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Abstract—Multibiometric systems are being increasingly de- While multibiometric systems have improved the accuracy
ployed in many large scale biometric applications (e.g., FB  and reliability of biometric systems, sufficient attentiums not
IAFIS, UIDAI system in India) because they have several poen naid to security of multibiometric templates. Segunit

advantages such as lower error rates and larger population ltibi tric t lates i iall ial theviai
coverage compared to unibiometric systems. However, mutiio- MU'UIDIOMETrC {emplates 1S especially crucial as they aon

metric systems require storage of multiple biometric tempates information regarding multiple traits of the same user. The
(e.g., fingerprint, iris, and face) for each user, which reslis in leakage of this template information to unauthorized irtliv
increased risk to user privacy and system security. One metid  als constitutes a serious security and privacy threat diieeto
to protect individual templates is to store only th_esecure_sketch_ following two reasons:

generated from the corresponding template using a biometd

cryptosystem. This requires storage of multiple sketchesin 1) Intrusion attack: If an attacker can hack into a biomet-
this paper, we propose a feature level fusion framework to ric database, he can easily obtain the stored biometric
simultaneously protect multiple templates of a user as a sile information of a user. This information can be used to

secure sketch. To make this framework practical, we propose
algorithms for (i) embedding different biometric feature rep-
resentations (e.g. set of points, binary strings, or realalued

gain unauthorized access to the system by either reverse
engineering the template to create a physical spoof or

vectors) into a common representation, (i) encoding and dmding replaying the stolen template.
multibiometric secure sketches using two well-known biomigic 2) Function creep An adversary can exploit the bio-
cryptosystems, namely,fuzzy vault and fuzzy commitment, and metric template information for unintended purposes

(iii) introducing constraints, such as minimum matching pe- (e.g., covertly track a user across different applications
formance requirement for a specific biometric trait. We also '

analyze the trade-off between matching accuracy and sectyi by cross-matchl.ng the _templates from t_he associated
of the proposed multibiometric cryptosystems through the G\R- databases) leading to violation of user privacy.

Security (G-S) curves, which plot the genuine accept rate ahe The fundamental challenge in designing a biometric tem-
Pelem agaist the miium conpuiatonl compexty INledpiate protecion scheme s to overcome the large ira-user
data. The proposed framework has been evaluated on two var_lab|I|ty among multlplg acquisitions of the same bioritet
different databases, oneeal and onevirtual multimodal database, trait. A number of techniques have been proposed to secure
each containing the three most popular biometric modalitis, biometric templates (see [4] for a detailed review). These

namely, fingerprint, iris, and face. Experimental results $iow techniques can be categorized into two main classes:
that both the multibiometric cryptosystems proposed here lave . . bi .
higher security and matching performance compared to their ~ * BIOMEtric cryptosystems In a biometric cryptosystem,
unibiometric counterparts. secure sketchy() is derived from the enrolled biometric
= X .
Index Terms—Multibiometrics, template security, biometric templaté (x”) and stored in the system database instead

cryptosystem, fuzzy vault, fuzzy commitment, fusion of the original template. In the absence of the genuine
user's biometric data, it must be computationally hard

to reconstruct the template from the sketch. On the
other hand, given an authentication query*) that is
Multibiometric systems accumulate evidence from more sufficiently closeo the enrolled templatexf), it should
than one biometric trait (e.g., face, fingerprint, and iiiis) be easy to decode the sketch and recover the template.
order to recognize a person [1]. Compared to unibiometric  Typically, the sketch is obtained by binding the template
systems that rely on a single biometric trait, multibiorieetr ~ with a codeword from an error correcting code, where the
systems can provide higher recognition accuracy and larger codeword itself is defined by a key.). Therefore, the
population coverage. Consequently, multibiometric syste sketch ¢_) can be written a$.(x?, x.), wheref, is the
are being widely adopted in many large-scale identification sketch generation function. The error correction mech-
systems, including FBI's IAFIS, Department of Homeland anism facilitates the recovery of the original template
Security’s US-VISIT, and Government of India’'s UID. A and hence, the associated key. Examples of biometric

number of software and hardware multibiometric products cryptosystems include fuzzy vault [5], fuzzy commitment
have also been introduced by biometric vendors [2], [3].

I. INTRODUCTION

1In this paper, we use the notationto denote a generic biometric feature
A. Nagar and A. K. Jain are with the Dept. of Computer Sciened a vector andX to denote a collection of biometric templates correspandon
Engineering, Michigan State University, East Lansing, WI.K. Jain is also the same user. The notatiofsand s denote features that are represented
with the Dept. of Brain & Cognitive Engineering, Korea Unisity, Seoul.  as a binary string and point-set, respectively. Supetscidp and A are
K. Nandakumar is with the Institute for Infocomm ResearchSPAR, used to distinguish between the features extracted dunmgll@ent and
Fusionopolis, Singapore. authentication, respectively.
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[6], PinSketch [7], and secret-sharing approaches [8]. the following contributions:

Template transformation: Template transformation
techniques modify the biometric template”) with a
user specific key«;) such that it is difficult to recover
the original template from the transformed templatg.(
During authentication, the same transformation is applied
to the biometric queryx®) and the matching is per-

A feature level fusion framework to simultaneously se-
cure multiple templates of a user using biometric cryp-
tosystems. To implement this framework, we propose
algorithms for the following three tasks:

1) Converting different biometric representations into

a common representation space using various em-
bedding algorithms: (a) binary strings to point-sets,
(b) point-sets to binary strings, and (c) fixed-length
real-valued vectors to binary strings.

formed in the transformed domain to avoid exposure of
the original biometric template. Since the key needs
to be stored in the system along with, the template
security is guaranteed only if the transformation function

. 4 bl h i k o the attack 2) Fusing different features into a single multibiomet-

IS non-invertible even wher, IS known to the atlacker. ric template that can be secured using an appropriate
Some well-known examples of template transformation biometric cryptosystem such as fuzzy vault and
include Bio-Hashing [9] and cancelable biometrics [10]. fuzzy commitment; efficient decoding strategies for
Different combinations of the above two basic approaches, these biometric cryptosystems are also proposed.
called hybrid biometric cryptosystems, have also been pro- 3) Incorporating a minimum matching constraint for

posed [11], [12]. In this paper, we focus on the biometric
cryptosystem approach for multibiometric template priddec
due to two reasons: (i) well-known biometric cryptosystems
such as fuzzy vault and fuzzy commitment are available for
securing different types of biometric features and (ii) st i
relatively easy to analyze the security of a secure sketch by’
leveraging on the characteristics of error correcting sode

