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ABSTRACT
We focus on the problem of large-scale near duplicate image
retrieval. Recent studies have shown that local image fea-
tures, often referred to as key points, are effective for near
duplicate image retrieval. The most popular approach for
key point based image matching is the clustering-based bag-
of-words model. It maps each key point to a visual word in
a code-book that is constructed by a clustering algorithm,
and represents each image by a histogram of visual words.
Despite its success, there are two main shortcomings of the
clustering-based bag-of-words model: (i) it is computation-
ally expensive to cluster millions of key points into thou-
sands of visual words; (ii) there is no theoretical analysis on
the performance of the bag-of-words model. We propose a
new scheme for key point quantization that addresses these
shortcomings. Instead of clustering, the proposed scheme
quantizes each key point into a binary vector using a col-
lection of randomly generated hyper-spheres, and a bag-of-
words model is constructed based on such randomized quan-
tization. Our theoretical analysis shows that the resulting
image similarity provides an upper bound for the similarity
based on the optimal partial matching between two sets of
key points. Empirical study on a database of 100, 000 images
shows that the proposed scheme is not only more efficient
but also more effective than the clustering-based approach
for near duplicate image retrieval.

1. INTRODUCTION
Although content-based image retrieval (CBIR) has been

studied for years, the challenge of semantic gap, i.e. the
gap between visual similarity and conceptual/perceptual rel-
evance, has made it a much harder problem than most re-
searchers originally expected [23]. However, recent studies
have shown that near duplicate image retrieval [10], whose
objective is to identify images with high visual similarity,
can be solved effectively. In particular, studies [24, 29, 22,
13, 26, 10] have shown that local image features, e.g. SIFT
descriptors [17], often referred to as key points, are effective
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for near duplicate image retrieval and visual object recogni-
tion than global image features. The key idea is to extract
salient local patches from an image, and represent each local
patch by a multi-dimensional vector. As a result, each image
is represented by a bag-of-features [4]. A number of algo-
rithms [8, 18, 2] have been proposed to measure the similar-
ity between two images based on their bag-of-features repre-
sentations, including similarity based on the optimal partial
matching between two sets of key points [30, 18, 2], pyramid
kernel similarity [8], similarity based on the principal angle
between two sets of key points [32], and similarity measure
based on the match between two distributions [11, 20]. It
has been shown [8, 18, 2] that despite its simplicity, the
similarity based on the optimal partial matching performs
well in comparison to the other similarity measurements.
However, these optimal partial matching based approaches
suffers from high computational complexity: given a query
image, a linear scan is required to compute the similarity
between the query image and every image in the database,
which does not scale well to a large database with millions
of images.

Among various approaches that have been proposed to im-
prove the computational efficiency of optimal partial match-
ing, the bag-of-words model [29] is the most popular and
probably the most successful one. The key idea is to quan-
tize the continuous high-dimensional space of SIFT features
to a vocabulary of“visual words”, which is typically achieved
by a clustering algorithm. By treating each cluster center as
a word in a codebook, this approach maps each image fea-
ture onto its closest visual word, and represent each image
by a histogram of visual words. A number of studies have
shown promising performance of this approach for image re-
trieval [24, 29, 22, 13, 27, 26, 10].

Despite its success, most studies on the bag-of-words model
suffer from the following drawbacks: (i) High computational
cost of clustering when the number of clusters is very large.
In our application, we need to cluster ten million key points
into a million clusters. Although a number of algorithms [21,
24, 13, 27, 5, 15, 28] have been proposed for large-scale data
clustering, they are still computationally expensive when
handling millions or even billions of key points. (ii) Most
of the studies on the bag-of-words model are focused on its
empirical performance, and lack theoretical analysis.

