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Biometric Template Protection: Bridging the
Performance Gap Between Theory and Practice

Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE

Abstract—Biometric recognition is an integral component of
modern identity management and access control systems. Due
to the strong and permanent link between individuals and
their biometric traits, exposure of enrolled users’ biometric
information to adversaries can seriously compromise biometric
system security and user privacy. Numerous techniques have
been proposed for biometric template protection over the last
20 years. While these techniques are theoretically sound, they
seldom guarantee the desired non-invertibility, revocability, and
non-linkability properties without significantly degrading the
recognition performance. The objective of this work is to analyze
the factors contributing to this performance gap and high-
light promising research directions to bridge this gap. Design
of invariant biometric representations remains a fundamental
problem, despite recent attempts to address this issue through
feature adaptation schemes. The difficulty in estimating the
statistical distribution of biometric features not only hinders
the development of better template protection algorithms, but
also diminishes the ability to quantify the non-invertibility and
non-linkability of existing algorithms. Finally, achieving non-
linkability without the use of external secrets (e.g., passwords)
continues to be a challenging proposition. Further research on
the above issues is required to cross the chasm between theory
and practice in biometric template protection.

I. INTRODUCTION

IOMETRIC recognition, or biometrics, refers to the au-

tomated recognition of individuals based on their bio-
logical and behavioral characteristics (e.g., face, fingerprint,
iris, palm/finger vein, and voice) [1]. While biometrics is the
only reliable solution in some applications (e.g. border control,
forensics, covert surveillance, and identity de-duplication),
it competes with or complements traditional authentication
mechanisms such as passwords and tokens in applications re-
quiring verification of a claimed identity (e.g., access control,
financial transactions, etc.). Though factors such as additional
cost and vulnerability to spoof attacks hinder the proliferation
of biometric systems in authentication applications, security
and privacy concerns related to the storage of biometric
templates have been major obstacles [2].

A template is a compact representation of the sensed bio-
metric trait containing salient discriminatory information that
is essential for recognizing the person (see Figure 1). Exposure
of biometric templates of enrolled users to adversaries can
affect the security of biometric systems by enabling presenta-
tion of spoofed samples [3] and replay attacks. This threat is
compounded by the fact that biometric traits are irreplaceable
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in nature. Unlike passwords, it is not possible to discard the
exposed template and re-enroll the user based on the same trait.
Moreover, it is possible to stealthily cross-match templates
from different databases and detect whether the same person
is enrolled across different unrelated applications. This can
severely compromise the privacy of individuals enrolled in
biometric systems.

In most operational (deployed) biometric systems, the bio-
metric template is secured by encrypting it using standard
encryption techniques such as Advanced Encryption Standard
(AES) and RSA cryptosystem. This approach has two main
drawbacks. Firstly, the encrypted template will be secure only
as long as the decryption key is unknown to the attacker.
Thus, this approach merely shifts the problem from biometric
template protection to cryptographic key management, which
is equally challenging. Even if the decryption key is secure,
the template needs to be decrypted during every authentication
attempt because matching cannot be directly performed in
the encrypted domain. Consequently, an adversary can glean
the biometric template by simply launching an authentication
attempt.

One way to address the limitations of the standard encryp-
tion approach is to store the encrypted template and decryption
key in a secure environment within a smart card or a secure
chip (e.g., A8 chip on Apple iPhone6!, Privaris plusID?),
which is in the possession of the user. When biometric
matching is performed on the card (or chip), the template never
leaves the secure environment. While this solution addresses
the security and privacy concerns, it requires the user to carry
an additional authentication token (smart card or a mobile
device), thereby reducing user convenience and restricting the
range of applications. Due to the above limitations of existing
solutions, biometric template protection has emerged as one of
the critical research areas in biometrics and computer security
communities.

