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Abstract

An important issue gaining attention in biometrics com-
munity is the security and privacy of biometric systems:
How robust are these systems against attacks? What hap-
pens if the biometric template is lost or stolen? Can the pri-
vacy of the users be preserved even when a security breach
occurs? Among the numerous attacks that can be launched
against these systems, protecting the user template that is
stored either locally (e.g., on a smart card) or centrally
(e.g., on the server) is a major concern. As a possible so-
lution to this problem, a new class of algorithms, termed
biometric cryptosystems has been proposed. These systems
do not store the original template but only a transformed
version of the template within a cryptographic framework.
An example of such systems is the fuzzy vault construct pro-
posed by Juels and Sudan. In this construct, the biomet-
ric template is converted to a 2D point cloud, containing
a secret such as a symmetric encryption key. The opera-
tion of the vault requires some “helper” data. In this paper,
we present an implementation of the fuzzy fingerprint vault
based on orientation field based helper data that is automat-
ically extracted from the fingerprints. We further show that
this helper data does not leak any information about fin-
gerprint minutiae, hence complementing the increased user
privacy afforded by the fuzzy fingerprint vault. We demon-
strate the vault performance on a public domain fingerprint
database.

1. Introduction
Security and privacy of biometric systems is becoming a

major issue in biometrics community [12]: how robust are
these systems against attacks? What happens if the biomet-
ric template is lost or stolen? Can the privacy of the users
be preserved even when a security breach occurs? Among
these issues, protecting the user template that is stored ei-
ther locally or centrally is a major concern [16]. To in-
crease the security of biometric systems, a new class of
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algorithms, termed biometric cryptosystems [20] has been
proposed. These systems do not store the original template
but only a transformed version of the template (with the aim
of protecting them, hence, increased privacy) within a cryp-
tographic framework.

An example of such a system is the fuzzy vault construct
proposed by Juels and Sudan [9]. In their scheme, Alice
can place a secret S (e.g., secret encryption key) in a vault
and lock (secure) it using an unordered set A. Bob, using
an unordered set B, can unlock the vault (access S) only
if B substantially overlaps with A. The procedure for con-
structing the fuzzy vault is as follows: First, Alice selects
a polynomial p of variable x that encodes S (e.g., by fix-
ing the coefficients of p according to S). She computes the
polynomial projections, p(A), for the elements of A. She
adds some randomly generated chaff points (to increase se-
curity) that do not lie on p, to arrive at the final point set
R. When Bob tries to learn S (i.e., find p), he uses his own
unordered set B. If B overlaps with A substantially, he will
be able to locate many points in R that lie on p. Using error-
correction coding (e.g., Reed-Solomon [10]), it is assumed
that he can reconstruct p (and hence find S).

Another system for template protection is proposed by
Linnartz and Tuyls [11]. They assume that a noise-free
template X of a biometric identifier is available at the en-
rollment time and use this to encode a secret S to generate
helper data W . They further assume that each dimension
(of a multidimensional template) is quantized at q resolu-
tion levels. In each dimension, the process of obtaining W
is equivalent to finding residuals that must be added to X to
fit to an odd or even grid quantum depending upon whether
the corresponding S bit is 0 or 1. The biometric query Y
(a noisy version of X) is used to decrypt W to generate a
message which is approximately the same as S. Their tech-
nique assumes that the biometric presentations (query and
template) are aligned and that noise in each dimension is
relatively small compared to the quantization.