Biometric cryptosystems have been designed only for spe-
cific biometric feature representations. For example, tlzeyf
commitment scheme assumes a binary string representatiorf,
where the dissimilarity between template and query is mea-
sured in terms of the Hamming distance. The fuzzy vault andThe rest of the paper is organized as follows. Section II
PinSketch techniques assume point-set based represestafprovides a background on fuzzy vault and fuzzy commitment
and use set difference as the dissimilarity metric. Howevé@chniques and compares the various multibiometric tetepla
multiple templates of a user may not follow the same featupgcurity schemes proposed in the literature. The featwed le
representation. Point-set based features are used when figséon framework for multibiometric cryptosystems and the
image has a set of salient points (e_g_’ fingerprint m|nmti&e associated algorithms are introduced in Section lIl. ®ecti
different samples of a biometric trait exhibit limited rev@ [V presents the security analysis methodology. Implemen-
geometric transformation and limited occlusion, realeal tation details and performance evaluation of the proposed
feature vectors obtained through PCA [13] and LDA [14qnultibiometric cryptosystems are discussed in Section M. O
can be used. Binary strings are typically obtained throug®nclusions are summarized in section VI.
guantization of a real-valued feature vector, which redube
storage space and matching complexity. For example, tke bit 0
in an iriscode [15] are obtained through quantization of the .
phase response of a Gabor filter applied to the iris image. A. Fuzzy commitment and Fuzzy Vault

This diversity of biometric representations naturallyuiegs Fuzzy commitment [6] is a biometric cryptosystem that can
a separate template protection scheme for each trait, dr used to secure biometric traits represented in the form
a fusion of the decisions made by each trait [16]. This ©f binary vectors (e.g. iriscodes). Suppose that the ezdoll
analogous to a security system that requires multiple ldwometric templateb” is an N-bit binary string. In fuzzy
strength (fewer bits) passwords, which is less secure thawmmitment, a uniformly random key. of lengthL (L < N)
a system that uses a single password with a larger numbés is generated and used to uniquely indeX-it codeword
of bits. This motivates the proposed approach to protect theof an appropriate error correcting code. The sketch is then
multiple biometric templates using a single secure sketch. extracted from the template as. c @ bf, where @

While the concept of securing multiple templates simultandicates the modul@-addition. The sketcly, is stored in
neously as a single entity using a biometric cryptosystesn hine database along with(x.), whereh(.) is a cryptographic
been reported in the literature, published approachedlysu&ash function. During authentication, the codeword is ioleth
assume that different templates follow the same repreienta from the query biometrid“ and the sketcly,. as follows:
scheme. This enables simple concatenation of the individea =y, @ b* = c® (b” @ b**). This codeword:*, which is
templates to obtain the fused template [17]. The objective generally a corrupted version of the original codewora@an
this work is to examine the feasibility of creating a singlée decoded to get the key*. The authentication is deemed
multibiometric secure sketch when the traits that are beisgccessful ifh(x*) is the same a#(k.). If the Hamming
fused have different feature representations. This papéem distance betweem” and b is not greater than the error

each trait, in order to counter the possibility of an

attacker gaining illegitimate access to the secure
system by simply guessing/knowing only a subset
of the biometric traits.

A practical implementation and evaluation of the pro-

posed multibiometric cryptosystems using two different

databases each containing three biometric modalities,
namely, fingerprint, iris, and face.

An analysis of the GAR-security trade-off in the proposed

multibiometric cryptosystems.
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TABLE |

COMPARISON OF FUZZY COMMITMENT AND FUZZY VAULT.

size of the template se|
(r), and number of chaff

points @)

codeword N, and er-
ror correcting capacity|
of the code

GAR-Security
tradeoff

Higher values of £/r)
andq lead to lower GAR,
but higher security and
vice versa

Higher values of [/N)
lead to lower GAR, but
higher security and vice
versa

Implementation|

s Fingerprint ([19], [20]),
face ([21]), iris ([22]), sig-

Fingerprint ([24]), face
([24], [25]), iris ([26]),

B. Multibiometric Cryptosystems

__| Fuzzy Vault Fuzzy Commitment A number attempts have been made to extend the secure
Representation Eg:ﬂttysfé SeciTe Tger (B:'(;'r?]gaﬁrmgze s—ma  biometric recognition framework to incorporate multiplieb
advantage print minutiae sketch metric traits [28], [29], [17], [16]. Sutcu et al. [28] coni@d
Main Difficult to generate chaff| Lack of perfect codes face and fingerprint templates that are both transformeal int
limitation ;?;; Zr:nd?r?ésgg?n”t';hab'e for desired code lengths  pinary strings. These binary strings are concatenated sedl u
Parameters Polynomial _degree K), | Key lengthZ, length of |  as the input to a fuzzy commitment scheme.

Nandakumar and Jain [29] proposed a multibiometric cryp-
tosystem in which biometric templates based on binarygsrin
and point-sets are combined. The binary string is divided in
a number of segments and each segment is separately secured
using a fuzzy commitment scheme. The keys associated with
these segment-wise fuzzy commitment schemes are then used
as additional points in the fuzzy vault constructed using th

nature ([23]) signature ([27])

point-set based features.

Kelkboom et al. [17] provided results for feature level, sco
level and decision level fusion of templates represented as
correcting capacity of the code;” would be the same as fixed-length real-valued vectors. Since the match scoeesatr
and the matching will be successful. explicitly available in a biometric cryptosystem, Kelkbnaet
Fuzzy vault [5] is useful for securing point-set basedl. used the number of errors corrected by an error corigctin
biometric features such as fingerprint minutiae. 16t = code in a biometric cryptosystem as a measure of the score.
{x1,x2,...,z,} denote a biometric template consisting of &uch scores are, however, meaningful only if the crypto-
set of r points from a finite fieldF. In order to securs”, biometric match is successful and the keycan be success-
a uniformly random cryptographic key, of length L bits is fully recovered. Moreover, multiple scores can be obtained
generated and this key is transformed into a polynoiiaf only if the different templates are secured individualljigh
degreek (k < r) over F. All the elements ins® are then leads to suboptimal security. This is also true for decisvel
evaluated on this polynomial to obtain the dg®(x;)}!_,. fusion. The feature level fusion scheme in [17] involvespin
The set of point{(z;, P(z;))};_, is then secured by hiding concatenation of two real-valued vectors and binarizatibn
them among a large set gfrandomly generated chaff pointsthe combined vector using quantization thresholds.

{(aj,b5)}j_, that do not lie on the polynomiaP (i.e.,  Fy et al. [16] theoretically analyzed the template security
bj # P(a;) anda; ¢ s, V j = 1,2,---,q). The set of and recognition accuracy imparted by a multibiometric eryp

genuine and chaff points along with their polynomial evalugpsystem, which can be operated in four different ways: no-
tions constitute the sketch or vawif. During authentication, split, MN-split, package, and biometric model. The firstetr

if the query biometric ses” is sufficiently close tes”, the models correspond to decision level fusion, where the bieme

polynomial P can be successfully reconstructed by identifyinglc templates are secured individually. The biometric mode

the genuine points iy, that are associated wit¥". Note that is based on feature level fusion of homogeneous templates.
for successful reconstruction &f of degreek, a minimum of However, no system implementation was reported.

