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ABSTRACT 
 
Scars, marks and tattoos (SMT) are being increasingly used 
for suspect and victim identification in forensics and law 
enforcement agencies. Tattoos, in particular, are getting 
serious attention because of their visual and demographic 
characteristics as well as their increasing prevalence.  
However, current tattoo matching procedure requires 
human-assigned class labels in the ANSI/NIST ITL 1-2000 
standard which makes it time consuming and subjective with 
limited retrieval performance. Further, tattoo images are 
complex and often contain multiple objects with large intra-
class variability, making it very difficult to assign a single 
category in the ANSI/NIST standard. We describe a content-
based image retrieval (CBIR) system for matching and 
retrieving tattoo images. Based on Scale Invariant Feature 
Transform (SIFT) features extracted from tattoo images and 
optional accompanying demographical information, our 
system computes feature-based similarity between the query 
tattoo image and tattoos in the criminal database. 
Experimental results on two different tattoo databases show 
encouraging results.  
 

1. INTRODUCTION 
 
A wide variety of biometric systems have been developed 
for automatic recognition of individuals based on their 
anatomical (e.g., fingerprint, face, and iris) and behavioral 
(e.g., signature and gait) characteristics [1]. Among these 
biometric modalities, fingerprint is one of the most popular 
and successful traits with over one hundred years of history, 
particularly in law enforcement and forensics. The success 
of fingerprint matching in forensics has also lead to its 
widespread use in various government identification 
applications like the US-VISIT program, the Transaction 
Workers Identification Credentials (TWIC) program, and 
the Registered Traveler (RT) program [2]. 

Despite the tremendous progress in automatic fingerprint 
recognition, (see NIST Fingerprint Vendor Technology 
Evaluation, FpVTE, [3]), there are still situations where 
fingerprints alone are not able to identify a person with 

sufficient confidence. This is especially true when the 
fingerprint image quality is poor and the acquired image is 
only partial, as in the case of latent fingerprints. This is one 
of the main motivations for the Next Generation 
Identification (NGI) System being developed by the FBI [4]. 
The NGI system will utilize additional biometric modalities, 
such as face, palmprints, and iris to augment evidence 
provided by fingerprints. Another noticeable fact is that the 
NGI system will not only include the primary biometric 
traits, i.e., fingerprints, palmprints, face and iris, but also 
automate the matching of soft biometric traits, i.e., scars, 
marks, and tattoos (SMT). This highlights the awareness and 
importance of utilizing ancillary information in recognizing 
an individual. There are many situations where primary 
biometric traits are either corrupted or no longer available, 
and the soft biometric information is the only available clue 
to identify a person. 

Soft biometric traits are characteristics that provide some 
identifying information about an individual, but lack the 
distinctiveness and permanence to sufficiently differentiate 
any two individuals [5]. Examples of soft biometrics traits 
include a person’s height, weight, gender, eye color, 
ethnicity, and SMT [5]. Although these soft biometric traits 
are not sufficient to uniquely differentiate a person, they do 
contain certain information about the person to help narrow 
down his identity. This is the reason that many law 
enforcement agencies collect and maintain this information 
in their databases. As an example, the FBI booking card 
includes a suspect’s demographic information, such as 
height, weight, age, gender, etc. in addition to the primary 
biometric information, i.e., fingerprints. In particular, the 
booking card also includes prominent scars, marks, and 
tattoos if present on a subject.  

Scars, marks, and tattoos (SMT) are imprints on skin that 
have been shown to be useful by law enforcement agencies 
for identification of a non-skeletalized body of a victim or a 
suspect using a false identity. SMT provide more 
discriminative information than the traditional demographic 
indicators such as age, height, gender, race, and gender to 
identify a person. People get tattoos in order to be identified 
as distinct from others, to display their personality,
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or to exhibit a membership in a group. Hence, presence of 
tattoos often leads to more comprehensive understanding of 
the person’s background and beliefs. 
 
