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Abstract—Multibiometric systems are being increasingly de-
ployed in many large scale biometric applications (e.g., FBI-
IAFIS, UIDAI system in India) because they have several
advantages such as lower error rates and larger population
coverage compared to unibiometric systems. However, multibio-
metric systems require storage of multiple biometric templates
(e.g., fingerprint, iris, and face) for each user, which results in
increased risk to user privacy and system security. One method
to protect individual templates is to store only thesecure sketch
generated from the corresponding template using a biometric
cryptosystem. This requires storage of multiple sketches.In
this paper, we propose a feature level fusion framework to
simultaneously protect multiple templates of a user as a single
secure sketch. To make this framework practical, we propose
algorithms for (i) embedding different biometric feature rep-
resentations (e.g. set of points, binary strings, or real-valued
vectors) into a common representation, (ii) encoding and decoding
multibiometric secure sketches using two well-known biometric
cryptosystems, namely,fuzzy vault and fuzzy commitment, and
(iii) introducing constraints, such as minimum matching per-
formance requirement for a specific biometric trait. We also
analyze the trade-off between matching accuracy and security
of the proposed multibiometric cryptosystems through the GAR-
Security (G-S) curves, which plot the genuine accept rate ofthe
system against the minimum computational complexity involved
in decoding a secure sketch without the genuine user’s biometric
data. The proposed framework has been evaluated on two
different databases, onereal and onevirtual multimodal database,
each containing the three most popular biometric modalities,
namely, fingerprint, iris, and face. Experimental results show
that both the multibiometric cryptosystems proposed here have
higher security and matching performance compared to their
unibiometric counterparts.

Index Terms—Multibiometrics, template security, biometric
cryptosystem, fuzzy vault, fuzzy commitment, fusion

I. I NTRODUCTION

Multibiometric systems accumulate evidence from more
than one biometric trait (e.g., face, fingerprint, and iris)in
order to recognize a person [1]. Compared to unibiometric
systems that rely on a single biometric trait, multibiometric
systems can provide higher recognition accuracy and larger
population coverage. Consequently, multibiometric systems
are being widely adopted in many large-scale identification
systems, including FBI’s IAFIS, Department of Homeland
Security’s US-VISIT, and Government of India’s UID. A
number of software and hardware multibiometric products
have also been introduced by biometric vendors [2], [3].
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While multibiometric systems have improved the accuracy
and reliability of biometric systems, sufficient attentionhas not
been paid to security of multibiometric templates. Security of
multibiometric templates is especially crucial as they contain
information regarding multiple traits of the same user. The
leakage of this template information to unauthorized individu-
als constitutes a serious security and privacy threat due tothe
following two reasons:

1) Intrusion attack : If an attacker can hack into a biomet-
ric database, he can easily obtain the stored biometric
information of a user. This information can be used to
gain unauthorized access to the system by either reverse
engineering the template to create a physical spoof or
replaying the stolen template.

2) Function creep: An adversary can exploit the bio-
metric template information for unintended purposes
(e.g., covertly track a user across different applications
by cross-matching the templates from the associated
databases) leading to violation of user privacy.

The fundamental challenge in designing a biometric tem-
plate protection scheme is to overcome the large intra-user
variability among multiple acquisitions of the same biometric
trait. A number of techniques have been proposed to secure
biometric templates (see [4] for a detailed review). These
techniques can be categorized into two main classes:

• Biometric cryptosystems: In a biometric cryptosystem,
secure sketch (yc) is derived from the enrolled biometric
template1 (xE) and stored in the system database instead
of the original template. In the absence of the genuine
user’s biometric data, it must be computationally hard
to reconstruct the template from the sketch. On the
other hand, given an authentication query (xA) that is
sufficiently closeto the enrolled template (xE), it should
be easy to decode the sketch and recover the template.
Typically, the sketch is obtained by binding the template
with a codeword from an error correcting code, where the
codeword itself is defined by a key (κc). Therefore, the
sketch (yc) can be written asfc(xE , κc), wherefc is the
sketch generation function. The error correction mech-
anism facilitates the recovery of the original template
and hence, the associated key. Examples of biometric
cryptosystems include fuzzy vault [5], fuzzy commitment

1In this paper, we use the notationx to denote a generic biometric feature
vector andX to denote a collection of biometric templates corresponding to
the same user. The notationsb and s denote features that are represented
as a binary string and point-set, respectively. Superscripts E and A are
used to distinguish between the features extracted during enrollment and
authentication, respectively.
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[6], PinSketch [7], and secret-sharing approaches [8].
• Template transformation: Template transformation

techniques modify the biometric template (xE) with a
user specific key (κt) such that it is difficult to recover
the original template from the transformed template (yt).
During authentication, the same transformation is applied
to the biometric query (xA) and the matching is per-
formed in the transformed domain to avoid exposure of
the original biometric template. Since the keyκt needs
to be stored in the system along withyt, the template
security is guaranteed only if the transformation function
is non-invertible even whenκt is known to the attacker.
Some well-known examples of template transformation
include Bio-Hashing [9] and cancelable biometrics [10].

Different combinations of the above two basic approaches,
called hybrid biometric cryptosystems, have also been pro-
posed [11], [12]. In this paper, we focus on the biometric
cryptosystem approach for multibiometric template protection
due to two reasons: (i) well-known biometric cryptosystems
such as fuzzy vault and fuzzy commitment are available for
securing different types of biometric features and (ii) it is
relatively easy to analyze the security of a secure sketch by
leveraging on the characteristics of error correcting codes.

Biometric cryptosystems have been designed only for spe-
cific biometric feature representations. For example, the fuzzy
commitment scheme assumes a binary string representation,
where the dissimilarity between template and query is mea-
sured in terms of the Hamming distance. The fuzzy vault and
PinSketch techniques assume point-set based representations
and use set difference as the dissimilarity metric. However,
multiple templates of a user may not follow the same feature
representation. Point-set based features are used when the
image has a set of salient points (e.g., fingerprint minutiae). If
different samples of a biometric trait exhibit limited relative
geometric transformation and limited occlusion, real-valued
feature vectors obtained through PCA [13] and LDA [14]
can be used. Binary strings are typically obtained through
quantization of a real-valued feature vector, which reduces the
storage space and matching complexity. For example, the bits
in an iriscode [15] are obtained through quantization of the
phase response of a Gabor filter applied to the iris image.

This diversity of biometric representations naturally requires
a separate template protection scheme for each trait, and
a fusion of the decisions made by each trait [16]. This is
analogous to a security system that requires multiple low
strength (fewer bits) passwords, which is less secure than
a system that uses a single password with a larger number
of bits. This motivates the proposed approach to protect the
multiple biometric templates using a single secure sketch.

