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Abstract

We describe a method for on-line handwritten signature veri!cation. The signatures are acquired using a digitizing tablet
which captures both dynamic and spatial information of the writing. After preprocessing the signature, several features are
extracted. The authenticity of a writer is determined by comparing an input signature to a stored reference set (template)
consisting of three signatures. The similarity between an input signature and the reference set is computed using string matching
and the similarity value is compared to a threshold. Several approaches for obtaining the optimal threshold value from the
reference set are investigated. The best result yields a false reject rate of 2.8% and a false accept rate of 1.6%. Experiments on
a database containing a total of 1232 signatures of 102 individuals show that writer-dependent thresholds yield better results
than using a common threshold. ? 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Handwritten signatures are commonly used to approbate
the contents of a document or to authenticate a !nancial
transaction. Signature veri!cation is usually done by visual
inspection. A person compares the appearance of two signa-
tures and accepts the given signature if it is su@ciently sim-
ilar to the stored signature, for example, on a credit card. In
the majority of situations where a signature is required, no
veri!cation takes place at all due to the amount of time and
eBort that would be required to manually verify signatures.
Automating the signature veri!cation process will improve
the current situation and eliminate fraud.

The handwritten signature is a biometric attribute. Bio-
metric identi!cation and veri!cation systems are being
increasingly adopted in our environment. Well-known bio-
metric methods include iris-, retina-, face- and !ngerprint-
based identi!cation and veri!cation [1]. While attributes
like iris, retina and !ngerprints do not change over time
and thus have low intra-class variation, they require special
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and relatively expensive hardware to capture the image. An
important advantage of the signature over other biometric at-
tributes is its long standing tradition in many commonly en-
countered veri!cation tasks. It has been used for decades in
civilian applications while other methods (e.g., !ngerprints)
still have the stigma of being associated with criminal in-
vestigation. In other words, signature veri!cation is already
accepted by the general public. While we are unaware of any
studies that show that an individual’s signature is unique, it
is generally accepted that this is the case. Nevertheless, sig-
nature veri!cation is a di@cult pattern recognition problem
because the intra-class variations (i.e., the signature of one
individual) can be large (see Fig. 1); even forensic experts
cannot always tell whether a signature is authentic or not. In
addition, signatures are easier to forge than other biometric
attributes.

Automatic signature veri!cation can be divided into
two main areas depending on the data acquisition method:
oB-line and on-line signature veri!cation. In oB-line signa-
ture veri!cation, the signature is available on a document
which is scanned to obtain its digital image representation.
On-line signature veri!cation uses special hardware, such
as a digitizing tablet or a pressure sensitive pen, to record
the pen movements during writing. In addition to shape,
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Fig. 1. Sample signatures of three writers.

the dynamics of writing are also captured in on-line signa-
tures, which is not present in the 2-D representation of the
signature and hence it is di@cult to forge. Fig. 2 shows the
same signature twice, as it would appear scanned (oB-line)
and with the time represented along the z-axis (on-line).

Automatic signature veri!cation can be used in all appli-
cations where handwritten signatures are currently collected
such as cashing a check, signing a credit card transaction or
authenticating a legal document. The ability to capture the
signature and have it immediately available in a digital form
for veri!cation also opens up a range of new application ar-
eas. Basically, any system that uses a password or PIN can
instead use an on-line signature for access. This includes
!le and device access or secure physical entry systems. The
advantages are evident; a signature is more di@cult to steal
or guess than a password and is also easier to remember for
the user.

Fig. 3 shows the diagram of a typical signature veri!ca-
tion system. To enroll into the system, the user has to pro-
vide a set of training signatures. Typically, a feature vector
is extracted from the data which describes certain character-
istics of the signature and stored as a template. For veri!ca-
tion, the same features are extracted from the test signature
and compared to the template.

Fig. 2. OB-line versus on-line signature: (a) signature that is captured oB-line. Only spatial information is available; (b) shows the same
signature with the temporal information displayed along the z-axis.