Soutar et al. [18] proposed a key binding algorithm
for an optical correlation-based fingerprint matching sys-
tem. This algorithm binds a cryptographic key (typically
128 bits) with the user’s fingerprint image at the time of en-
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rollment. The key is then retrieved only upon successful au-
thentication using the so-called correlation filter functions.
Davida et al. [6, 7] proposed an algorithm based on iris bio-
metric. They consider binary representation of iris texture,
called IrisCode [5] and used multiple IrisCodes to arrive at a
canonical representation, which is combined with error cor-
rection data. Both these algorithms assume that the multiple
acquisitions of the biometric (fingerprint and iris) are pre-
aligned. Monrose et al. [14, 13] proposed a method to make
passwords more secure by augmenting them with keystroke
and voice biometric features. Their technique was inspired
by password salting, where a user’s password is salted by
prepending it with a random number (the “salt”), resulting
in a hardened password. The keystroke and voice templates
were used for generating the associated salts, resulting in
60-bit cryptographic secrets. Dodis et al. [8] proposed the-
oretical foundations for generating keys from the key mate-
rial that is not exactly reproducible (e.g., passphrases, bio-
metric data that changes between enrollment and verifica-
tion). Similar to the notion of helper data of Tuyls et al.
[11], Dodis et al. [8] define fuzzy extractors (FE) to gener-
ate a variable R from the key material w, and public (helper)
data P . Given the variable P , FE again generates R from
w′, if w′ is “close” to w. For three distance metrics (Ham-
ming distance, set difference and edit distance), Dodis et
al. calculate the information revealed by P , and elaborate
on the existence of possible algoritms for FE construction.
They also propose a modification of the Juels and Sudan’s
fuzzy vault scheme [9]: instead of adding chaff points to the
projections of the polynomial p, Dodis et al. [8] propose to
use a polynomial p′ (of degree higher than p) which over-
laps with p only for the points from the genuine set A. This
new polynomial p′ replaces the final point set R of Juels and
Sudan’s scheme [9].

One of the main challenges in the above biometric cryp-
tosystems is to align a query with the template that is avail-
able only in the transformed domain. Since we do not want
to reveal any information about the stored template, the
alignment must be done in the transformed domain. But the
transformed version of the template does not carry sufficient
information for alignment. Therefore, auxiliary (helper)
data is needed to assist in alignment. A generic flowchart
of the biometric cryptosystems is given in Fig. 1, where
the secret S is transformed to a construct, F (S, T ), encom-
passing biometric template T . The secret is revealed using
the helper data only when the query Q is sufficiently similar
to T . Note that the helper data of the user which is poten-
tially available in the public domain should not reveal any
information that will enable an impostor to reconstruct the
template. Hence, we are faced with two generally contra-
dicting requirements, namely, (i) helper data should contain
sufficient information to allow an alignment between query
and template, and (ii) helper data should not leak critical

information about the template. In this paper, we propose
a scheme for generating helper data in the fuzzy fingerprint
vault framework. The orientation-field based helper data
proposed here does not leak minutiae information, yet it en-
ables us to properly align the input query.

Previous work on such automatic alignment includes the
work of Yang and Verbauwhede [21] who proposed to use
reference minutiae that is extracted during vault encoding
and decoding for alignment. If these two reference minutiae
are the same, the origins of the coordinate frames used dur-
ing locking and unlocking of the vault would be the same,
and hence, the alignment could be established. Yang and
Verbauwhede assumed this to be the case, but this assump-
tion is not true in practice. Further, Chung et al. [2] pro-
posed to use geometric hash tables (which code the transfor-
mation of genuine and chaff points with respect to a single
reference minutia) for alignment. The authors did not pro-
vide any experimental results on alignment performance,
further, the resulting hash tables can be prohibitively large.

2. Fuzzy Fingerprint Vault

The approach that forms the basis for our scheme is
the fuzzy vault construct of Juels and Sudan [9]. Fig. 2
shows the block diagram of the proposed fingerprint-based
fuzzy vault system. The system operates on the fingerprint
minutiae characterized by either ending or bifurcation of
the ridges. Minutiae are generally represented as (x, y, θ)
triplets, denoting their row indices (x), column indices (y)
and angle of the associated ridge, respectively (for a prelim-
inary version of this research, please see [19]).