1.1. Tattoos 
 
People have used tattoos for over 5,000 years to differentiate 
themselves from others [6]. Until recently, the practice of 
tattooing was limited to particular groups, such as motor 
bikers, sailors, and members of criminal gangs. But, now 
tattoos are no longer associated with such unsavory 
reputations and, as a result, the size of the tattooed 
population is rising rapidly. The rising popularity of tattoos 
amongst the younger section of the population is even more 
surprising. A study published in the Journal of the American 
Academy of Dermatology in 2006 reported that about 36% 
of Americans in the age group 18 to 29 have at least one 
tattoo [7]. 

Tattoos engraved on the human body have been 
successfully used to assist in human identification in 
forensics applications (see Fig. 1). This is not only because 
of the increasing prevalence of tattoos, but also due to their 
impact on other methods of human identification such as 
visual, pathological, or trauma-based identification [8]. 
Tattoo pigments are embedded in the skin to such a depth 
that even severe skin burns often do not destroy a tattoo; 
tattoos were used to identify victims of the 9/11 terrorist 
attacks [9] and the Asian tsunami in 2004 [10]. Criminal 
identification is another important application, because 
tattoos often contain hidden meaning related to a suspect’s 
criminal history, such as gang membership, religious beliefs, 
previous convictions, years spent in jail, etc. [11] (see Fig. 
2). In addition, a study by Burma [12] suggested that 
delinquents are significantly more likely to have tattoos than 
non-delinquents. 

Law enforcement agencies routinely photograph and 
catalog tattoo patterns for the purpose of identifying victims 
and convicts (who often use aliases). The ANSI/NIST ITL 
1-2000 standard [13] defines eight major class labels, e.g., 
human face, animal, and symbols, and 80 subclass labels for 
categorizing tattoos (Figures 3 and 4). A search involves 
matching the class label of a query tattoo with labels 
associated with tattoos in a database [14]. This tattoo 
matching process based on human-assigned class labels is 

subjective, has limited performance, and is very time-
consuming because of the following characteristics of tattoo 
images.  (i) Tattoo images are often composed in terms of 
multiple objects and cannot be classified into simple 
categories contained in the ANSI/NIST standard, (ii) a class 
label (e.g., “flag”) does not capture the detailed semantic 
information available in tattoo images, (iii) tattoo images 
have large intra-class variability (see Fig. 5), and (iv) the 
classes defined in the ANSI/NIST standard are not adequate 
to describe an ever-increasing variety of new tattoo designs. 
 
 
 
 
 
 
 

 
 

  
2. CONTENT-BASED TATTOO IMAGE RETRIEVAL 
 
Due to advances in sensors, storage capabilities, and Web 
technologies, there has been a tremendous growth in the 
number of digital images that are readily accessible to 
consumers and organizations.  Flickr, a well-known photo 
sharing website, reported that there are more than one 
million new images uploaded to it every day [15]. Users are 
becoming increasingly interested in capturing and searching 
for images because of the widespread use of digital cameras 
and the availability of image retrieval systems, such as 
Google Image and Yahoo! Image Search [16,17].  

Early image retrieval techniques were based on the 
textual annotation of images, similar to what is practiced 
now by the law enforcement agencies for retrieving tattoo 
images. In this approach, images are first annotated with 
textual keyword(s) and then retrieved using text-based 
search methods [18]. However, since automatically 
generating keywords for a wide spectrum of images is not 
yet feasible, most text-based image retrieval systems require 
manual annotation of images. This manual annotation is 
cumbersome, expensive, subjective, and incomplete, 
especially for large databases. Further, a list of keywords has 
to be agreed upon before tagging the images as done in the 
ANSI/NIST-ITL 1-2000 standard for tattoo images 
mentioned earlier. These shortcomings led to the 
development of Content-based image retrieval (CBIR) 
techniques to simplify and improve both the accuracy and 
speed of image retrieval. 