While the concept of securing multiple templates simulta-
neously as a single entity using a biometric cryptosystem has
been reported in the literature, published approaches usually
assume that different templates follow the same representation
scheme. This enables simple concatenation of the individual
templates to obtain the fused template [17]. The objective of
this work is to examine the feasibility of creating a single
multibiometric secure sketch when the traits that are being
fused have different feature representations. This paper makes

the following contributions:

• A feature level fusion framework to simultaneously se-
cure multiple templates of a user using biometric cryp-
tosystems. To implement this framework, we propose
algorithms for the following three tasks:

1) Converting different biometric representations into
a common representation space using various em-
bedding algorithms: (a) binary strings to point-sets,
(b) point-sets to binary strings, and (c) fixed-length
real-valued vectors to binary strings.

2) Fusing different features into a single multibiomet-
ric template that can be secured using an appropriate
biometric cryptosystem such as fuzzy vault and
fuzzy commitment; efficient decoding strategies for
these biometric cryptosystems are also proposed.

3) Incorporating a minimum matching constraint for
each trait, in order to counter the possibility of an
attacker gaining illegitimate access to the secure
system by simply guessing/knowing only a subset
of the biometric traits.

• A practical implementation and evaluation of the pro-
posed multibiometric cryptosystems using two different
databases each containing three biometric modalities,
namely, fingerprint, iris, and face.

• An analysis of the GAR-security trade-off in the proposed
multibiometric cryptosystems.

The rest of the paper is organized as follows. Section II
provides a background on fuzzy vault and fuzzy commitment
techniques and compares the various multibiometric template
security schemes proposed in the literature. The feature level
fusion framework for multibiometric cryptosystems and the
associated algorithms are introduced in Section III. Section
IV presents the security analysis methodology. Implemen-
tation details and performance evaluation of the proposed
multibiometric cryptosystems are discussed in Section V. Our
conclusions are summarized in section VI.

II. RELATED WORK

A. Fuzzy commitment and Fuzzy Vault

Fuzzy commitment [6] is a biometric cryptosystem that can
be used to secure biometric traits represented in the form
of binary vectors (e.g. iriscodes). Suppose that the enrolled
biometric templatebE is an N -bit binary string. In fuzzy
commitment, a uniformly random keyκc of lengthL (L ≤ N )
bits is generated and used to uniquely index aN -bit codeword
c of an appropriate error correcting code. The sketch is then
extracted from the template asyc = c ⊕ bE , where ⊕
indicates the modulo-2 addition. The sketchyc is stored in
the database along withh(κc), whereh(.) is a cryptographic
hash function. During authentication, the codeword is obtained
from the query biometricbA and the sketchyc as follows:
c∗ = yc ⊕ bA = c⊕ (bE ⊕ bA). This codewordc∗, which is
generally a corrupted version of the original codewordc, can
be decoded to get the keyκ∗. The authentication is deemed
successful ifh(κ∗) is the same ash(κc). If the Hamming
distance betweenbE and bA is not greater than the error
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TABLE I
COMPARISON OF FUZZY COMMITMENT AND FUZZY VAULT.

Fuzzy Vault Fuzzy Commitment
Representation Point-set Binary string
Main
advantage

Ability to secure finger-
print minutiae

Compact size of the
sketch

Main
limitation

Difficult to generate chaff
that are indistinguishable
from genuine points

Lack of perfect codes
for desired code lengths

Parameters Polynomial degree (k),
size of the template set
(r), and number of chaff
points (q)

Key lengthL, length of
codeword N , and er-
ror correcting capacity
of the code

GAR-Security
tradeoff

Higher values of (k/r)
andq lead to lower GAR,
but higher security and
vice versa

Higher values of (L/N )
lead to lower GAR, but
higher security and vice
versa

Implementations Fingerprint ([19], [20]),
face ([21]), iris ([22]), sig-
nature ([23])

Fingerprint ([24]), face
([24], [25]), iris ([26]),
signature ([27])

correcting capacity of the code,κ∗ would be the same asκ
and the matching will be successful.

Fuzzy vault [5] is useful for securing point-set based
biometric features such as fingerprint minutiae. LetsE =
{x1, x2, ..., xr} denote a biometric template consisting of a
set of r points from a finite fieldF . In order to securesE ,
a uniformly random cryptographic keyκc of lengthL bits is
generated and this key is transformed into a polynomialP of
degreek (k < r) over F . All the elements insE are then
evaluated on this polynomial to obtain the set{P (xi)}ri=1

.
The set of points{(xi, P (xi))}ri=1

is then secured by hiding
them among a large set ofq randomly generated chaff points
{(aj , bj)}

q
j=1

that do not lie on the polynomialP (i.e.,
bj 6= P (aj) and aj /∈ sE , ∀ j = 1, 2, · · · , q). The set of
genuine and chaff points along with their polynomial evalua-
tions constitute the sketch or vaultyc. During authentication,
if the query biometric setsA is sufficiently close tosE , the
polynomialP can be successfully reconstructed by identifying
the genuine points inyc that are associated withsE . Note that
for successful reconstruction ofP of degreek, a minimum of
(k + 1) genuine points need to be identified fromyc.

The effectiveness of a biometric cryptosystem depends on
the matching performance and the template security. Matching
performance is usually quantified by the False Accept Rate
(FAR) and the Genuine Accept Rate (GAR) of the biometric
system. Security is measured in terms of the information
leakage rate2 or the computational complexity involved in
recovering the original template from the secure sketch [18],
[8]. Due to intra-user variability in biometric traits, there is
usually a trade-off between the GAR and the security. Schemes
with higher security tend to have lower GAR and vice versa.
Table I summarizes the comparative characteristics of fuzzy
vault and fuzzy commitment.

2Given the secure sketch, leakage rate relates to the uncertainty about the
original biometric template (known as privacy leakage) or the cryptographic
key associated to it (secret key leakage). In both fuzzy vault and fuzzy
commitment, the privacy leakage rate is equal to the secret-key leakage rate
because it is trivial to recover (i) the biometric template given the key and
the secure sketch and (ii) the key given the template and the secure sketch.

B. Multibiometric Cryptosystems

A number attempts have been made to extend the secure
biometric recognition framework to incorporate multiple bio-
metric traits [28], [29], [17], [16]. Sutcu et al. [28] combined
face and fingerprint templates that are both transformed into
binary strings. These binary strings are concatenated and used
as the input to a fuzzy commitment scheme.

Nandakumar and Jain [29] proposed a multibiometric cryp-
tosystem in which biometric templates based on binary strings
and point-sets are combined. The binary string is divided into
a number of segments and each segment is separately secured
using a fuzzy commitment scheme. The keys associated with
these segment-wise fuzzy commitment schemes are then used
as additional points in the fuzzy vault constructed using the
point-set based features.

