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ABSTRACT

One of the critical steps in designing a secure biometric system is protecting the templates of the users that
are stored either in a central database or on smart cards. If a biometric template is compromised, it leads to
serious security and privacy threats because unlike passwords, it is not possible for a legitimate user to revoke
his biometric identifiers and switch to another set of uncompromised identifiers. One methodology for biometric
template protection is the template transformation approach, where the template, consisting of the features
extracted from the biometric trait, is transformed using parameters derived from a user specific password or
key. Only the transformed template is stored and matching is performed directly in the transformed domain.
In this paper, we formally investigate the security strength of template transformation techniques and define
six metrics that facilitate a holistic security evaluation. Furthermore, we analyze the security of two well-
known template transformation techniques, namely, Biohashing and cancelable fingerprint templates based on
the proposed metrics. Our analysis indicates that both these schemes are vulnerable to intrusion and linkage
attacks because it is relatively easy to obtain either a close approximation of the original template (Biohashing) or
a pre-image of the transformed template (cancelable fingerprints). We argue that the security strength of template
transformation techniques must also consider the computational complexity of obtaining a complete pre-image
of the transformed template in addition to the complexity of recovering the original biometric template.
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1. INTRODUCTION

Biometric recognition has a number of advantages over the traditional authentication mechanisms based on
tokens (e.g., ID cards) or passwords. This is because of the inalienable and distinctive nature of the biometric
traits. However, biometric systems are not fool-proof and a critical vulnerability that is unique to biometric
systems is the compromise of the stored templates∗. Stolen templates can be used by an adversary to create
biometric spoofs1, 2(see Figure 1), which in turn can be used to gain illegitimate access to systems that employ
the same biometric trait of the user. Even when spoof creation is difficult, a stolen template can be replayed
to the biometric system in order to circumvent it (intrusion attack). Since biometric traits are supposed to be
permanent and unique to an individual, stolen templates can also be used to link a user across databases (linkage
attack) or glean additional information about the user such as race, gender and certain medical conditions.3

Unlike passwords, it is not possible for a legitimate user to revoke his biometric template and switch to another
uncompromised template. Hence, ensuring the security of biometric templates is essential for gaining public
trust and acceptance, which in turn will promote the widespread deployment of biometric systems.

A number of techniques have been designed to improve the security of biometric templates. The hardware-
based approach involves designing a “closed” recognition system, where the biometric template never leaves a
physically secure module such as a smart card or a hand-held device.4 The card or device may contain only the
template and the matcher (Match-on-card) or the complete biometric system including sensor, feature extractor,
template, and matcher (System-on-card). Such a device matches the input biometric trait with the template
stored in the device and releases a key in case the authentication is successful.

Further author information: (Send correspondence to A. Nagar, nagarabh@cse.msu.edu, 1 517 285 3592)
∗A template is a set of features extracted from the biometric trait. A template is stored in the biometric system

database and is used for matching with the input biometric during an authentication attempt.
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Figure 1. Reconstruction of a fingerprint image from its template (consisting of location and orientation of minutiae -
points on a fingerprint where the ridges end or bifurcate). (a) Original fingerprint image, (b) Template consisting of
minutiae extracted from the fingerprint image in (a), and (c) Fingerprint image reconstructed from the template in (b)
using the technique proposed by Feng and Jain2.

Software-based solutions for template protection store a modified version of the template that reveals as little
information about the original biometric trait as possible and yet can be successfully used for authentication
(see Figure 2). The proposed solutions can be classified into two main categories:5 (i) Template or Feature
Transformation, and (ii) Biometric Cryptosystem. Template transformation techniques transform the biometric
template based on parameters derived from external information such as user passwords or keys. During au-
thentication, the same transformation function is applied to the query and matched with the stored template
in the transformed domain. Biometric cryptosystems attempt to obtain error correcting information from the
biometric features (with or without use of external key) that is known as helper data. The helper or auxiliary
data does not reveal significant information about the biometric or the key. Error correcting codes are normally
used in these systems to recover the enrolled biometric features or the key given the query biometric. These
two approaches can also be combined to consolidate their advantages. One way to combine them is to use a
transformed template as the input to a biometric cryptosystem (e.g., Nandakumar et al.6). Figure 2(c) shows
the schematic diagram of such a hybrid biometric cryptosystem. Another possibility is to transform the helper
data in a biometric cryptosystem using an homomorphic encryption scheme (e.g., Bringer and Chabanne7).