The goal of CBIR is to extract the visual content of an 
image such as its color, texture, shape of the objects 
contained in it, and spatial layout to represent and index the 
image. No explicit keywords are assigned to the image. It is 
widely recognized that such descriptors in terms of image 
attributes are more salient and intuitive to express the visual 

Fig. 2. Examples of well-known gang tattoos: (a) Ambrose, (b) 
Adidas boys, (c) Brazers, and (d) Latin kings [11] 

       (a)                      (b)                      (c)                     (d)

Fig. 1. Examples of tattoo used for victim and suspect 
identification: Tattoos on (a) an Asian Tsunami victim and (b) 
unidentified murdered woman; (c) a prison tattoo (teardrop) and 
(d) Texas-syndicate gang tattoo  

        (a)                      (b)                      (c)                    (d)
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information than simple keywords. However, even though a 
large number of image retrieval systems have been 
developed and some are commercially available, the 
performance of these systems still needs substantial 
improvement. “Because there is little connection between 
pixel statistics and the human interpretation of an image (the 
"semantic gap") the use of large number of generic features 
makes highly likely that results will not be scalable, i.e. they 
will not hold on collections of images other than the ones 
used during the development of the method” [19]. Needless 
to say, there have been many attempts to compensate for the 
semantic gap, such as relevance feedback approach 
[20,21,22,23], learning-based approaches [21,24], salient 
feature matching [25], composite querying methods [26,27, 
28] and probabilistic approach [29,30]. But the retrieval 
performance of general purpose CBIR systems is still not 
very satisfactory.  

Compared to the common CBIR formulation, we see the 
CBIR problem with a different perspective. What if, a user 
specifically knows what image he is looking for and 
provides an image as an example? For example, instead of 
searching for some historical or governmental buildings, the 
user wants to find different instances (images) of the White 
House and provides a picture of the White House as a query. 

Obviously, the concept of “visually similar” (as opposed to 
“semantically similar”) image retrieval narrows the semantic 
gap dramatically. This is indeed a well known and active 
research topic in document and information retrieval 
community known as known-item retrieval [31,32,33]. In 
this task, the user knows of a particular item that he is 
looking for, but does not know where it is in the database. 
This formulation perfectly fits the tattoo image retrieval 
problem because the goal of the system is to retrieve all 
visually similar tattoo images.  

We present here a CBIR system for tattoo images. Given 
a query tattoo image, we wish to retrieve all visually similar 
tattoo images that are in the database. As in other image 
retrieval systems, top-N (say, N=20) most similar images are 
retrieved and presented to the user. If the user wishes to see 
additional retrievals, the system will retrieve the next N-
most similar images from the database, and so on. The “user 
feedback” or “preference” based on retrieved images could 
be used to improve both the feature extraction as well as the 
similarity measure used in the matching module. As 
mentioned earlier, textual information, such as class and 
subclass labels, is used to annotate and retrieve tattoo 
images in forensics community. To keep our system 
compatible with the current practice in law enforcement, a 
user can specify both the tattoo image and its category 
information as part of the query (see Fig. 6). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Tattoo classes defined in ANSI/NIST-ITL 1-2000 [13]

Fig. 5. Illustration of large intra-class variability in tattoo images. 
All the four images shown here belong to the Flag category 

      (a)                      (b)                      (c)                      (d)                       (e)                     (f)                        (g)                      (h) 
Fig. 3. Sample tattoos from the eight major classes in the ANSI/NIST ITL 1-2000 standard (a) Human, (b) Animal, (c) Plant, (d) 
Flag, (e) Object, (f) Abstract, (g) Symbol, and (h) Other  

Fig. 6. Tattoo Image Retrieval System 
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3. TATTOO IMAGE RETRIEVAL SYSTEM 
 
To our knowledge, very little work has been done on CBIR 
systems for tattoo images. Our previous work used low-level 
image features (color, shape and texture) to represent and 
match tattoo images [34]. To improve this system’s 
performance, we designed a rank-based distance metric 
learning approach [35]. Although metric learning improved 
the rank-1 retrieval accuracy by ~4%, it is clear that we need 
to introduce additional features to drastically improve the 
matching performance. In this paper, we introduce invariant 
image features based on the Scale Invariant Feature 
Transform (SIFT) [36] for tattoo image retrieval.  
 