The system implemented here uses a digitizing tablet
(IBM CrossPad) from the A.T. Cross company [2] as the
data capturing device. The IBM CrossPad has a sampling
rate of 100–150 samples per second and records the x- and
y-coordinates of the points in the signature. The pen has
a touch sensitive switch in its tip such that only pen-down
samples (i.e., when the pen touches the paper) are recorded.
Evaluating a veri!cation system requires the analysis of two
types of errors. The percentage of genuine signatures that are
incorrectly rejected by the system is called the false reject
rate or type I error. The percentage of incorrectly accepted
forgeries is called the false accept rate or type II error. The
two types of errors usually have diBerent costs associated
with them depending on the security requirements of the ap-
plication. The performance of a system is often measured
by its equal error rate, which is the point where the false
accept rate and the false reject rate are the same. A more
meaningful performance measure is the error tradeoB curve
(receiver operating characteristic curve), which shows how
one error changes with respect to the other.

2. Related work

A wide range of methods for on-line handwritten sig-
nature veri!cation have been reported, but more work has
been done on oB-line veri!cation. Depending on the signa-
ture capture device used, features such as velocity, pen pres-
sure and pen tilt are used in on-line veri!cation in addition
to spatial (derived from (x; y) coordinates) features. DiBer-
ent approaches can be categorized based on the model used
for veri!cation. Most of the approaches do a fair amount of
preprocessing before extracting features from the signature.
Features can be separated into two categories: global and lo-
cal features. Global features describe properties of the whole
signature. Examples of global features include total writing
time, bounding box or the number of strokes. (A stroke is
the sequence of points through which the pen moves while
touching the paper. A signature is usually made up of sev-
eral strokes.) Local features are properties that refer to a
position within the signature, whose examples include local
curvature and speed. The use of global features [3] alone
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Fig. 3. A typical signature veri!cation system.

has the advantage that the veri!cation time is very short,
but the error rates of algorithms that also incorporate local
features are generally lower. The most common method to
!nd the similarity between the input feature vector and the
stored template is to use some variant of the Euclidean dis-
tance. Since the number of points diBers between any two
signatures, some form of string matching [4,5] is used. Hid-
den Markov models, well known for their success in speech
recognition, have also been successfully applied to hand-
writing recognition. For signature veri!cation, a variety of
models [6,7] and features [8,9] have been evaluated. The
number of signatures captured for a user during the enroll-
ment phase varies between 6 and 20. The equal error rate
generally lies between 1% and 6%. Since there does not ex-
ist a signature database in the public domain, every research
group has collected its own data set, having between 9 and
105 individuals enrolled. This makes a comparison of dif-
ferent signature veri!cation systems a di@cult task.

3. System design

Fig. 4 shows the modules of our signature veri!cation
system. During enrollment of a new user, input to the sys-
tem is a set of training signatures produced by that user.
The training data is preprocessed and the features are ex-
tracted. This data is then saved in a database together with a
unique identi!er (ID) that is used to retrieve the signatures
during matching. In addition, a threshold on the matching
score is derived from the training data. For veri!cation, a
test signature along with the claimed writer identity is input
to the system. The same preprocessing and feature extrac-
tion methods are applied. The signature is then compared
to each of the reference (training) signatures which are re-
trieved from the database based on the writer identi!er. The
resulting diBerence values are combined and, based on the
individual threshold for the writer, the signature is accepted
as genuine or rejected as a forgery.

3.1. Preprocessing

The input signal from a digitizing tablet or digitizing pen
can be very jagged. The physical space provided for writing
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Fig. 4. Modules of a signature veri!cation system.

the signature may vary between diBerent applications and
the pen used can aBect the smoothness and the size of the
signature. A commonly used method to smooth the signature
is based on a Gaussian !lter. In order to compare the spa-
tial features of the signature, time dependencies have to be
eliminated from the representation. This is achieved by re-
sampling the signature uniformly with equidistant spacing.
Certain points in the signature, such as start and endpoints
of a stroke and points of trajectory change, carry impor-
tant information. These points, referred to as critical points,
are extracted before preprocessing and their positions are
retained throughout the resampling and smoothing process.
Temporal features must be extracted before resampling, and
then propagated to the resampled points by interpolation.
Fig. 5 shows one original signature and the output after all
the preprocessing steps.
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Fig. 5. Preprocessing of on-line signatures: (a) shows a signature before preprocessing. The sampling points are equally spaced in time;
(b) shows the same signature after preprocessing; it has been smoothed and resampled. The individual strokes are concatenated for the
subsequent matching process.
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Fig. 6. Feature computation. The features are computed at point pi; the two preceding points are pi−1 and pi−2 and the two succeeding
points are pi+1 and pi+2, respectively. The changes in the x- and y-coordinates for point pi are the changes with respect to the subsequent
point pi+1. The absolute y-coordinate is the y-coordinate of each resampled point after preprocessing. The angle � is the angle between the
x-axis and the line through points pi and pi+1. The curvature feature is the angle between the lines pipi−2 and pipi+2. The image feature
calculates nine grey values in the neighborhood of the sampling point. A 9× 9 pixel neighborhood is divided into nine 3× 3 squares and
a grey value is computed as the sum of the pixel values falling in that window.