Both template transformation and biometric cryptosystems have their own advantages and limitations. Tem-
plates generated using the transformation approach are easily revocable (by changing the password or key). Since
there are fewer restrictions on the matching algorithms that can be used in the transformed domain, it is possible
to design sophisticated matchers that can robustly handle intra-user variations in the transformed biometric tem-
plates, thereby reducing the error rates of the biometric system. However, it is difficult to measure the security
strength of template transformation techniques. On the other hand, biometric cryptosystems mostly rely on
error correction coding theory. While this allows us to easily understand and evaluate the security strength in
information-theoretic terms,8–11 it restricts the use of any sophisticated matchers. Consequently, the matching
performance of a biometric cryptosystem is limited by the error-correction capability of the code used and the
only way to improve the performance is to extract invariant and discriminative features from the biometric trait
with specific representation formats (e.g., fixed-length binary strings). Moreover, some biometric cryptosystems
may be vulnerable to correlation attacks,12 where multiple auxiliary data generated from the same biometric
trait can be matched to extract the original biometric template, hence affecting the revocation capability.

Though template transformation techniques have some advantages compared to biometric cryptosystems,
their practical applicability is hindered by the lack of formal security analysis. In this paper, we propose a set
of measures that facilitate a holistic security evaluation of template transformation techniques. First, we review
various template transformation techniques in Section 2, which is followed by the security analysis in Section 3.
Sections 4 and 5 provide the security analysis of the well-known cancelable fingerprint template and Biohashing
techniques based on the proposed metrics. Finally, we summarize our findings and conclusions in Section 6.
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Figure 2. Schematic diagrams for (a) template transformation approach, (b) biometric cryptosystem, and (c) hybrid bio-
metric cryptosystem. While these three template protection approaches are applicable to any biometric trait, fingerprints
have been used here for illustration purpose.

Figure 3. Schematic diagram of the Biohashing technique.

2. REVIEW OF BIOMETRIC TEMPLATE TRANSFORMATION

A number of template transformation techniques have been proposed (see Table 1), which can be classified into
two main categories based on template representation used: (i) Vector based and (ii) Interest point based.

2.1 Vector based template transformation

In the vector based techniques, the biometric templates are represented as a vector and the dissimilarity between
two vectors is usually computed as the Euclidean distance. One of the main requirements of a vector based
template transformation function is the preservation of distances between the vectors after transformation. Bio-
hashing13 is one such technique (see Figure 3), where the feature vector is transformed by multiplying it with and
orthogonal transformation matrix and thresholding the individual elements. Due to increased inter-class variation
and preservation of intra-class variation Biohashing significantly improves the matchign performance. However,
if the key is known to the adversary, the matching performance typically degrades due to the quantization of
features and dimensionality reduction.



Table 1. List of different template transformation techniques available in literature and their characteristics.
Technique Trait Features Transformation Final

represen-

tation

Biohashing,13, 14

PalmHash15

Face, Palm-
print, Fin-
gerprint

Vector (Fisher Discrimi-
nant Features)

Random matrix multiplica-
tion

Vector

BioPhasor16 Fingerprint Vector (FingerCode) Non-linear Vector

Cancelable Face17 Face Vector (Face image) Random matrix convolution Vector

Robust Hash18 Face Vector (Singular Values of
face image matrix)

Smooth multimodal function
evaluation

Vector

Class Distribution
Preserving Transfor-
mation19

Face Vector (Fisherface fea-
tures)

Evaluation of distance of the
feature vector from a set of
points

Vector

Cancelable Iris20 Iris Vector (Log-Gabor re-
sponse)

Circular shift and combina-
tion, adding new pattern

Vector

Histogram of minu-
tiae triangles21

Fingerprint Interest point Hashing the histogram of
minutiae triangle features

Vector

Symmetric Hash22 Fingerprint Interest point (Minutiae as
complex numbers)

Set of order invariant func-
tions of minutiae

Minutiae
map

Cancelable Finger-
prints23

Fingerprint Interest point (Minutiae
map)

Image folding Minuitae
map

Alignment free cance-
lable fingerprint24

Fingerprint Interest point (minutiae
map, orientation field)

Transform minutiae accord-
ing to surrounding orientation
field

Minutiae
map

Cuboid based Minu-
tiae Aggregates25

Fingerprint Interest point (Minutiae
map)

Minutiae aggregate feature
selection from random local
regions

Vector

Another drawback of the Biohashing scheme is that it is easy to invert when the key is known to the adversary
(see section 5). Inversion is the process of recovering the original biometric template from the transformed
template and invertibility can be expressed in terms of the computational complexity and the number of guesses
involved in recovering the original template. In some cases such as Biohashing, it is straightforward to directly
recover the original biometric template (or a close approximation of it) when the key is known. However, in
other cases like robust hashing18 and cancelable fingerprint templates,23 it is either computationally hard to
obtain the complete pre-image† of the transformed template or computationally difficult to identify the original
biometric template from the pre-image due to the large size of the pre-image. Such schemes are considered to
be difficult to invert (also sometimes loosely referred to as “non-invertible”).