A. Biometric Template Protection Requirements

The general framework of a biometric system with template
protection is shown in Figure 2. Rather than storing the bio-
metric template in its original form (x), a biometric template
protection algorithm generates and stores a protected biometric
reference (v) derived from the original template. Note that
the term “protected biometric reference” not only includes
the protected biometric information, but also other system
parameters or values (e.g., cryptographic hashes) that need
to be stored, as well as any biometric side information (e.g.,
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Examples of biometric templates extracted from (a) fingerprint, (b) face, and (c) iris images. A fingerprint image is typically represented as an

unordered set of minutiae, which encodes the location (x,y) and orientation () of friction ridge discontinuities. Face images are often represented as a linear
combination of basis faces, with the vector of weight coefficients constituting the template. An iris image is usually represented as a fixed-length binary string
called the IrisCode, which is obtained by binarizing the phase responses of Gabor filters applied to the given image.

information required for alignment, quality of the biometric
features, etc.) that directly does not leak information about
the user identity. On the other hand, supplementary data
(z) refers to entities that are not stored in the database,
but are required during both enrollment and authentication.
Examples of supplementary data include a password or secret
key provided by the user in addition to his biometric trait. The
use of supplementary data is optional, but if used, it provides
an additional factor of authentication.

Feature adaptation is also an optional step in a template
protection scheme. It is well-known that biometric samples
exhibit intra-subject variations due to various factors like
sensor noise, differences in user interaction, environmental
changes, and trait aging (see Figure 3). The objective of feature
adaptation is to minimize intra-subject variations in the sensed
biometric signal and/or represent the original features in a
simplified form (e.g., a binary string) without diluting their
distinctiveness. It must be emphasized that distinctiveness of
a biometric representation is a function of both intra-subject
variations and inter-subject variations. A highly distinctive rep-
resentation should have small intra-subject variations (features
extracted from multiple acquisitions of the same biometric
trait of a person should be similar), but large inter-subject
variations (features extracted from the same biometric trait of
different individuals should be different). When minimizing
intra-subject variations, care must be taken to preserve inter-
subject variations. Otherwise, distinctiveness of the features
may degrade, resulting in lower recognition performance.

In the context of template security, the protected biometric
reference (v) is typically considered as public information
that is available to any adversary. Hence, v should satisfy the
following three properties:

e Non-invertibility or Irreversibility: It should be computa-
tionally difficult® to obtain the original biometric template
from an individual’s protected biometric reference. This
property prevents the abuse of stored biometric data for

3A problem can be considered to be computationally hard or difficult if it
cannot be solved using a polynomial-time algorithm.

launching spoof or replay attacks, thereby improving the
security of the biometric system.

e Revocability or Renewability: It should be computation-
ally difficult to obtain the original biometric template
from multiple instances of protected biometric reference
derived from the same biometric trait of an individual.
This makes it possible to revoke and re-issue new in-
stances of protected biometric reference when a biometric
database is compromised. Moreover, this prevents an
adversary from obtaining the original template by com-
promising multiple biometric databases where the same
individual may be enrolled.

o Non-linkability or Unlinkability: 1t should be compu-
tationally difficult to ascertain whether two or more
instances of protected biometric reference were derived
from the same biometric trait of a user. The non-
linkability property prevents cross-matching across dif-
ferent applications, thereby preserving the privacy of the
individual.

Apart from satisfying the above three properties, an ideal
template protection algorithm must not degrade the recognition
performance of the biometric system. In many applications of
biometric recognition, especially those involving millions of
enrolled identities (e.g., border crossing and national registry),
recognition accuracy is of paramount importance. Moreover,
issues such as throughput (number of biometric comparisons
that can be performed in unit time) and template size must
also be considered in real-world applications.

II. BIOMETRIC TEMPLATE PROTECTION APPROACHES

Numerous template protection techniques have been pro-
posed in the literature with the objective of ensuring non-
invertibility, revocability, and non-linkability without compro-
mising on the recognition performance. The ISO/IEC Stan-
dard 24745 on Biometric Information Protection provides a
general guidance for the protection of biometric information.
According to this standard, a protected biometric reference
is typically divided into two parts, namely, pseudonymous
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Fig. 2. General framework of a biometric system with template protection.