2.1. Encoding

The size of secret S that can be feasibly protected is lim-
ited by the capacity of the entity used for locking and un-
locking the vault. Currently, we use the x and y coordinates
of minutiae points for locking/unlocking the vault (similar
to the algorithms of Clancy et al. [3], and Yang and Ver-
bauwhede [21]). The encoding operation secures S with fin-
gerprint minutiae data: if a query minutiae (that is aligned
with respect to the template using the helper data as ex-
plained in Section 3) set that is similar to the template minu-
tiae set is presented during decoding S can be reconstructed
accurately. Note that the vault operation is decoupled from
any backend application (e.g., encryption/decryption using
S): vault is only responsible for securing S with fingerprint
data. The fingerprint plays the role of a key. Note that this
is not the key in traditional cryptosystems (e.g., AES) per
se: rather, it has the role of a key for a new cryptographic
construct, namely the fuzzy vault. In the current implemen-
tation, S is generated as a 128-bit random bit stream, like
an AES symmetric encryption key.

Our current decoding implementation does not include



Figure 1. Using helper data in biometric cryptosystems.

(a)

(b)

Figure 2. Proposed fuzzy fingerprint vault: (a) vault encoding, (b) vault decoding.

any error-correction scheme, as proposed by Juels and Su-
dan [9], since realizing the necessary polynomial recon-
struction via error-correction does not appear to be feasi-
ble. Instead, our algorithm decodes many candidate se-
crets and then identifies which one of these candidates is
the actual secret. To enable this, we used Cyclic Redun-
dancy Check (CRC). In our case, using incorrect minu-
tiae points during decoding will cause an incorrect poly-
nomial reconstruction, resulting in errors. In our imple-

mentation, we generate 16-bit CRC data from the secret S.
The 16-bit primitive polynomial we use for CRC genera-
tion, gCRC(a) = a16 + a15 + a2 + 1, is called “CRC-16”
used for EBCDIC messages by IBM [15].

Appending the 16 CRC bits to the original secret S (128-
bits), we construct 144-bit data SC. From this point on,
all operations take place in Galois field GF (216): we con-
catenate x and y coordinates of a minutia (8-bits each) as
[x|y] to arrive at the 16-bit locking/unlocking data unit u.



To account for slight variations in minutiae data (due to
fingerprint distortions), raw minutiae data are first quan-
tized. Namely, each minutia is translated to originate from
a square tessellation of the 2D image plane. As an example,
if the block size used in the tessellation is 11x11, any minu-
tiae that has an x coordinate in the range [1, 11] is assumed
to originate from the x coordinate 6. This allows for ±5
pixel variations in the x and y coordinates of template and
query minutiae. Note that this quantization scheme may oc-
casionally put the same minutiae in the template and query
prints into different bins due to quantization boundaries.

The bit string SC is used to find the coefficients of the
polynomial p: 144-bit SC can be represented as a polyno-
mial with 9 (144/16) coefficients, with degree D = 8:

p(u) = c8u
8 + c7u

7 + . . . + c1u + c0. (1)

In other words, SC is divided into non-overlapping 16-bit
segments, and each segment is declared as a specific coeffi-
cient, ci, i = 0, 1, 2, . . . , 8. Note that this mapping method
(from SC to ci) should be known during decoding, where
the inverse operation takes place: decoded coefficients (c∗i )
are mapped back to decoded secret SC∗.

Two sets composed of point pairs are generated. The
first one, called genuine set G, is found by evaluating p(u)
on the template minutiae (T ). Assuming that we have N
template minutiae (if we have more than N minutia, we
choose the first N sorted according to ascending u values),
u1, u2, . . . , uN , we construct

G =





(u1, p(u1))
(u2, p(u2))

...
(uN , p(uN ))





(2)

Note that the template minutiae, u1, u2, . . . , uN , are se-
lected to be unique, namely, ui 6= uk, if i 6= k, where
i = 1, 2, . . . , N , k = 1, 2, . . . , N .

