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Abstract—Multibiometric systems are being increasingly de-
ployed in many large scale biometric applications (e.g., FBI-
IAFIS, UIDAI system in India) because they have several advan-
tages such as lower error rates and larger population coverage
compared to unibiometric systems. However, multibiometric
systems require storage of multiple biometric templates (e.g.,
fingerprint, iris, and face) for each user, which results in increased
risk to user privacy and system security. One method to protect
individual templates is to store only the secure sketch generated
from the corresponding template using a biometric cryptosystem.
This requires storage of multiple sketches. In this paper, we
propose a feature level fusion framework to simultaneously
protect multiple templates of a user as a single secure sketch.
Our main contributions include: (i) practical implementation of
the proposed feature level fusion framework using two well-
known biometric cryptosystems, namely, fuzzy vault and fuzzy
commitment, and (ii) detailed analysis of the trade-off between
matching accuracy and security in the proposed multibiometric
cryptosystems based on two different databases (one real and
one virtual multimodal database), each containing the three
most popular biometric modalities, namely, fingerprint, iris, and
face. Experimental results show that both the multibiometric
cryptosystems proposed here have higher security and matching
performance compared to their unibiometric counterparts.

Index Terms—Multibiometrics, template security, biometric
cryptosystem, fuzzy vault, fuzzy commitment, fusion

I. INTRODUCTION

Multibiometric systems accumulate evidence from more
than one biometric trait (e.g., face, fingerprint, and iris) in
order to recognize a person [1]. Compared to unibiometric
systems that rely on a single biometric trait, multibiometric
systems can provide higher recognition accuracy and larger
population coverage. Consequently, multibiometric systems
are being widely adopted in many large-scale identification
systems, including FBI’s IAFIS, Department of Homeland
Security’s US-VISIT, and Government of India’s UID. A
number of software and hardware multibiometric products
have also been introduced by biometric vendors [2], [3].

While multibiometric systems have improved the accuracy
and reliability of biometric systems, sufficient attention has
not been paid to security of multibiometric templates. Though
a biometric system can be compromised in a number of ways,
leakage of biometric template information to unauthorized
individuals constitutes a serious security and privacy threat
due to the following two reasons:
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1) Intrusion attack: If an attacker can hack into a biomet-
ric database, he can easily obtain the stored biometric
information of a user. This information can be used to
gain unauthorized access to the system by either reverse
engineering the template to create a physical spoof or
replaying the stolen template.

2) Function creep: An adversary can exploit the bio-
metric template information for unintended purposes
(e.g., covertly track a user across different applications
by cross-matching the templates from the associated
databases) leading to violation of user privacy.

Security of multibiometric templates is especially crucial as
they contain information regarding multiple traits of the same
user. Hence, multibiometric template protection is the main
focus of this work. The fundamental challenge in designing a
biometric template protection scheme is to overcome the large
intra-user variability among multiple acquisitions of the same
biometric trait. A number of techniques have been proposed
to secure biometric templates (see [4] for a detailed review).
These techniques can be categorized into two main classes:

• Biometric cryptosystems: In a biometric cryptosystem,
secure sketch (yc) is derived from the enrolled biometric
template1 (xE) and stored in the system database instead
of the original template. In the absence of the genuine
user’s biometric data, it must be computationally hard
to reconstruct the template from the sketch. On the
other hand, given an authentication query (xA) that is
sufficiently close to the enrolled template (xE), it should
be easy to decode the sketch and recover the template.
Typically, the sketch is obtained by binding the template
with a codeword from an error correcting code, where the
codeword itself is defined by a key (κc). Therefore, the
sketch (yc) can be written as fc(xE , κc), where fc is the
sketch generation function. The error correction mech-
anism facilitates the recovery of the original template
and hence, the associated key. Examples of biometric
cryptosystems include fuzzy vault [5], fuzzy commitment
[6], PinSketch [7], and secret-sharing approaches [8].

• Template transformation: Template transformation
techniques modify the biometric template (xE) with a
user specific key (κt) such that it is difficult to recover
the original template from the transformed template (yt).

1In this paper, we use the notation x to denote a generic biometric feature
vector and X to denote a collection of biometric templates corresponding to
the same user. The notations b and s denote features that are represented
as a binary string and point-set, respectively. Superscripts E and A are
used to distinguish between the features extracted during enrollment and
authentication, respectively.
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During authentication, the same transformation is applied
to the biometric query (xA) and the matching is per-
formed in the transformed domain to avoid exposure of
the original biometric template. Since the key κt needs
to be stored in the system along with yt, the template
security is guaranteed only if the transformation function
is non-invertible even when κt is known to the attacker.
Some well-known examples of template transformation
include Bio-Hashing [9] and cancelable biometrics [10].

Ideally, the secure template should satisfy the following two
properties: (i) Non-invertibility - given a secure template, it
must be computationally difficult to find a biometric feature set
that will match with the given template, and (ii) Revocability -
given two secure templates generated from the same biometric
data, it must be computationally hard to identify that they are
derived from the same data or obtain the original biometric
data. While biometric cryptosystems generally tend to have
stronger non-invertibility, template transformation schemes
typically have better revocability. To simultaneously exploit
their relative strengths, different combinations of the above
two basic approaches, called hybrid biometric cryptosystems,
have also been proposed [11], [12]. In this paper, we focus
on the biometric cryptosystem approach for multibiometric
template protection due to two reasons: (i) well-known bio-
metric cryptosystems such as fuzzy vault and fuzzy commit-
ment are available for securing different types of biometric
features and (ii) it is relatively easy to analyze the security
(non-invertibility) of a secure sketch by leveraging on the
characteristics of error correcting codes.

Biometric cryptosystems have been designed only for spe-
cific biometric feature representations. For example, the fuzzy
commitment scheme assumes a binary string representation,
where the dissimilarity between template and query is mea-
sured in terms of the Hamming distance. The fuzzy vault and
PinSketch techniques assume point-set based representations
and use set difference as the dissimilarity metric. However,
multiple templates of a user may not follow the same feature
representation. Point-set based features are used when the
image has a set of salient points (e.g., fingerprint minutiae). If
different samples of a biometric trait exhibit limited relative
geometric transformation and limited occlusion, real-valued
feature vectors obtained through PCA [13] and LDA [14]
can be used. Binary strings are typically obtained through
quantization of a real-valued feature vector, which reduces the
storage space and matching complexity. For example, the bits
in an iriscode [15] are obtained through quantization of the
phase response of a Gabor filter applied to the iris image.

This diversity of biometric representations naturally requires
a separate template protection scheme for each trait, and
a fusion of the decisions made by each trait [16]. This is
analogous to a security system that requires multiple low
strength (fewer bits) passwords, where each password can be
attacked individually. Such a system is less secure than one
which uses a single password with a larger number of bits.
This motivates the proposed approach to protect the multiple
biometric templates using a single secure sketch.