3.2. Feature extraction

All strokes are combined into one long stroke during pre-
processing. The original number of strokes is recorded and
used as a global feature. From the x- and y-coordinates of
the preprocessed image, a number of local features are ex-
tracted which are divided into two categories, spatial and
temporal features. Spatial features are static features that are
extracted from the shape of the signature.

Local spatial features that are extracted and studied for
their saliency for signature veri!cation are: (i) the x and y

coordinate diBerences between two consecutive points, �x
and �y, (ii) the absolute y-coordinate with reference to the
center of the signature, y, (iii) the sine and cosine of the
angle with the x-axis, sin � and cos �, (iv) the curvature,
� and (v) the grey values in a 9 × 9 pixel neighborhood.
Fig. 6 shows all the spatial features.

In addition to the temporal order of the points, the speed
of the writing at local points is a valuable feature. Two
diBerent variants to extract the speed from the signature
are explored: (i) the absolute speed and the relative speed
(absolute speed normalized by the average signing speed)
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Fig. 7. Computation of speed features. The speed between two
consecutive critical points, V∗, and the speed between any two
points, V�, is calculated as the distance between those points, since
the points are equidistant in time.

at each resampled point and (ii) the absolute and relative
average speeds between two critical points. In Fig. 7 the
calculation of the speed before resampling is shown.

3.3. String matching

Once the local features are extracted from each point in
the signature, a method must be chosen to compare two
signatures. Each signature is described by a set of features
extracted at each sampling position. Thus the signature can
be represented as a string, i.e., a sequence of feature vec-
tors whose size is the number of local features extracted.
Global features are not included in this representation. String
matching, also known as dynamic time warping [10,11], is a
well-known method to compare strings of diBerent lengths.
It !nds an alignment between the points in the two strings
such that the sum of the diBerences between each pair of
aligned points is minimal. To !nd the minimal diBerence,
all possible alignments must be investigated. An e@cient
solution for this is based on dynamic programming. Our
method of string matching extends the basic approach by
adding a method of allowing strings with broken strokes to
be reconnected, while including a penalty to discourage the
matching of two strings with large diBerences in the num-
ber of strokes detected. After an alignment between the two
signatures is found, the diBerence between the number of
strokes in the two signatures is incorporated into the overall
dissimilarity measure. The formula for the overall dissimi-
larity between an input signature string (I) and a template
string (T ) is given by

Dissimilarity(T; I) =
Dist(T; I)2

Norm Factor(NT ; NI )
+ (SP)|ST − SI |;

whereDist(T; I) is the distance measure obtained after align-
ing the two strings T and I , SP is the penalty for matching
signatures with diBerent stroke counts, |ST − SI | is the dif-
ference between the number of strokes in the template and
the input strings and Norm Factor(NT ; NI ) is the maximum
possible distance between two strings of lengths NT and NI

scaled by a constant factor. This method was implemented
by Connell and Jain for handwritten character recognition
[12,13].

3.4. Veri8cation

In the veri!cation process a test signature must be com-
pared to all the signatures in the reference set (template
database). Three basic methods to combine the individual
dissimilarity values (between the input and one of the tem-
plates) into one value are investigated: (i) the minimum of
all the dissimilarity values, (ii) the average of all the dissim-
ilarity values and (iii) the maximum of all the dissimilarity
values.

After the dissimilarity value is computed, a decision re-
garding whether the signature is authentic or a forgery must
be made. For this, the result of the matching will be com-
pared to a threshold. If the dissimilarity value is above that
threshold, the signature is rejected, otherwise it is accepted.
The threshold can be chosen to be identical for all the writ-
ers or set individually for each writer.