The second set, called the chaff set C, ensures the se-
curity of the system. To add M chaff points, we first gen-
erate M unique random points, c1, c2, . . . , cM in the field
GF (216), with the constraint that they do not overlap with
u1, u2, . . . , uN . Then, we generate another set of M ran-
dom points, d1, d2, . . . , dM , with the constraint that the
pairs (cj , dj), j = 1, 2, . . . ,M do not fall onto the poly-
nomial p(u). The chaff set C is defined as

C =





(c1, d1)
(c2, d2)

...
(cM , dM )





(3)

The union of the genuine and chaff sets, G ∪ C, is finally
passed through a list scrambler that randomizes the list, with

the aim of removing any stray information that can be used
to separate chaff points from genuine points. This results in
the vault set V S

V S =





(v1, w1)
(v2, w2)

...
(vN+M , wN+M )





. (4)

2.2. Decoding

A user tries to unlock the vault V using N query minu-
tiae Q = {u∗1, u∗2, . . . , u∗N}. The points to be used in
polynomial reconstruction are found by comparing u∗i , i =
1, 2, . . . , N with the abscissa values of the vault V , namely
vl, l = 1, 2, . . . , (N + M): if any u∗i , i = 1, 2, . . . , N
is equal to vl, l = 1, 2, . . . , (N + M), the correspond-
ing vault point (vl, wl) is added to the list of points to be
used during decoding. Assume that this list has K points,
where K ≤ N . For decoding a degree D polynomial,
(D + 1) unique projections are necessary. We find all pos-
sible combinations of (D + 1) points, among the list with

size K, resulting in
(

K
D + 1

)
combinations. For each of

these combinations, we construct the Lagrange interpolat-
ing polynomial. For a specific combination set given as

L =





(v1, w1)
(v2, w2)

...
(vD+1, wD+1)





, (5)

the corresponding polynomial is

p∗(u) =
(u− v2)(u− v3) . . . (u− vD+1)

(v1 − v2)(v1 − v3) . . . (v1 − vD+1)
w1 . . .

+
(u− v1)(u− v2) . . . (u− vD)

(vD+1 − v1)(vD+1 − v2) . . . (vD+1 − vD)
wD+1. (6)

This calculation is carried out in GF(216), and yields

p∗(u) = c∗8u
8 + c∗7u

7 + . . . + c∗1u + c∗0. (7)

The coefficients are mapped back to the decoded secret
SC∗. For checking whether there are errors in this secret,
we divide the polynomial corresponding to SC∗ with the
CRC primitive polynomial, gCRC(a) = a16 + a15 + a2 +
1. Due to the definition of CRC, if the remainder is not
zero, we are certain that there are errors. If the remainder is
zero, with very high probability, there are no errors. For the
latter case, SC∗ is segmented into two parts: the first 128-
bits denote S∗ while the remaining 16-bits are CRC data.
Finally, the system outputs S∗. If the query minutiae Q
overlaps with template minutiae T in at least (D+1) points



for some combinations, the correct secret will be decoded,
namely, S∗ = S will be obtained. This denotes the desired
outcome when query and template fingerprints are from the
same finger.

3. Constructing Helper Data
The Orientation Field Flow Curves (OFFC) are sets of

piecewise linear segments that represent the underlying flow
of fingerprint ridges [4]. They are robust to noise arising
from minutiae, islands, smudges, and cuts. These curves are
obtained as follows: firstly, the orientation field that shows
the dominant orientation (o) in each 8x8 fingerprint block is
found. A flow curve with a starting point s0 is then found
iteratively as

sj = sj−1 + dj ∗ lj ∗ osj−1 (8)

where j denotes the index of points on the curve, dj ∈
{−1, 1} is the flow direction between sj and sj−1, lj is
the length of line segment (e.g., 5 pixels) between these
two points, and osj−1 is the orientation value at location
sj−1. By tracing points in the direction of respective ori-
entation values, the full flow curve is obtained. Repeat-
ing this procedure for multiple starting points s0, the set
of flow curves is generated. The maximum curvature points
on these curves and the corresponding curvature values con-
stitute our helper data. Fig. 3 shows the steps in generating
this helper data (shown as blue points). Note that the helper
data is constructed first for the template (during vault en-
coding), and then for the query (during vault decoding).