An improvement of the Biohashing scheme is the BioPhasor16 technique, where the rows of the orthogonal
transformation matrix are used as the imaginary part and added to the biometric vector to obtain a set of complex
vectors. For each of these vectors, the argument of the values in them are averaged and quantized to form the
final binary template. This transformation has been shown to better preserve the matching performance even if
the password is known to the adversary. Although this scheme is claimed to be non-invertible, the complexity
involved in inverting this transformation is not known. Savvides et al.17 showed that the distance between two
Minimum Average Correlation Energy (MACE) filter outputs is preserved even when the face image is convolved
using a random kernel matrix for template protection. However, this scheme is invertible given the knowledge of
the convolution kernel and the specific MACE filters used. Sutcu et al.18 proposed a transformation technique,
where each element of the input biometric vector is evaluated on a multi-modal polynomial. Due to the many-to-
one nature of the transformation function induced by the multi-modality of the polynomials, it is difficult to invert
the transformed template. Feng and Yuen26 transformed the template by randomly selecting a set of vectors of
the same dimension as the biometric feature vector and then storing the Euclidean distances of the biometric

†A pre-image of a transformed template is the collection of all the templates in the original domain that can generate
the given transformed template.
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Figure 4. The original and transformed fingerprints for (a,d) Cartesian, (b,e) polar, and (c,f) Gaussian mixtures based
transform .

vector from these vectors. This technique also uses the feature distribution of an individual user while designing
the transform, which possibly leaks some additional information regarding the biometric vector. The complexity
of inverting the template i.e. recovering the original biometric from the transformed template is expected to be
greater than that of biohashing technique. Zuo et al.20 proposed two template transformation schemes for iris
images. In the first scheme called COMBO, the original iris template was tessellated into rectangles, rows were
cyclically shifted and different rows were added to obtain the transformed template. In the second scheme called
SALTING, the iris image or its binary representation was added to a randomly generated texture to obtain the
transformed template. The COMBO approach is shown to be difficult to invert because of the addition of two
different biometric features, which provides ambiguity about the component features.

2.2 Interest point based template transformation

Fingerprints are most commonly represented by a set of points, called minutiae. Hence, many fingerprint template
transformation techniques are based on minutiae as the initial representation. Furthermore, to use the available
minutiae-based fingerprint matchers in the transformed domain, it is desirable to have the final representation
also in the form of a set of minutiae. To satisfy this criterion, Ratha et al.23 proposed the use of cancelable
fingerprint templates designed using three different minutiae transformation techniques, namely, cartesian, polar
and functional (see Figure 4). In the cartesian transformation, the fingerprint is regularly tessellated into a set
of rectangles and these rectangles are displaced according to the associated key. The polar transformation is
similar to the cartesian transformation except that the fingerprint is divided into a number of shells and each
shell is divided into sectors. Since the size of sectors is different for different shells, some restrictions are placed
on the displacement of the sectors based on the password. In case of the functional transformation, two different
functions are used: a mixture of 2D Gaussians and electric potential field in 2D charge distribution. These
functions are evaluated at the minutiae locations to obtain the translation corresponding to that minutia.

All the three transformations proposed by Ratha et al.23 are difficult to invert. This is due to the many-
to-one nature of the transformation functions. However, these techniques lead to a reduction in the matching



performance due to an increase in the intra-user variations‡. Such transforms also require the fingerprints to be
aligned before applying the transformation; misalignment can further increase intra-user variations. To avoid
alignment, Lee et al.24 proposed an alignment-free cancelable fingerprint transform. In this scheme, each minutiae
is transformed according to the orientation field around that minutiae, which makes the relative translation of
the minutiae invariant to the positioning of the finger. Tulyakov et al.22 use each minutia along with its two
nearest neighbors to select one of the several symmetric functions available. The selected symmetric function is
then evaluated on the three minutiae to obtain the coordinates of the transformed minutia.

Techniques have also been proposed to convert the minutiae based representation into a vector based repre-
sentation. Farooq et al.21 select all minutiae triplets satisfying certain criteria and construct a histogram. Only
those bins in the histogram with a single element are retained and the remaining bins are emptied to obtain
the final binary feature vector. Cancelability is induced by flipping some of the bits and permuting the binary
vector based on a specific key. The limitation of this approach is that it is easy to determine the unique triangles
present in the fingerprint and their dimensions can be refined due to redundancy in the representation of each
triangle. Furthermore, sides with similar length can be matched and combined to construct an approximate
minutiae distribution. The complexity of such a procedure however might be high. Another scheme proposed by
Sutcu et al.,25 converts a set of minutiae into a vector based representation by counting the number of minutiae
falling in certain specified rectangular regions. The configurations of rectangular regions can be changed in order
to generate another template from the same biometric thereby inducing cancelability.

3. SECURITY ANALYSIS OF TEMPLATE TRANSFORMATION

We focus on the vulnerability of a template transformation scheme to intrusion and linkage attacks that can
be staged using the knowledge of a stored template. Intrusion means gaining access to a biometric recognition
system by presenting falsified authentication data to the system. Intrusion undermines one of the fundamental
benefits of using a biometric system, which is non-repudiation. On the other hand, linkage attacks involve cross-
matching across biometric systems to track the users covertly and this compromises the privacy of the user.
Hence, it is important to analyze the probability of success of these two attacks in a biometric system.