3.1. SIFT features 
 
Scale Invariant Feature Transform (SIFT) extracts 
repeatable characteristic feature points from an image and 
generates descriptors representing the texture around the 
feature points [36]. These feature points are invariant to 
image scale and rotation, and are shown to provide robust 
matching across a substantial range of affine distortion, 
change in 3D viewpoint, addition of noise and change in 
illumination. A brief description of the SIFT operator is 
provided below and more detailed description of this 
transform can be found in Lowe [36]. 
 
3.1.1. Scale Space Construction  
The first step of feature points, i.e., keypoint, detection is to 
identify locations and scales that can be repeatably assigned 
under differing views of the same object. Finding scale 
invariant locations is performed by function that searches for 
stable features across different scales. The scale space of an 
image is defined as a function, L(x,y,σ), that is obtained by 
convolvung a variable-scale Gaussian, G(x,y,σ), with an 
input image, I(x,y):  

 
( , , ) ( , , ) ( , )L x y G x y I x yσ σ= ∗  

 
where * is the convolution operation in x and y, and 
 

2 2 2( ) / 21( , , ) .
2

x yG x y e σσ
πσ

− +=  

To detect stable keypoint locations in scale space, the 
difference-of-Gaussian (DoG) function convolved with the 
image D(x,y,σ) is computed from the difference of two 
nearby scales separated by a constant multiplicative factor k 
as in 
 

( , , ) ( ( , , ) ( , , )) ( , )D x y G x y k G x y I x yσ σ σ= − ∗  
                            ( , , ) ( , , ).L x y k L x yσ σ= −  
 

The DoG function is a close approximation to the scale-
normalized Laplacian of Gaussian, 2 2Gσ ∇ . It is known that 
the maxima and minima of 2 2Gσ ∇ produce the most stable 

image features compared to a range of other possible image 
functions, such as the gradient, Hessian, or Harris corner 
function. The set of Gaussian smoothed images and DoG 
images is called an octave. A set of such octaves is 
constructed by successively down sampling the original 
image. Our system uses four different octaves and six 
different scales for SIFT. 
 
3.1.2. Local Extrema Detection 
In order to detect the local maxima and minima of D(x,y,σ), 
each sample point is compared to its eight neighbors in the 
current image and nine neighbors in the scale above ad 
below. It is selected if it is larger than all of the neighbors or 
smaller than all of them. The cost of this check is reasonably 
low due to the fact that most sample points will be 
eliminated following the first few checks. 
 
3.1.3. Accurate Keypoint Localization 
Once a keypoint candidate has been found by scale-space 
extrema detection, the next step is to perform a detailed fit to 
the nearby data for location, scale, and ratio of principal 
curvatures. This information allows us to reject points that 
have low contrast (and are therefore sensitive to noise) or 
poorly localized along an edge. Fig. 7 shows examples of 
these feature points in three different tattoo images. 
  
3.1.4. Local Image Descriptor Assignment 
A 16×16 window is used to generate a histogram of gradient 
orientation around each local extremum. To make the 
descriptor rotation invariant, all gradient orientations are 
rotated with respect to the major orientation of the local 
extremum.  
 
3.1.5. Keypoint Matching 
Matching is performed by comparing keypoints in two 
images based on the associated descriptors using the 
Euclidean distance metric. We use the number of matching 
keypoints as the matching score between two images (see 
Fig. 8). 
 
 
 
 
 
 
 
 

    
 
 
 

Fig. 7. SIFT feature points in tattoo images 

     (a) 87 matching points                (b) 3 matching points 
Fig. 8. Two matching examples with the number of matching key 
points between a pair of (a) similar and (b) different tattoo images 
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3.2. Tattoo Image Databases 
 

Two different tattoo image databases were used to evaluate 
our system. One is a set of tattoo images downloaded from 
the Web and the other is an operational tattoo image 
database provided by the Michigan Forensics Department.  
 
