
 1

Fuzzy Vault for Fingerprints

Umut Uludag1, Sharath Pankanti2, Anil K. Jain1

1 Department of Computer Science and Engineering, Michigan State University,
East Lansing, MI, 48824

2Exploratory Computer Vision Group, IBM T.J. Watson Research Center,
Yorktown Heights, NY, 10598

{uludagum, jain}@cse.msu.edu, sharat@us.ibm.com

Abstract. Biometrics-based user authentication has several advantages over
traditional password-based systems for standalone authentication applications,
such as secure cellular phone access. This is also true for new authentication ar-
chitectures known as crypto-biometric systems, where cryptography and bio-
metrics are merged to achieve high security and user convenience at the same
time. In this paper, we explore the realization of a previously proposed crypto-
graphic construct, called fuzzy vault, with the fingerprint minutiae data. This
construct aims to secure critical data (e.g., secret encryption key) with the fin-
gerprint data in a way that only the authorized user can access the secret by
providing the valid fingerprint. The results show that 128-bit AES keys can be
secured with fingerprint minutiae data using the proposed system.

1 Introduction

In traditional cryptography one or more keys are used to convert the plain text
(data to be encrypted) to cipher text (encrypted data): the encrypting key(s) maps the
plain text to essentially a sequence of random bits, that can only be mapped back to
the plain text using the appropriate decrypting key(s). Without the knowledge of the
correct decrypting keys, the conversion of cipher text to the plain text is infeasible
considering time and cost limitations [1]. Hence, the cipher text is secured: even if an
attacker obtains the cipher text, she cannot extract useful information from it. Here,
the plain text can be any data that needs to be stored or transmitted securely: financial
transactions, email communication, secret cryptographic keys, etc. Current crypto-
graphic algorithms (e.g., Advanced Encryption Standard (AES) [2], Data Encryption
Standard (DES) [1], RSA [1]) have a very high proven security but they suffer from
the key management problem: all these algorithms fully depend on the assumption that
the keys will be kept in absolute secrecy. If the secret key is compromised, the security
provided by them immediately falls apart. Another limitation of the these algorithms is
that they require the keys to be very long and random for higher security, e.g., 128 bits
for AES [2], which makes it impossible for users to memorize the keys. As a result,
the cryptographic keys are stored securely (e.g., in a computer or on a smart card) and

 2

released based on some alternative authentication mechanism. If this authentication
succeeds, keys can be used in encryption/decryption procedures.

The most popular authentication mechanism used for key release is based on
passwords, which are again cryptographic key-like strings but simple enough for users
to remember. Hence, the plain text protected by a cryptographic algorithm is only as
secure as the password (weakest link) that releases the correct decrypting keys. Simple
passwords compromise security, but complex passwords are difficult to remember and
expensive to maintain. Further, passwords are unable to provide non-repudiation: a
subject may deny releasing the key using password authentication, claiming that her
password was stolen. Many of these limitations of password-based key release can be
eliminated by incorporating biometric authentication. Biometric authentication [3]
refers to verifying individuals based on their physiological and behavioral traits. It is
inherently more reliable than password-based authentication as biometric characteris-
tics cannot be lost or forgotten. Further, biometric characteristics are difficult to copy,
share, and distribute, and require the person being authenticated to be present at the
time and point of authentication. Thus, biometrics-based authentication is a potential
candidate to replace password-based authentication, either for providing complete
authentication mechanism or for securing the traditional cryptographic keys.

A biometric system and a cryptographic system can be merged in one of the
following two modes: (i) In biometrics-based key release, the biometric matching is
decoupled from the cryptographic part. Biometric matching operates on the traditional
biometric templates: if they match, cryptographic key is released from its secure loca-
tion, e.g., a smart card or a server. Here, biometrics effectively acts as a wrapper
mechanism in cryptographic domain. (ii) In biometrics-based key generation, biomet-
rics and cryptography are merged together at a much deeper level. Biometric matching
can effectively take place within cryptographic domain, hence there is no separate
matching operation that can be attacked; positive biometric matching extracts the
secret key from the conglomerate (key/biometric template) data. An example of the
biometric-based key generation, called fuzzy vault, was proposed by Juels and Sudan
[4]. This cryptographic construct, as explained in later sections, has the characteristics
that make it suitable for applications that combine biometric authentication and cryp-
tography: the advantages of cryptography (e.g., proven security) and fingerprint-based
authentication (e.g., user convenience, non-repudiation) can be utilized in such sys-
tems.