(k +1) genuine points need to be identified fram Cimato et al. [30] follow a modular approach to design
The effectiveness of a biometric cryptosystem depends gfijltibiometric cryptosystems. Suppose tl’néf and b2E are
the matching performance and the template security. Magchiyyo biometric templates. A secure sketghis extracted from
performance is usually quantified by the False Accept Ra§€¢ along with a hash of thé”, which is further used as a
(FAR) and the Genuine Accept Rate (GAR) of the biometrigey to secure the second template. This approach is similar
system. Security is measured in terms of the informatiqg the package model proposed in [16], which in turn is
leakage raté or the computational complexity involved inpased on the AND decision fusion rule. One advantage of this
recovering the original template from the secure sketcl, [1§nodular approach is that additional biometric traits can be
[8]. Due to intra-user variability in biometric traits, teeis egasily introduced in the multibiometric cryptosystem. Arey
usually a trade-off between the GAR and the security. ScBenenefit is that it allows the use of heterogeneous templgtes.
with higher security tend to have lower GAR and vice versagxample, in [30], a secure sketch is used to protect theoiisc
Table | summarizes the comparative characteristics ofyfuzgemmate, and the hash value of the iriscode based on the
vault and fuzzy commitment. secret key is used to encrypt a fingerprint minutiae template
A limitation of this approach is that its overall security is
2Given the secure sketch, leakage rate relates to the uintgrédoout the bounded by the security of the sketch in the outermost layer.

original biometric template (known as privacy leakage) e tryptographic In this paper, we propose a generic framework for the

key associated to it (secret key leakage). In both fuzzytvaol fuzzy design of a multibiometric cryptosystem with heterogerseou

commitment, the privacy leakage rate is equal to the séesetieakage rate templ . . . . . .
plates and consider practical implementation issuglsen

because it is trivial to recover (i) the biometric templafeeg the key and . 4 . ;
the secure sketch and (ii) the key given the template andebers sketch. case of both binary string and point-set based represensati
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Fig. 1. Schematic diagram of a multibiometric cryptosysteased on the proposed feature level fusion framework duhiegenroliment phase.

1. PROPOSEDFRAMEWORK FORMULTIBIOMETRIC A. Embedding Algorithms

CRYPTOSYSTEMS We shall now discuss three types of embedding algorithms
that can perform the following feature transformationstéal-

We propose a feature level fusion framework for multibio?2!u€d Vector into a binary string, (ii) point-set into a &y

metric cryptosystems that consists of three basic mod(jbes:String' and (iii) binary string intq a point-.set. (see Table |
embedding algorithm&), (i) fusion module ), and (iii) 1) Real-valued vector to blngry _stnngA numb_er pf _
biometric cryptosystemf(). The generic framework of the schemes have Iaeen proposed in literature _for blnarl_zanon
proposed multibiometric cryptosystem is shown in Figure P/ real-valued biometric features. Examples include Binar

Suppose that we have a set of biometric feature represemgatiMultidimensional Scaling techniques [31], Locality Seivsi

X = {Xi,%, -+ ,%u}, wherex,, represents the featuresHashing [32], Detection Rate Optimized Bit Allocation [33]

corresponding to the:™ biometric modality of a user, ant/ and quantization of element pairs in the polar domain [34].
represents the number of modalities,= 1,2,--- , M. The Since no single feature binarization technique is provably

functionalities of the three modules are as follows: better than all others, we propose the following simple algo
rithm for transforming a real-valued vector into a binanyrsg.

« Embedding algorithm (£): The embedding algorithm First, we quantize each element of the real-valued vector in
transforms a biometric feature representatigninto a (7 + 1) fixed size quanta. The quantized values are then
new feature representatiay,, wherez,,, = &,,(x,), for represented usingbit unary? representation in order to obtain
allm=1,2,---, M. The input representationcan be a a binary string of length¢, where/ is the dimensionality of
real-valued feature vector, a binary string, or a point-sehe original vector. In the second stage, we select a desired
The output representatiancould be a binary string or a number of most discriminable bitsV(). The discriminability
point-set that could be secured using fuzzy commitmeat each bit is computed &gl — p;)ps), wherepg andp; are

or fuzzy vault, respectively. the genuine and impostor bit-error probabilities, respebt
« Fusion module(C): The fusion module combines a set of 2) Point-sets to binary stringA number of techniques have
homogeneous biometric featurés= {z,,z;,--- ,Z)»} been proposed for converting point-sets into binary featur

to generate a fused multibiometric feature representatigactors. These techniques include local point aggregafss [
z. For point-set based representations, one canzuse spectral minutiae [36], geometric transformation [28iplat
Cs(Z) = UM z,,. In the case of binary strings, the fusedhistogram [37], and the bag-of-words approach [38]. In this
feature vector can be obtained by simply concatenatipaper, we implement the simple local aggregates based tech-
the individual strings, i.ez = Cy(Z) = [z1 2 --- Zm]. nique, which works as follows. Let us assume that each point
Note that it is also possible to define more complegan be represented as artuple. The available point-set is
fusion schemes, where features could be selected baatigned such that the bounding box of the points is centered
on criteria such as reliability and discriminability. at the origin. Then, a set of axis-aligned hyper-rectangiés

« Biometric cryptosystem (f.): During enroliment, the randomly selected position and size are generated. Among
biometric cryptosystem generates a secure sketcising these hyper-rectangles, a fraction of hyper-rectanglagh wi
the fused feature vecta” (obtained from the set of bio- large overlap with other hyper-rectangles is discarded.
metric templateX” = {x’,xJ, --- ,x[;}) and a keyx.., Statistics for each hyper-rectangle based on the points
i.e.,y, = f.(z¥, k.). During authentication, the biometricfalling inside it are computed. These statistics include th
cryptosystem recovers. fromy, andz* (obtained from
the set of biometric querieXA = {xi“, X§4, e ,xfl})_ 3A unary encoding works as follows. Suppose that a real-valneeds to
Fuzzy commitment is used #fis a binary string, whereas be encoded using bits. The range of, say|[amin, @maz], iS quantized into

. . . (r +1) bins. If a falls into theit” bin, it is represented ag — i + 1) ones
a fuzzy vault is used if is a point-set. followed by (i — 1) zeros, where = 1,2, - -- , (7 + 1).