Fig. 3. Illustration of intra-subject variations observed in biometric samples. (a) Images of the same finger may exhibit variations in translation, rotation, and
non-linear distortion. (b) Pose, illumination, and facial expression changes may change the appearance of face images obtained from the same person. (c) Iris
images of the same eye may exhibit differences due to pupil dilation, partial closure of eyelids, and change in gaze angle.

identifier (PI) and auxiliary data (AD). Depending on how
these two components are generated, biometric template pro-
tection schemes can be broadly categorized as: (i) feature
transformation approach and (ii) biometric cryptosystems. A
detailed review of biometric template protection approaches is
beyond the scope of this paper and we refer the readers to [4],
[51, [6] for such in-depth analysis.

In the feature transformation approach (see Figure 4(a)), a
non-invertible or one-way function is applied to the biometric
template (x). While the transformed template is stored in the
database as PI, the transformation parameters are stored as
AD. During authentication, the AD makes it possible to apply
same transformation function to the biometric query (x') and
construct PI/, which is compared to the stored PI. Thus, the
biometric matching takes place directly in the transformed
domain. Biohashing [7], cancelable biometrics [8], and robust
hashing [9] are some of the well-known schemes that can be
grouped under feature transformation. Some feature transfor-
mation schemes [7] are non-invertible only when the supple-
mentary data (e.g., key or password) is assumed to be a secret.

Techniques that can generate non-invertible templates without
the need for any secrets (e.g. [8]) are sometimes referred
to as keyless biometric template protection schemes. Such
schemes can be useful in applications (e.g., law enforcement)
where it may not be feasible or desirable to allow user-specific
supplementary data.

In biometric cryptosystems, the auxiliary data is often re-
ferred to as a secure sketch (see Figure 4(b)), which is typically
derived using error correction coding techniques. While the
secure sketch in itself is insufficient to reconstruct the original
template, it does contain adequate information to recover the
original template in the presence of another biometric sample
that closely matches with the enrollment sample [10]. The
secure sketch is either obtained as the syndrome of an error
correction code applied to the biometric template or by binding
the biometric template with a error correction codeword that
is indexed by a cryptographic key (e.g., fuzzy vault [11] and
fuzzy commitment [12]). A cryptographic hash of the original
template or the key used to index the error correction codeword
is stored as PI. Matching in a biometric cryptosystem is
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Fig. 4. There are two broad approaches for biometric template protection:
(a) feature transformation and (b) biometric cryptosystem. The protected
biometric reference (denoted by v) generally consists of two distinct parts,
namely, pseudonymous identifier (PI) and auxiliary data (AD).

performed indirectly by attempting to recover the original
template (x) using the secure sketch (AD) in conjunction
with the query biometric features (x). The recovered template
is used to regenerate a new pseudonymous identifier (PI),
which is compared to the stored PI to determine whether
the template and query match. Secure sketch constructions
have been proposed for various biometric modalities, including
fingerprint [13], face [14], and iris [15], [16].

Both the template protection approaches have their own
strengths and limitations. The primary challenge in the feature
transformation approach is finding an appropriate transforma-
tion function that provides non-invertibility, but at the same
time tolerant to intra-subject variations [17]. The strength of
biometric cryptosystems is the availability of bounds on the
information leaked by the secure sketch if we assume that the
biometric data distribution is known [10], [18]. On the flip
side, most biometric cryptosystems require the features to be
represented in standardized data formats like binary strings
and point sets, which often leads to loss of discriminatory in-

formation and consequent degradation in recognition accuracy.
Due to the properties of linear error correction codes® that are
commonly used in secure sketch constructions, it is difficult
to achieve non-linkability in biometric cryptosystems.

One way to overcome the above limitations is to apply
a feature transformation function to the biometric template
before it is protected using a biometric cryptosystem. Since
this involves both feature transformation and secure sketch
generation, such systems are known as hybrid biometric cryp-
tosystems [19], [20]. Another promising approach is secure
computation based on homomorphic encryption. While this
approach offers the attractive proposition of performing bio-
metric matching directly in the encrypted domain, it typically
comes at the cost of a significant increase in the computational
burden and communication overhead [21].