While the concept of securing multiple templates simulta-
neously as a single entity using a biometric cryptosystem has

been reported in the literature, published approaches usually
assume that different templates follow the same representation
scheme. This enables simple concatenation of the individual
templates to obtain the fused template [17]. The objective of
this work is to examine the feasibility of creating a single
multibiometric secure sketch when the traits that are being
fused have different feature representations. This paper makes
the following contributions:

• We propose a feature level fusion framework to si-
multaneously secure multiple templates of a user using
biometric cryptosystems. To demonstrate the viability of
this framework, we propose simple algorithms for the
following three tasks:

1) Converting different biometric representations into
a common representation space using various em-
bedding algorithms: (a) binary strings to point-sets,
(b) point-sets to binary strings, and (c) fixed-length
real-valued vectors to binary strings.

2) Fusing different features into a single multibiomet-
ric template that can be secured using an appropriate
biometric cryptosystem such as fuzzy vault and
fuzzy commitment; efficient decoding strategies for
these biometric cryptosystems are also proposed.

3) Incorporating a minimum matching constraint for
each trait, in order to counter the possibility of an
attacker gaining illegitimate access to the secure
system by simply guessing/knowing only a subset
of the biometric traits.

• We analyze the GAR-security trade-off in the pro-
posed multibiometric cryptosystems using two different
databases each containing three biometric modalities,
namely, fingerprint, iris, and face.

The rest of the paper is organized as follows. Section II
provides a background on fuzzy vault and fuzzy commitment
techniques and compares the various multibiometric template
security schemes proposed in the literature. The feature level
fusion framework for multibiometric cryptosystems and the
associated algorithms are introduced in Section III. Section
IV presents the security analysis methodology. Implemen-
tation details and performance evaluation of the proposed
multibiometric cryptosystems are discussed in Section V. Our
conclusions are summarized in section VI.

II. BACKGROUND

A. Fuzzy Commitment and Fuzzy Vault

Fuzzy commitment [6] is a biometric cryptosystem that can
be used to secure biometric traits represented in the form
of binary vectors (e.g. iriscodes). Suppose that the enrolled
biometric template bE is an N -bit binary string. In fuzzy
commitment, a uniformly random key κc of length L (L ≤ N )
bits is generated and used to uniquely index a N -bit codeword
c of an appropriate error correcting code. The sketch is then
extracted from the template as yc = c ⊕ bE , where ⊕
indicates the modulo-2 addition. The sketch yc is stored in
the database along with h(κc), where h(.) is a cryptographic
hash function. During authentication, the codeword is obtained
from the query biometric bA and the sketch yc as follows:
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TABLE I
COMPARISON OF FUZZY COMMITMENT AND FUZZY VAULT.

Fuzzy Vault Fuzzy Commitment
Representation Point-set Binary string
Main
advantage

Ability to secure finger-
print minutiae

Compact size of the
sketch

Main
limitation

Difficult to generate chaff
that are indistinguishable
from genuine points

Lack of perfect codes
for desired code lengths

Parameters Polynomial degree (k),
size of the template set
(r), and number of chaff
points (q)

Key length L, length of
codeword N , and er-
ror correcting capacity
of the code

GAR-Security
tradeoff

Higher values of (k/r)
and q lead to lower GAR,
but higher security and
vice versa

Higher values of (L/N )
lead to lower GAR, but
higher security and vice
versa

Implementations Fingerprint ([18], [19]),
face ([20]), iris ([21]), sig-
nature ([22])

Fingerprint ([23]), face
([23], [24]), iris ([25]),
signature ([26])

c∗ = yc ⊕ bA = c⊕ (bE ⊕ bA). This codeword c∗, which is
generally a corrupted version of the original codeword c, can
be decoded to get the key κ∗. The authentication is deemed
successful if h(κ∗) is the same as h(κc). If the Hamming
distance between bE and bA is not greater than the error
correcting capacity of the code, κ∗ would be the same as κ
and the matching will be successful.

Fuzzy vault [5] is useful for securing point-set based
biometric features such as fingerprint minutiae. Let sE =
{x1, x2, ..., xr} denote a biometric template consisting of a
set of r points from a finite field F . In order to secure sE ,
a uniformly random cryptographic key κc of length L bits is
generated and this key is transformed into a polynomial P of
degree k (k < r) over F . All the elements in sE are then
evaluated on this polynomial to obtain the set {P (xi)}ri=1.
The set of points {(xi, P (xi))}ri=1 is then secured by hiding
them among a large set of q randomly generated chaff points
{(aj , bj)}qj=1 that do not lie on the polynomial P (i.e.,
bj ̸= P (aj) and aj /∈ sE , ∀ j = 1, 2, · · · , q). The set of
genuine and chaff points along with their polynomial evalua-
tions constitute the sketch or vault yc. During authentication,
if the query biometric set sA is sufficiently close to sE ,
many genuine points in yc can be correctly identified and
the polynomial P can be successfully reconstructed using
decoding algorithms used in Reed-Solomon error correcting
codes. Table I summarizes the comparative characteristics of
fuzzy vault and fuzzy commitment.

B. Evaluation of Fuzzy Commitment and Fuzzy Vault Schemes

The effectiveness of a biometric cryptosystem depends on
the matching performance and the template security. Matching
performance of a biometric system is usually quantified by the
False Accept Rate (FAR) and the Genuine Accept Rate (GAR).
In biometric cryptosystems, matching is typically carried out
using a polynomial-time error correction decoding algorithm
(computational complexity of the decoder is bounded by
a polynomial expression in the length of the codeword).
Therefore, GAR (respectively, FAR) can be defined as the
proportion of genuine (respectively, impostor) attempts that
lead to successful decoding in polynomial time.

It is well-known that both fuzzy vault and fuzzy commit-
ment do not generate revocable templates, i.e., the secure
sketches generated by them are susceptible to linkage attacks
[27]. Hence, only the non-invertibility property is considered
during security analysis of these two schemes. Security is
often measured in terms of the information leakage rate or
entropy loss [7], [8]. Leakage rate is defined as the mutual
information between (i) the secure sketch and the original
biometric template (known as privacy leakage) or (ii) sketch
and the cryptographic key associated to it (secret key leakage).
In both fuzzy vault and fuzzy commitment, the privacy leakage
rate is related to the secret-key leakage rate because it is
trivial to recover (i) the biometric template given the key and
the secure sketch and (ii) the key given the template and the
secure sketch. Some researchers have argued that since a false
accept error also leads to unauthorized exposure of the original
biometric template, the security of a biometric cryptosystem
is bounded by −log(FAR) bits [28].

Due to intra-user variability in biometric traits, there is
usually a trade-off between the GAR and the security (both
FAR and leakage rate) in biometric cryptosystems. Schemes
with higher security tend to have lower GAR and vice versa.
This trade-off is determined by the error correcting capacity
of the code used.

C. Multibiometric Cryptosystems
A number attempts have been made to extend the secure

biometric recognition framework to incorporate multiple bio-
metric traits [29], [30], [17], [16]. Sutcu et al. [29] combined
face and fingerprint templates that are both transformed into
binary strings. These binary strings are concatenated and used
as the input to a fuzzy commitment scheme.

Nandakumar and Jain [30] proposed a multibiometric cryp-
tosystem in which biometric templates based on binary strings
and point-sets are combined. The binary string is divided into
a number of segments and each segment is separately secured
using a fuzzy commitment scheme. The keys associated with
these segment-wise fuzzy commitment schemes are then used
as additional points in the fuzzy vault constructed using the
point-set based features.