TABLE Il
A SIMPLIFIED ILLUSTRATION OF THE PROPOSED EMBEDDING ALGORIAIMS.
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Real vector All bits Selected bits Set of Points Real vector Binary vector Set of points
Real vector to Binary string Point-set to Real vector Binary string to point-set

number of points in the hyper-rectangle, and the mean and?) Vault decoding: Let s* = {u} ;':1 be the set of
variance of the points along each of thedimensions. The ' points in the authentication query. For each point
statistics from different hyper-rectangles are concaeh#do (i = 1,2,---,t) in the vault, its distance to the closest

generate a feature vector. A Linear Discriminant Analysiguery point is computed and the list of vault points is sorted
(LDA) is applied to the resultant feature vector to redudeased on this distance. The ordered set of points in the vault
the dimensionality. Finally, the real-valued LDA featum® is given byy? = [(a(1),8(1),7(1)),--- , (a(t), B(t),v(¥))]
binarized using the algorithm presented in section I1I-Al. where min,, d(«(i),u),) < min, d(a(j),ul,) if i < j,

3) Binary string to point-setConversion of binary string to and w € {1,---,7'}. Finally, the Berlekamp-Massey (B-
point-set is required when the final biometric cryptosystem M) algorithm [39] is applied on subsets of different lengths
based on point-set features. In order to obtain a pointregi f derived fromyg to decode the vault and thereby recover the
a binary string, we simply divide the binary string into th@ssociated polynomial and the key (see algorithm 1).
desired number of segments. Each segment can be considered _
as a point in the point-set representation. The only parantet Algorithm 1 Fuzzy vault decoding based on Berlekamp
this technique is the number of segments. A similar techmigl!assey algorithm [39].
was also used in [29], where instead of directly using thelnput: y? = [(a(1),5(1),7(1)), -, (a(t), B(L),v(2))]
segments of the binary strings as points, a key is associatedOrdered vault points)i (Degree of polynomial)
with each segment through fuzzy commitment and the keysforall °n = (k + 1) to ¢ do
are used as additional points in the vault. s, « {(a(i), B(i),v()} i,

form=0ton—(k+1)do
forall s, Cs,,|s.|=m do

B. Fuzzy Vault Implementation S, < S \S
P + DecodeBM (s, , k)
We briefly describe how a biometric template (either unibio- if P is the required polynomighen
metric or multibiometric) can be encoded as a vault and how Return P
an authentication query can be used to decode the vault. end if
1) Vault encoding:Let s¥ = {u;};_, be the biometric end forall

template represented as a set gbints, which is to be secured end for

using a vault. LeU be the universe of all possible biometric end forall

points. In practice, the points itb may not necessarily be Return¢

elements of the fieldF. To construct a vault, each point in {Decode BM (s, k) performs a Berlekamp-Massey decoding

U is assigneti to a point from F. Let z; be the element of the set of points for a polynomial of degreé}

in F associated with the point; in s¥, v i = 1,2,--- ,r

and lets? = {z;}]_,. A set ofq chaff points are randomly  Ajgorithm 1 is based on the following principle. Given

selected fron(U\qu) ("\" denotes the set difference operatory set of n points from the vault, the Berlekamp-Massey

Let s“ = {u;}jzl be the set of chaff points and letgecoding allows recovery of the polynomial if there are at

sgc = {x;f };1_:1 be the corresponding set of points obtaineléast(n + k + 1)/2 genuine points in the given set. Since the

by mapping elements is” to elements inF. Given a keyk, Points in the vault are ordered according to their likelitiad

of length L bits, we encode it as a polynomi&l of degreek. being genuine, we consider subsetsnof(k + 1) < n < ¢)

Finally, the vault is obtained as a set of 3-tuples as follow810st likely points in parallel. If a selected subset of léngt

Yy, = {(Oéi,ﬁi,%)}ﬁ:l, wheret = (r +¢q), a; € (sP Us®), g; n cannot decode the vault, some points in the subset are

is the corresponding element (Bgi Usf), and~; is given by randomly removed to obtain smaller subsets of minimum size
(k + 1). Since all points in the vault are used in decoding,
the vault will always be eventually decoded, but the decgdin

P(p:), if a; € sF, complexity will be different for each query.
v = The proposed vault decoding algorithm differs from the
b;,whereb; € F\ {P(8:)}, if a; €. decoding procedure followed in [20] on two main accounts.

Sforall is the parallel for-loop which runs all the instances of toep
4This mapping can be stored as a lookup table or defined by aftiastion.  simultaneously



Firstly, the use of Berlekamp-Massey algorithm (in place d¥lgorithm 2 A fuzzy commitment decoding algorithm that
Lagrange interpolation used in [20]) is expected to make tRéows for erasures in the codeword based on the crossover
decoding more efficient. This is because of several possifieobabilities.
subsets of sizék+1) must be tried in Lagrange interpolation. Input: ¢ * (corrupted codewordp = [p1, - - -, pn] (bit reli-
Secondly, since the points in the vault are ordered based ombility vector wherep; indicates the reliability (1-crossover
their distance to the points in the query biometric set, oneprobability) ofc*(i), i =1,2,--- , N); Dpin.
would expect the decoding complexity for a genuine userforall n = (N — Dy, + 1) to N do
to be significantly less than the decoding complexity for an s, + RBS(p,n,N)
impostor. While this property provides the required sdguri for m =010 Dyin + 1 do
to the biometric template, it also enables us to easily nreasu forall s, Cs,,|s.|=m do
the minimum decoding complexity for an impostor attack. ¢ + Flip(c*,s.)

ke < DecodeFC(C,s,, L)

if k. is the required keyhen

C. Fuzzy Commitment Implementation

Returnk,
In the fuzzy commitment technique, the biometric template end if
b% of length NV is bound to a codewordof the same length to end forall
generate the secure sketghas follows:y, = b¥ @ c. During end for