3.2.1.Web-DB: Web-downloaded Tattoo Image Database  
We first tested our system on a set of 4,323 tattoo images 
downloaded tattoo from the Web. This database is called 
Web-DB, [10,37]. These 90×90 color images belong to eight 
main classes and 30 subclasses as defined in the ANSI/NIST 
ITL 1-2000 standard [13]. Tattoo images in operational 
scenarios are often captured under non-ideal conditions 
(e.g., by a surveillance camera). Hence, multiple acquisition 
of the same tattoo may appear different because of the 
imaging conditions, such as brightness, viewpoint, and 
distance (see examples in Fig. 9). Nevertheless, tattoos in 
these images are visually similar and a tattoo image retrieval 
system should be invariant to these imaging conditions. To 
simulate the realistic imaging conditions, we classify the 
resulting image transformations into blurring, affine, 
changes in illumination, color, aspect ratio, and rotation. 
Figures 10 (b)-(g) show examples of transforming a tattoo 
image in 11(a). For each tattoo image in the Web-DB 
database, 20 transformed images are generated by applying 
transforms with two different intensities of blurring and 
illumination, four different affine transformations, four 
different aspect ratios, four different rotations, and four 
different color changes. This results in a total of 86,460 
transformed or synthesized images of 4,323 original tattoo 
images. 
 
3.2.2.MI-DB: Michigan State Police Tattoo Database 
Michigan police department has been capturing tattoo 
images of suspects and convicts for over ten years.  Tattoos 
are photographed when a suspect/convict is booked, is 
assigned a keyword as defined in the ANSI/NIST standard 
and then stored in the database along with other 
demographic information. We were provided with 69,507 
operational tattoo images (640×480 color images). We call 
this database MI-DB.  

We first examined the quality of tattoo images in MI-DB 
and classified them into three different classes, good, bad, 
and ugly (same quality designations have been used for 
latent fingerprints in which are currently used for one of 
public fingerprint databases, NIST SD27). MI-DB database 
contains ~65% good, ~27% bad, and ~8% ugly quality 
tattoo images. The bad or ugly quality of tattoo images is 
mostly due to the small size of the tattoo or because the 
tattoo has faded over time. We also that ~20% of the images 
in the database are copies of the same tattoo. These copies 
are present because the same person may have been booked 
multiple times, or different suspects/convicts have the same 
tattoo. Because the imaging conditions of those copies are 

different from each other (see Fig. 9), there is no need to 
generate the synthetic transforms of the tattoos in this 
database to simulate different imaging conditions.  

In order to use the operational tattoo images, we needed 
two preprocessing steps, i.e., cropping the tattoo and 
assigning a keyword to each tattoo. Because the images in 
the MI-DB contain, in addition to the tattoo, person’s 
clothing, full arm, back torso, etc., cropping the tattoo from 
the background is necessary. We also manually tagged the 
tattoo images with keywords defined in the ANSI/NIST 
standard. The images in the database belong to eight main 
classes and 80 subclasses as defined in the ANSI/NIST 
standard. The manual annotating is a time consuming 
process, our goal here is to demonstrate the advantages of 
image based matching over keyword-based retrieval. In 
contrast to practice in law enforcement, where only one 
keyword is assigned per image, we assign each tattoo with 
multiple keywords because in many instances, there are 
indeed multiple “objects” in a tattoo. 
 

4. EXPERIMENTAL RESULTS 
 
To evaluate the retrieval performance of our system, one of 
the copies of the same tattoo is used as a query image to 
retrieve its visually similar image(s) in the database. For 
Web-DB, we set up an experimental scenario to mimic the 
situation where the query tattoo images from 
victims/suspects are of less than perfect quality (distorted, 
noisy, blurred and occluded). Because the images in the 
database are supposed to have been collected under 
controlled conditions at booking time, they are assumed to 
be of higher quality. We simulate this low-quality query 
situation by applying the image transformations to the high 
quality images downloaded form the web (see Figures 9 and 
10). As a result, for the Web-DB, the number of query 
images is 86,460 and the number of images in the gallery 
database is 4,323. A retrieved image is deemed to be 
relevant or correct when the query image was generated 
from the retrieved image via one of the specified image 
transformations. On the other hand, because MI-DB already 
contains many copies of the same tattoo, we use one of the 
copies as a query image and aim to retrieve other image(s) 
of the same tattoo. We used 500 queries against 11,000 
randomly selected from the MI-DB to perform the retrieval 
experiment on MI-DB. Since our system aims to retrieve the 
correct image at the top rank, we adopted the cumulative 
matching characteristic (CMC) curve [38] as the evaluation 
metric. 