Kelkboom et al. [17] provided results for feature level, score
level and decision level fusion of templates represented as
fixed-length real-valued vectors. Since the match scores are not
explicitly available in a biometric cryptosystem, Kelkboom et
al. used the number of errors corrected by an error correcting
code in a biometric cryptosystem as a measure of the score.
Such scores are, however, meaningful only if the crypto-
biometric match is successful and the key κc can be success-
fully recovered. Moreover, multiple scores can be obtained
only if the different templates are secured individually, which
leads to suboptimal security. This is also true for decision level
fusion. The feature level fusion scheme in [17] involves simple
concatenation of two real-valued vectors and binarization of
the combined vector using quantization thresholds.

Fu et al. [16] theoretically analyzed the template security
and recognition accuracy imparted by a multibiometric cryp-
tosystem, which can be operated in four different ways: no-
split, MN-split, package, and biometric model. The first three
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models correspond to decision level fusion, where the biomet-
ric templates are secured individually. The biometric model
is based on feature level fusion of homogeneous templates.
However, no system implementation was reported.

Cimato et al. [31] follow a modular approach to design
multibiometric cryptosystems. Suppose that bE

1 and bE
2 are

two biometric templates. A secure sketch y1 is extracted from
bE
1 along with a hash of the bE

1 , which is further used as a
key to secure the second template. This approach is similar to
the package model proposed in [16], which in turn is based
on the AND decision fusion rule. Fang et al. [32] consider a
more general version of the above modular approach, where
multiple secrets (could be biometric templates or passwords)
are mixed in a cascaded fashion within the secure sketch
framework. One advantage of such a modular approach is
that additional biometric traits can be easily introduced in the
multibiometric cryptosystem. Another benefit is that it allows
the use of heterogeneous templates. For example, in [31], a
secure sketch is used to protect the iriscode template, and the
hash value of the iriscode based on the secret key is used to
encrypt a fingerprint minutiae template. A limitation of this
approach is that its overall security is bounded by the security
of the sketch in the outermost layer.

In this paper, we propose a generic framework for the
design of a multibiometric cryptosystem with heterogeneous
templates and consider practical implementation issues in the
case of both binary string and point-set based representations.

III. PROPOSED FRAMEWORK FOR MULTIBIOMETRIC
CRYPTOSYSTEMS

We propose a feature level fusion framework for multibio-
metric cryptosystems that consists of three basic modules: (i)
embedding algorithm (E), (ii) fusion module (C), and (iii)
biometric cryptosystem (fc). The generic framework of the
proposed multibiometric cryptosystem is shown in Figure 1.
Suppose that we have a set of biometric feature representations
X = {x1, x2, · · · , xM}, where xm represents the features
corresponding to the mth biometric modality of a user, and M
represents the number of modalities, m = 1, 2, · · · ,M . The
functionalities of the three modules are as follows:

• Embedding algorithm (E): The embedding algorithm
transforms a biometric feature representation xm into a
new feature representation zm, where zm = Em(xm), for
all m = 1, 2, · · · ,M . The input representation x can be a
real-valued feature vector, a binary string, or a point-set.
The output representation z could be a binary string or a
point-set that could be secured using fuzzy commitment
or fuzzy vault, respectively.

• Fusion module (C): The fusion module combines a set of
homogeneous biometric features Z = {z1, z2, · · · , zM}
to generate a fused multibiometric feature representation
z. For point-set based representations, one can use z =
Cs(Z) = ∪Mm=1zm. In the case of binary strings, the fused
feature vector can be obtained by simply concatenating
the individual strings, i.e., z = Cb(Z) = [z1 z2 · · · zM ].
Note that it is also possible to define more complex
fusion schemes, where features could be selected based
on criteria such as reliability and discriminability.

• Biometric cryptosystem (fc): During enrollment, the
biometric cryptosystem generates a secure sketch yc using
the fused feature vector zE (obtained from the set of bio-
metric templates XE = {xE1 , xE2 , · · · , xEM}) and a key κc,
i.e., yc = fc(zE , κc). During authentication, the biometric
cryptosystem recovers κc from yc and zA (obtained from
the set of biometric queries XA = {xA1 , xA2 , · · · , xAM}).
Fuzzy commitment is used if z is a binary string, whereas
a fuzzy vault is used if z is a point-set.

Each of the above three modules play a critical role
in determining the matching performance and security of
the multibiometric cryptosystem. The embedding algorithm
should generate a compact representation that preserves the
discriminability of the original biometric features. The fusion
module should find the optimal trade-off between the dis-
criminability and variability in the individual feature repre-
sentations. The biometric cryptosystem should minimize the
information leakage about the original biometric templates.
Thus, optimizing each module is a challenging task in itself
and is beyond the scope of this work. Since our primary
objective is to demonstrate the viability of the proposed feature
level fusion framework, we propose fairly simple algorithms
for implementing the above three modules and do not focus
on optimizing them.

A. Embedding Algorithms
We shall now discuss three types of embedding algorithms

that can perform the following feature transformations: (i) real-
valued vector into a binary string, (ii) point-set into a binary
string, and (iii) binary string into a point-set (see Table II).

1) Real-valued vector to binary string: A number of
schemes have been proposed in literature for binarization
of real-valued biometric features. Examples include Binary
Multidimensional Scaling techniques [33], Locality Sensitive
Hashing [34], Detection Rate Optimized Bit Allocation [35],
and quantization of element pairs in the polar domain [36].

Since no single feature binarization technique is provably
better than all others, we propose the following simple algo-
rithm for transforming a real-valued vector into a binary string.
First, we quantize each element of the real-valued vector into
(τ + 1) fixed size quanta. The quantized values are then
represented using τ -bit unary2 representation in order to obtain
a binary string of length τℓ, where ℓ is the dimensionality of
the original vector. In the second stage, we select a desired
number of most discriminable bits (N ). The discriminability
of each bit is computed as ((1− peg)p

e
i ), where peg and pei are

the genuine and impostor bit-error probabilities, respectively.
2) Point-sets to binary string: A number of techniques have

been proposed for converting point-sets into binary feature
vectors. These techniques include local point aggregates [37],
spectral minutiae [38], geometric transformation [29], triplet
histogram [39], and the bag-of-words approach [40]. In this
paper, we implement the simple local aggregates based tech-
nique, which works as follows. Let us assume that each point

2A unary encoding works as follows. Suppose that a real-value a needs to
be encoded using τ bits. The range of a, say [amin, amax], is quantized into
(τ +1) bins. If a falls into the ith bin, it is represented as (τ − i+1) ones
followed by (i− 1) zeros, where i = 1, 2, · · · , (τ + 1).
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Fig. 1. Schematic diagram of a multibiometric cryptosystem based on the proposed feature level fusion framework during the enrollment phase.

TABLE II
A SIMPLIFIED ILLUSTRATION OF THE PROPOSED EMBEDDING ALGORITHMS.

Real vector to Binary string Point-set to Real vector Binary string to point-set

can be represented as an ν-tuple. The available point-set is
aligned such that the bounding box of the points is centered
at the origin. Then, a set of axis-aligned hyper-rectangles with
randomly selected position and size are generated. Among
these hyper-rectangles, a fraction of hyper-rectangles with
large overlap with other hyper-rectangles is discarded.