We employ the following notation to describe the security metrics. Let bz and b
′

z represent the template
and query biometric features of user z, respectively. Let f be the feature transformation function and f−1 be
its inverse. Let f−1

β denote the partial inverse transformation function, where β is the fraction of the original
biometric template obtained by inverting the transformed template. Let Kz be a set of transformation parameters
corresponding to user z and K

′

z be a different set of transformation parameters for the same user. Let DO denote
a distance function between the biometric features in the untransformed (original) domain and DT be a distance
function between the biometric features in the transformed domain. The biometric system outputs a “match”
decision if the distance between the template and query biometric features is less than a threshold ε.

3.1 System Usability

Security of a biometric recognition system affects the usability of the system as well. While considering the
system security, it is important to measure any inconvenience incurred to the genuine users of the system as a
result of the security techniques implemented. We measure the usability in terms of the false reject rate of the
system. The false reject rate of the biometric system prior to the template transformation, FRRO, is given by

FRRO(ε) = P
(

DO

(

bz, b
′

z

)

≥ ε
)

. (1)

The false reject rate of the biometric system after the application of template transformation, FRRT , is

FRRT (ε) = P
(

DT

(

f (bz , Kz) , f
(

b
′

z, Kz

))

≥ ε
)

. (2)

‡Intra user variation refers to changes in the template of the same user in different acquisitions of the biometric
sample. Since the transformation functions are generally non-Euclidean, variations in minutiae position and orientation
are escalated due to transformation, leading to high false reject rate.



FRRO and FRRT depend on the threshold ε and must be as low as possible to avoid inconvenience to the
users. The threshold ε also controls the security and privacy of the system because the probability of success of
an intrusion or linkage attack depends on ε.

3.2 Security Evaluation Measures for Intrusion Threats

First, we consider the case of an impostor presenting his/her own biometric trait in order to get authenticated.
In this scenario, the adversary does not expend any effort to guess the biometric features of the user that
he/she is trying to impersonate, so the probability of a successful intrusion mainly depends on the inter-user
variability of the biometric features. This kind of attack is known as a zero-effort attack and the intrusion success
probabilities are known as false accept rates. The false accept rate of the biometric system prior to the template
transformation (FARO) is given by

FARO(ε) = P
(

DO

(

bi, b
′

j

)

< ε
)

, where i 6= j. (3)

A plot of FARO versus (1−FRRO) for various values of ε gives the receiver operating characteristic (ROCorig)
curve of the biometric system prior to template transformation.

After template transformation, the impostor has to present the biometric features along with a set of trans-
formation parameters for authentication. Hence, there are two possibilities. Suppose that the impostor does not
know the transformation parameters of the specific user that he is trying to impersonate. The false accept rate
with unknown transformation parameters (K) is given by

FARUK(ε) = P
(

DT

(

f (bi, Ki) , f
(

b
′

j , Kj

))

< ε
)

, where i 6= j. (4)

and a plot of FARUK versus (1 − FRRT ) gives the receiver operating characteristic (ROCdiff) curve of the
biometric system after template transformation for unknown transformation parameters.

If the impostor somehow knows the transformation parameters of the genuine user that he/she is trying to
impersonate, the false accept rate with known transformation parameters (K) is

FARKK(ε) = P
(

DT

(

f (bi, Ki) , f
(

b
′

j , Ki

))

< ε
)

, where i 6= j (5)

and a plot of FARKK versus (1 − FRRT ) gives the receiver operating characteristic (ROCsame) curve of the
biometric system after template transformation for known transformation parameters. A comparison of ROCorig

and ROCsame will indicate the degradation in the matching performance due to the template transformation.

Besides the false accept rates, two other intrusion probabilities must be considered. First we consider the case
when the stored (transformed) template and the transformation parameters are available to the adversary. The
goal of the adversary is to gain illegitimate access to the biometric system. In this case, the adversary will try
to recover either a fraction (β) or the complete biometric template and then replay the inverted template along
with the transformation parameters to gain access fraudulently. The probability of success of such an attack is
called the Intrusion Rate due to Inversion for the Same biometric system (IRIS) and is defined as

IRIS(β, ε) = P
(

DT

(

f
(

f−1
β (f (bi, Ki) , Ki) , Ki

)

, f (bi, Ki)
)

< ε
)

. (6)

The value of IRIS(β, ε) is usually 1 if a transformation is easy to invert or an element in the pre-image of
the transformed template can be obtained (as in the case of many-to-one transformations). IRIS(β, ε) will be
low when it is difficult to obtain the complete pre-image of the transformed template.