A. The Gap Between Theory and Practice

Most of the existing techniques do not satisfy the desired
template protection requirements in practice. As an example,
consider the results published by the on-going Fingerprint Ver-
ification Competition (FVC-onGoing®). Six algorithms were
able to achieve an equal error rate (EER) of less than 0.3% on
the FVC-STD-1.0 benchmark dataset when operating without
any template protection. On the other hand, the lowest EER
achieved by a fingerprint verification system with template
protection on the same dataset was 1.54%, which is more
than 5 times higher. Reduction in accuracy was also observed
during independent testing of template protection algorithms
in [22].

Even if we assume that a small degradation in the recog-
nition performance is acceptable in some applications, it is
imperative to precisely quantify (in terms of bits) the non-
invertibility and non-linkability of the protected biometric
reference. This is necessary to benchmark the utility of a
biometric template protection scheme. In cryptography, “se-
curity strength” (measure of the computational effort required
to break a cryptosystem using the most efficient known attack)
is one of the metrics used to compare different cryptosystems.
It is well-known that an AES system with a 128-bit key
or a RSA cryptosystem with a 3072-bit key can provide a
security strength of approximately 128 bits 6. However, there
is no consensus within the biometrics community on analogous
metrics that can be used to measure the non-invertibility,
revocability, and non-linkability properties of biometric tem-
plate protection algorithms as well as the methods to compute
these metrics [23]. Consequently, practical template protection
schemes neither have proven non-invertibility/non-linkability
guarantees nor do they achieve satisfactory recognition per-
formance. This explains why despite 20 years of research,

4In a linear error correcting code, any linear combination of codewords is
also a codeword. Consequently, if two secure sketches are derived from the
biometric data of the same user using different codewords, a suitable linear
combination of these two sketches is highly likely to result in a decodable
codeword. This paves the way for verifying whether the two secure sketches
belong to the same user, thereby making them linkable.

Shttps://biolab.csr.unibo.it/fvcongoing/Ul/Form/Home.aspx

SBarker et al., “Recommendation for Key Management”, NIST 800-57, July
2012.



operational biometric systems do not go beyond encrypting the
template using standard encryption techniques and/or storing
them in secure hardware.

The gap between theory and practice of template protection
can be attributed to three main reasons:

1) The template protection schemes generally require the
use of simple distance metrics such as Hamming dis-
tance or a measure of set difference to compute the sim-
ilarity between biometric features [10]. Consequently,
the burden of handling intra-subject variations observed
in the biometric samples shifts completely to the fea-
ture extraction stage. Thus, the foremost challenge in
biometric template protection is the design of feature
extractors, which not only need to extract highly robust
and distinctive features, but also represent them in a
simplified form (e.g., a fixed-length binary string) that is
suitable for applying the template protection construct.

2) Template protection techniques typically result in a
trade-off between non-invertibility and recognition per-
formance [17], [24] due to the following reason. Max-
imizing non-invertibility implies that the protected bio-
metric reference should leak as little information about
the original template as possible. However, high recog-
nition performance can be achieved only when the pro-
tected biometric reference retains all the discriminatory
information contained in the original template. This
conundrum can be solved only by understanding the
statistical distribution of biometric features and design-
ing template protection schemes that are appropriate for
the underlying feature distribution. For example, it is
well-known that bits in an IrisCode [25] or the minutiae
locations in a fingerprint [26] are neither independent
nor do they follow a uniformly random distribution. This
inherent redundancy in the biometric features could be
exploited to handle intra-subject variations without com-
promising on inter-subject variations. In many biomet-
ric cryptosystems, the template is protected by adding
noise to the true biometric information. In this case,
knowledge of the feature distribution could be useful
in selecting the appropriate noise distribution. Modeling
the biometric feature distribution is also required for
obtaining realistic estimates for the non-invertibility and
non-linkability of a protected biometric reference. If
the biometric feature distribution is known, it may be
possible to formulate biometric template protection as an
optimization problem and systematically find solutions
that maximize both recognition performance and non-
invertibility. Thus, knowledge of the statistical distri-
bution of biometric features is beneficial for biometric
template protection. However, estimating the feature
distributions is a challenging task.