Statistics for each hyper-rectangle based on the points
falling inside it are computed. These statistics include the
number of points in the hyper-rectangle, and the mean and
variance of the points along each of the ν dimensions. The
statistics from different hyper-rectangles are concatenated to
generate a feature vector. A Linear Discriminant Analysis
(LDA) is applied to the resultant feature vector to reduce
the dimensionality. Finally, the real-valued LDA features are
binarized using the algorithm presented in section III-A1.

3) Binary string to point-set: Conversion of binary string to
point-set is required when the final biometric cryptosystem is
based on point-set features. In order to obtain a point-set from
a binary string, we simply divide the binary string into the
desired number of segments. Each segment can be considered
as a point in the point-set representation. The only parameter in
this technique is the number of segments. A similar technique
was also used in [30], where instead of directly using the
segments of the binary strings as points, a key is associated
with each segment through fuzzy commitment and the keys
are used as additional points in the vault.

B. Biometric Cryptosystem Implementation

Both fuzzy vault and fuzzy commitment schemes typically
use linear error correcting codes. Consider a linear error
correcting code of length ℓn (number of symbols in the
codeword) and rank ℓk (number of symbols in the secret key).

A linear error correcting code can correct any combination
of g erasures and e errors as long as (g + 2e + 1) ≤ Dmin,
where Dmin is the minimum distance between the codewords
of the code [41]. When such a code is employed in a biometric
cryptosystem, the secure sketch can be decoded as long as
(ℓn −Dmin + 1) symbols in the biometric feature vector can
be guessed correctly and the remaining (Dmin − 1) symbols
are treated as erasures. If the selected error correcting code
is maximum distance separable (i.e., it satisfies the Singleton
bound), then (Dmin − 1) = (ℓn − ℓk). For example, the
Reed-Solomon code used in fuzzy vault is maximum distance
separable with ℓn = r and ℓk = (k+1). Hence, the polynomial
P in a fuzzy vault can be successfully reconstructed if (k+1)
genuine points can be identified from the vault.

As pointed out in section II-B, the error correction decoder
in a biometric cryptosystem is generally constrained to run in
polynomial-time. This approach has two limitations. Firstly, it
restricts the number of errors that can be corrected to (Dmin−
1)/2, thereby leading to more false rejects for genuine users.
Given the large intra-user variations in biometric features, it
is often difficult to find codes with sufficient error correction
capability that can provide high GAR. Secondly, the above
approach requires analysis of two separate attack strategies:
(i) a false accept attack, where the attacker attempts to decode
a given secure sketch by invoking the polynomial-time decoder
multiple times with different non-matching queries from a
database, and (ii) a brute-force attack, where the attacker
directly tries to guess (ℓn−Dmin+1) symbols in the original
biometric feature vector. It is not clear which strategy is more
efficient from the attacker’s perspective.

In this paper, we relax the constraint that the decoder
needs to run in polynomial-time. During each iteration of
our decoding algorithm, we consider only a subset of most
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reliable symbols from the codeword and attempt to decode
the sketch by considering the remaining symbols as erasures.
If the sketch cannot be decoded in a particular iteration, we
attempt to decode it using a smaller subset of symbols with
minimum size (ℓn − Dmin + 1). Thus, the sketch will be
eventually decoded for every authentication query. However,
the decoding complexity will be different for the genuine and
impostor cases. In practice, one can set a threshold on the de-
coding complexity for genuine users and measure GAR as the
fraction of genuine authentication attempts where the decoding
complexity is less than the selected threshold. The security
is measured as the minimum computational complexity faced
by the attacker for a successful decoding among the various
impostor match attempts. Thus, the proposed security metric
takes into account both the false accept (number of impostor
attempts needed) and brute-force attack (minimum complexity
of an impostor attempt) strategies.

1) Fuzzy Vault Encoding: Let sE = {ui}ri=1 be the bio-
metric template represented as a set of r points, which is
to be secured using a vault. Let U be the universe of all
possible biometric points. In practice, the points in U may
not necessarily be elements of the field F . To construct a
vault, each point in U is assigned3 to a point from F . Let
xi be the element in F associated with the point ui in sE ,
∀ i = 1, 2, · · · , r and let sEg = {xi}ri=1. A set of q chaff
points are randomly selected from (U \ sE) (′\′ denotes the
set difference operator). Let sC =

{
u∗
j

}q
j=1

be the set of chaff
points and let sCg =

{
x∗
j

}q
j=1

be the corresponding set of
points obtained by mapping elements in sC to elements in F .
Given a key κc of length L bits, we encode it as a polynomial
P of degree k. Finally, the vault is obtained as a set of 3-
tuples as follows: yc = {(αi, βi, γi)}ti=1, where t = (r + q),
αi ∈ (sE ∪ sC), βi is the corresponding element in (sEg ∪ sCg ),
and γi is given by

γi =

 P (βi), if αi ∈ sE ,

bi,where bi ∈ F \ {P (βi)}, if αi ∈ sC .

2) Fuzzy Vault Decoding: Let sA = {u′
j}r

′

j=1 be the set
of r′ points in the authentication query. For each point αi

(i = 1, 2, · · · , t) in the vault, its distance to the closest
query point is computed and the list of vault points is sorted
based on this distance. The ordered set of points in the vault
is given by yoc = [(α(1), β(1), γ(1)), · · · , (α(t), β(t), γ(t))],
where minw d(α(i), u′

w) < minw d(α(j), u′
w) if i < j,

and w ∈ {1, · · · , r′}. Finally, the Berlekamp-Massey4 (B-
M) algorithm [42] is applied on subsets of different lengths
derived from yoc to decode the vault and thereby recover the
associated polynomial and the key κc (see algorithm 1).

Algorithm 1 is based on the following principle. Given
a set of n points from the vault, the Berlekamp-Massey
decoding allows recovery of the polynomial if there are at

3This mapping can be stored as a lookup table or defined by a hash function.
4The Berlekamp-Massey (B-M) algorithm is one of the well-known decod-

ing algorithms used for Reed-Solomon codes.
5forall is the parallel for-loop; all instances of the loop run in parallel

Algorithm 1 Fuzzy vault decoding based on Berlekamp
Massey algorithm [42].

Input: yo
c = [(α(1), β(1), γ(1)), · · · , (α(t), β(t), γ(t))]

(Ordered vault points); k (Degree of polynomial)
forall 5n = (k + 1) to t do

sn ← {(α(i), β(i), γ(i))}ni=1

for m = 0 to n− (k + 1) do
forall s∗ ⊂ sn, |s∗| = m do

s−n ← sn \ s∗
P ← DecodeBM(s−n , k)
if P is the required polynomial then

Return P
end if

end forall
end for

end forall
Return ϕ
{DecodeBM(s, k) performs a Berlekamp-Massey decoding
of the set of points s for a polynomial of degree k}

least (n+ k+ 1)/2 genuine points in the given set. Since the
points in the vault are ordered according to their likelihood of
being genuine, we consider subsets of n ((k + 1) ≤ n ≤ t)
most likely points in parallel. If a selected subset of length
n cannot decode the vault, some points in the subset are
randomly removed to obtain smaller subsets of minimum size
(k + 1). Since all points in the vault are used in decoding,
the vault will always be eventually decoded, but the decoding
complexity will be different for each query. Since the points
in the vault are ordered based on their distance to the points
in the query biometric set, one would expect the decoding
complexity for a genuine user to be significantly less than the
decoding complexity for an impostor.