Next, we consider the case when the stored (transformed) template and the transformation parameters are
available to the adversary who wants to impersonate the same user in a different biometric system that employs
the same biometric trait. We also assume that the adversary has knowledge of the transformation parameters of
the second system. In this case, the adversary will try to recover either a fraction (β) or the complete biometric



template and then replay the inverted template along with the transformation parameters of the second system
to gain access fraudulently. The probability of success of such an attack is referred to as the Intrusion Rate due
to Inversion for a Different biometric system (IRID) and is defined as

IRID(β, ε) = P
(

DT

(

f
(

f−1
β (f (bi, Ki) , Ki) , K

′

i

)

, f
(

b
′

i, K
′

i

))

< ε
)

. (7)

Finally, we also need to consider the effort spent by the adversary to invert a transformed template. Let E(β)
denote the effort required in terms of the number of guesses required (expressed in bits) to recover a fraction β of
the original biometric template from the transformed template. The plot of β versus E(β) is called the coverage-
effort curve (C-E curve).27 The coverage-effort curve is a quantitative measure to evaluate the invertibility of
a biometric template, provided it is possible for the adversary to check whether the recovered template is a
true template. The C-E curve relates the probability of success of intrusion attacks due to inversion (IRIS and
IRID) and difficulty in inverting a transformed biometric template.

3.3 Security Evaluation Measures for Linkage Threats

In order to link two different templates generated from the same biometric trait of a user with different sets
of transformation parameters, the adversary may either directly match the transformed templates or he can
first invert the templates and then match the inverted templates. Suppose that both sets of transformation
parameters, which were used to generate the two templates, are known to the adversary. The cross match rates
can be defined in the transformed (CMRT ) and original (CMRO) feature domains as follows.

CMRT (ε) = P
(

DT

(

f (bi, Ki) , f
(

b
′

i, K
′

i

))

< ε
)

, and (8)

CMRO(β, ε) = P
(

DO

(

f−1
β (f (bi, Ki) , Ki) , f−1

β

(

f
(

b
′

i, K
′

i

)

, K
′

i

))

< ε
)

. (9)

In case of linkage attack in the untransformed domain, the failure rate or the False Cross Match Rate of the
attacker is given by

FCMRO(β, ε) = P
(

DO

(

f−1
β (f (bi, Ki) , Ki) , f−1

β

(

f
(

b
′

j , K
′

j

)

, K
′

j

))

< ε
)

, where i 6= j. (10)

A plot of CMRO(β, ε) versus FCMRO(β, ε) provides the receiver operating characteristic (ROCinv) curve
for the linkage attack in the original domain.

The complexity of cross-matching BioPhasors is difficult to estimate, however, inversion of Biohashing, and
cancelable face is computationally easy and is expected to generate a close approximation to the original template.
In order to link templates secured using cancelable fingerprint templates approach, one can overlay all the pre-
images of minutiae in the transformed template and then match.28, 29 Note that in this case the matcher should
not penalize the non-matching minutiae. Similar techniques can also be used to link templates encrypted using
the robust hashing approach. In case of histogram of minutiae triplets, it is easy to obtain the original histogram,
which can be easily matched. Symmetric hashing, cancelable iris, CDP, and cuboid based minutiae aggregates
are not straight forward to invert and link.

Comprehensive security evaluation of a template transformation scheme entails analysis of the intrusion and
linkage probabilities and their effect on the system usability measured in terms of FRRT . In order to measure
the probability of system intrusion, we have defined FARUK , FARKK , IRIS, and IRID. FARUK and FARKK

analyze the attacks staged by an adversary by presenting an arbitrary biometric template whereas IRIS and
IRID analyze the attacks when the attacker steals a transformed template, inverts it and then uses it for
intruding the system. Linkage probabilities can be measured in terms of CMRO, where the templates are linked
in the original domain (after inversion), and CMRT , where the templates are linked in the transformed domain.



4. SECURITY OF CANCELABLE FINGERPRINT TEMPLATES

We choose cancelable fingerprint templates as an example for security evaluation because though the scheme is
difficult to invert, a pre-image computation technique is available in the literature.27 We evaluate the security
strength of the mixture of Gaussians based transformation function, which is claimed to have the best performance
among all the transforms evaluated by Ratha et al.23 The mixture of Gaussians used to obtain the transformation
function is given by

f(~x) =
N

∑

i=1

tiπie
− 1

2
(~x− ~µi)Σ

−1

i
(~x− ~µi)

′

, (11)

where N is the number of mixture components, and πi, ti, µi, and Σi correspond to the mixing probabilities,
the signs (+ or -), mean vectors, and covariance matrices of the different components, respectively. Here, ~x is
a vector representation of a minutia point consisting of only the x and y coordinates of the minutiae. In our
experiments, N is set to 24 and Σi is taken to be a diagonal matrix with each diagonal entry equal to 502 for
each component. The remaining parameters are determined using the user specific key. These parameters are
the same as those used by Ratha et al.23

The transformation of each minutia is represented as direction of minutia translation (denoted by φψ),
magnitude of minutia translation (denoted by φd) and difference in minutia direction (denoted by φθ) . The
three components of the transformation can be obtained as:

φd(~x) = γ {1 + f(~x)} , φψ(~x) = arctan(
g′y(~x)

g′x(~x)
) + αψ , φθ(~x) = arctan(

f ′
y(~x)

f ′
x(~x)

) + αθ, (12)

where f ′
y(.), f ′

x(.), g′y(.), g′x(.) are the x and y derivatives of two mixture of Gaussians f and g, and αψ, αθ ∈
[0, 360) is a random offset in direction; γ is used to manipulate the overall translation of minutiae.