Kelkboom et al. [17] provided results for feature level, score
level and decision level fusion of templates represented as
fixed-length real-valued vectors. Since the match scores are not
explicitly available in a biometric cryptosystem, Kelkboom et
al. used the number of errors corrected by an error correcting
code in a biometric cryptosystem as a measure of the score.
Such scores are, however, meaningful only if the crypto-
biometric match is successful and the keyκc can be success-
fully recovered. Moreover, multiple scores can be obtained
only if the different templates are secured individually, which
leads to suboptimal security. This is also true for decisionlevel
fusion. The feature level fusion scheme in [17] involves simple
concatenation of two real-valued vectors and binarizationof
the combined vector using quantization thresholds.

Fu et al. [16] theoretically analyzed the template security
and recognition accuracy imparted by a multibiometric cryp-
tosystem, which can be operated in four different ways: no-
split, MN-split, package, and biometric model. The first three
models correspond to decision level fusion, where the biomet-
ric templates are secured individually. The biometric model
is based on feature level fusion of homogeneous templates.
However, no system implementation was reported.

Cimato et al. [30] follow a modular approach to design
multibiometric cryptosystems. Suppose thatbE

1
and bE

2
are

two biometric templates. A secure sketchy
1

is extracted from
bE
1

along with a hash of thebE
1

, which is further used as a
key to secure the second template. This approach is similar
to the package model proposed in [16], which in turn is
based on the AND decision fusion rule. One advantage of this
modular approach is that additional biometric traits can be
easily introduced in the multibiometric cryptosystem. Another
benefit is that it allows the use of heterogeneous templates.For
example, in [30], a secure sketch is used to protect the iriscode
template, and the hash value of the iriscode based on the
secret key is used to encrypt a fingerprint minutiae template.
A limitation of this approach is that its overall security is
bounded by the security of the sketch in the outermost layer.

In this paper, we propose a generic framework for the
design of a multibiometric cryptosystem with heterogeneous
templates and consider practical implementation issues inthe
case of both binary string and point-set based representations.
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Fig. 1. Schematic diagram of a multibiometric cryptosystembased on the proposed feature level fusion framework duringthe enrollment phase.

III. PROPOSEDFRAMEWORK FORMULTIBIOMETRIC

CRYPTOSYSTEMS

We propose a feature level fusion framework for multibio-
metric cryptosystems that consists of three basic modules:(i)
embedding algorithm (E), (ii) fusion module (C), and (iii)
biometric cryptosystem (fc). The generic framework of the
proposed multibiometric cryptosystem is shown in Figure 1.
Suppose that we have a set of biometric feature representations
X = {x1, x2, · · · , xM}, where xm represents the features
corresponding to themth biometric modality of a user, andM
represents the number of modalities,m = 1, 2, · · · ,M . The
functionalities of the three modules are as follows:

• Embedding algorithm (E): The embedding algorithm
transforms a biometric feature representationxm into a
new feature representationzm, wherezm = Em(xm), for
all m = 1, 2, · · · ,M . The input representationx can be a
real-valued feature vector, a binary string, or a point-set.
The output representationz could be a binary string or a
point-set that could be secured using fuzzy commitment
or fuzzy vault, respectively.

• Fusion module(C): The fusion module combines a set of
homogeneous biometric featuresZ = {z1, z2, · · · , zM}
to generate a fused multibiometric feature representation
z. For point-set based representations, one can usez =
Cs(Z) = ∪Mm=1

zm. In the case of binary strings, the fused
feature vector can be obtained by simply concatenating
the individual strings, i.e.,z = Cb(Z) = [z1 z2 · · · zM ].
Note that it is also possible to define more complex
fusion schemes, where features could be selected based
on criteria such as reliability and discriminability.

• Biometric cryptosystem (fc): During enrollment, the
biometric cryptosystem generates a secure sketchyc using
the fused feature vectorzE (obtained from the set of bio-
metric templatesXE = {xE

1
, xE

2
, · · · , xEM}) and a keyκc,

i.e.,yc = fc(zE , κc). During authentication, the biometric
cryptosystem recoversκc from yc andzA (obtained from
the set of biometric queriesXA = {xA

1
, xA

2
, · · · , xAM}).

Fuzzy commitment is used ifz is a binary string, whereas
a fuzzy vault is used ifz is a point-set.

A. Embedding Algorithms

We shall now discuss three types of embedding algorithms
that can perform the following feature transformations: (i) real-
valued vector into a binary string, (ii) point-set into a binary
string, and (iii) binary string into a point-set (see Table II).

1) Real-valued vector to binary string:A number of
schemes have been proposed in literature for binarization
of real-valued biometric features. Examples include Binary
Multidimensional Scaling techniques [31], Locality Sensitive
Hashing [32], Detection Rate Optimized Bit Allocation [33],
and quantization of element pairs in the polar domain [34].

Since no single feature binarization technique is provably
better than all others, we propose the following simple algo-
rithm for transforming a real-valued vector into a binary string.
First, we quantize each element of the real-valued vector into
(τ + 1) fixed size quanta. The quantized values are then
represented usingτ -bit unary3 representation in order to obtain
a binary string of lengthτℓ, whereℓ is the dimensionality of
the original vector. In the second stage, we select a desired
number of most discriminable bits (N ). The discriminability
of each bit is computed as((1− peg)p

e
i ), wherepeg andpei are

the genuine and impostor bit-error probabilities, respectively.
2) Point-sets to binary string:A number of techniques have

been proposed for converting point-sets into binary feature
vectors. These techniques include local point aggregates [35],
spectral minutiae [36], geometric transformation [28], triplet
histogram [37], and the bag-of-words approach [38]. In this
paper, we implement the simple local aggregates based tech-
nique, which works as follows. Let us assume that each point
can be represented as anν-tuple. The available point-set is
aligned such that the bounding box of the points is centered
at the origin. Then, a set of axis-aligned hyper-rectangleswith
randomly selected position and size are generated. Among
these hyper-rectangles, a fraction of hyper-rectangles with
large overlap with other hyper-rectangles is discarded.

Statistics for each hyper-rectangle based on the points
falling inside it are computed. These statistics include the

3A unary encoding works as follows. Suppose that a real-valuea needs to
be encoded usingτ bits. The range ofa, say[amin, amax], is quantized into
(τ +1) bins. If a falls into theith bin, it is represented as(τ − i+1) ones
followed by (i− 1) zeros, wherei = 1, 2, · · · , (τ + 1).
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TABLE II
A SIMPLIFIED ILLUSTRATION OF THE PROPOSED EMBEDDING ALGORITHMS.

Real vector to Binary string Point-set to Real vector Binary string to point-set

number of points in the hyper-rectangle, and the mean and
variance of the points along each of theν dimensions. The
statistics from different hyper-rectangles are concatenated to
generate a feature vector. A Linear Discriminant Analysis
(LDA) is applied to the resultant feature vector to reduce
the dimensionality. Finally, the real-valued LDA featuresare
binarized using the algorithm presented in section III-A1.

3) Binary string to point-set:Conversion of binary string to
point-set is required when the final biometric cryptosystemis
based on point-set features. In order to obtain a point-set from
a binary string, we simply divide the binary string into the
desired number of segments. Each segment can be considered
as a point in the point-set representation. The only parameter in
this technique is the number of segments. A similar technique
was also used in [29], where instead of directly using the
segments of the binary strings as points, a key is associated
with each segment through fuzzy commitment and the keys
are used as additional points in the vault.