3.4.1. Common threshold
A common threshold has the advantage that all the en-

rollment data from all the writers can be used to !nd an
optimal threshold. The dissimilarities between all the sig-
natures of all the writers who are enrolled into the system
are computed and a threshold value is selected based on the
minimum error criterion.

3.4.2. Writer-dependent threshold
To adapt the veri!cation process to the properties of a

single writer, writer-dependent thresholds should be used.
In principle, a writer-dependent threshold can be derived
only from that writer’s enrollment data. However, to reliably
estimate the writer-dependent threshold, more enrollment
data than usually available are necessary. To circumvent
this, one starts with a common threshold and then modi!es
it for each writer by adding a writer speci!c component.
Three choices to calculate the writer speci!c component
from the reference set are investigated: (i) the minimum
distance between all the references, (ii) the average distance
between all the references and (iii) the maximum distance
between all the references.

4. Experimental results

The proposed method has been implemented and evalu-
ated with 1232 signatures from 102 diBerent writers. Two
datasets, called DB1 and DB2, are used for evaluation. The
!rst dataset, DB1, contains 520 signatures from 52 writers,
approximately one-!fth female. Each writer was asked to
contribute ten signatures. These signatures were collected
in one session. Additionally, for 20 writers three forgeries
each were collected from individuals who were shown the
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Fig. 8. Example signature from writers who contributed data over a period of 1 yr. The top signature in each column shows a sample
from the !rst acquisition, the second row contains samples of signatures taken approximately eight months later and the last row contains
signatures collected approximately 1 yr after the !rst acquisition. Writer C did not contribute any signature after eight months.

Table 1
Datasets for signature veri!cation (DB1 ⊂ DB2)

Dataset Number Number of Total Total
of writers signatures number of Number of

per writer signatures forgeries

DB1 52 10 520 60
DB2 102 10–42 1232 60

original signature before being asked to produce the forg-
eries. No signatures from professional imitators are avail-
able, therefore these 60 forgeries will be called skilled forg-
eries. The second database, DB2, contains a total of 1232
signatures collected from 102 writers and is a superset of
dataset DB1. Seventeen of these writers contributed more
than ten signatures, which were collected in multiple ses-
sions over a period of up to 1 yr. Fig. 8 shows some exam-
ples from these writers. Table 1 summarizes the data used.
Fig. 9 shows sample signatures of four writers.

Forgeries are classi!ed into random or zero-eBort forg-
eries and skilled forgeries. For a random forgery, the forger
has either no knowledge about the original signature or does
not try to imitate the shape of the signature. Since only a
limited number of forgeries exist in our database, authentic
signatures from other writers serve as random or zero-eBort
forgeries.

4.1. Feature selection

For on-line handwriting recognition, several diBerent fea-
ture sets have been evaluated in Ref. [14]. To see if these
features are also applicable to on-line signature veri!cation,
each feature combination is !rst evaluated on our smaller
database DB1. To evaluate the discriminative potential of
the feature sets, every signature of every writer is compared
to all the other signatures. The resulting dissimilarity value
should be low for two signatures from the same writer and
high for two signatures of diBerent writers. Table 2 shows
the results for the best feature subset consisting of the fea-
tures �x; �y; sin � and cos �. The fourth column of this ta-
ble gives the percentage of time the signatures from the
same writer diBer by more than the threshold shown in col-

Fig. 9. Sample signatures of four writers. Writer D’s signature has
large intra-class variability. Note that in the second signature of
writer D, the !rst name is missing almost completely because the
writing pressure was not su@cient to record the signal.

umn three. Column !ve reports the percentage of time the
diBerence between signatures of two diBerent writers is
below the threshold. The threshold is selected such that
these two percentages are approximately equal. The lower
half of Table 2 shows the results when the thresholds are in-
dividually selected for each writer. The results for the forg-
eries are not considered to be of much statistical relevance,
since only a total of 60 forgeries are available.