2 Background

Tuyls et al. [5] assume that a noise-free template X of a biometric identifier is
available at the enrollment time and use this to enroll a secret S to generate a helper
data W. If each dimension of the multidimensional template is quantized at q resolu-
tion levels, the process of obtaining W is akin to finding residuals that must be added
to X to fit to odd or even grid quantum depending upon whether the corresponding S
bit is 0 or 1. At decryption time, the noise-prone biometric template Y is used to de-
crypt W to obtain a decrypted message S’ which is approximately the same as S. In

 3

each dimension, the process of decryption guesses whether a particular bit of secret S
is 0 or 1 depending upon whether the sum of Y and W resides in even or odd quantum
of the corresponding dimension. It is hoped that the relatively few errors in S’ can be
corrected using error-correction techniques. The proposed technique assumes that the
biometric representations are completely aligned and that noise in each dimension is
relatively small compared to the quantization magnitude Q. Due to variability in the
biometric identifier, different W may be generated for the same message S. The au-
thors prove that very little information is revealed from W by appropriately tuning the
quantization scheme with respect to the measurement noise.

Juels and Sudan’s fuzzy vault scheme [4] is an improvement upon the previous
work by Juels and Wattenberg [6]. In [4], Alice can place a secret κ (e.g., secret
encryption key) in a vault and lock (secure) it using an unordered set A . Here, unor-
dered set means that the relative positions of set elements do not change the character-
istics of the set: e.g., the set {-2, -1, 3} conveys the same information as {3, -1, -2}.
Bob, using an unordered set B , can unlock the vault (access κ) only if B overlaps
with A to a great extent. The procedure for constructing the fuzzy vault is as follows:
First, Alice selects a polynomial p of variable x that encodes κ (e.g., by fixing the
coefficients of p according to κ). She computes the polynomial projections, ()p A ,
for the elements of A . She adds some randomly generated chaff points that do not lie
on p , to arrive at the final point set R . When Bob tries to learn κ (i.e., find p), he
uses his own unordered set B . If B overlaps with A substantially, he will be able to
locate many points in R that lie on p . Using error-correction coding (e.g., Reed-
Solomon [7]), it is assumed that he can reconstruct p (and hence κ). A simple nu-
merical example for this process is as follows: Assume Alice selects the polynomial

2() 3 1p x x x= − + , where the coefficients (1, -3, 1) encode her secret κ . If her unor-
dered set is { 1, 2,3,2}A = − − , she will obtain the polynomial projections as

{(, ())} {(1,5),(2,11),(3,1),(2, 1)}A p A = − − − . To this set, she adds two chaff points
{(0,2),(1,0)}C = that do not line on p , to find the final point set
{(1,5),(2,11),(3,1),(2, 1),(0,2),(1,0)}R = − − − . Now, if Bob can separate at least 3

points from R that lie on p , he can reconstruct p , hence decode the secret repre-
sented as the polynomial coefficients (1, -3, 1). Otherwise, he will end up with incor-
rect p , and he will not be able to access the secret κ .

The security of this scheme is based on the infeasibility of the polynomial recon-
struction problem (i.e., if Bob does not locate many points which lie on p , he can not
feasibly find the parameters of p , hence he cannot access κ). The scheme can toler-
ate some differences between the entities (unordered sets A and B) that lock and
unlock the vault, so Juels and Sudan named their scheme fuzzy vault. This fuzziness
can come from the variability of biometric data: even though the same biometric entity
(e.g., right index finger) is analyzed during different acquisitions, the extracted bio-
metric data will vary due to acquisition characteristics (e.g., placement of the finger on
the sensor), sensor noise, etc. On the other hand, in traditional cryptography, if the
keys are not exactly the same, the decryption operation will produce useless random
data. Note that since the fuzzy vault can work with unordered sets (common in bio-

 4

metric templates, including fingerprint minutiae data), it is a promising candidate for
biometric cryptosystems. Having said this, the fuzzy vault scheme requires pre-aligned
biometric templates. Namely, the biometric data at the time of enrollment (locking)
must be properly aligned with biometric data at the time of verification (unlocking).
This is a very difficult problem due to different types of distortion that can occur in
biometric data acquisition. Further, the number of feasible operating points (where the
vault operates with negligible complexity, e.g., conveyed via the number of required
access attempts to reveal the secret, for a genuine user and with considerable complex-
ity for an imposter user) for the fuzzy vault is limited: for example, the flexibility of a
traditional biometric matcher (e.g., obtained by changing the system decision thresh-
old) is not present.