B. Fuzzy Vault Implementation

We briefly describe how a biometric template (either unibio-
metric or multibiometric) can be encoded as a vault and how
an authentication query can be used to decode the vault.

1) Vault encoding:Let sE = {ui}
r
i=1

be the biometric
template represented as a set ofr points, which is to be secured
using a vault. LetU be the universe of all possible biometric
points. In practice, the points inU may not necessarily be
elements of the fieldF . To construct a vault, each point in
U is assigned4 to a point fromF . Let xi be the element
in F associated with the pointui in sE , ∀ i = 1, 2, · · · , r
and letsEg = {xi}ri=1

. A set of q chaff points are randomly
selected from(U\sE) (′\′ denotes the set difference operator).
Let sC =

{

u∗

j

}q

j=1
be the set of chaff points and let

sCg =
{

x∗

j

}q

j=1
be the corresponding set of points obtained

by mapping elements insC to elements inF . Given a keyκc

of lengthL bits, we encode it as a polynomialP of degreek.
Finally, the vault is obtained as a set of 3-tuples as follows:
yc = {(αi, βi, γi)}

t
i=1

, wheret = (r+ q), αi ∈ (sE ∪ sC), βi

is the corresponding element in(sEg ∪ sCg ), andγi is given by

γi =







P (βi), if αi ∈ sE ,

bi,wherebi ∈ F \ {P (βi)}, if αi ∈ sC .

4This mapping can be stored as a lookup table or defined by a hashfunction.

2) Vault decoding: Let sA = {u′

j}
r′

j=1
be the set of

r′ points in the authentication query. For each pointαi

(i = 1, 2, · · · , t) in the vault, its distance to the closest
query point is computed and the list of vault points is sorted
based on this distance. The ordered set of points in the vault
is given by yoc = [(α(1), β(1), γ(1)), · · · , (α(t), β(t), γ(t))],
where minw d(α(i), u′

w) < minw d(α(j), u′

w) if i < j,
and w ∈ {1, · · · , r′}. Finally, the Berlekamp-Massey (B-
M) algorithm [39] is applied on subsets of different lengths
derived fromyoc to decode the vault and thereby recover the
associated polynomial and the keyκc (see algorithm 1).

Algorithm 1 Fuzzy vault decoding based on Berlekamp
Massey algorithm [39].

Input: y o
c = [(α(1), β(1), γ(1)), · · · , (α(t), β(t), γ(t))]

(Ordered vault points);k (Degree of polynomial)
forall 5n = (k + 1) to t do

sn ← {(α(i), β(i), γ(i))}
n
i=1

for m = 0 to n− (k + 1) do
forall s∗ ⊂ sn, |s∗| = m do

s−n ← sn \ s∗
P ← DecodeBM(s−n , k)
if P is the required polynomialthen

ReturnP
end if

end forall
end for

end forall
Returnφ
{DecodeBM(s, k) performs a Berlekamp-Massey decoding
of the set of pointss for a polynomial of degreek}

Algorithm 1 is based on the following principle. Given
a set of n points from the vault, the Berlekamp-Massey
decoding allows recovery of the polynomial if there are at
least(n+ k+ 1)/2 genuine points in the given set. Since the
points in the vault are ordered according to their likelihood of
being genuine, we consider subsets ofn ((k + 1) ≤ n ≤ t)
most likely points in parallel. If a selected subset of length
n cannot decode the vault, some points in the subset are
randomly removed to obtain smaller subsets of minimum size
(k + 1). Since all points in the vault are used in decoding,
the vault will always be eventually decoded, but the decoding
complexity will be different for each query.

The proposed vault decoding algorithm differs from the
decoding procedure followed in [20] on two main accounts.

5forall is the parallel for-loop which runs all the instances of the loop
simultaneously
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Firstly, the use of Berlekamp-Massey algorithm (in place of
Lagrange interpolation used in [20]) is expected to make the
decoding more efficient. This is because of several possible
subsets of size(k+1) must be tried in Lagrange interpolation.
Secondly, since the points in the vault are ordered based on
their distance to the points in the query biometric set, one
would expect the decoding complexity for a genuine user
to be significantly less than the decoding complexity for an
impostor. While this property provides the required security
to the biometric template, it also enables us to easily measure
the minimum decoding complexity for an impostor attack.

C. Fuzzy Commitment Implementation

In the fuzzy commitment technique, the biometric template
bE of lengthN is bound to a codewordc of the same length to
generate the secure sketchyc as follows:yc = bE⊕ c. During
authentication, the query biometric data (bA) is used along
with the secure sketch to obtain a corrupted codewordc∗,
which can be corrected to recover the keyκc that is associated
with the codewordc. While we follow the encoding procedure
that is generally used in the literature, we introduce some
modifications to the decoding procedure.

We note that error correcting codes can typically handle
more erasures than errors. For example, a linear error cor-
recting code can correct any combination ofg erasures ande
errors as long as(g + 2e + 1) ≤ Dmin, whereDmin is the
minimum distance between the codewords of the code [40].
Hence, if the error (crossover) probabilities of each bit inthe
biometric feature vector is known, it is possible to consider
some of the least reliable bits as erasures during decoding.
Algorithm 2 provides a fuzzy commitment decoding procedure
that exploits the above characteristic of linear error correcting
codes. As in the case of fuzzy vault, we consider then most
reliable bits in parallel ((N − Dmin + 1) ≤ n ≤ N ) and
treat the remaining bits as erasures. If the decoding is still
not successful, a subset of reliable bits of sizem are flipped.
If the number of errors among the bits selected for flipping
is more than(m/2), then the number of errors will be less
after flipping, thereby increasing the possibility of successful
decoding. Note that if the selected error correcting code is
maximum distance separable (i.e., it satisfies the Singleton
bound), then(Dmin − 1) = (N − L). In this case, the secure
sketch can be decoded as long asL bits in the biometric feature
vector can be correctly guessed.

D. Constrained Multibiometric Cryptosystem

One of the limitations of multibiometric systems is that they
can be circumvented if an adversary can successfully spoof a
subset of the involved biometric traits [41]. This issue is also
a concern for a multibiometric cryptosystem. Furthermore,the
complete multibiometric template can be recovered as a result
of successful authentication. Consequently, if an impostor is
able to decode the system with a subset of spoofed traits,
he can recover the templates corresponding to the other traits
as well. It is thus important to design multibiometric cryp-
tosystems that require a minimum amount of discriminatory

Algorithm 2 A fuzzy commitment decoding algorithm that
allows for erasures in the codeword based on the crossover
probabilities.

