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Abstract 
 

In this paper we investigate the problem of user 

authentication using keystroke biometrics. A new distance 

metric that is effective in dealing with the challenges 

intrinsic to keystroke dynamics data, i.e., scale variations, 

feature interactions and redundancies, and outliers is 

proposed. Our keystroke biometrics algorithms based on 

this new distance metric are evaluated on the CMU 

keystroke dynamics benchmark dataset and are shown to 

be superior to algorithms using traditional distance 

metrics. 

1. Introduction 

With the ever increasing demand for more secure access 

control in many of today’s security applications, 

traditional methods such as PINs, tokens, or passwords fail 

to keep up with the challenges presented because they can 

be lost or stolen, which compromises the system security. 

On the other hand, biometrics 

[9][13][14][15][21][25][31][33] based on “who” is the 

person or “how” the person behaves present a significant 

security advancement to meet these new challenges. 

Among them, keystroke dynamics [22][24][26] provides a 

natural choice for secure “password-free” computer 

access. Keystroke dynamics refers to the habitual patterns 

or rhythms an individual exhibits while typing on a 

keyboard input device.  These rhythms and patterns of 

tapping are idiosyncratic [5], in the same way as 

handwritings or signatures, due to their similar governing 

neurophysiological mechanisms. As early as in the 19
th

 

century, telegraph operators could recognize each other 

based on one’s specific tapping style [18].  This suggests 

that keystroke dynamics contain sufficient information to 

serve as a potential biometric identifier to ascertain a 

specific keyboard user. 

Compared to other biometrics, keystroke biometrics has 

additional desirable properties due to its user-friendliness 

and non-intrusiveness. Keystroke dynamics data can be 

collected without a user’s cooperation or even awareness. 

Continuous authentication is possible using keystroke 

dynamics just as a mere consequence of people’s use of 

computers. Unlike many other biometrics, the temporal 

information of keystrokes can be collected to ascertain a 

user using only software and no additional hardware. In 

summary, keystroke dynamics biometrics enables a cost 

effective, user friendly, and continuous user authentication 

with potential for high accuracy. 

Although keystroke dynamics is governed by a person’s 

neurophysiological pathway to be highly individualistic, it 

can also be influenced by his or her psychological state. 

As a “behavioral” biometrics [35], keystroke dynamics 

exhibits instabilities due to transient factors such as 

emotions, stress, and drowsiness etc [6]. It also depends on 

external factors, such as the input keyboard device used, 

possibly due to different layout of the keys. The keying 

times can be noisy with outliers. As keystroke biometrics 

exploits the habitual rhythm in typing, it has been 

observed that keystrokes of frequently typed words or 

strings show more consistency and are better discerners 

[22][38]. 

Keystroke biometrics can use “static text”, where 

keystroke dynamics of a specific pre-enrolled text, such as 

a password, is analyzed at a certain time, e.g., during the 

log on process. For more secure applications, “free text” 

should be used to continuously authenticate a user.  

The rest of the paper is organized as follows. In section 2 

we will review the current state of keystroke biometric 

techniques. We discuss the strength and limitations of two 

top performing distance metrics for keystroke dynamics 

and propose a new distance metric that combines the 

benefits of both these schemes in section 3. Section 4 

describes our keystroke dynamics classifiers. Section 5 

presents the experiments and performance study of the 

proposed algorithms. In section 6 we summarize our 

approach and outline future work. 

2. Literature Review 

Of late, keystroke dynamics has become an active 

research area due to the increasing importance of cyber 

security and computer or network access control. Most of 
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the existing approaches focus on static verification, where 

a user types specific pre-enrolled string, e.g., a password 

during a login process, and then their keystroke features 

are analyzed for authentication purposes [30]. Only a few 

research studies address the more challenging problem of 

keystroke biometrics using “free text”, where the users can 

type arbitrary text as input [22][28][37]. 

Keystroke dynamics features are usually extracted using 

the timing information of the key down/hold/up events. 

The hold time or dwell time of individual keys, and the 

latency between two keys, i.e., the time interval between 

the release of a key and the pressing of the next key are 

typically exploited.  Digraphs, which are the time latencies 

between two successive keystrokes, are commonly used. 

Trigraphs, which are the time latencies between every 

three consecutive keys, and similarly, n-graphs, have been 

investigated as well. In their study on keystroke analysis 

using free text, Sim and Janakiraman [27] investigated the 

effectiveness of digraphs and more generally n-graphs for 

free text keystroke biometrics, and concluded that n-

graphs are discriminative only when they are word-

specific. As such, the digraph and n-graph features do 

depend on the word context they are computed in. 