We evaluate the performance of the above template transformation technique using the publicly available
FVC 2002 database 2. It consists of 100 different fingers and 8 impressions per finger, each captured at a
resolution of 569 dpi. The size of images is 296 × 560. We evaluate two different instances of the mixture of
Gaussians based transformation with the values of γ being 30 (Trans-1) and 60 (Trans-2) respectively. Their
respective transformation functions are shown in Figure 5. Figure 6 shows the evaluation measures described in
Section 3 corresponding to these two instances of the mixture of Gaussians.

Figure 6(a) shows that the matching performance after transformation is significantly degraded compared to
the original minutiae and the amount of degradation increases with γ. Also, the matching performance is lower
when the attacker knows the key as shown by the ROCsame plots. As seen from Figures 6(b) and 6(c), the
reduction in performance in mainly due to an increase in the FRR, which is primarily due to misalignment. Note
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Figure 5. Minutiae transformation (a) minutiae distribution in the original image, (b) minutiae transformed according to
mixture of Gaussians, where γ is 30, and (c) transformed minutiae when the value of γ is 60.



that the minutiae must be pre-aligned before applying the transformation function. We use the high curvature
points30 in the fingerprint for pre-alignment, which cannot be extracted reliably in partial fingerprints.

Figure 6(d) depicts the feasibility of intruding a different biometric system that employs the same fingerprint
using the template inverted from the current system. At an operating threshold (ε) of 950, IRID for Trans-2 is
around 51% when the attacker expends zero effort in inverting the template, i.e., E(β) = 0 or β = E−1(0). In
other words, when the attacker just replays the most likely minutiae set from the pre-image of the transformed
template without spending any effort on identifying the original minutiae from the pre-image, there is a 51%
chance that he will succeed in intruding the system. A completely inverted template will further increase the
intrusion rate to 54%. This value is even higher (64% for zero effort and 65% for full inversion) in the case of
Trans-1. Note that the chances of intrusion increased only by 1% for Trans-1, while it increased by around 3%
in case of Trans-2. This can be explained by the C-E curve shown in Figure 6(e); attacker can recover only 87%
of minutiae without any effort in the case of Trans-2, whereas in the case of Trans-1 he can recover around 94%.
Note that the value of IRID(1, ε) is upper bounded by (1 − FRRT (ε)), which corresponds to case where the
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Figure 6. Evaluation measures for the mixture of Gaussian template transformation. (a) ROCorig, ROCdiff, ROCsame, (b)
FRRT (ε) (c) FARUK(ε) and FATKK(ε), (d) IRID(β, ε) for two different values of β, (e) the C-E curve, (f) CMRT (ε, β)
for β = 1, and (g) ROCinv. Neurotechnology Verifinger 4.2 is used to perform minutiae matching. These evaluations
correspond to two transformations, Trans-1 and Trans-2, where γ equals 30 and 60, respectively.



Transform FRRT (%) FARUK (%) FARKK (%) IRID(E−1(0), ε) CMRT (%)

Trans-1 33 0.02 0.02 64 0
Trans-2 44 0.02 0.02 51 0

Table 2. Values of FRR, FARUK , FARkk, IRID(E−1(0), ε), and CMRT for the cancelable fingerprint template scheme
corresponding to a threshold (ε) of 950.

attacker is able to exactly recover the original fingerprint.

Figure 6(f) shows the feasibility of successfully cross-matching two templates obtained from the same bio-
metric trait but transformed using different transformation parameters. While both Trans-1 and Trans-2 have
a zero cross match rate at ε = 950, Trans-1 usually has slightly higher CMRT than Trans-2. Figure 6(g) shows
the ROCinv corresponding for β = E−1(0). It shows that at a False Cross-match Rate of 0.1%, the chance of
correctly linking the templates from two different systems is 91.5% for Trans-2 and 94% for Trans-1.