3) Fuzzy Commitment Implementation: In the fuzzy com-
mitment technique, the biometric template bE of length N
is bound to a codeword c of the same length (ℓn = N )
to generate the secure sketch yc as follows: yc = bE ⊕ c.
The codeword c is obtained from a key κc of length L
(ℓk = L) by adding error correcting bits to it. Algorithm 2
provides the fuzzy commitment decoding procedure. If the
error (crossover) probabilities of each bit in the biometric
feature vector is known, it is possible to consider some of
the least reliable bits as erasures during decoding. As in the
case of fuzzy vault, we consider the n most reliable bits in
parallel ((N −Dmin + 1) ≤ n ≤ N ) and treat the remaining
bits as erasures. If the decoding is still not successful, a subset
of reliable bits of size m are flipped. If the number of errors
among the flipped bits is more than (m/2), then the number
of errors will be less after flipping, thereby increasing the
possibility of successful decoding.

C. Constrained Multibiometric Cryptosystem

One of the limitations of a multibiometric system is that it
is possible for an adversary to get successfully authenticated
by spoofing only a subset of the involved biometric traits [43].
This issue is also a concern for a multibiometric cryptosystem.
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Algorithm 2 A fuzzy commitment decoding algorithm that
allows for erasures in the codeword based on the crossover
probabilities.

Input: c∗ (corrupted codeword); p = [p1, · · · , pN ] (bit reli-
ability vector where pi indicates the reliability (1-crossover
probability) of c∗(i), i = 1, 2, · · · , N ); Dmin.
forall n = (N −Dmin + 1) to N do

sn ← RBS(p, n,N)
for m = 0 to Dmin + 1 do

forall s∗ ⊂ sn, |s∗| = m do
c′ ← Flip(c∗, s∗)
κc ← DecodeFC(c′, sn, L)
if κc is the required key then

Return κc

end if
end forall

end for
end forall
Return ϕ
{DecodeFC(c′, sn, L) is an error correction decoder that
corrects the errors in the corrupted codeword c′ to obtain a
key of length L, while considering all bits whose indices are
not indicated in sn as erasures. The function RBS(p, n,N)
returns the indices of the n most reliable bits. Flip(c∗, s∗)
returns the codeword c′, in which the bits in c∗ correspond-
ing to points in s∗ are flipped.}

Ideally, a multibiometric system should ensure the presence
of a minimum amount of discriminatory information from a
subset or all the biometric traits of the user, especially those
that are difficult to spoof. We refer to a cryptosystem that
enforces such a requirement as a constrained multibiometric
cryptosystem and the traits for which a minimum matching
constraint is applied as constrained traits.

There are many ways to impose a minimum matching
constraint for a biometric modality within a multibiometric
cryptosystem. For example, when only two modalities are
involved, it is possible to set the error correction capacity in
such a way that even a perfect match in one modality is not
sufficient to decode the secure sketch and some minimum level
of similarity is also required for the second modality. Such
an approach will have high template security, but will reduce
the GAR significantly. Alternatively, one can store separate
unibiometric sketches for each modality and allow them to be
decoded individually. This approach will lower the security,
but will result in higher GAR compared to the first approach.

We propose a constrained multibiometric cryptosystem that
does not affect the security of a multibiometric secure sketch,
but enforces a matching constraint on individual modalities.
Our approach is conceptually similar to the modular multibio-
metric cryptosystem proposed in [31]. The proposed approach
assumes that two different representations called the primary
and secondary representations are available for the constrained
biometric modalities. These two representations satisfy the
following property: it should be hard to obtain the primary rep-
resentation from the secondary representation. A simple way

to satisfy this requirement is to consider the given biometric
feature vector (e.g., minutiae set) as a primary representation
and derive the secondary representation by applying a non-
invertible transformation (e.g., minutiae aggregates [37]) to the
given feature vector. Thus, even if the secondary representation
is revealed, it is difficult to obtain the primary representation.

For each of the constrained trait, its secondary repre-
sentation is secured using the multibiometric cryptosystem
using the feature level fusion framework whereas its primary
representation is secured using a unibiometric cryptosystem
(see Figure 2). The unibiometric cryptosystems corresponding
to the various constrained traits will use unique keys that are
different from the one used in the multibiometric cryptosys-
tem. Finally, the unibiometric secure sketches are encrypted
with a symmetric cryptographic algorithm such as AES, where
the encryption key is the same as the key associated with
the multibiometric cryptosystem. The authentication involves
two stages. In the first stage, the key associated with the
multibiometric cryptosystem is recovered. This key is used to
decrypt the unibiometric secure sketches. In the second stage,
the unibiometric secure sketches are decoded. All the keys
associated with the unibiometric sketches must be correctly
recovered for successful authentication.

Unlike the simple multibiometric cryptosystem shown in
Figure 1, the constrained multibiometric cryptosystem re-
quires storage of both multibiometric and unibiometric secure
sketches. But the proposed approach has two advantages.
Firstly, the overall security of the templates is not affected
because unibiometric sketches are encrypted using the key
that is bound to the multibiometric sketch; unless the attacker
decodes the multibiometric sketch he cannot compromise the
unibiometric sketches. Secondly, the primary representation
that is required to decode a unibiometric sketch cannot be
obtained from the secondary representation. But successful
authentication requires decoding of the multibiometric sketch
as well as all the unibiometric sketches. This ensures that the
user has a minimum amount of information about each of the
constrained biometric traits. The limitation of the proposed
approach is that it leads to a degradation in the GAR because
it is possible that an authentication attempt fails despite correct
decoding of the multibiometric sketch, because one or more
of the unibiometric sketches may not be decoded correctly.

IV. METHODOLOGY FOR SECURITY ANALYSIS

While information-theoretic measures such as entropy loss
or leakage rates are typically used to characterize the security
of biometric cryptosystems, such measures are difficult to
estimate when the precise distribution of biometric features
is not known. In practice, unrealistic assumptions about the
biometric features (e.g., uniform distribution) are used to
estimate the leakage rates, which provide only loose upper
bounds on the security [44], [45]. To account for this factor,
we assume that the attacker has access to a large biometric
database (analogous to a dictionary attack in password-based
systems). We then empirically estimate the security based
on the minimum decoding complexity among all impostor
matches tried by the attacker to decode a given secure sketch.
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Fig. 2. Enrollment phase of a constrained multibiometric cryptosystem. The templates corresponding to each constrained trait (traits 1 and M in this example)
have two representations (the primary representation (xEi (1)) and the secondary representation (xEi (2)) for modality i). The secondary representation is secured
using a multibiometric secure sketch, while the primary representation is secured using a unibiometric sketch that is further encrypted using the key associated
with the multibiometric cryptosystem.