Clancy et al. [8] proposed a fingerprint vault based on the fuzzy vault of Juels and
Sudan [4]. Using multiple minutiae location sets per finger (based on 5 impressions of
a finger), they first find the canonical positions of minutia, and use these as the ele-
ments of the set A . They added the maximum number of chaff points to find R that
locks κ . However, their system inherently assumes that fingerprints (the one that
locks the vault and the one that tries to unlock it) are pre-aligned. This is not a realistic
assumption for fingerprint-based authentication schemes. Clancy et al. [8] simulated
the error-correction step without actually implementing it. They found that 69-bit
security (for False Accept Rate (FAR)) could be achieved with a False Reject Rate
(FRR) of 20-30%. Note that the cited security translates to 69 212 1.7 10− −≈ ⋅ FAR.
Further, FRR value suggests that a genuine user may need to present her finger multi-
ple times to unlock the vault.

The design of a fuzzy vault (without the actual implementation) using minutiae-
based lines was given in [9]. A more detailed survey of biometric cryptosystems can
be found in [10].

3 Proposed Method

In this section we present our implementation of the fuzzy vault, operating on the
fingerprint minutiae features. These features are defined as abrupt changes in the regu-
lar ridge structure on the fingertip, characterized by either ending or bifurcation of the
ridges. Typically, they are represented as (, ,)x y θ triplets, denoting their row indices
(x), column indices (y) and angle of the associated ridge, respectively. These fea-
tures are shown in Fig. 1, where two fingerprint images obtained from the same finger
at different times, with overlaid minutiae are shown. The minutiae are found using the
algorithm outlined in [11]. Note that the variability in the number and position of
minutiae is evident in the two images.

Fig. 2 shows the block diagram of the proposed fingerprint fuzzy vault system.
Fig. 3 shows the variables used in the system pictorially: the polynomial in Fig. 3(a)
encodes the secret. It is evaluated at both genuine and chaff points in Fig. 3(b). Fi-
nally, the vault is the union of genuine and chaff points.

 5

 (a) (b)

Fig. 1. Fingerprint images with overlaid minutiae: (a) template image (28 minutiae),
(b) query image (26 minutiae).

(a)

(b)

Fig. 2. Fuzzy fingerprint vault: (a) vault encoding, (b) vault decoding.

 6

 (a) (b) (c)
Fig. 3. System parameters: (a) polynomial, (b) evaluation of the polynomial (filled
squares: genuine points, empty squares: chaff points), (c) final vault list.

3.1 Encoding

Secret S is any data that needs to be protected, but the size of S that can be
feasibly protected is limited by the capacity of the entity used for locking and
unlocking the vault. Currently, we use x and y coordinates of minutiae points for
locking/unlocking the vault. We first align the minutiae, namely compensate for the
translation and rotation between template and query minutiae data. Encoding
operation secures S with fingerprint minutiae data: if a query minutiae set similar to
the template minutiae set is presented during decoding, it indicates the presence of an
authorized person and S can be reconstructed accurately. Note that the vault operation
is decoupled from any backend application (e.g., encryption/decryption using S): vault
is only responsible for securing S with fingerprint data. The fingerprint template has
the role of a key. Note that this is not the key in traditional cryptosystems (e.g., AES)
per se: rather, it has the role of a key for a new cryptographic construct, namely the
fuzzy vault. In the current implementation, S is generated as a 128-bit random bit
stream. This can simulate securing AES symmetric encryption keys.