Table 2 tabulates the values of five security metrics (FRRT , FARUK , FARKK , IRID, and CMRT ) for
Trans-1 and Trans-2 at a threshold of ε = 950. It is quite clear that while Trans-2 is more secure than Trans-1,
it is less usable than Trans-1 because of the higher false reject rate, which demonstrates the trade-off between
security and usability that is a commonly encountered problem in biometric template protection. Moreover, our
analysis also shows that in order to prevent intrusion into other biometric systems that use the same trait and to
mitigate linkage threats, it is not enough to design the transformation function such that it is computationally
hard to recover the original template, but it must also be computationally difficult to obtain the pre-image of a
transformed template. This issue is usually not given adequate attention in the literature.23

5. SECURITY OF BIOHASHING SCHEME

Biohashing is a vector based template protection technique that is used to secure different biometric traits such
as fingerprints,14 face,13 palm,15 etc. In a typical Biohashing scheme, the input biometric trait is represented as
a vector of real numbers, say x ∈ R

n. This representation is then converted to a binary vector b = [b1, b2, ..., bm]
using the transformation matrix M ∈ R

m×n and the thresholds δi, i = 1, ..., m. The Biohash features are obtained
as:

bi =

{

0 if
∑n
j=1 Mijxj < δi

1 otherwise
(13)

In our experiments, we use the FERET face database that contains 14,051 images. From these we select a
subset of 500 subjects with two frontal images per subject. We align the images using the eye locations and crop
a segment of size 100 × 125 from each image. Eigenface31 features are used to represent the face images in our
experiments. We use top 100 Eigenface features in order to extract 80 bits using the Biohashing technique.

We now propose a method to recover a close approximation to the original biometric features given the
Biohash features (b) and the transformation parameters, i.e., M and δi, i = 1, ..., m. This problem can be
formulated as an optimization problem as follows:

argmin ||x − a||2 , subject to
n

∑

j=1

Mijxj < δi, if bi = 0 and
n

∑

j=1

Mijxj > δi if bi = 1, (14)

where x is the original biometric feature vector that is to be estimated, b is the vector of binary Biohash features
and a is one of the unrelated biometric feature vectors from a database. We use the lsqlin function available
in the MATLAB optimization toolbox to obtain a solution to this problem. The above problem is solved for t
different values of a in order to obtain x1,x2, ...,xt. The final estimate of x, x̂, is obtained as

x̂ =

∑t
i=1 xi/d2

i
∑t
i=1 1/d2

i

, (15)



FRRT (%) FARUK (%) FARkk (%) IRID(E−1(0), ε) CMRT (%)

9 0.02 5 50 0

Table 3. Values of FRR, FARUK , FARKK , IRID(E−1(0), ε), and CMRT for the Biohashing technique corresponding
to a threshold (ε) of 20.

where di is the Hamming distance between Biohash features corresponding to xi and ai. ai’s are chosen such that
hamming distance between Biohash features corresponding to ai and bi is less than certain threshold. Figure
7(b) shows an example of a face image reconstructed from the Eigenface features (x̂) that are estimated by
inverting the Biohash template (b) using equations (14) and (15). We obverse that many distinctive features
in the original face image (Figure 7(a)) are also present in the reconstructed image, which demonstrates the
effectiveness of our inversion algorithm. Figure 8 shows the evaluation of Biohashing technique with respect to

(a) (b)

Figure 7. Inversion of a Biohash template. (a) Original face image from the FERET database (after alignment and
cropping), (b) face image reconstructed from the Eigenface features (x̂) that are estimated by inverting the Biohash
template (b) using equations (14) and (15).

the different evaluation criteria proposed in Section 3 except the C-E curve, which is not directly applicable to
Biohashing. Figure 8(a) shows the three ROC curves i.e. ROCorig , ROCsame, and ROCdiff . In contrast to
the cancelable fingerprints technique, the ROCdiff of Biohashing shows significantly better performance than
ROCorig, whereas ROCsame has lower matching performance compared to ROCorig. This is because Biohashing
uses the external information (key or password) to significantly alter the distribution of the biometric features
and increase the inter-user separation. However, this advantage is lost when the key is known to the adversary.
On the other hand, the cancelable fingerprints scheme attempts to retain the fingerprint minutiae distribution,
so that a traditional minutiae matcher can still be applied to match the transformed minutiae sets. At the
operating threshold of 20, the IRID(E−1(0), ε) value is around 0.5, implying that the attacker has 50% success
rate in intruding into a different system using the same biometric trait. The cross match rate in the transformed
domain (CMRT ) is almost zero at the operating threshold of 20. As expected, the CMRT follows FARUK

closely. With respect to cross matching in the original domain, the CMRO is around 82% at 10% FCMRO as
shown in Figure 8(f). Table 3 lists the results values of FRR, FARUK , FARKK , IRID(E−1(0), ε), and CMRT

corresponding to the operating threshold of 20.

