover-
age) of the biometric template given the transformed template.The



different (coverage-effort)-tuples are plotted to obtainthe Coverage-
Effort (CE) curve. The computation of a CE curve consists of three
main steps:

1. Pre-image Computation: Compute the pre-images of each
transformed minutia such that transformation of all the pre-
image minutiae would lead to the given transformed minutia.

2. Minutiae Likelihood Computation: Estimate the relative
probability of each of the minutiae in the pre-image using
kernel density estimation.

3. Non-invertibility Measure Computation: Sort the pre-images
according to their likelihoods and compute the coverage i.e.
the number of true pre-images guesses given that the adver-
sary checks only a certain portion of the pre-images.

We note that the proposed measure is sufficiently generic to be useful
for any feature transformation technique such that the transformation
can be evaluated at any given point and is piecewise differentiable.

Evaluation Criteria Evaluation Technique

Diversity Match different transformed templates
obtained from the same biometric [4,
14]

Non-invertibility Number of neighboring minutiae that
change after the transformation [3]

Non-invertibility
with unknown key

Number of different templates that can
generate the given transformed tem-
plate ([3]) and number of impostor bio-
metric templates that can be accepted
as corresponding to the given trans-
formed template by a matching algo-
rithm ([14])

Matching perfor-
mance

ROC [3, 14, 2]

Table 1. Different evaluation criteria and evaluation techniquesused
for feature transformation of a fingerprint template.

2. MINUTIAE TEMPLATE TRANSFORMS

Minutiae are the most common and distinctive representation of
a fingerprint. These are the points on the finger surface where
the friction ridges end or bifurcate. Figure 1 shows two prints
from the same finger with minutiae overlaid. Note that there is a
significant intra-class variation in the fingerprint representations;
multiple acquisitions of the same finger lead to different num-
ber of minutiae as well as their position(x, y) and orientation
(θ). It is this property that makes it difficult to match finger-
prints in the encrypted domain. Note that a minutiae based finger-
print template, sayT , consists of a collection ofn minutiae i.e.
T = {(x1, y1, θ1), (x2, y2, θ2), ..., (xn, yn, θn)}. The transfor-
mation function considered here,φ(.), takesT to another set ofn
minutiae i.e.φ(T ) = {(x′

1, y
′
1, θ

′
1), (x

′
2, y

′
2, θ

′
2), ..., (x

′
n, y′

n, θ′
n)}.

Thus a measure of non-invertibility should estimate the difficulty in
obtainingT givenφ(T ).

A desirable transformation should account for the intra-class
variation while at the same time providing a reasonable template
security. A number of minutiae based feature transformation tech-
niques have been proposed (see [3, 15, 14]) where the configuration
of each minutia is changed according to a user specific key to obtain
the transformed template. Ratha et al. [3] proposed three different

(a) (b)

Fig. 1. Two fingerprint images from the same finger with extracted
minutiae.

(a) (b) (c)

Fig. 2. Feature transformation. (a), (b), and (c) show the cartesian,
polar, and Gaussian mixture based transformations [3].

kinds of transformations i.e. cartesian, polar, and functional as illus-
trated in Figure 2. The many-to-one nature of these transforms pro-
vides non-invertibility even for the case when the adversary knows
the user specific key. A cartesian transformation tessellates the im-
age plane into rectangles and then shuffles the rectangles based on
the user password such that any two rectangles can map on to a sin-
gle rectangle. Instead of rectangles, a polar transform tessellates the
image plane into sections of annular regions around a centerpoint.
A functional transformation, however, transforms the minutiae based
on a function evaluated over a minutiae configuration.

3. NON-INVERTIBILITY MEASURE

The security of the feature transformation based template protection
schemes is based on thenon-invertibility of the transform. Thus
it is important to design a measure of the non-invertibilitywhich
estimates the likelihood of an adversary being able to guessthe
original template given the transformed template. For thiswe pro-
pose a three-stage procedure for estimating the non-invertibility: i)
pre-image identification, ii) pre-image likelihood evaluation, and iii)
non-invertibility measure computation.

3.1. Mixture of Gaussians based Transform

Due to its generic nature and acceptable performance [3], weuse
the functional transformation technique based on a mixtureof Gaus-
sians to compute a measure of non-invertibility. In order totrans-
form a minutia, functions consisting of a mixture of Gaussians and
its derivatives are evaluated at the position of minutia andthen the
minutia is translated according to the values obtained. Forthe sake
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Fig. 3. Feature transform based on mixture of Gaussians; (a) minu-
tiae template, (b) and (c) transformed minutiae template withβ = 30
andβ = 60. (d), (e), and (f) depict the transformation functions cor-
responding to the images shown in (a), (b), and (c), respectively.

of simplicity, we restrict the transformation function to change only
thex andy coordinates of a minutia.