In this work, we propose a new quantization scheme that
explicitly addresses the shortcomings of the clustering-based
approaches. The main idea is to quantize each key point by a
set of randomly generated hyper-spheres. Each hyper-sphere
is analogous to a cluster. Each key point is quantized by a bi-



nary bit, 1 when the key point is within the hyper-sphere and
0 otherwise. The bag-of-words representation for each im-
age I is computed as a histogram over the hyper-spheres. To
distinguish from the clustering based approach for key point
quantization, we refer to the proposed scheme as a random
seeding approach for key point quantization. Compared
to the clustering-based method, the main advantage of the
proposed random seeding approach is its computational effi-
ciency, which is clearly demonstrated in our empirical study.
In addition, we present a theoretical analysis that reveals the
relationship between the image similarity based on the opti-
mal partial matching and the bag-of-words model generated
by the proposed scheme.

Based on the proposed scheme for key point quantization,
we present a two-stage framework for large-scale image re-
trieval. In such a system, a bag-of-words model is first used
to identify a small subset of images that are likely to be sim-
ilar to a query image. A more precise similarity measure is
then applied to re-rank the image subset to further improve
the accuracy. We demonstrate the proposed system in the
application domain of tattoo image retrieval. We emphasize
that although the empirical study is carried out in a specific
application domain, the proposed system is generic in that
(1) it uses SIFT features for image representation, and (2)
the quantization method is designed for the general purpose
image indexing.

The rest of the paper is organized as follows: Section 2
reviews the related work on the bag-of-words model and
methods for key point quantization; Section 3 describes the
proposed scheme for key point quantization, together with
a theoretical analysis that validates the proposed approach;
Section 4 presents the empirical study of the proposed scheme
in the application domain of tattoo image retrieval; Section
5 concludes this work and sets out future research directions.

2. RELATED WORK
One of the major challenges in exploring the bag-of-words

model for image retrieval, as pointed out in [24], is how
to efficiently construct a vocabulary with hundreds of visual
words for a large image database. This requires develop-
ing efficient algorithms for large-scale data clustering. Vari-
ous approaches have been explored for large-scale data clus-
tering, including flat K-means clustering [29], hierarchical
clustering [22], and clustering based on approximate nearest
neighbor search [21, 24, 13, 27, 10, 16]. However, these ap-
proaches are still computationally expensive when handling
tens of millions key points, as will be revealed by our study.

In addition to the clustering approach, several random al-
gorithms have been proposed for key point quantization [6,
3]. The key idea of these approaches is to extend Locality
Sensitive Hashing [5] to encode the key points by a series of
hashing functions. The proposed approach differs from the
existing randomized algorithms for key point quantization in
its quantization procedure. Furthermore, unlike the exist-
ing key point quantization methods that are mainly focused
on empirical investigation, we present in detail a theoretical
analysis that verifies the proposed randomized approach. Fi-
nally, our empirical study shows that the proposed approach
is not only more efficient but also more effective for image
retrieval than the clustering approach.

3. RANDOM SEEDING FOR KEY POINT
QUANTIZATION

In this section, we first present the basic algorithm of ran-
dom seeding algorithm for key point quantization. We then
present an analysis to reveal the relationship between the
image similarity based on the optimal partial matching and
the bag-of-words model.

Let D = (I1, . . . , In) be a collection of n images. Each
image Ii is represented by a set of ni key points, denoted
by Xi = (x1

i , . . . , x
ni

i ) where each key point xj
i ∈ R

d is
a vector of d dimensions. The first step of the proposed
scheme is to randomly sample m key points from all the
key points detected in the image collection D, denoted by
c1, . . . , cm. A hyper-sphere Bi is created centered at each
sampled key point ci, i.e., Bi = {z ∈ R

d : |z − ci|2 ≤ r},
where r is a predefined constant that is derived from the av-
erage distance between any two key points in image collec-
tion D. Using the hyper-spheres {Bi}

m
i=1, we quantize each

key point x into a binary vector ~b(x) = (b1(x), . . . , bm(x)),
where each element bi(x) is 1 if x ∈ Bi and 0 otherwise.
The bag-of-words representation for image Ii, denoted by
~b(Ii) = (b1(Xi), . . . , bm(Xi)), is computed by adding the bi-
nary vectors of all the key points in image Ii, i.e., bk(Xi) =
Pni

j=1
bk(xj

i ). Figure 1 shows the basic idea of the proposed
scheme for key point quantization and the resulting bag-of-
words representation.