authentication, the query biometric datafj is used along  end forall
with the secure sketch to obtain a corrupted codewdird  Return¢
which can be corrected to recover the keythat is associated  {Decode FC(C,s,, L) is an error correction decoder that
with the codeword. While we follow the encoding procedure corrects the errors in the corrupted codewdrdo obtain a
that is generally used in the literature, we introduce somekey of lengthL, while considering all bits whose indices are
modifications to the decoding procedure. not indicated irs,, as erasures. The functiddBS(p,n, N)
We note that error correcting codes can typically handle returns the indices of the most reliable bits Flip(c*,s,)
more erasures than errors. For example, a linear error corfeturns the codeword, in which the bits inc* correspond-
recting code can correct any combinationgoérasures and ing to points ins, are flipped}
errors as long asg + 2¢ + 1) < D,in, WhereD,,,;,, is the
minimum distance between the codewords of the code [40].
Hence, if the error (crossover) probabilities of each bithia ) . . . .
biometric feature vector is known, it is possible to considd?formation from a subset or all the biometric traits, espibe
some of the least reliable bits as erasures during decodiFfpse that are difficult to spoof.
Algorithm 2 provides a fuzzy commitment decoding procedure We propose a constrained multibiometric system similar in
that exploits the above characteristic of linear errorecting concept to the modular multibiometric cryptosystem pregbs
codes. As in the case of fuzzy vault, we considersthmost in [30]. In our approach, we first identify the biometric teai
reliable bits in parallel (N — Dy + 1) < n < N) and that are required to be constrained. Our approach requies t
treat the remaining bits as erasures. If the decoding ik sflifferent representations of the constrained biometait with
not successful, a subset of reliable bits of sizeare flipped. the following property: it should be hard to obtain one of
If the number of errors among the bits selected for flippingie representations (called tfiee representationfrom the
is more than(m,/2), then the number of errors will be lessother (called theprimary representation One example of a
after flipping, thereby increasing the possibility of sussfal Primary representations the minutiae aggregates [35] and the
decoding. Note that if the selected error correcting code ggrrespondindree representations the set of minutiae. The
maximum distance separable (i.e., it satisfies the Singletdrimary representatioris secured using the multibiometric
bound), thenD,.;, — 1) = (N — L). In this case, the secureCryptosystem as before, whereas fiee representationsf
sketch can be decoded as longlasits in the biometric feature €ach constrained trait is secured using a unibiometric-cryp
vector can be correctly guessed. tosystem (see Figure 2). These unibiometric cryptosystems
will use different keys than the key used in the multibiorizetr
cryptosystem. Finally, the unibiometric or component secu
D. Constrained Multibiometric Cryptosystem sketches are encrypted with a symmetric cryptographic-algo
One of the limitations of multibiometric systems is thatthefithm such as AES, where the encryption key is the same as
can be circumvented if an adversary can successfully spoohg key associated with the multibiometric cryptosystem.
subset of the involved biometric traits [41]. This issuelsba  The authentication involves two stages. In the first stage,
a concern for a multibiometric cryptosystem. Furthermtite, the key associated with the multibiometric cryptosystem is
complete multibiometric template can be recovered as dtresecovered. This key is used to decrypt the component secure
of successful authentication. Consequently, if an impoisto sketches. In the second stage, the component secure sketche
able to decode the system with a subset of spoofed tra@se decoded. All the keys associated with the unibiometric
he can recover the templates corresponding to the othés traketches must be correctly recovered for successful atithen
as well. It is thus important to design multibiometric cryption. Note that successful authentication of all the urimdric
tosystems that require a minimum amount of discriminatogystems ensures that the user has a minimum amount of
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Fig. 2. Enrollment phase of a constrained multibiometrigptmsystem. The templates corresponding to each constraiait (traitsl and M in this example)
have two representations (the primary representaﬁﬁﬂ)) and the free representatiomﬂ@)) for modality 7). The primary representation is secured using
a multibiometric secure sketch, while the free represimtds secured using a unibiometric sketch that is furtherngsted using the key associated with the
multibiometric cryptosystem.

information about each of the constrained biometric trditee  in the vault are indistinguishable from the chaff points][20
proposed implementation reliably addresses the requitemehich leads to optimistic estimates of security. Howevee, t
of a constrained multibiometric cryptosystem, providedrgh decoding complexity decreases if the attacker has knowledg
exists afree and aprimary representation of each of theabout the distribution of biometric features [42], [43]. To
constrained biometric modalities. account for this factor, we assume that the attacker haga lar
database of non-mate (impostor) biometric samples and he
IV. METHODOLOGY FORSECURITY ANALYSIS tries to decode the vault using each of those impostor sample

Our security analysis is based on the assumption that thgerefore, we consider the minimum decoding complexity
attacker has access to a large biometric database (analog8ond all impostor matches as a measure of security.

to a dictionary attack in password-based systems). We therrUPPOse that the attacker has accesg timpostor samples

empirically estimate the minimum computational effort rel® decode a vaulty(). Lets, denote a set containing the first

quired from the attacker to decode a given secure sketch. ByPOINts from the ordered set of vault pointg’). Here, the
following this approach, we combine the two attack strategi°fdering is based on the distance of the vault pomIts to the
traditionally used to estimate system security, i.e., figdi POINtS in the query biometric set _from;mpo?bréet r, be
sufficiently close biometric features from an availableatiase tr;;e_number of genuine points &), i.e.,r;, = |s,Ns"|, where
(false accept attack) and brute-force attack (that indirecS 1S the enrolled template secured usiyg For (k + 1) <

utilizes the distribution of biometric features). n < t, wheret is the total number of points in the vault, three

It is possible to decode a secure sketch by directly guessfifferent icenarios are possible. _ _
the associated key:(). The average complexity of this attack 1) If 7, = (n +k + 1)/2, the B-M algorithm will return

is (L—1) bits, whereL is the length of<.. Such an attack can

be easily thwarted by choosing a sufficiently large value

L. Therefore, we only consider the more practical approach

of decoding the sketch by guessing the biometric featu
While estimating the computational complexity, we assu
that the complexity of the error correction decoder (e.gMB

algorithm) is unity, and consider only the number of timds th

decoder needs to be invoked.

for 2)

res.
me

the correct polynomial in a single attempt.

If (k+1)<rl < (n+k+1)/2, one needs to find the
minimum value ofm! such that whemn? chaff points
are removed frons., »/ becomes greater thaftn —
ml)+k+1)/2. Hence;ml = max(0, (n — 2rl + k +

1)) and the corresponding complexity is approximately

(1)

(n;;{l) :

n

_ 3) If rL < (k+ 1), the vault cannot be decoded usisig
A. Fuzzy Vault Security In this case, the corresponding value of complexity is
To decode a fuzzy vault, one needs to guess the genuine considered to bec.

points in the vault. Typically, it is assumed that genuinas

Based on the above analysis, the security of the vault can



be expressed as only those bits whose indices aregn The Hamming distance
betweenb” andb! is denoted agp!.
Let DecodeFC(c!,s,, L) be the error correction decoder

I
Spy = min | log, i": (7;) L that corrects the errors in the cprrupted_ codewdrt_b o_btain
n,I P (n—in’l) a key of lengthZL while considering all bits Whose indices are
not in s, as erasures. When the attacker invokes the above
. () error correction decoder for values efin the range[N —
~ run log, " :1) +4Q, D Din + 1, N], where D,,,;,, is the minimum distance of the
mj, code, three different scenarios are possible.

where = log, (N (t — k)). Since the first term in eqn. (1) is 1) The values of: andp, are such that(N —n)+2p),) <
minimized over all impostor samples, adding more impostors ~ (Dimin — 1), where(N — n) is the number of erasures
will lower this term. However, adding more impostors will andp}, is the number of errors. In this case, the decoder
also increase the number of computations needed, which is  Will return the correct key in a single attempt.
reflected by the term. An increase in the polynomial degree 2) If (N —n) +2p}) > (Dmin — 1), the attacker can try
k will increasen and consequently result in higher security. to find m/, (0 < m/, < ((Dyin — 1) = (N = n))/2 =