Our current decoding implementation does not include any error-correction
scheme, as proposed by Juels and Sudan’s [4], since there are serious difficulties to
achieve error-correction with biometric data. Developing the necessary polynomial
reconstruction via error-correction has not been demonstrated in the literature. Instead,
our algorithm decodes many candidate secrets. To identify which one of these candi-
dates is the actual secret, we need to put some structure into the secret S. By checking
the validity of this structure during decoding, the algorithm can identify whether a
given candidate secret is correct or not. Cyclic Redundancy Check (CRC) is a gener-
alization of the simple parity bit checking. It is commonly used in communication
channel applications for error detection where the errors are introduced due to channel
noise. In our case using incorrect minutiae points during decoding will cause an incor-
rect polynomial reconstruction, resulting in errors. In the current implementation, we
generate 16-bit CRC data from the secret S. Hence, the chance of a random error
being undetected (i.e., failing to identify an incorrect decoding) is 162− . The 16-bit
primitive polynomial, 16 15 2() 1CRCg a a a a= + + + , we use for CRC generation is
called “CRC-16” and is used for EBCDIC messages by IBM [12]. Appending the
CRC bits to the original secret S (128-bits), we construct 144-bit data SC. From this
point on, all operations take place in Galois fields with cardinality 65536, namely
GF(162): we concatenate x and y coordinates of a minutiae (8-bits each) as [x | y]

 7

to arrive at the 16-bit locking/unlocking data unit u . Note that to account for slight
variations in minutiae data (due to nonlinear distortion), raw minutiae data are first
quantized. Namely, each minutia is translated to lie in a square tessellation of the 2D
image plane. For example, if the block size used in the tessellation is 7, any minutia
that has x coordinate in the range [1, 7] is assumed to originate from x coordinate 4.
This allows for ±3 pixel variations in the coordinates of template and query minutiae.

SC is used to find the coefficients of the polynomial p : 144-bit SC can be repre-

sented as a polynomial with 9 (144/16) coefficients in GF(162), with degree 8D = .
Hence, 8 7

8 7 1 0() ...p u c u c u c u c= + + + + . Simply, SC is divided into non-overlapping
16-bit segments, and each segment is declared as a specific coefficient,

, 0,1,2,...,8ic i = . Note that this mapping method (from SC to ic) should be known

during decoding, where the inverse operation takes place: decoded coefficients (*
ic)

are mapped back to decoded secret SC*. Then, two sets composed of point pairs need
to be generated. The first one, called genuine set G, is found by evaluating ()p u on
the template minutiae features (T). Starting with N template minutiae (if we have
more than N minutia, we choose the first N sorted according to ascending u val-
ues), 1 2, ,..., Nu u u , we find 1 1 2 2{(, ()), (, ()),..., (, ())}N NG u p u u p u u p u= . Note that the
template minutiae are selected to be unique, namely,

, if , 1,2,..., , 1,2,...,i ku u i k i N k N≠ ≠ = = . The second set, called the chaff set C,
determines the security of the system. Assuming we need to add M chaff points, we
first generate M unique random points, 1 2, ,..., Mc c c in the field GF(162), with the
constraint that they do not overlap with 1 2, ,..., Nu u u , namely

, 1,2,..., , 1,2,...,j ic u j M i N≠ = = . Then, we generate another set of M random

points, 1 2, ,..., Md d d , with the constraint that the pairs (,), 1,2,...,j jc d j M= do not fall

onto the polynomial ()p u . Chaff set C is then 1 1 2 2{(,), (,),..., (,)}M MC c d c d c d= ,
where (), 1, 2,...,j jd p c j M≠ = . Union of these two sets, G C∪ , is finally passed

through a list scrambler which randomizes the list, with the aim of removing any stray
information that can be used to separate chaff points from genuine points. This results
in vault set, 1 1 2 2{(,), (,),..., (,)}N M N MVS v w v w v w+ += . Along with VS , the polynomial
degree D forms the final vault, V .

3.2 Decoding

Here, a user tries to unlock the vault V using the query minutiae features. Assum-
ing that we have N (note that this number is the same as the number of genuine tem-
plate minutiae in order to balance the complexity conveyed via the number of required
access attempts to reveal the secret) query minutiae (Q), * * *

1 2, , ..., Nu u u , the points to be

used in polynomial reconstruction are found by comparing * , 1,2,...,iu i N= , with the
abscissa values of the vault V , namely , 1, 2,..., ()lv l M N= + : if any

 8

* , 1,2,...,iu i N= is equal to , 1, 2,..., ()lv l M N= + , the corresponding vault point
(,)l lv w is added to the list of points to be used. Assume that this list has K points,
where K N≤ . Now, for decoding a D -degree polynomial, (1)D + unique projec-
tions are necessary. We find all possible combinations of (1)D + points, among the

list with size K . Hence, we end up with (, 1)C K D + combinations. For each of these
combinations, we construct the Lagrange interpolating polynomial. For a specific
combination set given as 1 1 2 2 1 1{(,), (,),..., (,)}D DL v w v w v w+ += , the corresponding
polynomial is

* 2 3 1 1 3 1
1 2

1 2 1 3 1 1 2 1 2 3 2 1

1 2

1

()()...() ()()...()
() ...