Compared to the clustering-based method for key point
quantization, the proposed random seeding method is com-
putationally more efficient. This is because unlike clustering-
based methods, where the cluster centers are identified by
an iterative method, the centers of hyper-spheres used in
the proposed scheme are randomly generated. In addition,
the proposed approach relies on range search for key point
quantization, which is usually more efficient than the near-
est neighbor search used in the clustering-based approaches.
Besides its computational advantage, the proposed scheme
allows for partial matching between key points, because two
randomly generated hyper-spheres are allowed to overlap.

We devote the remaining part of this section to a theoret-
ical analysis of the random seeding approach. Our analysis
starts with the similarity between two sets of key points that
is based on the optimal partial matching. We first show that
the partial match based similarity can be upper bounded by
a smooth similarity function, and then we derive a scheme of
key point quantization that approximates this upper bound
similarity function with a small error.

3.1 Distance Measure Based on Optimal Par-
tial Matching

Let the two images Ix and Iy be represented by the cor-
responding sets of key points, denoted by X = (x1, . . . , xm)
and Y = (y1, . . . , yn), where each xi and yj is a vector in d-
dimensional space. Among various similarity measurements
that have been proposed, the similarity based on the opti-
mal partial matching [8, 18, 2] is probably the most intu-
itive one, and has yielded the state-of-the-art performance
for both image retrieval and object recognition. It computes
the distance between X and Y by the optimal partial match-
ing. Let π1 : {1, . . . , m} 7→ {1, . . . , n} map each point in set
X to a point in Y , and π2 : {1, . . . , n} 7→ {1, . . . , m} map
each point in set Y to a point in X. Then the distance be-
tween X and Y for the given mappings π1 and π2, denoted



Figure 1: Illustration of the proposed random seeding approach for key point quantization. Each key point is
quantized by a collection of randomly generated hyper-spheres B1,B2, . . . ,Bm. The bag-of-words representation
is computed as a histogram over the hyper-spheres {Bi}

m
i=1.

by d(X, Y ; π1, π2), is computed as

d(X, Y ; π1, π2) =
m
X

k=1

‖xk − yπ2

k

‖2

2 +
n
X

k=1

‖yk − xπ1

k

‖2

2, (1)

where π1

k indicates the index of the point in set X that yk is
mapped to; similarly, π2

k indicates the point in set Y that xk

is mapped to. Finally, the distance between X and Y , de-
noted by d(X, Y ), is obtained by minimizing d(X, Y ; π1, π2)
over the mappings π1 and π2. With proper normalization
on cardinality, we have:

d(X, Y ) =
1

mn
min
π1,π2

m
X

k=1

‖xk − yπ2

k

‖2

2 +
n
X

k=1

‖yk − xπ1

k

‖2

2. (2)

3.2 Approximating the Optimal Partial Match-
ing by A Smooth Similarity Function

It is in general difficult to derive an appropriate scheme
of key point quantization directly from (2) because the dis-
tance function d(X, Y ) is non-smooth and is defined implic-
itly through the maximization of the mappings π1 and π2.
To address this difficulty, we approximate the distance func-
tion in (2) by a smooth similarity function, as shown in the
following lemma.

Lemma 1. For any λ > 0, we have

−d(X, Y ) +
m + n

mn
≤

2

λmn

m
X

i=1

n
X

j=1

exp(−λ|xi − yj |
2

2). (3)

We omit the proof due to the space limitation.
Based on Lemma 1, we define the similarity between X

and Y by s(X, Y ) as follows

s(X, Y ) =
1

mn

m
X

i=1

n
X

j=1

exp
`

−λ‖xi − yj‖
2

2

´

. (4)

According to Lemma 1, any two images X and Y are sepa-
rated by a large distance only if they have a small similarity
s(X, Y ). Hence, instead of directly computing the distance
d(X, Y ) between a query image and a database image, we
divide the search for visually similar images into two steps.

In the first step, we compute the similarity s(X, Y ) between
the query image and the images in the database; in the sec-
ond step, only for the images with large similarity s(X, Y ),
distance to the given query image is computed explicitly.
In the rest of this section, we will show that the similarity
s(X, Y ) can be computed efficiently by a random seeding
algorithm for key point quantization.