In the case of multibiometric fuzzy vault, it is possible (n — L)/2) such that, whenn;, errors are corrected
that a poor quality sample from one of the modalities can  from ¢}, (N —n) + 2(p), — m/,)) becomes less than
lead to a higher decoding complexity if the relative quality ~ Or equal to(Dyn;, — 1). If such anm), exists, then its
of the samples is not taken into account when generating the ~Minimum value is given byn/, = max(0, (N —n) —
multibiometric template. In order to address this issue, we  (Dmin—1))/2+p;,)) and the corresponding complexity
also check if any subset of biometric modalities can decode g approximately(;fb
the vault. The final value of security is taken as the minimum (:fi)
value of security computed based on the multibiometricyuer 3) If no suchm! can be found, the secure sketch cannot be
as well as that corresponding to different subsets of theyque decoded by considering the least reliabé—n) bits as
biometric traits. erasures. Hence, the corresponding value of complexity

Since the decoding algorithm is common to both the genuine is considered to beo.
user and the impostor, we can also estimate the decodin®®ased on the above analysis, the security of the fuzzy
complexity for a genuine match. Lst denote a set containing commitment scheme can be expressed as
the firstn points from the ordered set of vault pointg’),

where the ordering is based on the distance of the vaultgoint

mI

to the points in the query from the genuine user. tgtbe _ . = (TZ)
the number of genuine points &, i.e., 7, = |s, Ns¥|. The Src = rflu}a logy g (p;) +0
decoding complexity for the genuine user can be expressed as R

() ~ min | log, (’Zﬁ) +Q, (3)

Spy  ~ min <10g2 T ) +logy (t—k), (2 | ()

( mp ) whereQ) = log, (N7Dpmin). The above expression, however,

wherem,, = max(0, (n — 2r,, + k + 1)). assumes that the bits in” are independent and uniformly

random. Suppose that the entropylff is only n, bits. In

) _ this case, the effective Hamming distance betwbgnand

B. Fuzzy Commitment Security bl is p! = (n.pl)/n and the corresponding value of’, is

To decode a fuzzy commitment sketch, one needs to guess, = max(0, (N —n) = (Dmin—1))/24 pl)n./n). Thus,

the bits in the binary template”. Though the length of the the security is given by
templateb” is N bits, the entrop¥ of the template §.) is

typically much less thatV bits. This is because some bits may S ) (n% a
not be uniformly distributed(( and 1 values are not equally Fo ~ TR logy = | +& )
likely), while there may also be correlation between the.bit ml,

Suppose that the attacker has acceggtimpostor samples Supposeb” is a genuine authentication query apg. is
and a sketcly, . For each impostof, a corrupted codeword ;0 effective Hamming distance betwekfi andb?, where

is obtained agy, ©b"), whereb” is the binary feature vector |,z andb are the substrings df® andb?, respectively, con-

from impostor]. Lets, denote a set containing the igdicles %faining only then most reliable bits. The decoding complexity
then most reliable bits in the biometric templatéetb.’, b,

. . B oI B . -n»  for a genuine match can be expressed as
andc,, be substrings db~, b*, andc’, respectively, containing

Mx

6\We use a procedure similar to the one used in [44] to estirhatettropy. S§Y ~ min | log, LTS I logs(Dmin), (5)
See Appendix A for details. n (,i”;* )

"We assume that the attacker can somehow estimate the hlhiligfi vector N
(i.e., the crossover probability for each bit in the biorieetemplate). wherem,,, = max(0, (N —n)— (Dmin—1))/2+ pn)n./n).




V. EXPERIMENTAL RESULTS to the iriscode features. Only the tay®) LDA coefficients
are retained{ = 80) and these real-valued features are then
binarized using the technique proposed in Section Ill-Athwi
We have evaluated the recognition performance and secutity_ 40. In order to obtain the point-set representatisg
of the proposed multibiometric cryptosystems on two diffepjts selected from the binarized LDA features are divided in
ent multimodal databases, each containing face, fingerprisy segments ofi0-bits each. As in the case of fingerprints,
and iris modalities. The first database isvatual multi-  one jris sample is used for enrollment, one sample is used for

modal database obtained by randomly linking subjects frogthentication, and the remaining samples are used astyain
FVC2002-DB-2 (ﬁngerprint), CASIA Iris database Ver'l, anget in order to Compute the LDA features.

XM2VTS (face) databases. The virtual multimodal database3) Face Features:Alignment of face images is essential

consists of the full fingerprint database (100 subjectsy, 100 prior to feature extraction. For the WVU database, eye lo-
subjects from the face database, and first 100 subjects frggtions were automatically extracted using Identix FacelT
the iris database. We also use the WVU multimodal databag@ftware' a region of sizé&20 x 100 was Cropped such that
which is a real multimodal database containing fingerprinhter-pupil distance is 60 pixels. In case of XM2VTS datahas
iris, and face images from38 different users. Figure 3 showwe use FaceVACS software from Cognitec in order to extract
sample images from the different biometric databases usedhe eye coordinates to align all the face images. The intgitp
_ distance is set t87.5 pixels. We then crop the aligned face im-
; 7%3-2 age to a region of siz€20x 100 pixels. Histogram equalization
‘ % is used to reduce the effect of illumination variations.dfiy
we extract80 LDA coefficients ¢ = 80) that constitute the
real-valued feature vector representing a face image. aime s
procedure applied to the iris LDA coefficients is also applie
(b) to the face LDA coefficients to generate a binary string and
Fig. 3. Sample iris, fingerprint, and face images from (a) GASer- pomt-set repr_esentanons for the face modality. Agalrg face _
1, FVC2002 DB-2, and XM2VTS databases, respectively, andwivu image each is used for enrollment and authentication, while

multimodal database. Note that the quality of iris imagesfiWVU database the remaining Samp|es are used as the training set in order to
is much lower than that from the CASIA database. compute the LDA features.