Fig. 11 shows the retrieval performances based on SIFT 
features proposed here and low-level image features (color, 
shape, and texture) reported in [34]. Using SIFT features on 
Web-DB, the rank-1 retrieval accuracy is ~97.1% and the 
rank-20 retrieval accuracy is ~98.6%. The corresponding 
accuracies reported in [34] are ~68.6% and ~82.5%, 
respectively. Note that the experiments in [34] were
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conducted on only a subset (approximately half) of the 
database used here. This shows that SIFT features are 
salient and robust in capturing the tattoo image content. 
SIFT features are particularly effective in processing 
query images that are blurred and have uneven 
illumination, which were found to be the most difficult 
cases for the system in [34]. For example, only 67% of 
blurred and 42% of illumination change queries appeared 
in top-20 retrievals in [34], but using SIFT features, these 
accuracies were increased to 94% and 92%, respectively. 
Only severely transformed images that were hardly 
recognizable to a human eye as a tattoo were not correctly 
retrieved (see Fig. 12). 

While SIFT feature showed high retrieval accuracy on 
Web-DB, its substantially lower retrieval performance on 
MI-DB,  ~31.9% at rank-1 and ~77.2% at rank-20, reveals 
limitations of current approach in using SIFT feature. 
First, current matching produces many false matches if 
there is a big size difference between the two images. 
Because the number of extracted keypoints is proportional 
to the image size, the difference in the numbers of 
keypoints extracted between two very different sized 
images could be rather large. The possibility of false 
matches in this case is, therefore, much higher than that of 
between two similar sized images. Further, SIFT-based 
matching allows multiple matches, i.e., several keypoints 
in a query image could be matched to a single keypoint in 
the gallery image, leading to many false matches (see Fig. 
13.). There is also large variance in image size in the MI-
DB, which makes the retrieval problem difficult using 
SIFT feature directly.  
 

5. CONCLUSIONS AND FUTURE WORK 
 
We have presented a CBIR system for tattoo images. With 
the growing use of tattoos for victim and suspect 
identification in forensics and law enforcement agencies, 

such a system will be of great value in apprehending 
suspects and identifying victims. We introduced image 
similarity computation based on SIFT features. Our 
experiment results show rank-20 retrieval accuracies of 
98.6% on a good quality database (Web-DB) and 77.2% 
on an operational database (MI-DB). For Web-DB, the 
average execution time for feature extraction is 0.0005 
sec/image and the average matching time between an 
image pair is 0.005 sec on Intel Core 2, 2.66 GHz, 3 GB 
RAM processor. Since the images in MI-DB are usually 
much bigger than in Web-DB, feature extraction (0.0023 
sec/image), and matching (0.3255 sec/image pair) take 
longer time on the same machine.  

Although the difference between the number of 
matching keypoints between rank 1 and rank 2 retrieved 
images is quite large in the case of Web-DB (~34), this 
difference is very small for the MI-DB (~11). This 
indicates a need to utilize additional features and refine 
our similarity measure to handle difficult and challenging 
images encountered in an operational database. We plan 
to introduce some constraints among the matching points 
to delete many of the false multiple matchings. Further, 
we will utilize color information in the neighborhood of 
matching points to improve the retrieval performance. 