3.3 Random Seeding Algorithm
We now show that the similarity measure s(X, Y ) defined

in (4) can be computed efficiently by a key point quantiza-
tion scheme. The overall idea is to first interpret the similar-
ity measure s(X, Y ) as an expectation over a hidden variable
z. We then approximate s(X, Y ) with a high accuracy by
replacing the computation of expectation with an average
over a finite number of samples. We finally show that the
computation over the finite number of samples leads to the
bag-of-words model with efficient computational algorithms.

3.3.1 Probabilistic Interpretation of Similarity Mea-
sures(X, Y )

In order to interpret the similarity measure s(X, Y ) as an
expectation over a hidden variable z, we consider a proba-
bilistic model for the similarity measure between two sets of
key points. Given a set of key points X = (x1, . . . , xm), we
assume that they are sampled from an unknown distribution,
denoted by p(z|X). Using the kernel density function esti-
mation [7], the estimate of the unknown distribution p(z|X),
denoted by bp(z|X), is computed as follows

bp(z|X) =
1

m

m
X

i=1

µd/2

[π]d/2
exp(−µ|z − xi|

2

2), (5)

where µ specifies the kernel width. the estimate of bp(z|Y ) is
computed similarly.

Using the estimates bp(z|X) and bp(z|Y ), we compute the
similarity between X and Y as follows

bs(X, Y ) =

Z

dzbp(z|X)bp(z|Y ). (6)

The following lemma shows the relationship between s(X, Y )



in (4) and bs(X, Y ) in (6).

Lemma 2. The following relationship holds for s(X, Y )
in (4) and bs(X, Y ) in (6) if µ = 2λ

bs(X, Y ; 2λ) =
µd/2

[2π]d/2
s(X, Y ; λ). (7)

The lemma follows directly from the definition.
As revealed in Lemma 2, except for the constant fac-

tor [µ/(2π)]d/2, the two similarity measures s(X, Y ) and
bs(X, Y ) are equivalent. In the following analysis, we will use
bs(X, Y ) for similarity measure. The key advantage of using
bs(X, Y ), instead of s(X, Y ), is that we can view bs(X, Y )
as an expectation of p(z|X)p(z|Y ) over hidden variable z,
which is crucial for deriving a scheme for key point quanti-
zation.

3.3.2 Similarity Measure as Expectation
To view bs(X, Y ) as an expectation, i.e., Ez[p(z|X)p(z|Y )],

we need to introduce an appropriate distribution for z. Note
that in (6), bs(X, Y ) is defined as an integration over the
unbounded space of z. Hence, it is inappropriate to define
a uniform distribution for z, which is sometimes referred to
as inappropriate prior in Bayesian analysis. To address this
difficulty, we assume that |x|2 ≤ R for any key point x that
is detected for images in a given database. We introduce a
domain Q for z that is defined as follows

Q = {z : |z|2 ≤ γR},

where γ ≥ 1 is a constant that will be determined empiri-
cally. We then approximate bs(X, Y ) by bs1(X, Y ), which is
defined as an integration over the domain Q, i.e.,

bs1(X, Y ) =

Z

z∈Q

dzbp(z|X)bp(z|Y ). (8)

The following lemma gives a bound on the difference be-
tween bs(X, Y ) and bs1(X, Y ).

Lemma 3. The following inequality holds for any γ > 0

|bs(X, Y ) − bs1(X, Y )|

bs(X, Y )
≤

exp(−2µγ(γ − 2)R2)

 

»

π

2µ

–1/2

+ γR

!d−1

(9)

The proof is omitted due to the space limitation.
As indicated by Lemma 3, a large value of γ will lead to a

small value for |bs(X, Y )− bs1(X, Y )|/bs(X, Y ), implying that
bs1(X, Y ) is close to bs(X, Y ). This is shown by the following
corollary.