A. Databases

i

1) Fingerprint Features:Fingerprint minutiae are extractedB. Parameter Selection
using the procedure detailed in [45]. To obtain the binary 1) Unibiometric fuzzy vaultsWe consider the Galois field
string representation from the minutiae set, we follow th€ F(216) as the finite fieldF in all our experiments. In the
approach outlined in section 11I-A2 with00 hyper-rectangles case of fingerprint fuzzy vault, a set of at mast good
(cuboids in 3D space) aligned along the horizontal locatioguality and well separated minutiae is selected from themgiv
vertical location, and orientation axis associated withutiae. fingerprint image as the biometric points. The chaff points
Different features such as sum of distances of minutiae frompe randomly generated as in [20] to obtain a vault with
the six walls of the cuboids and mean and standard deviati@®s points ¢ = 24,¢ = 200, andt = 224). In addition to
of minutiae along each of the three axes, are extracted frgg@nuine minutiae and chaff points, points on the fingerprint
each cuboid in order to obtain a vector of lengifb00. corresponding to high ridge curvature are also stored in the
Linear Discriminant Analysis (LDA) is used to reduce thgystem. These points are not expected to reveal significant
dimensionality of this vector t&0. Each LDA coefficient information about the minutiae but can be effectively used
is converted into al0-bit unary representation and they argo align the query fingerprint [20]. During authenticatidhe
concatenated to obtain3200(40 x 80)-bit binary string. We query minutiae set is first aligned with the vault using the
select a subset of the most discriminable bif§,) using high curvature points. A bounding box is then used to filter
the procedure described in section IlI-Al. First impressid out points in the vault that are not in close proximity [20]
the finger is used for enrollment, the second one is usedgfghe query minutiae. The query is then further aligned with
authentication sample and the remaining impressions @@ ughe remaining vault points using a minutiae matcher. These
as training set in order to compute the LDA features. Sinegigned points are then used to compute the closest distance
no training is required for extracting minutiae, only thestfir of the vault points to the query point based on which the vault
two impressions are used in constructing the fuzzy vault. points are ordered prior to decoding.

2) lIris Features: The binary IrisCode features are extracted The point-set representations for iris and face modalities
based on the algorithm described in [46]. In case of CASIéan be directly used to construct the iris and face vaults,
Ver-1 databasel8 different radii and360 different angles are respectively. To generate chaff points in the iris (face)liya
used whereas in case of WVU Iris databasdifferent radii we pool the iris (face) points extracted from all the iriscgh
and240 different angles are used. The complete IrisCode areages in the database (excluding the images of the user
thus 34,560 and 9, 600-bits long for the CASIA Ver-1 and under consideration) and select the desired numb@s) (of
WVU lIris databases respectively. chaff points from this pool. During authentication, Hammin

In order to reduce the dimensionality of the iriscode andistance is used to obtain the closest point in the query for
remove the redundancy present in the code, LDA is appliedch vault point.
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2) Multi-biometric fuzzy vault: Multiple unibiometric WVU database compared to the CASIA and FVC2002-DB2
vaults can be easily converted into a single multibiometritatabases, respectively. See Figure 12. In fact, the GAR of
vault by associating the same key with them. Note that the the iris fuzzy vault for the WVU database at zero-FAR)$3,
key length ) and hence, the polynomial degrkeof such a which is the reason why the G-S curve corresponding to iris
multibiometric vault is typically higher than the unibiotrie is not shown in Figure 6.
case. During decoding, multiple query biometrics are mexdch

with the corresponding unibiometric vaults and an ordered 100-

sequence of points from each vault is obtained. These indi- ol
vidual sequences of points are then merged such that the first
l elements of the merged sequence contain approximately top il
n;l points from the vault corresponding to thi& biometric. °r
In the current implementation, we chooggto be the same eor
for all the biometric traits. However, specific strategias de sor
designed to select proper values mf based on the quality a0f
of the individual biometric traits and the number of genuine ] —,
points from each trait. 2of{ - 7~ Finger Yo
3) Fuzzy commitmentVe selectl, 023 most discriminable ol =~ Basaline Fusion ’\,
bits from each of the three biometrics for the unibiometric o Proposed Pusion) . ‘ ‘ s
fuzzy commitments ' = 1,023). In order to create a 0 2 0 % 8 100

multibiometric cryptosystem witi/ different biometric traits,

we extractV = 1,023 x M most discriminative bits from the Fig. 4. The G-S curves for fuzzy vault for iris, fingerprinhcaface images

pool bits available from all the constituent biometric tsai f:lombCA?lA Ver-ll_BIFVC 2002 DB-2, and EMZ\QTS cf’t\‘a[t;;;esi rmrzjelsr/{
H H . the baseline multibiometric cryptosystem based on sule and the

In_o_ur eXpe_nmemS’ we assume dlffere_nt Valuemm (the proposed multibiometric crytposystem using all three ntitds.

minimum distance of the error correcting code) in the range

0.02 to 0.6 times the total number of bitd/.

. 100 -
C. Performance Evaluation

We evaluate the trade-off between recognition accuracy and i

security of the proposed multibiometric cryptosystemsgsi 9or
the GAR-Security (G-S) curves. The genuine accept rate is
measured as the fraction of genuine authentication ateempt
where the decoding complexityS{’ and S for fuzzy

vault and fuzzy commitment, respectively) is less thidn

bits. The security is measured as the minimum computational
complexity faced by the attacker for a successful decoding

85

80

El

Genuine Accept Rate (%)

70r

Iris+Finger
among the various impostor match attempts. The G-S curve is 65¢ fris+Face
obtained by varying the lengthlj of the key &.) used in the 0l — Zi B T N
biometric cryptosystem. Note that based on our formulation ' Csccurty iy !

the minimum value of security corresponds to the valu€ of
as defined in eq. (1) and eq. (3) for fuzzy vault and fuzzyig. 5. The G-S curves for fuzzy vault for pairs of biometraits from
commitment respectively. CASIA Ver-1, FVC 2002 DB-2, and XM2VTS databases, respedtiv
Figures 4, 5 and 6, 7 show the performance of the multi-
biometric fuzzy vault for the virtual and real multimodal The results corresponding to fuzzy commitment are shown
databases, respectively. In general, it can be observed tinaFigures 8, 9 and 10, 11 for the virtual and real multimodal
incorporating additional biometric features does inceetiee databases, respectively. The G-S curves are obtained y var
performance of the system. In case of the virtual multimodalg D,,,;,, of the error correcting code frof02 to 0.6 times
database, the security of the iris fuzzy vault at a GAR dhe length of the binary stringy. Similar to fuzzy vault, the
90% is 45 bhits; however, when fingerprint and face are alsperformance of the fuzzy commitment multibiometric cryp-
incorporated in the fuzzy vault, the security increases tosystem is significantly better than the unibiometric sys.
around90 bits at the same GAR. When the templates are One interesting observation is that even though the per-
secured individually and the AND fusion rule is appliedformance of the individual modalities are different, the-pe
i.e., the authentication is deemed successful only when fdfmance of the multimodal system combining all the three
the unibiometric cryptosystems are decoded, the secutitytiits is nearly same for both fuzzy commitment and fuzzy
90% GAR is around40 bits. However, in case of the WVU vault (see Table Ill). As far as the individual biometricitsa
database, there is only a marginal increase in performarsze concerned, their performance is better in their native
compared to the best modality (face). This can be attributegpresentation. For example, in both the real and virtual
to the lower quality of the iris and fingerprint images in thenultimodal databases, iris fuzzy commitment performsdoett
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than a iris fu_zzy vault. Similarly, the perf(_)rmanc_e of fingent Traits ES?ZIyMUIt'mOd;LZE?abaS \F/:Jr;i?ll MUIt'mO?:iIZE; labase
fuzzy vault is generally better than a fingerprint fuzzy com- vault commitment | vault commitment
mitment. This could be due to possible loss of discriminatof— Tris 0% 37% 88% 91%
information during feature transformation (embeddingguire Finger | 22% 30% 51% 2%