3) Compared to the issue of non-invertibility, the problem
of ensuring non-linkability and revocability of protected
biometric reference has not been adequately addressed
in the literature. While many template protection con-
structs claim to provide non-linkability and revocability,
a deeper analysis indicates that this is often achievable

only with the involvement of an additional authentication
factor (supplementary data) such as a password or secret
key [27].

The primary contribution of this paper is to provide an in-
depth analysis of the above three challenges, discuss some of
the solutions that have been proposed to overcome them, and
identify unresolved issues that require further research.

II1. DESIGNING INVARIANT FEATURE REPRESENTATIONS

A traditional biometric system accounts for intra-subject
variations in two ways. Firstly, the feature extraction algo-
rithm attempts to extract an invariant representation from the
noisy biometric samples. Secondly, the matching algorithm
is designed to further suppress the effect of intra-subject
variations and focus only on features that are distinctive across
individuals. Consider the example of a fingerprint recognition
system (see Figure 5). An accurate fingerprint matcher not
only handles missing and spurious minutiae, but also other
intra-subject variations like rotation, translation, and non-linear
distortion (see Figure 5(c)). When this matcher is replaced
by a simple set difference metric (that accounts for only
missing and spurious minutiae), it becomes imperative to
represent the extracted minutiae in a form that is invariant to
rotation, translation, and non-linear distortion without affecting
their distinctiveness. Failure to do so will naturally lead to
significant degradation in the recognition performance.

Even in the case of iris recognition, it is not possible to
achieve good recognition performance by directly computing
the Hamming distance between two IrisCodes. Practical iris
recognition systems compute normalized Hamming distance
(that ignores bit locations erased by noise) over multiple
cyclical shifts applied to one of the IrisCodes (to account
for rotation variations). If this practical subtlety is ignored
and a simple Hamming distance metric is enforced, the iris
recognition accuracy is likely to decrease substantially.

Rather than developing new invariant feature extractors,
which in itself is one of the fundamental problems in bio-
metric recognition, researchers working on biometric template
protection often implement a feature adaptation step on top
of the original feature extractor. It must be emphasized that
feature adaptation is not the same as feature transformation. In
feature transformation, the goal is to obtain a non-invertible
and revocable template. In contrast, adapted templates need
not satisfy the non-invertibility and revocability properties.
Instead, feature adaptation schemes are designed to satisfy
one or more of the following three objectives: (i) minimize
intra-subject variations without diluting their distinctiveness,
(ii) represent the original features in a simplified form, and
(iii) avoid the need for biometric side information (e.g.,
alignment parameters). While a feature transformation scheme
may employ feature adaptation in the process of securing the
template, the converse is not true.

The simplest and most common feature adaptation strategy
is quantization and reliable component (feature) selection. The
quantization of Gabor phase responses to generate a binary
IrisCode and selection of reliable bits within an IrisCode [28]
is a good illustration of this adaptation strategy. Another typi-
cal example is the quantization of fingerprint minutiae location
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Fig. 5. Complexity in fingerprint minutiae matching. (a) and (b) are two fingerprint images from the same finger with minutiae features marked on them.
The two minutiae sets after global alignment are shown in (c). Apart from missing and spurious minutiae that can be captured well using the set difference
metric, one can observe that the matching minutiae (marked by green ellipses) are not perfectly aligned due to non-linear distortion. This explains why a

simple set difference metric is unlikely to provide accurate recognition.

and orientation features and selection of good quality minutiae
[13] when designing a fingerprint cryptosystem. Though the
process of quantization and feature selection reduces intra-
subject variations, it is also likely to decrease inter-subject
variations. Thus, the challenge is to strike an optimum balance
between reducing intra-subject variations and preserving inter-
subject variations. Moreover, if quantization and reliable com-
ponent selection is user-specific, the quantization parameters
and selected components need to be stored as auxiliary data,
which is likely to decrease the non-invertibility and non-
linkability of the protected biometric reference [29].