Corollary 1. If

γ ≥ max

 

4,
π1/2

(2µ)1/2R
,
(d − 1) +

p

(d − 1)2 + 4µ ln[1/δ]

2µR

!

we have

|bs(X, Y ) − bs1(X, Y )|

bs(X, Y )
≤ δ

The proof is omitted due to the space limitation.
With the above analysis, we can now focus on the sim-

ilarity measure bs1(X, Y ) since it is close to bs(X, Y ) with

sufficiently large γ. Since the domain of z in bs1(X, Y ) is
bounded, we can introduce a uniform distribution for z, i.e.,

q(z) = I(z ∈ Q)/vol(Q),

where vol(Q) stands for the volume of domain Q and I(x)
is an indicator function that outputs 1 when x is true and
0 otherwise. Using the distribution q(z), we can interpret
bs1(X, Y ) as the expectation of bp(z|X)bp(z|Y ) over random
variable z, i.e.,

bs1(X, Y ) = vol(Q)Ez[bp(z|X)bp(z|Y )] ∝

Z

z

q(z)bp(z|X)bp(z|Y ) (10)

In the remaining analysis, we will drop the factor vol(Q) for
the sake of simplicity.

3.3.3 Key Point Quantization by Random Samples
In the next step, we further approximate the expectation

interpretation in (10) by replacing the distribution q(z) with
a finite number of samples. We denote by z1, z2, . . . , zN

N empirical samples randomly drawn from the distribution
q(z). Using the empirical samples {zk}

N
k=1, we approximate

bs1(X, Y ) by bs2(X, Y ) that is defined as follows

bs2(X, Y ) = (11)

=
µd

mnπd

m
X

i=1

n
X

j=1

1

N

N
X

k=1

exp(−µ|zk − xi|
2

2 − µ|zk − yj |
2

2)

≤
µd

mnNπd

N
X

k=1

 

m
X

i=1

exp(−µ|zk − xi|
2

2)

! 

n
X

j=1

exp(−µ|zk − yj |
2

2)

!

It is important to note that, in the expression of bs2(X, Y ), by
replacing the expectation over the distribution q(z) with the
average over the empirical samples, we essentially represent
each image X = (x1, . . . , xm) by a vector

~f(X) = (f1(X), . . . , fN (X)) (12)

where fk(X), k = 1, . . . , N is defined as

fk(X) =
1

m

m
X

i=1

exp(−µ|zk − xi|
2

2).

The theorem below shows that with a sufficiently large num-
ber of samplings (i.e., N is sufficiently large), bs1(X, Y ) and
bs2(X, Y ) will differ only by a small value.

Theorem 2. With probability 1 − δ, we have

|bs2(X, Y ) − bs1(X, Y )| ≤

r

1

N
ln

2

δ

Theorem 2 directly follows the Hoeffding inequality [9].
The above analysis only applies to two images. We fur-

thermore generalize it to a collection of images. We de-
note by D = (X1, . . . , XT ) the collection of T images where
Xi = (x1

i , . . . , x
ni

i ) is a collection of key points. We have
the following corollary showing that for any two images Xi

and Xj in D, their similarities bs1(Xi, Xj) and bs2(Xi, Xj) are
close to each other.

Corollary 3. Given a collection D of T images, with
probability 1 − δ, the following inequality holds for any two
images Xi and Xj in D

|bs2(Xi, Xj) − bs1(Xi, Xj)| ≤

r

1

N
ln

T (T − 1)

δ



The above corollary is simply proved by a union bound.
Although (12) provides a vector representation for each

image X (i.e., a set of key points), it is overall not a sparse
representation, which makes it difficult to implement an ef-
ficient retrieval algorithm that scales well to a large im-
age database. To address this challenge, we introduce a
threshold η > 0 and set the coefficient exp(−µ|zk − xi|

2

2)
to be zero whenever exp(−µ|zk − xi|

2

2) is smaller than the
threshold. This is equivalent to replacing the coefficient
exp(−µ|zk − xi|

2

2) with max(exp(−µ|zk − xi|
2

2)− η, 0). As a
result, we now represent each image X by a vector

~h(X) = (h1(X), . . . , hN (X)), (13)

where hk(X), k = 1, . . . , N is defined as

hk(X) =
m
X

i=1

m
X

j=1

max(exp(−µ|zk − yj |
2

2) − η, 0) (14)

Accordingly, we introduce the similarity bs3(X, Y ) to approx-
imate bs2(X, Y ) as follows:

bs3(X, Y ) =
hµ

π

id 1

mnN

N
X

k=1

hk(X)hk(Y ) (15)

The following proposition shows that bs3(X, Y ) is close to
bs2(X, Y ) if the threshold η is small.