3.1. Curvature Estimation for OFFC

The set of points on the piece-wise linear OFF curves
are used to find the maximum curvature point locations and
the actual curvature values. Namely, given a curve, (i) the
curvature value C is calculated for every point on the curve,
(ii) point with the maximum curvature is identified, (iii) its
curvature value and location are added to the corresponding
candidate helper data CH (Fig. 3).

The underlying curvature estimation is based on finding
the angles subtended by 5 nearest neighbors of a point p,
and a linearly weighted cosine of these angles. More weight
is given to points that are far from point p in the curvature
calculation. Note that 0 ≤ C ≤ 1 for all points in the OFF
curve. The point with the maximum curvature is added to
candidate helper data CH for all the OFF curves.

3.2. Helper Data Filtering

The candidate helper data CH that is output by the cur-
vature estimation routine given above can contain outliers
(due to inexact localization of maximum curvature point).
Furthermore, points with very low (corresponding to points

on curves that are nearly flat) and very high curvature (cor-
responding to points that are too spiky) values should be
filtered. This filtering operation results in the final helper
data, H .

4. ICP based Alignment
The helper data is used in the fuzzy fingerprint vault sys-

tem as follows: (i) Vault encoding: the helper data, HE , as-
sociated with the enrollment fingerprint E (that is used for
vault encoding) is saved along with the vault, V . (ii) Vault
decoding: the helper data, HQ, extracted from the query
fingerprint is used for aligning the query and the associated
template via template’s helper data. Fig. 4 shows the helper
data extraction for a template and query fingerprint pair.

Helper data HE and HQ are used as inputs to the Iter-
ative Closest Point (ICP) based alignment routine summa-
rized below. TQ|E , which is a representation of the query
minutiae template TQ aligned with respect to the enroll-
ment template TE , is generated as the output and is used for
vault decoding. The feature-weighted ICP algorithm [17]
employed in this work is a modification of the generic ICP
method of Besl and McKay [1]:

Step 1: Estimate the initial transformation between HQ

and HE : The center of mass of maximum curvature points
in HQ is translated so that it coincides with the center of
mass of points in HE . Translate TQ accordingly.

Step 2: Iterate until convergence (or maximum number
of iterations is reached)

• Compute the set of correspondences between points
in HQ and HE : Find the distance between a point in
HE (i.e., pi

E = (Ci
E , ri

E , ci
E), denoting the curvature

value, row index, and the column index for a maximum
curvature point, respectively) and a point in HQ (i.e.,
pi

Q = (Ci
Q, ri

Q, ci
Q)) as

d(pi
E , pi

Q) =
√

(ri
E − ri

Q)2 + (ci
E − ci

Q)2+α|Ci
E−Ci

Q|
(9)

where the parameter α determines the contribution of
curvature based distance (second term) with respect to
the Euclidean distance (first term).

• Compute the transformation that minimizes the mean
square error between the paired points. Apply the
transformation to HQ and TQ.

We have used the mean distance between corresponding
points as the metric for convergence. The transformed
query template, TQ|E , is used during vault decoding.

5. Multiple ICP Applications and Helper Data
Clustering

As explained above, the parameter α determines the con-
tribution of curvature-based distance with respect to the Eu-



Figure 3. Generating helper data.