Input: c ∗ (corrupted codeword);p = [p1, · · · , pN ] (bit reli-
ability vector wherepi indicates the reliability (1-crossover
probability) of c∗(i), i = 1, 2, · · · , N ); Dmin.
forall n = (N −Dmin + 1) to N do

sn ← RBS(p, n,N)
for m = 0 to Dmin + 1 do

forall s∗ ⊂ sn, |s∗| = m do
c′ ← Flip(c∗, s∗)
κc ← DecodeFC(c′, sn, L)
if κc is the required keythen

Returnκc

end if
end forall

end for
end forall
Returnφ
{DecodeFC(c′, sn, L) is an error correction decoder that
corrects the errors in the corrupted codewordc′ to obtain a
key of lengthL, while considering all bits whose indices are
not indicated insn as erasures. The functionRBS(p, n,N)
returns the indices of then most reliable bits.Flip(c∗, s∗)
returns the codewordc′, in which the bits inc∗ correspond-
ing to points ins∗ are flipped.}

information from a subset or all the biometric traits, especially
those that are difficult to spoof.

We propose a constrained multibiometric system similar in
concept to the modular multibiometric cryptosystem proposed
in [30]. In our approach, we first identify the biometric traits
that are required to be constrained. Our approach requires two
different representations of the constrained biometric trait with
the following property: it should be hard to obtain one of
the representations (called thefree representation) from the
other (called theprimary representation). One example of a
primary representationis the minutiae aggregates [35] and the
correspondingfree representationis the set of minutiae. The
primary representationis secured using the multibiometric
cryptosystem as before, whereas thefree representationsof
each constrained trait is secured using a unibiometric cryp-
tosystem (see Figure 2). These unibiometric cryptosystems
will use different keys than the key used in the multibiometric
cryptosystem. Finally, the unibiometric or component secure
sketches are encrypted with a symmetric cryptographic algo-
rithm such as AES, where the encryption key is the same as
the key associated with the multibiometric cryptosystem.

The authentication involves two stages. In the first stage,
the key associated with the multibiometric cryptosystem is
recovered. This key is used to decrypt the component secure
sketches. In the second stage, the component secure sketches
are decoded. All the keys associated with the unibiometric
sketches must be correctly recovered for successful authentica-
tion. Note that successful authentication of all the unibiometric
systems ensures that the user has a minimum amount of
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Fig. 2. Enrollment phase of a constrained multibiometric cryptosystem. The templates corresponding to each constrained trait (traits1 andM in this example)
have two representations (the primary representation (xE
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(1)) and the free representation (xE

i
(2)) for modality i). The primary representation is secured using

a multibiometric secure sketch, while the free representation is secured using a unibiometric sketch that is further encrypted using the key associated with the
multibiometric cryptosystem.

information about each of the constrained biometric traits. The
proposed implementation reliably addresses the requirement
of a constrained multibiometric cryptosystem, provided there
exists a free and a primary representation of each of the
constrained biometric modalities.

IV. M ETHODOLOGY FORSECURITY ANALYSIS

Our security analysis is based on the assumption that the
attacker has access to a large biometric database (analogous
to a dictionary attack in password-based systems). We then
empirically estimate the minimum computational effort re-
quired from the attacker to decode a given secure sketch. By
following this approach, we combine the two attack strategies
traditionally used to estimate system security, i.e., finding
sufficiently close biometric features from an available database
(false accept attack) and brute-force attack (that indirectly
utilizes the distribution of biometric features).

It is possible to decode a secure sketch by directly guessing
the associated key (κc). The average complexity of this attack
is (L−1) bits, whereL is the length ofκc. Such an attack can
be easily thwarted by choosing a sufficiently large value for
L. Therefore, we only consider the more practical approach
of decoding the sketch by guessing the biometric features.
While estimating the computational complexity, we assume
that the complexity of the error correction decoder (e.g., B-M
algorithm) is unity, and consider only the number of times this
decoder needs to be invoked.

A. Fuzzy Vault Security

To decode a fuzzy vault, one needs to guess the genuine
points in the vault. Typically, it is assumed that genuine points

in the vault are indistinguishable from the chaff points [20],
which leads to optimistic estimates of security. However, the
decoding complexity decreases if the attacker has knowledge
about the distribution of biometric features [42], [43]. To
account for this factor, we assume that the attacker has a large
database of non-mate (impostor) biometric samples and he
tries to decode the vault using each of those impostor samples.
Therefore, we consider the minimum decoding complexity
among all impostor matches as a measure of security.

Suppose that the attacker has access toNI impostor samples
to decode a vault (yc). Let sIn denote a set containing the first
n points from the ordered set of vault points (yoc). Here, the
ordering is based on the distance of the vault points to the
points in the query biometric set from impostorI. Let rIn be
the number of genuine points insIn, i.e.,rIn = |sIn∩sE |, where
sE is the enrolled template secured usingyc. For (k + 1) ≤
n ≤ t, wheret is the total number of points in the vault, three
different scenarios are possible.

1) If rIn ≥ (n + k + 1)/2, the B-M algorithm will return
the correct polynomial in a single attempt.

2) If (k + 1) ≤ rIn < (n+ k + 1)/2, one needs to find the
minimum value ofmI

n such that whenmI
n chaff points

are removed fromsIn, rIn becomes greater than((n −
mI

n) + k + 1)/2. Hence,mI
n = max(0, (n− 2rIn + k +

1)) and the corresponding complexity is approximately
( n

mI
n
)

(
n−rIn

mI
n
)
.

3) If rIn < (k + 1), the vault cannot be decoded usingsIn.
In this case, the corresponding value of complexity is
considered to be∞.

Based on the above analysis, the security of the vault can
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be expressed as

SFV = min
n,I



log
2

mI
n

∑

i=0

(

n
i

)

(

n−rIn
i

)



+Ω

≈ min
n,I



log
2

(

n
mI

n

)

(

n−rIn
mI

n

)



+Ω, (1)

whereΩ = log
2
(NI(t− k)). Since the first term in eqn. (1) is

minimized over all impostor samples, adding more impostors
will lower this term. However, adding more impostors will
also increase the number of computations needed, which is
reflected by theΩ term. An increase in the polynomial degree
k will increasen and consequently result in higher security.

In the case of multibiometric fuzzy vault, it is possible
that a poor quality sample from one of the modalities can
lead to a higher decoding complexity if the relative quality
of the samples is not taken into account when generating the
multibiometric template. In order to address this issue, we
also check if any subset of biometric modalities can decode
the vault. The final value of security is taken as the minimum
value of security computed based on the multibiometric query
as well as that corresponding to different subsets of the query
biometric traits.

Since the decoding algorithm is common to both the genuine
user and the impostor, we can also estimate the decoding
complexity for a genuine match. Letsn denote a set containing
the first n points from the ordered set of vault points (yoc),
where the ordering is based on the distance of the vault points
to the points in the query from the genuine user. Letrn be
the number of genuine points insn, i.e., rn = |sn ∩ sE |. The
decoding complexity for the genuine user can be expressed as

SgenFV ≈ min
n

(

log
2

(

n
mn

)

(

n−rn
mn

)

)

+ log
2
(t− k), (2)

wheremn = max(0, (n− 2rn + k + 1)).