While estimating the computational complexity, we assume
that the complexity of the error correction decoder (e.g., B-M
algorithm) is unity, and consider only the number of times this
decoder needs to be invoked. The proposed security measure
is a ”product” of the number of impostor matching attempts
(related to false accept attacks) and the minimum decoding
complexity of an impostor matching attempt (related to brute
force attacks). Thus, we combine the two attack strategies
traditionally used to estimate system security. Furthermore,
during authentication, the symbols in the codeword are ordered
based on the query prior to decoding. Therefore, the proposed
security measure indirectly takes into account the distribution
of biometric features and provides a more reliable estimate
of the difficulty in breaking a secure sketch, which is usually
greater than −log(FAR) bits.

A. Fuzzy Vault Security

Suppose that the attacker has access toNI impostor samples
to decode a vault (yc). Let sIn denote a set containing the first
n points from the ordered set of vault points (yoc). Here, the
ordering is based on the distance of the vault points to the
points in the query biometric set from impostor I . Let rIn be
the number of genuine points in sIn, i.e., rIn = |sIn∩sE |, where
sE is the enrolled template secured using yc. For (k + 1) ≤
n ≤ t, where t is the total number of points in the vault, three
different scenarios are possible.

1) If rIn ≥ (n + k + 1)/2, the B-M algorithm will return
the correct polynomial in a single attempt.

2) If (k + 1) ≤ rIn < (n+ k + 1)/2, one needs to find the
minimum value of mI

n such that when mI
n chaff points

are removed from sIn, rIn becomes greater than ((n −
mI

n) + k + 1)/2. Hence, mI
n = max(0, (n− 2rIn + k +

1)) and the corresponding complexity is approximately(
n

mI
n

)
/
(n−rIn

mI
n

)
.

3) If rIn < (k + 1), the vault cannot be decoded using sIn.
In this case, the corresponding value of complexity is
considered to be ∞.

Based on the above analysis, the security of the vault can
be expressed as

SFV = min
n,I

log2

mI
n∑

i=0

(
n
i

)(
n−rIn

i

)
+Ω

≈ min
n,I

log2

(
n

mI
n

)(n−rIn
mI

n

)
+Ω, (1)

where Ω = log2 (NI(t− k)). The first term in eqn. (1)
measures the complexity of a brute-force attack by an impostor
and is minimized over all impostor samples. Therefore, adding
more impostors is likely to lower this term. However, adding
more impostors (false accept attack) will also increase the
number of computations needed, which is reflected by the Ω
term. An increase in the polynomial degree k will increase n
and consequently result in higher security.

In the case of multibiometric fuzzy vault, it is possible
that a poor quality sample from one of the modalities can
lead to a higher decoding complexity if the relative quality
of the samples is not taken into account when generating the
multibiometric template. In order to address this issue, we
also check if any subset of biometric modalities can decode
the vault. The final value of security is the minimum among
the security based on the multibiometric query and that based
on different subsets of the query biometric traits.

Since the decoding algorithm is common to both the genuine
user and the impostor, we can also estimate the decoding
complexity for a genuine match. Let sn denote a set containing
the first n points from the ordered set of vault points (yoc),
where the ordering is based on the distance of the vault points
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to the points in the query from the genuine user. Let rn be
the number of genuine points in sn, i.e., rn = |sn ∩ sE |. The
decoding complexity for the genuine user can be expressed as

SgenFV ≈ min
n

(
log2

(
n

mn

)(
n−rn
mn

))+ log2 (t− k), (2)

where mn = max(0, (n− 2rn + k + 1)).

B. Fuzzy Commitment Security

To decode a fuzzy commitment sketch, one needs to guess
the bits in the binary template bE . Though the length of the
template bE is N bits, the entropy6 of the template (N∗) is
typically much less than N bits. This is because some bits may
not be uniformly distributed (0 and 1 values are not equally
likely), while there may also be correlation between the bits.

Suppose that the attacker has access toNI impostor samples
and a sketch yc. For each impostor I , a corrupted codeword cI
is obtained as (yc⊕bI), where bI is the binary feature vector
from impostor I . Let sn denote a set containing the indices of
the n most reliable bits in the biometric template7. Let bE

n , bI
n,

and cIn be substrings of bE , bI , and cI , respectively, containing
only those bits whose indices are in sn. The Hamming distance
between bE

n and bI
n is denoted as ρIn.

Let DecodeFC(cI , sn, L) be the error correction decoder
that corrects the errors in the corrupted codeword cI to obtain
a key of length L while considering all bits whose indices are
not in sn as erasures. When the attacker invokes the above
error correction decoder for values of n in the range [N −
Dmin + 1, N ], where Dmin is the minimum distance of the
code, three different scenarios are possible.

1) The values of n and ρIn are such that ((N−n)+2ρIn) ≤
(Dmin − 1), where (N − n) is the number of erasures
and ρIn is the number of errors. In this case, the decoder
will return the correct key in a single attempt.

2) If ((N − n) + 2ρIn) > (Dmin − 1), the attacker can try
to find mI

n (0 ≤ mI
n ≤ ((Dmin − 1) − (N − n))/2 =

(n − L)/2) such that, when mI
n errors are corrected

from cIn, ((N − n) + 2(ρIn − mI
n)) becomes less than

or equal to (Dmin − 1). If such an mI
n exists, then its

minimum value is given by mI
n = max(0, (((N − n)−

(Dmin−1))/2+ρIn)) and the corresponding complexity
is approximately

(
n

mI
n

)
/
( ρI

n

mI
n

)
.

3) If no such mI
n can be found, the secure sketch cannot be

decoded by considering the least reliable (N−n) bits as
erasures. Hence, the corresponding value of complexity
is considered to be ∞.

Based on the above analysis, the security of the fuzzy
commitment scheme can be expressed as

6We use a procedure similar to the one used in [46] to estimate the entropy.
See [47], Appendix A for details.

7We assume that the attacker can somehow estimate the bit reliability vector
(i.e., the crossover probability for each bit in the biometric template).

SFC = min
n,I

log2

mI
n∑

i=0

(
n
i

)(
ρI
n
i

)
+Ω

≈ min
n,I

log2

(
n

mI
n

)( ρI
n

mI
n

)
+Ω, (3)

where Ω = log2 (NIDmin). The above expression, however,
assumes that the bits in bE

n are independent and uniformly
random. Suppose that the entropy of bE

n is only n∗ bits. In
this case, the effective Hamming distance between bE

n and
bI
n is ρIn∗

= (n∗ρ
I
n)/n and the corresponding value of mI

n is
mI

n∗
= max(0, (((N−n)−(Dmin−1))/2+ρIn)n∗/n). Thus,

the security is given by

SFC ≈ min
n,I

log2

(
n∗

mI
n∗

)
( ρI

n∗
mI

n∗

)
+Ω. (4)

Suppose bA is a genuine authentication query and ρn∗ is
the effective Hamming distance between bE

n and bA
n , where

bE
n and bA

n are the substrings of bE and bA, respectively, con-
taining only the n most reliable bits. The decoding complexity
for a genuine match can be expressed as

SgenFC ≈ min
n

(
log2

(
n∗

mn∗

)(
ρn∗
mn∗

))+ log2(Dmin), (5)

where mn∗ = max(0, (((N−n)−(Dmin−1))/2+ρn)n∗/n).