The use of keystroke dynamics for verification and 

identification purposes was first investigated back in the 

1970’s [7][29]. Gaines et al. [8] did a preliminary study on 

keystroke dynamics based authentication using the T-test 

on digraph features. Monrose and Rubin [22] later 

extracted keystroke features using the mean and variance 

of digraphs and trigraphs. Using the Euclidean distance 

metric with Bayesian-like classifiers, they reported a 

correct identification rate of 92% for their dataset 

containing 63 users.  

Bergadano et al. [2] and later Gunetti and Picardi [10] 

proposed to use the relative order of duration times for 

different n-graphs to extract keystroke features that was 

found to be more robust to the intra-class variations than 

absolute timing. They demonstrated that the new relative 

feature, when combined with features using absolute 

timing, improved the authentication performance using 

free text.  

Over the years, keystroke biometrics research has 

utilized many existing machine learning and classification 

techniques. Different distance metrics, such as the 

Euclidean distance [3][22], the Mahalanobis distance 

[3][4], and the Manhattan distance [1][16], have been 

explored. Both classical and advanced classifiers have 

been used, including K-Nearest Neighbor (KNN) 

classifiers [4], K-means methods [12], Bayesian classifiers 

[22], Fuzzy logic [11], neural networks [11][19], and 

support vector machines (SVMs) [36]. A large range of 

performance numbers has been published. However, it is 

not possible to make a sound comparison of various 

algorithms directly because of the use of different datasets 

and evaluation criteria across the studies. To address this 

issue, keystroke dynamics databases including benchmark 

results of popular keystroke biometrics algorithms have 

been published [17][19] to provide a standard 

experimental platform for progress assessment. Killourhy 

and Maxion collected and published a keystroke dynamics 

benchmark dataset containing 51 subjects with 400 

keystroke dynamics collected for each subject [17]. 

Furthermore, they evaluated fourteen available keystroke 

dynamics algorithms on this dataset, including Neural 

Networks [4], K-means [12], Fuzzy Logic [11], KNNs, 

Outlier Elimination [11], SVMs [36], etc. Various distance 

metrics, including Euclidean distance [3], Manhattan 

distance [1][16] and Mahalanobis distance [3][4] were 

used. This keystroke dataset along with the evaluation 

methodology and state of the art performance provides a 

benchmark to objectively gauge the progresses of new 

keystroke biometric algorithms. 

3. A New Distance Metric for Feature 

Matching 

The performance study of the fourteen existing 

keystroke dynamics algorithms implemented by Killourhy 

and Maxion [17] indicated that the top performers are the 

classifier using scaled Manhattan distance [1], with an 

equal error rate (EER) of 0.096, and the nearest neighbor 

classifier using the Mahalanobis distance [4] with an EER 

of 0.10 on their keystroke dynamics benchmark dataset. In 

the following section we discuss the advantages of both 

Manhattan distance and Mahalanobis distance to 

understand why they succeed in matching keystroke 

dynamics patterns. We also point out their limitations. A 

new distance metric is then proposed to combine the 

benefits of these two distance metrics while overcoming 

their limitations. 

3.1. Mahalanobis Distance 

Euclidean distance has been the default distance metric 

for its simplicity and geometrical intuitiveness. However, 

it has two major limitations: 

1. It is very sensitive to scale variations in the 

feature variables, and 

2. It has no means to deal with the correlation 

between feature variables. 

   Mahalanobis distance, on the other hand, takes into 

account the covariance of data variables to correct for the 

heterogeneity and non-isotropy observed in most real data. 

The squared Mahalanobis distance between two feature 

vectors x and y is defined as  

2 1( ) ( )Tx y x y S x y          (1)    

where S is the covariance matrix of the data. It not only 

weights the distance calculation according to the statistical 
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variation of each feature component, but also decouples 

the interactions between features based on their covariance 

matrix to provide a useful distance metric for feature 

comparisons in pattern analysis. In statistical literature, the 

Mahalanobis distance is related to the log likelihood under 

the assumption that data follow multivariate Gaussian 

distribution which is a reasonable approximation for most 

practical data.   