The mixture of Gaussians used to obtain the transformation
function is given by:

f(~x) =
K

∑

i=1

tiπie
− 1

2
(~x− ~µi)Σ

−1

i
(~x− ~µi)

′

(1)

whereK is the number of components, andπi, ti, µi, andΣi cor-
respond to the mixing probabilities, the signs (+ or -), means, and
covariance matrices of the different components, respectively. ~x is a
vector representation of a minutia consisting of only thex andy co-
ordinates of the minutiae. In our experiments, where the fingerprints
are captured at569 ppi resolution and are560 × 296 in size,K is
taken to be24, Σi is taken to be a diagonal matrix with each diagonal
entry equal to502 for each component. The remaining parameters
are determined using the user specific key.

The transformation of each minutia is represented as direction of
minutia translation (denoted byφθ) and magnitude of minutia trans-
lation (denoted byφd). The two components of the transformation
can be obtained as:

φθ(~x) = arctan(
f ′

y(~x)

f ′

x(~x)
) + α, (2)

φd(~x) = β
{

1 +
[

∑K

i=1 tiπie
− 1

2σ2
(~x−~µ)(~x−~µ)′

]}

, (3)

wheref ′
y(.) and f ′

x(.) are thex and y derivatives off and α ∈
[0, 360) is a random offset in direction;β is used to manipulate the
overall translation of minutiae. Figure 3 shows the fingerprint minu-
tiae transformed according to the functional transformation gener-
ated using different values forβ (30 and60).

3.2. Pre-image Computation

In order to compute the pre-image of a minutia, all 4-pixel neighbor-
hoods of the form(i, j), (i + 1, j), (i, j + 1), (i + 1, j + 1) from
the original fingerprint image space are transformed and theones
that cover a particular transformed minutia are used to obtain can-
didate pre-images of that minutia. Any one out of the four points
in the covering neighborhood is taken as the pre-image minutia. If
multiple pre-image points are sufficiently close to each other, only
one of them is included in the pre-image set. Complete link cluster-
ing [16] is used for this purpose with a splitting criteria depending
on the precision required in the guessed pre-image. An extension
to incorporate change inθ will involve an 8-point 3D neighborhood
includingθ instead of a 2D neighborhood. In some cases depending
on the transform, if the 4-pixel neighborhood is severely distorted,
certain pre-images might not be detected. Such cases will, however,
not arise if the pre-image is computed as a closed form solution or a
sufficiently fine grid is used.

3.3. Pre-image Likelihood Computation

Let ~v be a transformed minutia and~u1, ~u2, ..., ~um be them pre-
images of~v under the transformationφ. Further, letlv ∈ 1, 2, ..., m
be a random variable indicating which of the pre-images of~v is the
true one. We are interested in computing the probabilityP (lv =
r|~v = ~a = (xv, yv, θv)). Using the Bayes theorem,

P (lv = r|~v = ~a) = p(~v=~a|lv=r)∗P (lv=r)
∑

i=1...m p(~v=~a|lv=i)∗P (lv=i)
. (4)

Taking the prior probabilityP (lv = i) = 1/m,∀i = 1, 2, ..., m
(no preference for any particular pre-image) and converting p(~v =
~a|lv = r) to p(~ur),

P (l = r|~v = ~a) =
p(~ur)/Jφ(~ur)

∑

k=0,...,m−1 p(~uk)/Jφ(~uk)
, (5)

whereJφ(~uk) is the Jacobian (cf. [17], page 234) of the transforma-
tion φ which can be computed either numerically or in a functional
form depending on the complexity ofφ.

In order to computep(~ur), we perform a kernel density estima-
tion of minutiae represented as the(x, y, θ)-tuple using a Gaussian
kernel with a leave-one-out estimate of the bandwidth2. Before es-
timating the probability density, we align all the fingerprints using
their high curvature points based on the Trimmed Iterative Closest
Point (ICP) algorithm [9]. Note that an alignment of fingerprints
prior to density estimation leads to a more distinctive probability
density with a low entropy. Figure 4 shows the estimated probability
density.

3.4. Non-invertibility Measure Computation

We compute a measure of non-invertibility as the number of com-
putations required by an adversary to guess the original minutiae set
using a specific attack strategy. Let there ben different minutiae in
the transformed template whose pre-image needs to be computed.
An attack strategy includes the order in which an adversary guesses
the variousn-tuples corresponding to the selection of a particular
pre-image for each of then minutiae. Note that if there aremi pre-
images of theith minutia then the number ofn-tuples that the ad-
versary needs to prioritize isΠi=1,..,nmi which could be very large.

2We use the Kernel Density Estimation Toolbox for Matlab provided by
Alexander Ihler (Available at: http://www.ics.uci.edu/ ihler/code/kde.html).



Fig. 4. Marginal densities of minutiae in(x, y), (x, θ), and(y, θ)
planes.