 

 

Fig. 10. Examples of image transformations: (a) original and variations due to (b) blurring, (c) illumination change, (d) color component 
changes, (e) affine transformation, (f) aspect ratio change, and (g) rotation 

            (a)                        (b)                         (c)                        (d)                      (e)                       (f)                        (g) 

Fig. 11. CMC curves comparing the retrieval performances 
based on SIFT features (Web-DB and MI-DB) and low-level 
image features (Web-DB only) 

Fig. 9. Examples of tattoo copy images in the Michigan Police database. Three tattoos each in (a), (b), and (c) are copies of the same 
tattoo.  These tattoo copy images were captured at different times 

                           (a)                                                                  (b)                                                              (c) 

978-1-4244-2567-9/08/$25.00 ©2008 IEEE 



    
 
 
 

 
 

 

      
 
 
 
 
 
 

ACKNOWLEDGEMNET 
 

The authors would like to thank Scott Swan, FBI and Lt. 
Gregory Michaud, Michigan Forensics Laboratory for 
their encouragement and assistance. This research was 
supported by NSF IUC on Identification Technology 
Research (CITeR) and Army Research Office. 
 

6. REFERENCES 
 
[1] A. K. Jain, P. Flynn, and A. Ross (eds.), Handbook of 
Biometrics, Springer, 2007. 
 
[2] Biometrics Overview, http://www.biometrics.gov/ Document 
s/BioOverview.pdf 
 
[3] Fingerprint Vendor Technology Evaluation, http://fpvte.nist 
.gov/ 
 
[4] Press Release, FBI, http://www.fbi.gov/pressrel/pressrel08/ 
ngicontract021208.htm 
 
[5] A.K. Jain, S.C. Dass and K. Nandakumar. Can soft biometric 
traits assist user recognition? In Proc. SPIE Conf. Biometric 
Technology for Human Identification, 2004 
 
[6] A Brief History of Tattoos, http://www.designboom.com/his 
tory/tattoo_history.html 
 
[7] Tattoo Facts and Statistics, http://www.vanishingtattoo.com 
/tattoo_facts.htm, Oct. 2006, 
 
[8] T. Thompson and S. Black. Forensic Human Identification, 
An Introduction. CRC Press, 2007. 
 

[9] E. Lipton, and J. Glanz. Limits of DNA Research Pushed to 
Identify the Dead of Sept. 11, NY Times, Apr. 22, 2002 
 
[10] Decay challenges forensic skills, The Standard-Times, Jan. 
8. 2005.  
 
[11] Gang Ink, http://www.gankink.com/ 
  
[12] J. H. Burma. Self-tattooing among delinquents: A research 
note. Sociology and Social Research, Vol. 43, pp. 341–345, 
1959. 
 
[13] ANSI/NIST-ITL 1-2000, Data Format for the Interchange 
of Fingerprint, Facial, & Scar Mark & Tattoo (SMT),  
 
[14] GangNet: A 21st Century Solution to the Gang Problem, 
Dec. 2006 http://psd.orionsci.com/Products/Gangnet.asp 
 
[15] Geotagging - one day later http://blog.flickr.com/flickrblog 
/2006/08/geotagging_one_.html  (August 29, 2006)  
 
[16] Google Image, http://images.google.com/imghp 
  
[17] Yahoo Image, http://images.search.yahoo.com/ 
 
[18] A. M. W. Smeulders, M. Worring, S. Santini, A. Gupta, 
and R. Jain, Content-based image retrieval at the end of the 
early years, IEEE Trans. PAMI, Vol.22, pp. 1349-1380, 2000.  
 
[19] T. Pavlidis, Limitations of Content-based image retrieval 
http://www.theopavlidis.com/technology/CBIR/PaperB/vers3.ht
m  
 
[20] Y. Rui, T. Huang, and S. Mehrotra, Content-based image 
retrieval with relevance feedback in MARS. In Proc. ICIP, Vol. 
2, pp. 815-818, 1997 
 
[21] Y. Wu, Q. Tian, and T. S. Huang, Discriminant EM 
algorithm with application to image retrieval. In Proc. CVPR, 
Vol. 1, pp. 222-227, 2000 
 
[22] Y. Chen, and J. Z. Wang, A region-based fuzzy feature 
matching approach to content-based image retrieval, IEEE 
Trans. PAMI, Vol.24, pp. 252–1267, 2002. 
 
[23] Y. Rui, and T. S. Huang, Optimizing learning in image 
retrieval. In Proc. CVPR, Vol. 1 pp. 236-243, 2000. 
 