Figure 4. Extracting helper data from template (during vault encoding) and from query (during vault decoding).

clidean distance in ICP algorithm: higher α values empha-
size the effect of curvature (hence, more appropriate when
the Euclidean distances are unreliable, e.g., due to noisy
helper data points). Accordingly, no single α value is found
to be optimal for all the fingerprints. Hence, our algorithm
uses multiple (3 in the current implementation) α values

(100, 150, and 400) successively until the vault is decoded.
Furthermore, ICP algorithm is applied separately to indi-

vidual clusters in helper data HQ and HE ; especially for the
whorl class of fingerprints, the helper data has two strong
clusters (one above the core and one below the core). Ap-
plying ICP to the conglomerate data is not logical when one



of clusters is missing from either query or template helper
data. This clustering is done using the Euclidean distances
between neighboring points in the helper data set: if the
distance between two neighboring points is larger than 30
pixels, a new cluster is formed. Fig. 5 shows this align-
ment process for the template and query fingerprints shown
in Fig. 4.

6. Experiments and Results
We present the vault performance when automatic align-

ment scheme using helper data is employed (for experimen-
tal results not involving this alignment scheme, please see
[19]). We have used DB2 database of FVC 2002 study [12]
which contains 8 impressions for each of the 100 distinct
fingers. Image size is 560x296 at a resolution of 569 dpi.
For vault processing, a block size of 11x11 pixels and 24
genuine minutiae points dispersed among 200 chaff points
are used.

Initially, two impressions per finger (impression number
1 for locking the vault, and impression number 2 for unlock-
ing the vault) are used. The Genuine Accept Rate (GAR)
is found to be 72.6% at FAR = 0%. Note that 16 fingers
(out of 100) were rejected since they did not contain a suffi-
cient number (24) of minutiae for locking or unlocking the
vault. Using two impressions per finger (impression num-
ber 2 and number 7) for decoding the vault increases the
GAR to 84.5% at 0% FAR. The false rejects were due to
(i) errors in helper data (7 fingers), (ii) poor quality images
where reliable helper data could not be extracted (4 fingers),
and (iii) number of common minutiae between locking and
unlocking prints less than the required number (2 fingers).
Note that majority of these errors can be eliminated with
increased user cooperation and habituation. We must also
point out that the failure to enroll rate for fingerprint bio-
metric can be as high as 4% [12].

The proposed helper data does not leak any information
about the minutiae information used for locking and unlock-
ing the vault. The helper data is extracted from the global
flow of orientation field. On the other hand, the minutiae
are local the discontinuities in the structure of ridges, and
there is no way to learn minutiae features from the public
helper data (cf. Fig. 5 shows the helper data overlaid with
the critical minutiae information).

7. Conclusions
Privacy and security of biometric systems is gaining

widespread attention as an increased number of such sys-
tems are being deployed in both commercial and govern-
ment applications. Among the various issues, protecting
the biometric template is a major concern. Biometric cryp-
tosystems have been proposed to increase the associated se-
curity: they make use of transformed versions of the tem-

plates, and not the original template. Fuzzy vault construct
is an example of such systems. In this paper, we have pre-
sented the results of a fuzzy vault implementation using fin-
gerprint minutiae data. The vault performs with reasonable
accuracy. It is shown that 128-bit AES keys can be feasibly
secured using the proposed architecture. We have devel-
oped an automatic alignment scheme (between query and
template) based on helper data derived from the orientation
field of fingerprints. Utilizing maximum curvature informa-
tion (invariant to translation and rotation of fingerprints) of
orientation field flow curves, we align the query fingerprint
with respect to the template via a variant of Iterative Clos-
est Point (ICP) algorithm. The proposed alignment routine
achieves reasonable accuracy, considering the small amount
of data used for alignment. Further, the helper data does not
leak any information about the minutiae-based fingerprint
template. User habituation and cooperation has the poten-
tial to increase the authentication accuracy even further. In
other words, since the system is developed for a positive
identification scenario where the user is expected to be co-
operative (for user convenience), the false rejects will re-
duce with increased user cooperation.
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