B. Fuzzy Commitment Security

To decode a fuzzy commitment sketch, one needs to guess
the bits in the binary templatebE . Though the length of the
templatebE is N bits, the entropy6 of the template (N∗) is
typically much less thanN bits. This is because some bits may
not be uniformly distributed (0 and 1 values are not equally
likely), while there may also be correlation between the bits.

Suppose that the attacker has access toNI impostor samples
and a sketchyc. For each impostorI, a corrupted codewordcI

is obtained as(yc⊕bI), wherebI is the binary feature vector
from impostorI. Let sn denote a set containing the indices of
then most reliable bits in the biometric template7. Let bE

n , bI
n,

andcIn be substrings ofbE , bI , andcI , respectively, containing

6We use a procedure similar to the one used in [44] to estimate the entropy.
See Appendix A for details.

7We assume that the attacker can somehow estimate the bit reliability vector
(i.e., the crossover probability for each bit in the biometric template).

only those bits whose indices are insn. The Hamming distance
betweenbE

n andbI
n is denoted asρIn.

Let DecodeFC(cI , sn, L) be the error correction decoder
that corrects the errors in the corrupted codewordcI to obtain
a key of lengthL while considering all bits whose indices are
not in sn as erasures. When the attacker invokes the above
error correction decoder for values ofn in the range[N −
Dmin + 1, N ], whereDmin is the minimum distance of the
code, three different scenarios are possible.

1) The values ofn andρIn are such that((N−n)+2ρIn) ≤
(Dmin − 1), where(N − n) is the number of erasures
andρIn is the number of errors. In this case, the decoder
will return the correct key in a single attempt.

2) If ((N − n) + 2ρIn) > (Dmin − 1), the attacker can try
to find mI

n (0 ≤ mI
n ≤ ((Dmin − 1) − (N − n))/2 =

(n − L)/2) such that, whenmI
n errors are corrected

from cIn, ((N − n) + 2(ρIn − mI
n)) becomes less than

or equal to(Dmin − 1). If such anmI
n exists, then its

minimum value is given bymI
n = max(0, (((N − n)−

(Dmin−1))/2+ρIn)) and the corresponding complexity

is approximately
( n

mI
n
)

(
ρIn

mI
n
)
.

3) If no suchmI
n can be found, the secure sketch cannot be

decoded by considering the least reliable(N−n) bits as
erasures. Hence, the corresponding value of complexity
is considered to be∞.

Based on the above analysis, the security of the fuzzy
commitment scheme can be expressed as

SFC = min
n,I



log
2

mI
n

∑

i=0

(

n
i

)

(

ρI
n

i

)



+Ω

≈ min
n,I



log
2

(

n
mI

n

)

(

ρI
n

mI
n

)



 +Ω, (3)

whereΩ = log
2
(NIDmin). The above expression, however,

assumes that the bits inbE
n are independent and uniformly

random. Suppose that the entropy ofbE
n is only n∗ bits. In

this case, the effective Hamming distance betweenbE
n and

bI
n is ρIn∗

= (n∗ρ
I
n)/n and the corresponding value ofmI

n is
mI

n∗
= max(0, (((N−n)−(Dmin−1))/2+ρIn)n∗/n). Thus,

the security is given by

SFC ≈ min
n,I



log
2

(

n∗

mI
n∗

)

( ρI
n∗

mI
n∗

)



+Ω. (4)

SupposebA is a genuine authentication query andρn∗
is

the effective Hamming distance betweenbE
n and bA

n , where
bE
n andbA

n are the substrings ofbE andbA, respectively, con-
taining only then most reliable bits. The decoding complexity
for a genuine match can be expressed as

SgenFC ≈ min
n

(

log
2

(

n∗

mn∗

)

(

ρn∗

mn∗

)

)

+ log
2
(Dmin), (5)

wheremn∗
= max(0, (((N−n)−(Dmin−1))/2+ρn)n∗/n).
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V. EXPERIMENTAL RESULTS

A. Databases

We have evaluated the recognition performance and security
of the proposed multibiometric cryptosystems on two differ-
ent multimodal databases, each containing face, fingerprint,
and iris modalities. The first database is avirtual multi-
modal database obtained by randomly linking subjects from
FVC2002-DB-2 (fingerprint), CASIA Iris database Ver-1, and
XM2VTS (face) databases. The virtual multimodal database
consists of the full fingerprint database (100 subjects), first 100
subjects from the face database, and first 100 subjects from
the iris database. We also use the WVU multimodal database,
which is a real multimodal database containing fingerprint,
iris, and face images from138 different users. Figure 3 show
sample images from the different biometric databases used.

(a) (b)

Fig. 3. Sample iris, fingerprint, and face images from (a) CASIA Ver-
1, FVC2002 DB-2, and XM2VTS databases, respectively, and (b) WVU
multimodal database. Note that the quality of iris images from WVU database
is much lower than that from the CASIA database.

1) Fingerprint Features:Fingerprint minutiae are extracted
using the procedure detailed in [45]. To obtain the binary
string representation from the minutiae set, we follow the
approach outlined in section III-A2 with500 hyper-rectangles
(cuboids in 3D space) aligned along the horizontal location,
vertical location, and orientation axis associated with minutiae.
Different features such as sum of distances of minutiae from
the six walls of the cuboids and mean and standard deviations
of minutiae along each of the three axes, are extracted from
each cuboid in order to obtain a vector of length3, 500.
Linear Discriminant Analysis (LDA) is used to reduce the
dimensionality of this vector to80. Each LDA coefficient
is converted into a40-bit unary representation and they are
concatenated to obtain a3200(40× 80)-bit binary string. We
select a subset of the most discriminable bits (Np) using
the procedure described in section III-A1. First impression of
the finger is used for enrollment, the second one is used as
authentication sample and the remaining impressions are used
as training set in order to compute the LDA features. Since
no training is required for extracting minutiae, only the first
two impressions are used in constructing the fuzzy vault.

2) Iris Features:The binary IrisCode features are extracted
based on the algorithm described in [46]. In case of CASIA
Ver-1 database,48 different radii and360 different angles are
used whereas in case of WVU Iris database20 different radii
and240 different angles are used. The complete IrisCode are
thus 34, 560 and 9, 600-bits long for the CASIA Ver-1 and
WVU Iris databases respectively.

In order to reduce the dimensionality of the iriscode and
remove the redundancy present in the code, LDA is applied

to the iriscode features. Only the top80 LDA coefficients
are retained (ℓ = 80) and these real-valued features are then
binarized using the technique proposed in Section III-A1 with
τ = 40. In order to obtain the point-set representation,800
bits selected from the binarized LDA features are divided into
20 segments of40-bits each. As in the case of fingerprints,
one iris sample is used for enrollment, one sample is used for
authentication, and the remaining samples are used as training
set in order to compute the LDA features.