12 shows the receiver operating characteristic (ROC) &Jr\.nB;’;?ne 67% 33% 58% 12%
corresponding to the original features associated with therysion | 33% 27% 75% 89%
biometric traits along with the ROC curves obtained usirgy th Proposed

features extracted for fuzzy vault and fuzzy commitmenteNol__Fusion | 68% 5% 99% 99%

that in most of the cases the matching performance reduces TABLE Il

H : ; COMPARISON OF GENUINE ACCEPT RATES OF THE DIFFERENT BIOMETRI
as a result of using a biometric CryptOSyStem' CRYPTOSYSTEMS AT A SECURITY LEVEL OF3 BITS, WHICH EQUALS THE

i i i SECURITY IMPARTED BY A RANDOMLY CHOSENS CHARACTER PASSWORD
| | Real Multimodal Data| Virtual Multimodal Data| [47]. HERE, BASELINE FUSION REFERS TO SECURING INDIVIDUAL

TEMPLATES USING UNIBIOMETRIC CRYPTOSYSTEMS AND COMBINING
100 p T DECISIONS USINGAND-RULE FUSION, WHILE THE PROPOSED FUSION
80 /,,//_/ 80 SCHEME USES A SINGLE MULTIBIOMETRIC SECURE SKETCH
60 60
n 40 40
= 20 20
1 o = - o " - |for the fingerprint modality. We further assume that the ad-
= o T —versary has knowledge about iris biometric, i.e., he hassacc
S o o to some iris image of the enrolled user. In this experiment,
_ g(i o f,/ o the primary biometric corresponds to the binary features thus
010 o o a multibiometric fuzzy commitment is implemented. Minetia
£ 2 2 are employed as thieee fingerprint representation, and hence
- o . , I . . |a fuzzy vault is used in the second stage. The degree of
- * * R * * v polynomial for the fuzzy vault is selected such that the sfim o
“;z “;z = security in bits and GAR in percentage of the resulting syste
. . is maximized. We observed that at aroun@” GAR, the
Q " " security of the constrained system is arowadbits, whereas
3 " " the security is less thal? bits when no constraints are applied.
T 10° 10° T 10° 10°
FAR (%) — VI. CONCLUSIONS AND FUTURE WORK

o 12 ROC ding 1o the oridinal featutsel. feat We have proposed a feature-level fusion framework for the
brocessed for fuzzy commiment (green) and jeatures. prodeior fuzsy 0€SION Of multibiometric cryptosystems that simultandpus
vault (red) for all three biometric traits i.e. iris, fingeipt and face. The protects the multiple templates of a user using a singlersecu
ROC C_vag_s tco"esg)eonffeig% itr?ségzef;fi?(i)r:afliiézélitui;esal;oef@f‘;%sAe?e ;’;rtef;e sketch. The feasibility of such a framework has been demon-
::gqp;:nf?nglesrgzﬁ? it is based on the ’scores obtained frord)teuhnology strated using both fuzzy vault an_d f“ZZY commitment, which
Verifinger matcher using only the minutiae features. Theesicorresponding are two of the most well-known biometric cryptosystems. We
t(; i?z f;(ztgcftig&nfg}gf;renfteZ;ﬁrza\f:g (?rn ?ﬁemcfﬂirf\}g gfé?nrx bﬂtfc\?/ﬁi?)ﬂ?;t; have also proposed different embedding algorithms forstran
\?ault are computed us>i/ng the decodiné complexity as theh’?lgg(score Whe)r/1 forming biometric rEpresentatlon.S’ efficient deCOdmgm_leS
a degreet0 polynomial used. for fuzzy vault and fuzzy commitment, and a mechanism to
impose constraints such as minimum matching requirement

For the multibiometric fuzzy vault implementation repatte for specific modalities in a multibiometric cryptosystem. A
in [29], where iris and fingerprint templates from MSU+ealistic security analysis of the multibiometric cryptes
DBI database and CASIA Ver-1 database, respectively, wamms has also been conducted. Experiments on two different
secured together, the genuine accept rate 9%8% at a multibiometric databases containing fingerprint, face] ais
security of 49 bits. Note that the security estimate in [29modalities demonstrate that it is indeed possible to im@rov
assumes uniform distribution of biometric features. In odroth the matching performance and template security using
implementation, the genuine accept rat®986 at a security the multibiometric cryptosystems.
of 49 bits based on the FVC2002-DB2 and the CASIA Ver-1 There are four critical issues that need to be investigated
databases. See Figure 5. In [30], security of the system fiagher: (i) Embedding schemes for transforming one bigioet
not been explicitly reported. In [17], the proposed techeiq representation into another, while preserving the diso@dtive
performs fusion of two different 3D face recognition algopower of the original representation. (i) A better feature
rithms and thus cannot be directly compared to the techsigdasion scheme must be developed to generateocmpact
proposed here. In [16], no experimental results were redortmultibiometric template that retains most of the inforroati

To validate the constrained multibiometric cryptosystengpntent in the individual templates. (iii) How to improveeth
we implemented a system consisting of iris and fingerprisecurity analysis by accurately modeling the biometrituesa
modalities, where minimum matching constraints are imgosdistributions. (iv) Evaluation on large multimodal databs.



APPENDIXA
ENTROPY OFBIOMETRIC FEATURES

[15]

By entropy of biometric features, we mean the minimum
average number of bits required to represent a biometHé!
feature vector. A simple approximation of the entropy for
iriscodes was provided by Daugman [44], as

N, = p(1 - p)/0? (6)

wherep is the mean value of the observed normalized Harpl-8
ming distances corresponding to impostor matchesanis ]
their variance. This estimation assumes that biometriifea
consists of a set of Bernoulli random variables, which adein [1°]
pendent and identically distributed (with uniform distriton).

In our case, since the mean normalized Hamming distance
was less thard.5, we assume that few bits are constant fd¢0l
all biometric samples. Normalized Hamming distanpe )

is thus computed as

[17]

[21]
()

where 1, is the mean of the impostor Hamming distance[é2
andpg is the corresponding original Hamming distance. This
value of normalized Hamming distand@yy) is used to (23]
computed the values gf and o which, in turn, is used to
estimate the entropy of biometric features using eq. (6).

pNE = pH/(2* 1)

[24]
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