The best feature subset consisting of the spatial features,
�x, �y, sin � and cos �, is combined with diBerent tempo-
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Table 2
Performance of two diBerent feature subsets on DB1

Feature Type of Threshold Percentage of genuine Percentage of forgery
subset forgery (TH) values above TH (%) values below TH (%)

Common threshold
�x; �y; sin �; cos � Genuine 3.9 9.4 9.5

Skilled 3.3 11.4 11.6
Writer-dependent thresholds
�x; �y; sin �; cos � Genuine 0.5–45.3 3.6 3.5

Skilled 0.5–8.5 4 4.2

Table 3
Performance improvement using temporal features with writer-dependent thresholds on DB1

Speed feature Type of forgery Threshold Percentage of genuine Percentage of forgery
(TH) values above TH (%) values below TH (%)

Absolute speed Random 2–20 3.4 3.5
Skilled 2–19 3.7 3.8

Normalized speed Random 1.5–20 2.6 2.7
Skilled 1.8–15 2.5 2.4

Absolute speed Random 4–19 2.5 2.6
between critical Skilled 4–20 2.3 2.3
points

Normalized Random 1.5–13 2.7 2.6
speed between Skilled 2.5–17.5 2.5 2.6
critical points

Table 4
Equal Error rates for diBerent preprocessing methods and diBerent number of reference signatures, and diBerent methods for computing the
dissimilarity value between the test signature and the reference set on DB1

Preprocessing Features No. of Type of Equal error rate
reference forgeries
signatures Min. Avg. Max.

(%) (%) (%)

Smoothing �x, �y 3 Random 3 1.9 5.5
Resampling (8) sin �, cos � Skilled 11 11.2 16
Stroke concatenation 5 Random 2.7 1.1 5.8

Skilled 12 6.6 16
Smoothing �x, �y 3 Random 5.2 2.9 6.2
Resampling (8) sin �, cos � Skilled 11 12 17
Stroke concatenation 5 Random 6 3.9 9.5
Size normalization Skilled 13 12 20

ral or speed features. Each of these speed features has been
added to the “optimal” spatial feature set resulting in a fea-
ture vector of dimensionality !ve. The results of the vari-
ous combinations using writer-dependent thresholds can be
found in Table 3. While using the speed between all sam-
pling points, the relative speed gives better results than the
absolute speed. If we consider only the speed between crit-
ical points, the opposite is true; the absolute speed gives
(slightly) better results (Table 4).

4.2. Threshold selection

In the previous section the discriminatory potential
of diBerent feature sets was investigated. To derive the
error rates for the system, a set of sample signatures,
called the reference set, must be chosen and compared
to the database signatures. The reference signatures are
drawn randomly from the available data. Reference sets
of size three and !ve are evaluated. This process is
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Fig. 10. The test signature on the right-hand side is compared to each of the three reference signatures shown on the left-hand side. Each
comparison results in a dissimilarity value. The !nal dissimilarity value for each method using minimum, average and maximum operator,
is shown.

Table 5
Error rates for a common threshold and the individual (writer-dependent) thresholds. The results are obtained with dataset DB2. Thresholds
are chosen such that FAR and FRR are as close to each other as possible

Features Type of Common TH Individual TH
forgeries

FRR (%) FAR (%) FRR (%) FAR (%)

�x, �y, Random 5.6 4.3 1.7 1.6
sin �, cos � Skilled 11.3 8.9 0.5 0.4

�x, �y, Random 5.4 3.8 1.5 1.6
sin �, cos �, Skilled 11 10.6 0.5 0.4
Absolute speed

�x, �y, Random 3.3 2.7 1.3 1.2
sin �, cos �, Skilled 7.9 10.3 1.2 0.6
Normalized speed

�x, �y, Random 3.2 3.5 0.6 0.6
sin �, cos �, Skilled 3.3 4.7 n=a n=a
Absolute speed
at critical points

�x, �y, Random 3.5 3.1 1.5 1.4
sin �, cos �, Skilled 9.2 5.3 1.2 0
Normalized speed
at critical points

repeated 20 times on diBerent randomly selected reference
sets.

4.2.1. Common threshold
A signature is accepted or rejected based on its dissim-

ilarities to the signatures in the reference set. Three diBer-
ent methods to combine the dissimilarity values from the
comparison of the test signature with the reference set are
investigated: the minimum, the average and the maximum
dissimilarity value. Fig. 10 demonstrates how the combined
dissimilarity value is obtained using three reference signa-
tures. It can be seen that the minimum value yields the best
error rates. Note that in using the minimum value, only the

most similar reference signature is involved in the decision
making process. For the evaluation of the various speed fea-
tures, only the minimum distance is considered. Table 5
shows the results. The error tradeoB curves using database
DB2 are shown in Fig. 11. For both types of forgeries, the
false accept rate increases rapidly when the false reject er-
ror is reduced. Similarly, a slight increase in false rejects
reduces the false accept rate by a signi!cant amount.