3) Face Features:Alignment of face images is essential
prior to feature extraction. For the WVU database, eye lo-
cations were automatically extracted using Identix FaceIT
software, a region of size120 × 100 was cropped such that
inter-pupil distance is 60 pixels. In case of XM2VTS database,
we use FaceVACS software from Cognitec in order to extract
the eye coordinates to align all the face images. The inter-pupil
distance is set to37.5 pixels. We then crop the aligned face im-
age to a region of size120×100 pixels. Histogram equalization
is used to reduce the effect of illumination variations. Finally,
we extract80 LDA coefficients (ℓ = 80) that constitute the
real-valued feature vector representing a face image. The same
procedure applied to the iris LDA coefficients is also applied
to the face LDA coefficients to generate a binary string and
point-set representations for the face modality. Again, one face
image each is used for enrollment and authentication, while
the remaining samples are used as the training set in order to
compute the LDA features.

B. Parameter Selection

1) Unibiometric fuzzy vaults:We consider the Galois field
GF (216) as the finite fieldF in all our experiments. In the
case of fingerprint fuzzy vault, a set of at most24 good
quality and well separated minutiae is selected from the given
fingerprint image as the biometric points. The chaff points
are randomly generated as in [20] to obtain a vault with
224 points (r = 24, q = 200, and t = 224). In addition to
genuine minutiae and chaff points, points on the fingerprint
corresponding to high ridge curvature are also stored in the
system. These points are not expected to reveal significant
information about the minutiae but can be effectively used
to align the query fingerprint [20]. During authentication,the
query minutiae set is first aligned with the vault using the
high curvature points. A bounding box is then used to filter
out points in the vault that are not in close proximity [20]
of the query minutiae. The query is then further aligned with
the remaining vault points using a minutiae matcher. These
aligned points are then used to compute the closest distances
of the vault points to the query point based on which the vault
points are ordered prior to decoding.

The point-set representations for iris and face modalities
can be directly used to construct the iris and face vaults,
respectively. To generate chaff points in the iris (face) vault,
we pool the iris (face) points extracted from all the iris (face)
images in the database (excluding the images of the user
under consideration) and select the desired number (200) of
chaff points from this pool. During authentication, Hamming
distance is used to obtain the closest point in the query for
each vault point.
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2) Multi-biometric fuzzy vault: Multiple unibiometric
vaults can be easily converted into a single multibiometric
vault by associating the same keyκc with them. Note that the
key length (L) and hence, the polynomial degreek of such a
multibiometric vault is typically higher than the unibiometric
case. During decoding, multiple query biometrics are matched
with the corresponding unibiometric vaults and an ordered
sequence of points from each vault is obtained. These indi-
vidual sequences of points are then merged such that the first
l elements of the merged sequence contain approximately top
ηil points from the vault corresponding to theith biometric.
In the current implementation, we chooseηi to be the same
for all the biometric traits. However, specific strategies can be
designed to select proper values ofηi based on the quality
of the individual biometric traits and the number of genuine
points from each trait.

3) Fuzzy commitment:We select1, 023 most discriminable
bits from each of the three biometrics for the unibiometric
fuzzy commitments (N = 1, 023). In order to create a
multibiometric cryptosystem withM different biometric traits,
we extractN = 1, 023×M most discriminative bits from the
pool bits available from all the constituent biometric traits.
In our experiments, we assume different values ofDmin (the
minimum distance of the error correcting code) in the range
0.02 to 0.6 times the total number of bitsN .

C. Performance Evaluation

We evaluate the trade-off between recognition accuracy and
security of the proposed multibiometric cryptosystems using
the GAR-Security (G-S) curves. The genuine accept rate is
measured as the fraction of genuine authentication attempts,
where the decoding complexity (SgenFV and SgenFC for fuzzy
vault and fuzzy commitment, respectively) is less than15
bits. The security is measured as the minimum computational
complexity faced by the attacker for a successful decoding
among the various impostor match attempts. The G-S curve is
obtained by varying the length (L) of the key (κc) used in the
biometric cryptosystem. Note that based on our formulation,
the minimum value of security corresponds to the value ofΩ
as defined in eq. (1) and eq. (3) for fuzzy vault and fuzzy
commitment respectively.

Figures 4, 5 and 6, 7 show the performance of the multi-
biometric fuzzy vault for the virtual and real multimodal
databases, respectively. In general, it can be observed that
incorporating additional biometric features does increase the
performance of the system. In case of the virtual multimodal
database, the security of the iris fuzzy vault at a GAR of
90% is 45 bits; however, when fingerprint and face are also
incorporated in the fuzzy vault, the security increases to
around90 bits at the same GAR. When the templates are
secured individually and the AND fusion rule is applied,
i.e., the authentication is deemed successful only when all
the unibiometric cryptosystems are decoded, the security at
90% GAR is around40 bits. However, in case of the WVU
database, there is only a marginal increase in performance
compared to the best modality (face). This can be attributed
to the lower quality of the iris and fingerprint images in the

WVU database compared to the CASIA and FVC2002-DB2
databases, respectively. See Figure 12. In fact, the GAR of
the iris fuzzy vault for the WVU database at zero-FAR is0%,
which is the reason why the G-S curve corresponding to iris
is not shown in Figure 6.
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Fig. 4. The G-S curves for fuzzy vault for iris, fingerprint, and face images
from CASIA Ver-1, FVC 2002 DB-2, and XM2VTS databases, respectively,
the baseline multibiometric cryptosystem based on AND-fusion rule and the
proposed multibiometric crytposystem using all three modalities.
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Fig. 5. The G-S curves for fuzzy vault for pairs of biometric traits from
CASIA Ver-1, FVC 2002 DB-2, and XM2VTS databases, respectively.

The results corresponding to fuzzy commitment are shown
in Figures 8, 9 and 10, 11 for the virtual and real multimodal
databases, respectively. The G-S curves are obtained by vary-
ing Dmin of the error correcting code from0.02 to 0.6 times
the length of the binary stringN . Similar to fuzzy vault, the
performance of the fuzzy commitment multibiometric cryp-
tosystem is significantly better than the unibiometric systems.