It is evident from Figure 8(d) that biometric templates from one database can be inverted and used to
compromise other systems using the same biometric trait. This is due to the contiguous nature of the pre-image
of Biohash. We propose a modification to the original Biohashing scheme, which leads to a non-contiguous
pre-image and thus is less vulnerable. The only difference between the modified and the original Biohashing
scheme is the binarization procedure. In the original Biohashing technique, binarization is performed by first
obtaining the median (δ) of each transformed feature and then thresholding the transformed features using this
value. Instead, in the modified technique, each feature is thresholded at three different values: λth-, 50th-, and
(100−λ)th- percentiles leading to four quanta for each feature. While the first and third quanta are represented
as a 1, the other two quanta are represented as a 0. Note that λ = 0 leads to the original Biohashing technique.

Figure 9 shows the ROCdiff corresponding to the modified technique for λ ∈ {2, 5, 10}. While there is certain
reduction in the matching performance, it is now difficult to invert the template. The probability of guessing the
correct quanta in each dimension is pλ = max(λ/50, 1 − λ/50) given that one always chooses the larger quanta.
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Figure 8. Evaluation of Biohashing technique. (a) ROCorig, ROCdiff, ROCsame, (b) FRRT (ε) (c) FARUK(ε) and
FATKK(ε), (d) IRID(β, ε) for two different values of β, (e) CMRT (ε, β) for β = 1, and (f) ROCinv for the Biohashing
technique based on 500 subjects from FERET database. In this experiment, 100 Eigenface features were extracted and
80 bits/template were extracted using Biohashing. The value of t used here is 100.

Thus if there are p Eigenface dimensions to be guessed using m Biohash bits, the probability of identifying the
correct quantum in which the non-quantized Biohash values fall is pmλ . The security, in terms of bits, for guessing
this is −log2(p

m
λ ). In case m = 80, the security corresponding to λ = 2, 5, and 10 are 4.7 bits, 12.1 bits, and 25.8

bits respectively. However, in order to increase the security, m can be increased. In case m = 400, the security
corresponding to λ = 2, 5, and 10 is 23.6 bits, 60.8 bits, and 128.8 bits respectively. ROCdiff corresponding to
the modified Biohashing scheme for different values of λ and m=80 and 400 are shown in Figure 9. The matching
performance of the Biohashing scheme reduces as λ is increased. However, increasing the number of dimensions
improves the security as well as the matching performance in case the impostor does not know the key.
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Figure 9. ROCdiff corresponding to the modified technique (a)ROCdiff for λ ∈ {2, 5, 10} corresponding to the case when
number of dimensions of PCA retained in 100 and number of bits extracted using Biohashing technique is 80, and (b)
shows the ROCdiff for λ ∈ {2, 5, 10} corresponding to the case when number of dimensions of PCA retained is 500 and
the number of bits extracted using Biohashing technique is 400.



6. CONCLUSIONS

When a user’s biometric template information falls into the hands of an adversary, it can seriously undermine the
security (intrusion threats) of the biometric system and privacy (linkage threats) of the user. Hence, biometric
template protection is a critical problem that needs to be addressed to enhance the public acceptance of biometric
technology. Considering the recent surge in the number of techniques being developed for protecting the biometric
templates, it is essential to develop a set of measures which can evaluate the strength of these techniques. One of
the well known approaches for template protection is the template or feature transformation technique. Compared
to biometric cryptosystems, template transformation schemes have certain advantages like easy revocability and
flexibility in the matcher design. But these advantages are stymied by the lack of a thorough security analysis
of these techniques.

We have proposed six different measures to evaluate the security strength of template transformation schemes.
Based on these measures, we analyze the security of two-well known transformation techniques, namely, cance-
lable fingerprints and Biohashing. Our analysis shows that both these techniques are vulnerable to intrusion and
linkage attacks, as indicated by their high IRIS, IRID and CMRO values. In particular, the vulnerability of
the Biohashing scheme is due to the relative ease with which an impostor can invert the transformed template to
obtain a close approximation to the original biometric template. Hence, we propose a modification to the Bio-
hashing scheme that can address this limitation, though at the expense of a marginal reduction in the matching
performance.

In the case of cancelable fingerprint template scheme, the vulnerabilities arise because an impostor can
easily obtain the pre-image of the transformed template. Even though it is computationally hard to recover
the original template from the pre-image, the pre-image itself is sufficient to carry out linkage and intrusion
attacks. Therefore, for enhanced template security, we argue that the non-invertibility of a transformation
function must also be measured in terms of the complexity of obtaining the complete pre-image of a transformed
template, rather than simply analyzing the complexity of recovering the original template. However, proving the
computational hardness of this problem is not easy because it may be possible to design greedy algorithms that
can perform the inversion efficiently.

Our experiments also highlight the well-known tradeoff between the security and usability. In this context,
hybrid biometric cryptosystems may have an edge because the complementary strengths of template transfor-
mation and biometric cryptosystems can be leveraged to improve both the security and usability of a biometric
system. As future work, we plan to investigate the effect of various improvements proposed in the Biohashing32

technique on the security analysis. Also we shall investigate the other template transformation techniques such
as CDP transform.
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