Proposition 1. For any η > 0, we have

|bs3(X, Y ) − bs2(X, Y )| ≤ η(µ/π)d

The advantage of using bs3(X, Y ) is that to quantize key
point xi, we will only consider the subset of z1, . . . , zN that
is in the range of 1

µ
ln[1/η] of xi. Any sample zk whose

distance to xi is larger than 1

µ
ln[1/η] will not make any

contribution to the quantization of xi, and therefore will be
ignored. The range search can be carried out efficiently by
using any of the existing techniques such as approximate
kd-trees or Locality Sensitive Hashing (LSH).

3.4 Implementation
To generate the bag-of-words model ~h(X) in (13), the first

step is to sample zi within a hyper-sphere. In practice,
sampling zi uniformly within a hyper sphere is a nontriv-
ial problem. In our implementation, we acquire the sam-
ples z1, . . . , zN by first sampling N points from all the key
points in the image database D, and then scale the sampled
key points by a factor γ. This practice essentially assumes
that all the key points are uniformly distributed within a
hyper-sphere. Although this assumption may not be true, it
significantly reduces the computational cost of the proposed
algorithm, and also yields good performance. We set γ = 1
in our experiment. Although our theoretical result requires
γ to be large, γ = 1 does yield desirable performance in our
empirical study.

The second step of generating the bag-of-words model is

to compute element hk(X) in the bag-of-words model ~h(X).
Note that hk(X) defined in (14) is a real number, mak-
ing it difficult to implement it by a typical text search en-
gine that requires integer elements in a bag-of-words model.
We thus simplify the function max(0, exp(−µ|zk −yj |

2

2)−η)
to be I(exp(−µ|zk − yj |

2

2) ≥ η), where I(z) is an indica-
tor function that outputs 1 if z is true and 0 otherwise.
Note that function I(exp(−µ|zk − yj |

2

2) ≥ η) is equivalent

to I(|zk − yj |2 ≤ r), where r =
p

[ln(1/η)]/µ. In practice,
we set r = 0.75r̄ , where r̄ is the average distance between
any two key points in image collection D. We estimate r̄ by
randomly sampling 10, 000 key point pairs from the entire
collection.

To efficiently compute the bag-of-words model, we need
to efficiently compute I(|zk −yj |2 ≤ r), which requires iden-
tifying the subset of key points in the image collection D
that are within the range r of each center zk. To this end,
we use the Fast Library for Approximate Nearest Neighbors
(FLANN)1, which implements the randomized kd-trees [28],
for efficient range search.

4. EXPERIMENTS
We aim to verify both the efficiency and the efficacy of the

proposed scheme for key point quantization in the domain
of large-scale tattoo image retrieval. We choose the tattoo
image retrieval for evaluation because the relevance judg-
ments of retrieved images can be determined objectively. In
particular, a retrieved tattoo image is judged as relevant to
a query tattoo image only when both images contain the
same tattoo symbol. In addition, the large size of the tattoo
image database used in our study, which contains more than
100K images, allows us to evaluate both the efficiency and
efficacy of proposed approach for large-scale image retrieval.

Below we first describe the task of tattoo image retrieval,
which is an application of near duplicate image retrieval in
law enforcement. We then present the experimental setup,
including the image data set and the evaluation protocol
used in our study. We finally present the comparative study
using both the clustering-based method and the proposed
scheme for key point quantization.