In order to make the analysis feasible, we assume that instead of
guessing from all the pre-images of a minutia, the adversaryguesses
only from some of the more probable pre-images of each minutiae.
In the limiting case, the adversary will just select the most-probable
pre-image for each minutiae.

In our experiments, we consider an adversary that checks only
the 2Hi most probable pre-images3 of the minutiavi, i = 1...n.
Here Hi is the entropy or the difficulty in guessing the true pre-
image given by

Hi = −

mi
∑

r=1

P (lvi
= r|~vi) log2(P (lvi

= r|~vi)), (6)

wheremi is the number of pre-images ofvi. In this scenario,Πi2
Hi

different guesses will be made simultaneously for each individual
minutia leading to an effort equivalent to1/n

∑

i Hi bits per minu-
tia. The corresponding coverage is computed as the fractionof minu-
tiae whose true pre-images lie among the searched space. Note that
these two values, i.e. effort and coverage, provide only a single point
on the Coverage-Effort curve. In order to increase or decrease the
coverage, we assume that adversary searches formin(mi, d2

Hi+ηe)
most probable pre-images per minutia, whereη ∈ [−max(Hi),
max(Hi)]. Note that in this case, the adversary is making≈ 2nη

times more (or less ifη is negative) guesses than the previous case.
This leads to the complete CE curves as shown in Figure 5.

4. EXPERIMENTS

To demonstrate the effectiveness of the proposed non-invertibility
measure, we evaluated it on the publicly available FVC2002
database-2 which contains 800 fingerprint images (100 fingers ×
8 impressions/finger) of size560 × 296 captured at569 ppi reso-
lution. There are about35 minutiae per fingerprint in the database.
The experiments are based on mixture of Gaussians based functional
transformation technique.

Figure 5 shows the Coverage-Effort curves corresponding tothe
mixture of Gaussians based transformation with two different pa-
rameter settings. For each parameter setting, four different randomly
generated transformation instances were used, say corresponding to
using four different passwords. We also obtain the CE curvescorre-
sponding to the case when the minutiae distribution is uniform. As

3Note that for a random variableZ with m equally likely pre-images,
m = 2

HZ whereHZ is its entropy.

(a)

(b)

Fig. 5. Coverage-Effort curves for the mixture of Gaussians based
feature transformation. (a) and (b) CE curves for the case when β
equals30 and 60, respectively keeping the remaining parameters
fixed. In each figure four different instances of the transformation
are shown with four different solid lines. The dotted lines corre-
spond to random guesses of the true pre-image. The size of thecol-
ored regions indicate variance in the security imparted by different
instances of the transform.

shown in Figure 5, the curves obtained using the uniform minutiae
distribution depict significantly greater security as compared to when
the true minutiae distribution is taken into consideration. This is due
to the fact that the minutiae with low pre-image entropy havethe
correct pre-image among the first few highly probable pre-images.
Also, it can be observed that different parameter values canlead to
significantly different security for a transformed template. Note that
the proposed approach can be used to compute the coverage effort
curve for individual fingerprints. Figure 6 shows the CE curve and
the corresponding minutiae from a fingerprint.

We used the Neurotechnology Verifinger SDK [18] in order to
perform the minutiae matching. The genuine matches were per-
formed by matching each of the eight impressions of a finger with
each other impression leading to 2,800 genuine matches and the im-
postor matches were performed by matching the first impression of
each finger with the first impression of the remaining fingers leading
to 4,950 impostor matching scores. The matching results reported
here are for the case when the impostor knows the true user spe-
cific key i.e. all the templates in the database have been transformed
using the same user specific key. Figure 7 shows the ROC curves
corresponding to the transformed templates based on two different
parameter settings of the mixture of Gaussians transform (same as
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Fig. 6. CE curve for individual finger. (a) shows the CE curve, (b)
the most likely pre-image of each minutia with the correctlyguessed
minutiae shown in black, and (c) the true pre-images with thetotal
number of pre-images per minutia.

Fig. 7. ROC curves for the mixture of Gaussians based transforma-
tion of fingerprint template. Four random instances of the two cases
whereβ (see eq. (3)) equals30 and60 are shown as solid and dotted
lines, respectively. The size of colored regions indicate variance in
performance of different instances of the transform.

those used in computing the CE curves). It can be observed that
the parameter setting that leads to lower security has better matching
performance verifying the trade-off between security and matching
performance as expected.

5. CONCLUSIONS

As noted in [19], proper evaluation is essential to motivatethe de-
velopment and acceptance of good security techniques. In this paper
we have identified the shortcomings in the existing measuresused
to evaluate non-invertibility of a minutiae transformation technique.
We propose a new evaluation measure, the CE curve, that takesinto
account the distribution of biometric features thereby providing a
quite realistic estimate of security. Note that a template that can be
easily inverted not only compromises the associated systembut also
some systems that use different features extracted from thesame bio-
metric. We have also validated the measure using the Gaussian of
mixture based transformation technique on a public database.
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