[24] M. Webe, M. Welling, and P. Perona, Unsupervised 
learning of models for recognition. In Proc. ECCV, pp. 18-32, 
2000. 
 
[25] H. Wolfson, and I. Rigoutos, Geometric hashing: An 
overview. IEEE Trans. Computer Science & Engineering, Vol. 
4, pp. 10-21, 1997. 
 
[26] A. Chalechale, G. Naghdy, and A. Mertins, Sketch-based 
image matching using angular partitioning. IEEE Trans. 
Systems, Man and Cybernetics, Vol. 35, pp. 28-41, 2005 
 

Fig. 12. Four queries in MI-DB for which the top-20 retrieved 
image did not contain the correct tattoo image. The correct 
tattoo image is found at ranks (a) 30, (b) 151, (c) 122 and (d) 
665 

Fig. 13. Examples of SIFT keypoint matching between (a) two 
visually similar tattoos with the same size and (b) two different 
tattoos with large size difference in MI-DB database. Number of 
matching keypoints is shown 

     (a)                     (b)                      (c)                      (d) 

     (a) 138                                          (b) 107

978-1-4244-2567-9/08/$25.00 ©2008 IEEE 



  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
[27] J. Assfalg, A. Del Bimbo, and P. Pala, Three-Dimensional 
interfaces for querying by example in content-based image 
retrieval. IEEE Trans. Visualization and Computer Graphics, Vol. 
8, pp. 305-318, 2002 
  
[28] T. Kaster, M. Pfeiffer, and C. Bauckhage, Combining speech 
and haptics for intuitive and efficient navigation through image 
databases. In Proc. ICMI, pp. 180-187, 2003 
 
[29] R. Jin, and A. Hauptmann, Using a probabilistic source 
model for comparing images. In Proc. ICIP, Vol. 3, pp. 941-944, 
2002 
 
[30] N. Vasconcelos, and A. Lippman, A probabilistic architecture 
for content-based image retrieval. In Proc. CVPR, Vol. 1, pp. 216-
221, 2000. 
 
[31] P. Ogilvie, and J. Callan, Combining document 
representations for known-item search. In Proc. Int. Conf. on 
Research and Development in Information Retrieval, pp. 143-150, 
2003. 
 

[32] J. Kamps, G. Mishne, and M. de Rijke, Language models for 
searching in Web corpora, TREC 2004, NIST Special Publication, 
pp.500-561, 2005. 
[33] S. Yahyaei, and C. Monz, Applying Maximum Entropy to 
Known-Item Email Retrieval, In Proc. European Conf. on 
Information Retrieval, pp. 406-413, 2008 
 
[34] A. K. Jain, J.-E. Lee, and R. Jin, Tattoo-ID: Automatic tattoo 
image retrieval for suspect & victim identification. In Proc. 
Pacific-Rim Conf. on Multimedia, pp. 256-265, 2007. 
 
[35] J.-E. Lee, R. Jin, and A. K. Jain, Rank-based distance metric 
learning: An application to image retrieval. In Proc, CVPR, 2008 
 
[36] D. Lowe, Distinctive image features from scale-invariant 
keypoints, IJCV, Vol. 60, Issue 2, pp. 91-110, 2004.  
 
[37] Online Tattoo Designs, http://www.tattoodesing.com/gallery/  
 
[38] H. Moon, and P. J. Phillips, Computational and Performance 
aspects of PCA-based Face Recognition Algorithms, Perception, 
Vol. 30, pp. 303-321, 2001 

48 
Query #4 

  Query #1                  59                        16                        14                        13                        12                        11                       11 

 Query #2                  12                        10                          9                          8                         8                           8                         8 

50 110 

Query #3 

                                                                  102                      51                                                47                     47                         43 

                                        68                      67                         59                      54                     51                    50                         
Fig. 14. Examples of retrieval experiments on Web-DB (the first and second rows) and MI-DB (the third and fourth rows). Each example 
contains a query image and its top-7 retrieved images with the number of matching keypoints. 
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