4.1 Introduction to Tattoo Image Retrieval
People have used tattoos for over 5, 000 years to differ-

entiate themselves from others. Historically, the practice of
tattooing was limited to particular groups such as motorcy-
cle bikers, soldiers, sailors, and members of criminal gangs.
A recent study published in the Journal of the American
Academy of Dermatology in 2006 2 showed the rising pop-
ularity of tattoos amongst the younger section of the popu-
lation, i.e., about 36% of Americans in the age group 18 to
29 have at least one tattoo.

Tattoos engraved on the human body have been success-
fully used to assist in human identification in forensics and
law enforcement applications. For instance, tattoos were
used to identify victims of the 9/11 terrorist attacks and the
Asian tsunami in 2004 [14]. Criminal identification using
tattoos is another important application. Law enforcement
agencies routinely photograph and catalog tattoo patterns
for the purpose of identifying victims and convicts (who of-
ten use aliases). As an example, Los Angeles county police
department maintains a database of about 2 million tattoo
images. The ANSI/NIST-ITL 1-2000 standard [1] defines
eight major classes (e.g., human face, animal, and symbols)
and 80 subclasses for categorizing tattoos. Manual searches
are performed by matching the class label of a query tattoo
with labels of tattoos in a database. This matching pro-

1http://www.cs.ubc.ca/~mariusm/index.php/FLANN/
FLANN
2Tattoo Facts and Statistics, Oct. 2006, http://www.
vanishingtattoo.com/tattoo_facts.htm.



cess based on human-assigned class labels is subjective, has
limited performance, and is very time-consuming. This mo-
tivated us to develop a image retrieval system for automated
tattoo image matching. Given a query tattoo image, our sys-
tem identifies the tattoo images from a large database that
are the photos of the same tattoo as the query.

Although tattoo image retrieval can be classified as a near
duplicate image retrieval problem since the objective is to
find the same tattoo image in a given database, we empha-
size that it is a significantly more challenging problem than
near-duplicate image detection [10, 31, 16]. Note that there
are two main reasons why a law enforcement database may
have multiple images of a tattoo: (i) a person with a tattoo
has been arrested more than once; every time an arrest is
made, the tattoo image is captured. (ii) individuals belong-
ing to the same gang tend to share the same tattoo symbol.
Because of these reasons, we usually observe large variance
in the visual appearance of the images of the same tattoo,
making it a challenging image retrieval problem.

4.2 Experimental Setup

Data set.
The database used here consists of 101, 745 images, among

which 61, 745 are tattoo images that were provided by the
authors of [12] and the remaining 40, 000 images were ran-
domly selected from the ESP game data set 3. The purpose
of adding images from the ESP game data set is to verify the
capability of the developed system in distinguishing tattoo
images from non-tattoo images. On average, about 100 key
points are detected from each image. So we have more than
10 million key points for the entire image collection.

Evaluation methodology.
To evaluate the retrieval performance of the system for

tattoo image retrieval, one duplicate image of the same tat-
too is used as a query image to retrieve its visually similar
image(s) in the database. In the database of tattoo im-
ages, we have selected 995 tattoo images as queries, and
have manually identified the tattoo images in the database
that are visually similar to each query image. Retrieved im-
ages are ranked in the descending order of their similarity,
and cumulative matching characteristics (CMC) curve [19]
is adopted as the evaluation metric in our study. This metric
accumulates the correct number of retrieved images as the
rank increases. For a given rank position k, its CMC score is
computed as the percentage of queries whose matched im-
ages are found in the first k retrieved images. The CMC
score is similar to recall, a common metric used in informa-
tion retrieval. We use CMC curve, instead of precision &
recall curve, because CMC curve is the most widely used
evaluation metric in biometric and forensic analysis.

Implementation of the Tattoo Image Retrieval System.
Similar to many implementations of the bag-of-words model

for image retrieval [24], we have a two-stage retrieval sys-
tem. In the first stage of the retrieval system, a bag-of-
words model is obtained for each image, and a text retrieval
system is used to rank all the images in the database for
a given query. In our implementation, the Lemur text re-

3http://www.gwap.com/gwap/gamesPreview/espgame/
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Figure 2: The CMC curves of the two-stage retrieval
system using the proposed random seed algorithm
and the clustering algorithm for key point quanti-
zation. The number of visual words is set to be 1
million. The number of candidate images that will
be re-ranked in the second stage is set to be 1000.

trieval system 4 with Okapi retrieval model [25] is used to
compute the similarity between a query image and images in
the database. The objective of the first stage is to identify
a small number of images that are likely to share a large vi-
sual similarity with the query image. In our experiment, the
first 1000 most similar images are identified as the candidate
matches for a query image.