()()...() ()()...()

()()...()
 ... +

(

D D

D D

D

D

u v u v u v u v u v u v
p u w w

v v v v v v v v v v v v

u v u v u v
v

+ +

+ +

+

− − − − − −= + +
− − − − − −

− − −
− 1

1 1 2 1)()...() D
D D D

w
v v v v v +

+ +− −

This calculation is done in GF(162) and yields * * 8 * 7 * *
8 7 1 0() ...p u c u c u c u c= + + + + .

The coefficients are mapped back to the decoded secret SC*. For checking whether
there are errors in this secret, we divide the polynomial corresponding to SC* with the
CRC primitive polynomial, 16 15 2() 1CRCg a a a a= + + + . Due to the definition of CRC,
if the remainder is not zero, we are certain that there are errors. If the remainder is
zero, with very high probability, there are no errors. For the latter case, SC* is seg-
mented into 2 parts: the first 128-bits denote S* while the remaining 16-bits are CRC
data. Finally, the system outputs S*. If the query minutiae list (Q) overlaps with tem-
plate minutiae list (T) in at least (1)D + points, for some combinations, the correct
secret will be decoded, namely, S* = S will be obtained. This denotes the desired out-
come when query and template fingerprints are from the same finger. Note that CRC
is an error detection method, and it does not leak information that can be utilized by
an imposter attacker (Bob). He cannot learn which one of the polynomial projections
is wrong; hence he cannot separate genuine points from chaff points.

4 Experimental Results

We used the IBM-GTDB [10] fingerprint database (100 mated image pairs with
500 dpi resolution and approximately of size 300x400) for obtaining the results pre-
sented in this section. The minutiae coordinates are linearly mapped to 8-bit range
(e.g., the values [0, 255]) for both row and column dimensions before using them in
locking/unlocking the vaults. In this database a fingerprint expert has manually
marked the minutiae in every image. Further, the expert also established the corre-
spondence between minutiae in mating fingerprint images (two fingerprint images per
finger). Using this database has many advantages since (i) the adverse effects of using
an automatic (and possibly imperfect) minutiae extractor are eliminated, and (ii) minu-
tiae correspondence has been established. Note that we specifically chose to use such
a database because it allows us to establish the upper bound on the performance of the

 9

fuzzy fingerprint vault. In our fuzzy vault implementation, the pre-alignment of tem-
plate and query minutiae sets is based on the correspondence marked by the expert.
The translation and rotation parameters that minimize the location error (in the least
squares sense) between the corresponding minutiae are found and the query minutiae
sets are aligned with template minutiae sets. We randomly generated a 128-bit secret
S, and after appending the 16 CRC bits, the resulting 144-bits are converted to the
polynomial ()p u as 8 7 1() 60467 63094 +... 52482 11995p u u u u= + + + . As explained
in Section 3.1, 144-bit data is divided into 16-bit chunks, and each one of these
chunks determines one of the 9 coefficients of ()p u . One hundred pairs of fingerprint
images (of 100 users) from IBM-GTDB database are used for locking and unlocking
the vaults with the following parameters: number of template and query minutiae

18N = (selected so that the number of candidate points will be enough for recon-
struction), number of chaff points 200M = (the effect of this number on the security
of the method against attackers is given below), and the block size used for quantiza-
tion of minutiae x and y coordinates is 7 pixels (determined experimentally; a larger
value decreases the capacity of the vault, whereas a smaller value does not eliminate
the minutiae variability). During decoding, 18 query minutiae selected 12K = candi-
date points, on average. By evaluating the 9-element combinations of these candidate
points, 79 of the 100 query fingerprints were able to successfully unlock the vault (that
was locked by its mated fingerprint) and recover the secret S. The remaining 21 query
fingerprints selected fewer than required number of genuine points (i.e., less than 9)
during decoding, hence they were unable to unlock the vault. Hence, the False Reject
Rate (FRR) of the proposed system is 0.21, for the cited system parameters (so, the
Genuine Accept Rate is 0.79, i.e., 79%). The average number of point combinations
required for a genuine user to unlock the vault was 201, which corresponds to 52
seconds of computation for a system with a 3.4 GHz processor. During decoding,
many candidate secrets (201 on average) need to be extracted and evaluated, resulting
in high time complexity. Further, the system is implemented in Matlab, contributing to
high computational times. It is observed that, during decoding, CRC performed with
100% accuracy: it signaled an error if and only if there is an error in the decoded
polynomial.