Other strategies for feature adaptation include biometric
embedding and alignment-free representation. In biometric
embedding, the goal is to obtain a new representation for the
given biometric features so that simple distance metrics (e.g.,
Hamming distance or set difference) can be used to compare
biometric samples in the modified representation space. Con-
version of a real/complex vector or point set into a fixed-length
binary string is an example of biometric embedding. On the
other hand, the objective of an alignment-free representation
is to generate templates that can be directly matched without
the need for any alignment parameters. Such a need often
arises when dealing with biometric traits like fingerprint
and palmprint. Many practical feature adaptation schemes
involve a combination of different adaptation strategies. For
instance, quantization and feature selection are often applied
in conjunction with biometric embedding or alignment-free
representation to obtain the adapted features. Similarly, some
alignment-free representations proposed in the literature also
perform embedding in a new feature space.

A. Biometric Embedding

Biometric embedding algorithms can be classified based on
their input and output representations. Two types of embedding
algorithms that are commonly used for biometric feature
adaptation are: (i) real vector into a binary string, and (ii)
point set into a binary string.

1) Real Vector to Binary String: Conversion of a real
vector into a binary string involves two essential steps: (i)
quantization - mapping continuous values into discrete values,
and (ii) encoding the discrete values as bits. The critical
parameters in quantization are the number of quantization
levels and the quantization intervals. The Detection Rate
Optimized Bit Allocation (DROBA) scheme [30] proposes
an adaptive bit allocation strategy, where the total number
of bits in the binary string is fixed and the number of bits
allocated to each feature dimension is varied based on the
feature distinctiveness. Specifically, a higher number of bits
(i.e., more levels of quantization) is allocated to a particular
feature dimension if the mean feature value of that subject is
very different from the population mean. Furthermore, this
scheme advocates the use of equal-probability quantization
intervals in order to maximize the entropy of the resulting
binary string. While the DROBA approach optimizes the
detection rate (genuine accept rate) at the minimum (low) false
accept rate, it requires many training samples per subject in
order to determine user-specific feature statistics. Furthermore,
the need for storing user-specific quantization information
increases information leakage when the resulting binary string
is eventually secured using a template protection scheme [29].

While the DROBA scheme focuses on the quantization step,
the Linearly Separable Subcodes (LSSC) method attempts to
develop a better encoding scheme for encoding the discrete
values as bits. The gray coding scheme, which is traditionally
used for binary encoding, maps the discrete values into bits
such that adjacent quantization levels differ only by a single
bit. The problem with the gray code approach is that it
does not preserve the distances between the samples after
encoding. Though the Hamming distances between genuine
samples is likely to remain small (because feature values
of two samples from the same subject can be expected to
be similar), it is possible that two dissimilar feature values
may also have a small Hamming distance. Consequently, the
recognition performance based on the resulting binary string



will degrade significantly. A unary coding scheme solves this
problem, but it does not produce a compact representation. The
LSSC method attempts to generalize the idea of unary coding.
A partially linearly separable subcode was also proposed in
[31] to obtain a better compromise between compactness and
distance preservation.

2) Point Set to Binary String: The most well-known exam-
ple of point set based biometric representation is a collection
of fingerprint minutia. Techniques for converting unordered
point sets (especially fingerprint minutiae) into fixed-length
binary strings include local point aggregates [32] and spectral
minutiae [33]. In the local aggregates approach [32], the
fingerprint region is divided into a fixed number of randomized
local regions (could be over-lapping) and aggregate features
are computed based on the minutiae falling within each local
region. The resulting feature vector is then converted into a
binary string using the techniques described in section III-Al.
The main limitation of this approach is that it requires the
fingerprints to be aligned before feature adaptation.

The spectral minutiae representation is obtained by consid-
ering the minutiae set as a collection of 2-dimensional Dirac-
delta functions and obtaining its Fourier spectrum after low
pass filtering [