One interesting observation is that even though the per-
formance of the individual modalities are different, the per-
formance of the multimodal system combining all the three
traits is nearly same for both fuzzy commitment and fuzzy
vault (see Table III). As far as the individual biometric traits
are concerned, their performance is better in their native
representation. For example, in both the real and virtual
multimodal databases, iris fuzzy commitment performs better
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Fig. 6. The G-S curves for fuzzy vault for iris, fingerprint, and face images
from WVU Multimodal database, the baseline multibiometriccryptosystem
based on AND-fusion rule and the proposed multibiometric crytposystem
using all three modalities.
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Fig. 7. The G-S curves for fuzzy vault for pairs of biometric traits from the
WVU Multimodal database.
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Fig. 8. The G-S curves for fuzzy commitment for iris, fingerprint, and
face images from CASIA Ver-1, FVC 2002 DB-2, and XM2VTS databases,
respectively, the baseline multibiometric cryptosystem based on AND-fusion
rule and the proposed multibiometric crytposystem using all three modalities.
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Fig. 9. The G-S curves for fuzzy commitment for pairs of biometric traits
from CASIA Ver-1, FVC 2002 DB-2, and XM2VTS databases, respectively,
the baseline multibiometric cryptosystem based on AND-fusion rule and the
proposed multibiometric crytposystem using all three modalities.
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Fig. 10. The G-S curves for fuzzy commitment for iris, fingerprint, and
face images from WVU Multimodal database, the baseline multibiometric
cryptosystem based on AND-fusion rule and the proposed multibiometric
crytposystem using all three modalities.
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Fig. 11. The G-S curves for fuzzy commitment for pairs of biometric traits
from the WVU Multimodal database.



12

than a iris fuzzy vault. Similarly, the performance of fingerprint
fuzzy vault is generally better than a fingerprint fuzzy com-
mitment. This could be due to possible loss of discriminatory
information during feature transformation (embedding). Figure
12 shows the receiver operating characteristic (ROC) curves
corresponding to the original features associated with the
biometric traits along with the ROC curves obtained using the
features extracted for fuzzy vault and fuzzy commitment. Note
that in most of the cases the matching performance reduces
as a result of using a biometric cryptosystem.
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Fig. 12. ROC curves corresponding to the original features (blue), features
processed for fuzzy commitment (green) and features processed for fuzzy
vault (red) for all three biometric traits i.e. iris, fingerprint and face. The
ROC curves corresponding to the original features for iris is based on the
Hamming distance between iriscodes, for face it is based on the LDA features
and for fingerprint it is based on the scores obtained from Neurotechnology
Verifinger matcher using only the minutiae features. The curves corresponding
to the fuzzy commitment are based on Hamming distance between 1, 023 bits
of the extracted binary feature vector. The curves corresponding to the fuzzy
vault are computed using the decoding complexity as the matching score when
a degree-10 polynomial used.

For the multibiometric fuzzy vault implementation reported
in [29], where iris and fingerprint templates from MSU-
DBI database and CASIA Ver-1 database, respectively, were
secured together, the genuine accept rate was98.2% at a
security of 49 bits. Note that the security estimate in [29]
assumes uniform distribution of biometric features. In our
implementation, the genuine accept rate is99% at a security
of 49 bits based on the FVC2002-DB2 and the CASIA Ver-1
databases. See Figure 5. In [30], security of the system has
not been explicitly reported. In [17], the proposed technique
performs fusion of two different 3D face recognition algo-
rithms and thus cannot be directly compared to the techniques
proposed here. In [16], no experimental results were reported.

To validate the constrained multibiometric cryptosystem,
we implemented a system consisting of iris and fingerprint
modalities, where minimum matching constraints are imposed

Traits Real Multimodal Database Virtual Multimodal Database
Fuzzy Fuzzy Fuzzy Fuzzy
vault commitment vault commitment

Iris 0% 37% 88% 91%
Finger 22% 30% 51% 2%
Face 67% 33% 58% 12%

Baseline
Fusion 33% 27% 75% 89%

Proposed
Fusion 68% 75% 99% 99%

TABLE III
COMPARISON OF GENUINE ACCEPT RATES OF THE DIFFERENT BIOMETRIC

CRYPTOSYSTEMS AT A SECURITY LEVEL OF53 BITS, WHICH EQUALS THE

SECURITY IMPARTED BY A RANDOMLY CHOSEN8 CHARACTER PASSWORD
[47]. HERE, BASELINE FUSION REFERS TO SECURING INDIVIDUAL

TEMPLATES USING UNIBIOMETRIC CRYPTOSYSTEMS AND COMBINING

DECISIONS USINGAND-RULE FUSION, WHILE THE PROPOSED FUSION
SCHEME USES A SINGLE MULTIBIOMETRIC SECURE SKETCH.

for the fingerprint modality. We further assume that the ad-
versary has knowledge about iris biometric, i.e., he has access
to some iris image of the enrolled user. In this experiment,
the primary biometric corresponds to the binary features thus
a multibiometric fuzzy commitment is implemented. Minutiae
are employed as thefree fingerprint representation, and hence
a fuzzy vault is used in the second stage. The degree of
polynomial for the fuzzy vault is selected such that the sum of
security in bits and GAR in percentage of the resulting system
is maximized. We observed that at around70% GAR, the
security of the constrained system is around35 bits, whereas
the security is less than22 bits when no constraints are applied.

VI. CONCLUSIONS ANDFUTURE WORK

We have proposed a feature-level fusion framework for the
design of multibiometric cryptosystems that simultaneously
protects the multiple templates of a user using a single secure
sketch. The feasibility of such a framework has been demon-
strated using both fuzzy vault and fuzzy commitment, which
are two of the most well-known biometric cryptosystems. We
have also proposed different embedding algorithms for trans-
forming biometric representations, efficient decoding strategies
for fuzzy vault and fuzzy commitment, and a mechanism to
impose constraints such as minimum matching requirement
for specific modalities in a multibiometric cryptosystem. A
realistic security analysis of the multibiometric cryptosys-
tems has also been conducted. Experiments on two different
multibiometric databases containing fingerprint, face, and iris
modalities demonstrate that it is indeed possible to improve
both the matching performance and template security using
the multibiometric cryptosystems.

There are four critical issues that need to be investigated
further: (i) Embedding schemes for transforming one biometric
representation into another, while preserving the discriminative
power of the original representation. (ii) A better feature
fusion scheme must be developed to generate acompact
multibiometric template that retains most of the information
content in the individual templates. (iii) How to improve the
security analysis by accurately modeling the biometric feature
distributions. (iv) Evaluation on large multimodal databases.
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APPENDIX A
ENTROPY OFBIOMETRIC FEATURES

By entropy of biometric features, we mean the minimum
average number of bits required to represent a biometric
feature vector. A simple approximation of the entropy for
iriscodes was provided by Daugman [44], as

N∗ = p(1− p)/σ2 (6)

wherep is the mean value of the observed normalized Ham-
ming distances corresponding to impostor matches andσ2 is
their variance. This estimation assumes that biometric features
consists of a set of Bernoulli random variables, which are inde-
pendent and identically distributed (with uniform distribution).
In our case, since the mean normalized Hamming distance
was less than0.5, we assume that few bits are constant for
all biometric samples. Normalized Hamming distance (ρNH )
is thus computed as

ρNH = ρH/(2 ∗ µ) (7)

where µ is the mean of the impostor Hamming distances
andρH is the corresponding original Hamming distance. This
value of normalized Hamming distance(ρNH) is used to
computed the values ofp and σ which, in turn, is used to
estimate the entropy of biometric features using eq. (6).
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