V. EXPERIMENTAL RESULTS

A. Databases

We have evaluated the recognition performance and security
of the proposed multibiometric cryptosystems on two differ-
ent multimodal databases, each containing face, fingerprint,
and iris modalities. The first database is a virtual multi-
modal database obtained by randomly linking subjects from
FVC2002-DB-2 (fingerprint), CASIA Iris database Ver-1, and
XM2VTS (face) databases. The virtual multimodal database
consists of the full fingerprint database (100 subjects), first 100
subjects from the face database, and first 100 subjects from
the iris database. We also use the WVU multimodal database,
which is a real multimodal database containing fingerprint, iris,
and face images from 138 different users. In our experiments,
we consider one genuine authentication attempt per user and
impostor attempts are simulated by using one impression of
each user’s biometric to authenticate as every other user.
Consequently, the number of impostor attempts NI is 9, 900
(100 × 99) for the virtual multimodal database and 18, 906
(138× 137) for the real multimodal database. Figure 3 show
sample images from the different biometric databases used.

1) Fingerprint Features: Fingerprint minutiae are extracted
using the procedure detailed in [48]. To obtain the binary
string representation from the minutiae set, we follow the
approach outlined in section III-A2 with 500 hyper-rectangles
(cuboids in 3D space) aligned along the horizontal location,
vertical location, and orientation axis associated with minutiae.
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(a) (b)

Fig. 3. Sample iris, fingerprint, and face images from (a) CASIA Ver-
1, FVC2002 DB-2, and XM2VTS databases, respectively, and (b) WVU
multimodal database. Note that the quality of iris images from WVU database
is much lower than that from the CASIA database.

Different features such as sum of distances of minutiae from
the six walls of the cuboids and mean and standard deviations
of minutiae along each of the three axes, are extracted from
each cuboid in order to obtain a vector of length 3, 500.
Linear Discriminant Analysis (LDA) is used to reduce the
dimensionality of this vector to 80. Each LDA coefficient
is converted into a 40-bit unary representation and they are
concatenated to obtain a 3200(40× 80)-bit binary string. We
select a subset of the most discriminable bits (Np) using
the procedure described in section III-A1. First impression of
the finger is used for enrollment, the second one is used as
authentication sample and the remaining impressions are used
as training set in order to compute the LDA features. Since
no training is required for extracting minutiae, only the first
two impressions are used in constructing the fuzzy vault.

2) Iris Features: The binary IrisCode features are extracted
based on the algorithm described in [49]. In case of CASIA
Ver-1 database, 48 different radii and 360 different angles are
used whereas in case of WVU Iris database 20 different radii
and 240 different angles are used. The complete IrisCodes are
thus 34, 560 and 9, 600-bits long for the CASIA Ver-1 and
WVU Iris databases, respectively.

In order to reduce the dimensionality of the iriscode and
remove the redundancy present in the code, LDA is applied
to the iriscode features. Only the top 80 LDA coefficients
are retained (ℓ = 80) and these real-valued features are then
binarized using the technique proposed in Section III-A1 with
τ = 40. In order to obtain the point-set representation, 800
bits selected from the binarized LDA features are divided into
20 segments of 40-bits each. As in the case of fingerprints,
one iris sample is used for enrollment, one sample is used for
authentication, and the remaining samples are used as training
set in order to compute the LDA features.

3) Face Features: Alignment of face images is essential
prior to feature extraction. For the WVU database, eye lo-
cations were automatically extracted using Identix FaceIT
software, a region of size 120 × 100 was cropped such that
inter-pupil distance is 60 pixels. In case of XM2VTS database,
we use FaceVACS software from Cognitec in order to extract
the eye coordinates to align all the face images. The inter-pupil
distance is set to 37.5 pixels. We then crop the aligned face im-
age to a region of size 120×100 pixels. Histogram equalization
is used to reduce the effect of illumination variations. Finally,
we extract 80 LDA coefficients (ℓ = 80) that constitute the
real-valued feature vector representing a face image. The same
procedure applied to the iris LDA coefficients is also applied

to the face LDA coefficients to generate a binary string and
point-set representations for the face modality. Again, one face
image each is used for enrollment and authentication, while
the remaining samples are used as the training set.

B. Parameter Selection

1) Unibiometric fuzzy vaults: We consider the Galois field
GF (216) as the finite field F in all our experiments. In the
case of fingerprint fuzzy vault, a set of at most 24 good
quality and well separated minutiae is selected from the given
fingerprint image as the biometric points. The chaff points
are randomly generated as in [19] to obtain a vault with
224 points (r = 24, q = 200, and t = 224). In addition to
genuine minutiae and chaff points, points on the fingerprint
corresponding to high ridge curvature are also stored in the
system. These points are not expected to reveal significant
information about the minutiae but can be effectively used
to align the query fingerprint [19]. During authentication, the
query minutiae set is first aligned with the vault using the
high curvature points. A bounding box is then used to filter
out points in the vault that are not in close proximity [19]
of the query minutiae. The query is then further aligned with
the remaining vault points using a minutiae matcher. These
aligned points are then used to compute the closest distances
of the vault points to the query point based on which the vault
points are ordered prior to decoding.

The point-set representations for iris and face modalities
can be directly used to construct the iris and face vaults,
respectively. To generate chaff points in the iris (face) vault,
we pool the iris (face) points extracted from all the iris (face)
images in the database (excluding the images of the user
under consideration) and select the desired number (200) of
chaff points from this pool. During authentication, Hamming
distance is used to obtain the closest point in the query for
each vault point.

2) Multi-biometric fuzzy vault: Multiple unibiometric
vaults can be easily converted into a single multibiometric
vault by associating the same key κc with them. Note that the
key length (L) and hence, the polynomial degree k of such a
multibiometric vault is typically higher than the unibiometric
case. During decoding, multiple query biometrics are matched
with the corresponding unibiometric vaults and an ordered
sequence of points from each vault is obtained. These indi-
vidual sequences of points are then merged such that the first
l elements of the merged sequence contain approximately top
ηil points from the vault corresponding to the ith biometric.
In the current implementation, we choose ηi to be the same
for all the biometric traits. However, specific strategies can be
designed to select proper values of ηi based on the quality
of the individual biometric traits and the number of genuine
points from each trait.

3) Fuzzy commitment: We select 1, 023 most discriminable
bits from each of the three biometrics for the unibiometric
fuzzy commitments (N = 1, 023). In order to create a
multibiometric cryptosystem with M different biometric traits,
we extract N = 1, 023×M most discriminative bits from the
pool bits available from all the constituent biometric traits.
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In our experiments, we assume different values of Dmin (the
minimum distance of the error correcting code) in the range
0.02 to 0.6 times the total number of bits N .

C. Performance Evaluation

We evaluate the trade-off between recognition accuracy and
security of the proposed multibiometric cryptosystems using
the GAR-Security (G-S) curves. The G-S curve is obtained
by varying the error correction capacity of the code (varying
polynomial degree k in the case of fuzzy vault and Dmin for
fuzzy commitment) used in the biometric cryptosystem.