4.2.2. Writer-dependent threshold selection
The writer-dependent threshold values are found empir-

ically. The same range of potential thresholds is evaluated
and the best (i.e., the one yielding (approximately) equal
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Fig. 11. Error tradeoB curves for a common threshold using only the spatial feature set on DB2: (a) Error tradeoB curve for random forgeries;
(b) Error tradeoB curve for skilled forgeries.

Table 6
Error rates for automatic writer-dependent threshold selection in-
corporating speed features. The results are obtained with dataset
DB2. Only the enrollment data was used to obtain the thresholds
and the remaining data was used to estimate the error rate

Feature set: local FRR Random Skilled
spatial features and (%) forgery forgery

FAR (%) FAR (%)

None 5.3 2.7 2.9
Absolute speed 4.0 1.3 10.1
Normalized speed 3.5 1.3 16.9
Absolute speed at 2.8 1.6 n=a

critical points
Normalized speed at 3.9 1.1 7.5

critical points

values for the false accept rate and false reject rate) thresh-
old is chosen. This result is “ideal” in the sense that it rePects
the best rates that can be achieved (see tables) by adjusting
the threshold value using all the available signatures for a
given user. The goal of every automatic threshold selection
method must be to come as close as possible to these val-
ues. The three methods chosen to calculate the thresholds
are the minimum, maximum and average dissimilarity val-
ues between the test signature and the reference set plus a
user dependent oBset. The oBset depends on the feature set
and must be determined empirically. From preliminary ex-
periments reported in Table 5 it could be seen that the min-
imum value results in the lowest error rates. Table 6 shows
the results for the feature sets incorporating various writing
speed measures in addition to the local spatial features: �x,
�y, sin � and cos �. The results reported in Table 6 are ob-
tained when only the enrollment data was used to obtain the
thresholds and the rest of the data was used for testing. The
threshold used is the combination of a global threshold and

an oBset calculated for each writer. This combined threshold
can be altered to change the operating point of the system
according to the needs of the application.

5. Conclusions and future work

A system for on-line signature veri!cation has been im-
plemented. The best results for a common threshold are ob-
tained with the feature set consisting of the local features
�x, �y, sin �, cos �, the relative speed between all sampling
points and the number of strokes as a global feature. The
best error rates for a common threshold are 3.3% false re-
jects and 2.7% false accepts. Writer-dependent thresholds
are computed from the reference signatures. All the refer-
ence signatures are matched with each other. The best fea-
ture set for writer-dependent thresholds consists of the abso-
lute speed between critical points as the speed feature. Us-
ing the minimum dissimilarity value plus a user dependent
oBset results in 2.8% false rejects and 1.6% false accepts.

It is still an open question as to how the reference set
should be updated. The signature of an individual usually
changes over time, so a deterioration of the veri!cation rates
can be expected if the reference set remains !xed. One pos-
sibility would be to ask the user to periodically provide new
reference signatures. This would also ensure that no forged
signatures are used for updates. An automatic update sys-
tem would be most comfortable for the user. Here the choice
must be made regarding which current reference signature
should be updated with the new reference. A simple choice
would be to always replace the oldest signature !rst. More
sophisticated methods that incorporate the use of dissimi-
larity values to the other reference signatures for that signer
should be taken into consideration.

Our signature database does not contain any data from
skilled forgers. It is still unclear how such data should be col-
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lected. The results would be more valuable if true forgeries
that imitate the shape of the original signature were avail-
able. Evaluations of human performance on distinguishing
such a set of forgeries from the true signatures could provide
a baseline for system performance evaluation.

Finally, more signatures must be collected and over a
longer period of time. The current test database, consisting
of signatures from 102 writers, is at most representative of
an application appropriate for a small organization. Larger
organizations or applications that use signature veri!cation
for their clients will have a much larger signature database
and the scalability of our system needs to be investigated.
Studies on how signatures change over time, and how well
our system will handle these changes need to be conducted.
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