The second stage of the system re-ranks the 1000 simi-
lar images obtained from the previous stage. We use the
image matching algorithm presented in [12] to recompute
the similarity between the query image and the 1, 000 image
candidates. Unlike the bag-of-words model, this matching
algorithm [12] takes into account the geometric relationship
among key points when computing the matching score be-
tween two images, which was shown to be effective for tattoo
image retrieval. More detailed description of the tattoo im-
age matching algorithm can be found in [12].

To evaluate the effectiveness of the proposed quantiza-
tion scheme, we compare it to the clustering-based approach,
which is the most popular approach for key point quantiza-
tion. To quantize key points, the clustering-based approach
first performs hierarchical k-means clustering over all the
key points, and then quantizes each key point to the closest
cluster center. Random kd-trees [21] are used to efficiently
identify the nearest cluster center for each key point. Based
on our experience, we set the number of clusters to be 1 mil-
lion for both the proposed scheme and the clustering-based
approach for key point quantization.

4.3 Experimental Results
All the experiments are performed on a dual core Dell

machine with 16G memory. We first report the retrieval
accuracy, followed by the computational efficiency of key
point quantization.

Retrieval accuracy.
Figure 2 shows the CMC curve of the two-stage retrieval

system using the proposed random seed algorithm and the
clustering algorithm for key point quantization, respectively.

4http://www.lemurproject.org/



Figure 3: Example query images (one per row) and the top ten images retrieved by the proposed two-stage
system using the random seed algorithm for key point quantization. Note that for the last two queries, more
than one image with similar tattoo were retrieved.

Compared to the clustering approach, we observe about 3%
improvement in the CMC score of the proposed random seed
algorithm.

To further confirm our result, we vary the number of im-
ages that are retrieved in the first stage by a text search
engine that are then re-ranked by a more accurate image
similarity measure in the second stage. Figure 4 shows the
CMC curves when the number of re-ranked images is set to
100 and 500. Again, the proposed algorithm outperforms
the clustering method in both cases.

Efficiency of key point quantization.
To evaluate the efficiency of the proposed random seed

algorithm for key point quantization, we measure its run-
ning time. To quantize all the key points in the image col-
lection (i.e., 10 million key points in total) into a million
visual words, the overall running time of the proposed al-
gorithm is 3, 333 seconds. The clustering algorithm takes
25, 669 seconds to quantize the same number of key points
into one million clusters, which is about 8 times slower than
the proposed algorithm. This result clearly indicates that
the proposed key point quantization scheme is significantly
more efficient than the clustering algorithm, making it scal-
able to large image databases with millions of images. We
also observe that both quantization methods result in simi-
lar response times for retrieving the matched images for each
query, about one second per query. Finally, we also con-
ducted experiments with 100K visual words and observed
similar results.

5. CONCLUSIONS
We have proposed an efficient algorithm for key point

quantization. The main idea is to quantize each key point
into a sparse vector of real numbers by a set of randomly
generated hyper-spheres. The proposed algorithm is com-

putationally more efficient compared to the clustering-based
key point quantization in that (i) the center of each hyper-
sphere is randomly determined, avoiding an iterative search
for cluster centers, and (ii) the radius of each hyper-sphere
is fixed to be constant, avoiding nearest neighbor search. In
addition, our theoretical analysis shows that the similarity
based on the proposed quantization algorithm provides an
upper bound for the optimal partial matching based simi-
larity. Empirical study on a data set of 100, 000 images with
more than ten million key points shows that (i) our approach
yields better retrieval performance than the clustering-based
approach, and (ii) it reduces the running time of key point
quantization by a factor of 8. In the future, we plan to in-
vestigate other approaches for key point quantization, such
as random projection.
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