Figures 4 and 5 show the performance of the multibiometric
fuzzy vault for the virtual and real multimodal databases,
respectively. In general, it can be observed that incorporating
additional biometric features does increase the performance
of the system. In case of the virtual multimodal database, the
security of the iris fuzzy vault at a GAR of 90% is 45 bits;
however, when fingerprint and face are also incorporated in the
fuzzy vault, the security increases to around 90 bits at the same
GAR. When the templates are secured individually and the
AND fusion rule is applied, i.e., the authentication is deemed
successful only when all the unibiometric cryptosystems are
decoded, the security at 90% GAR is around 40 bits. However,
in case of the WVU database, there is only a marginal increase
in performance compared to the best modality (face). This can
be attributed to the lower quality8 of the iris and fingerprint
images in the WVU database compared to the CASIA and
FVC2002-DB2 databases, respectively. In fact, the GAR of
the iris fuzzy vault for the WVU database at zero-FAR is 0%,
which is the reason why the G-S curve corresponding to iris
is not shown in Figure 5.
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Fig. 4. The G-S curves for fuzzy vault for iris, fingerprint, and face images
from CASIA Ver-1, FVC 2002 DB-2, and XM2VTS databases, respectively,
the baseline multibiometric cryptosystem based on AND-fusion rule and the
proposed multibiometric crytposystem using all three modalities.

The results corresponding to fuzzy commitment are shown
in Figures 6 and 7 for the virtual and real multimodal
databases, respectively. The G-S curves are obtained by vary-
ing Dmin of the error correcting code. Similar to fuzzy vault,

8Please refer to the technical report [47] for more details
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Fig. 5. The G-S curves for fuzzy vault for iris, fingerprint, and face images
from WVU Multimodal database, the baseline multibiometric cryptosystem
based on AND-fusion rule and the proposed multibiometric crytposystem
using all three modalities.

the performance of the multibiometric fuzzy commitment is
significantly better than the unibiometric systems.
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Fig. 6. The G-S curves for fuzzy commitment for iris, fingerprint, and
face images from CASIA Ver-1, FVC 2002 DB-2, and XM2VTS databases,
respectively, the baseline multibiometric cryptosystem based on AND-fusion
rule and the proposed multibiometric crytposystem using all three modalities.

Table III summarizes the GAR of different biometric cryp-
tosystems at a security level of 53 bits, which is equivalent
to the guessing entropy of a 8-character password randomly
chosen from a 94-character alphabet [50]. We observe that
the performances of the unibiometric cryptosystems are quite
low, which may be due to three reasons. Firstly, as mentioned
earlier, the quality of iris and fingerprint samples in the
WVU multimodal database is substantially lower than the
quality of samples in the FVC2002-DB-2 and CASIA ver1
databases, respectively. This explains the inferior performance
of iris and fingerprint-based cryptosystems when evaluated
on the WVU multimodal database. Secondly, there is a loss
of discriminatory information during the feature transforma-
tion (embedding) stage (more details about this issue are
discussed in the technical report [47]). This explains the
better performance of the unibiometric cryptosystems when
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Fig. 7. The G-S curves for fuzzy commitment for iris, fingerprint, and
face images from WVU Multimodal database, the baseline multibiometric
cryptosystem based on AND-fusion rule and the proposed multibiometric
crytposystem using all three modalities.

Traits Real Multimodal Database Virtual Multimodal Database
Fuzzy Fuzzy Fuzzy Fuzzy
vault commitment vault commitment

Iris 0% 37% 88% 91%
Finger 22% 30% 51% 2%
Face 67% 33% 58% 12%

Baseline
Fusion 33% 27% 75% 89%

Proposed
Fusion 68% 75% 99% 99%

TABLE III
COMPARISON OF GENUINE ACCEPT RATES OF THE DIFFERENT BIOMETRIC
CRYPTOSYSTEMS AT A SECURITY LEVEL OF 53 BITS, WHICH EQUALS THE
SECURITY IMPARTED BY A RANDOMLY CHOSEN 8 CHARACTER PASSWORD

[50]. HERE, BASELINE FUSION REFERS TO SECURING INDIVIDUAL
TEMPLATES USING UNIBIOMETRIC CRYPTOSYSTEMS AND COMBINING
DECISIONS USING AND-RULE FUSION, WHILE THE PROPOSED FUSION

SCHEME USES A SINGLE MULTIBIOMETRIC SECURE SKETCH.

the native representation scheme is used. For example, in
both the real and virtual multimodal databases, iris fuzzy
commitment performs better than a iris fuzzy vault. Similarly,
the performance of fingerprint fuzzy vault is generally better
than a fingerprint fuzzy commitment. Finally, the security level
of 53 bits used in Table III is higher when compared to those
typically reported in the literature [19], [25]. Furthermore, the
proposed security measure takes into account the distribution
of biometric features and hence, provides a tighter bound on
the security of the sketch.

For the multibiometric fuzzy vault implementation reported
in [30], where iris and fingerprint templates from MSU-
DBI database and CASIA Ver-1 database, respectively, were
secured together, the genuine accept rate was 98.2% at a
security of 49 bits. Note that the security estimate in [30]
assumes uniform distribution of biometric features. In our
implementation, the genuine accept rate is 99% at a security
of 49 bits [47] based on the FVC2002-DB2 and the CASIA
Ver-1 databases. In [31], security of the system has not been
explicitly reported. In [17], the proposed technique performs
fusion of two different 3D face recognition algorithms and
thus cannot be directly compared to the techniques proposed

here. In [16], no experimental results were reported.
To validate the constrained multibiometric cryptosystem,

we implemented a system consisting of iris and fingerprint
modalities, where minimum matching constraints are imposed
for the fingerprint modality. We further assume that the ad-
versary has knowledge about iris biometric, i.e., he has access
to some iris image of the enrolled user. In this experiment,
a multibiometric fuzzy commitment is implemented and a
secondary representation of fingerprints is obtained using
minutiae aggregates. Minutiae are employed as the primary
fingerprint representation, and hence a fuzzy vault is used in
the second stage. The degree of polynomial for the fuzzy vault
is selected such that the sum of security in bits and GAR
in percentage of the resulting system is maximized. Using
this constrained multibiometric cryptosystem, it is possible to
achieve a security of 35 bits even if the iris features of a
genuine user are known the adversary. However, the GAR for
this scenario is only 15% compared to a GAR of 70%, when
no constraints were imposed on the fingerprint modality.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a feature-level fusion framework for the
design of multibiometric cryptosystems that simultaneously
protects the multiple templates of a user using a single secure
sketch. The feasibility of such a framework has been demon-
strated using both fuzzy vault and fuzzy commitment, which
are two of the most well-known biometric cryptosystems. We
have also proposed different embedding algorithms for trans-
forming biometric representations, efficient decoding strategies
for fuzzy vault and fuzzy commitment, and a mechanism to
impose constraints such as minimum matching requirement
for specific modalities in a multibiometric cryptosystem. A
realistic security analysis of the multibiometric cryptosys-
tems has also been conducted. Experiments on two different
multibiometric databases containing fingerprint, face, and iris
modalities demonstrate that it is indeed possible to improve
both the matching performance and template security using
the multibiometric cryptosystems.

There are four critical issues that need to be investigated
further: (i) Embedding schemes for transforming one biometric
representation into another, while preserving the discriminative
power of the original representation: (ii) a better feature fusion
scheme to generate a compact multibiometric template that
retains most of the information content in the individual
templates; (iii) methods to improve the security analysis by
accurately modeling the biometric feature distributions; and
(iv) evaluation of the proposed cryptosystem on large multi-
modal databases.
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