For evaluating the corresponding False Accept Rate (FAR), we tried to unlock the
vaults with fingerprint templates that were not the mates of the templates that locked
the vaults. Hence, we have 99 imposter unlocking attempts for a distinct finger, and
totally 9900 (99x100) attempts for 100 users. Note that the unlocking templates are
first aligned with the locking templates (to avoid giving an unfair disadvantage to
imposter attempts), using the centers of mass of minutiae coordinates: the minutiae of
unlocking template are translated in x and y dimensions till their center of mass
coincides with the center of mass of locking templates. None of the 9900 attempts
could unlock the vault. Hence, for this small database, experimental FAR is 0%.

We can also quantify the security of the system mathematically. Assume that we
have an attacker who does not use real fingerprint data to unlock the vault; instead he
tries to separate genuine points from chaff points in the vault using brute-force. The
vault has 218 points (18 of them are genuine, remaining 200 are chaff); hence there

 10

are a total of 15(218,9) 2.6 10C ≈ � combinations with 9 elements. Only
(18,9) 48620C = of these combinations will reveal the secret (unlock the vault). So, it

will take an average of 105.3 10� (=C(218,9)/C(18,9)) evaluations for an attacker to
crack the vault; this corresponds to a computational time of 439 years for the previ-
ously used system with the 3.4 GHz processor.

5 Conclusions

After exploring the characteristics of a new cryptographic construct called fuzzy vault,
we presented the results of its actual implementation using fingerprint minutiae data,
without resorting to simulating the error-correction step. The vault performs as ex-
pected (namely, the genuine users can unlock the vault successfully, and the complex-
ity of attacks that can be launched by imposter users is high). It is shown that 128-bit
AES keys can be feasibly secured using the proposed architecture. The limitations of
our approach include high time complexity (due to the need for evaluating multiple
point combinations during decoding). Currently, we are working on architectures for
achieving automatic alignment within the fuzzy fingerprint vault.

References

1. W. Stallings, Cryptography and Network Security: Principles and Practices, 3. Ed., Pren-
tice Hall, 2003.

2. NIST, Advanced Encryption Standard (AES), 2001.
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

3. A. Jain, R. Bolle, and S. Pankanti, Eds., Biometrics: Personal Identification in Networked
Society, Kluwer, 1999.

4. A. Juels and M. Sudan, “A Fuzzy Vault Scheme”, Proc. IEEE Int’l. Symp. Inf. Theory, A.
Lapidoth and E. Teletar, Eds., pp. 408, 2002.

5. J.-P. Linnartz and P. Tuyls, “New Shielding Functions to Enhance Privacy and Prevent
Misuse of Biometric Templates”, Proc. 4th Int’l Conf. Audio- and Video-based Biometric
Person Authentication, pp. 393-402, 2003.

6. A. Juels and M. Wattenberg, “A Fuzzy Commitment Scheme”, In G. Tsudik, Ed., Sixth
ACM Conf. Computer and Comm. Security, pp. 28-36, 1999.

7. S. Lin, An Introduction to Error-Correcting Codes, Prentice-Hall, 1970.
8. T. C. Clancy, N. Kiyavash, and D. J. Lin, “Secure Smartcard-Based Fingerprint Authenti-

cation”, Proc. ACM SIGMM 2003 Multim., Biom. Met. & App., pp. 45-52, 2003.
9. U. Uludag and A.K. Jain, “Fuzzy Fingerprint Vault”, Proc. Workshop: Biometrics: Chal-

lenges Arising from Theory to Practice, pp. 13-16, 2004.
10. U. Uludag, S. Pankanti, S. Prabhakar and A. K. Jain, “Biometric Cryptosystems: Issues

and Challenges”, Proc. IEEE, vol. 92, no. 6, pp. 948-960, 2004.
11. A. K. Jain, L. Hong, S. Pankanti, and R. Bolle, “An Identity Authentication System Using

Fingerprints”, Proc. IEEE, vol. 85, no. 9, pp. 1365-1388, 1997.
12. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in

C, 2. Ed., Cambridge University Press, 1992.