3.2. Manhattan Distance 

The Manhattan distance metric, also called L1 distance 

or city block distance, is defined as follows: 

1 i i

i

x y x y            (2)      

The Manhattan distance has the advantages of simplicity 

in computation and easy decomposition into contributions 

made by each variable. Most importantly, it is more robust 

to the influence of outliers compared to higher order 

distance metrics including Euclidean distance and 

Mahalanobis distance. As shown in Figure 1, the error 

contribution of the individual component grows 

quadratically in its magnitude for L2 metrics including 

Euclidean distance and Mahalanobis distance, while it 

increases only linearly for L1 metrics such as Manhattan 

distance. As a result, Manhattan distance is more robust 

than Mahalanobis distance in the presence of outliers. The 

Manhattan distance also has a statistical interpretation as 

the Mahalanobis distance. It is in fact related to the log 

likelihood of the multivariate Laplace distribution with an 

identity covariance matrix. The Laplace distribution is 

similar to the Gaussian distribution in that both are 

symmetric with one mode. However, the Laplace 

distribution has fatter tails than the Gaussian distribution 

(see Figure 2), and therefore, it is more tolerant to outliers 

that significantly deviate from the mean. The Laplace 

distribution provides an attractive alternative to Gaussian 

assumption for many real world data with heavy tails. It 

has been observed that the Manhattan distance metric 

outperformed other distance metrics including Euclidean 

distance, the Vector Cosine Angle distance, and 

Histogram Intersection distance in a performance study of 

image retrieval on a large image database [32]. 

3.3. A New Distance Metric 

With the above discussion, it is easy to understand why 

keystroke biometrics using Mahalanobis distance and 

Manhattan distance outperformed other algorithms 

including some of the more advanced machine learning 

techniques. The keystroke dynamics features consist of 

both dwell and latency timings to have large variations in 

individual components. The feature variables tend to 

interact with each other as well. These evident scale 

variations and feature correlations are handled well using 

the Mahalanobis distance metric. However, Mahalanobis 

distance is susceptible to the outliers that are abundant in 

keystroke dynamics data due to the frequent pauses during 

typing. On the other hand, Manhattan distance is shown to 

be more robust to outliers but it is not able to correct for 

the adverse interactions and redundancies between 

keystroke features. So, each of the two metrics, when used 

alone, has its advantages and limitations.  

Figure 1: The error contribution of individual feature 

variables grows quadratically in its magnitude for L2 

metrics, including Euclidean distance and Mahalanobis 

distance, but it increases only linearly for L1 metrics 

such as Manhattan distance. 

Figure 2: The probability density functions for univariate 

Laplace distribution and Gaussian distribution with 

mean 0 and variance 1. The Laplace distribution has 

fatter tails than the Gaussian distribution to be more 

tolerant to outliers. 
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We propose a new distance metric combining both 

Mahalanobis distance and Manhattan distance such that 

one complements the other. First, we apply the principle 

of Mahalanobis distance to decorrelate and normalize the 

keystroke dynamics feature variables so that the 

covariance matrix of the transformed feature vectors 

becomes an identity matrix. This rectifying process is 

accomplished by applying the following linear transform 

to the input keystroke dynamics data: 

'x x 
             (3)  

where 
1/2S   is the inverse of the principle square 

root of the covariance matrix S such that 
1T S   . 

With this transform, the data features become uncorrelated 

with equal variations in the feature variables. Once the 

data are normalized and decoupled, we then compute the 

Manhattan distance between two data points 'x and 'y  in 

a more standardized new feature space for the original 

data points x and y:
      

 
1

1/2

1

' || ' ' ||

|| ( ) || .

x y x y

S x y

  

         (4) 

This new distance metric ensures not only that the 

undesirable correlation and scale variations are accounted 

for, but also suppress the influence of outliers for 

improved performance. As a result, the proposed distance 

metric combines the benefits of both Mahalanobis and 

Manhattan distance metrics while overcoming their 

limitations when used individually. As it turns out, this 

new distance metric also has a nice statistical 

interpretation. It is associated with the log likelihood of 

the general multivariate symmetric Laplace distribution 

with S as its covariance matrix.  

4. Keystroke Dynamics Classifier 

We frame keystroke dynamics based authentication as a 

one- class classification problem which learns a model for 

a user, rejects anomalies to the learned model as 

imposters, and accept inliers as the genuine user. Although 

the use of negative examples in training could 

significantly improve the accuracy of the classifier, it is 

unrealistic to assume prior knowledge about the keystroke 

features from imposters, let alone the availability of their 

training data. 

We used the Nearest Neighbor classifier with the new 

distance metric defined in   to either ascertain a keystroke 

dynamics feature as originating from the genuine user 

when the distance to its nearest neighbor in the training 

data is below a threshold value, or reject it as an imposter, 

otherwise. The covariance matrix is computed using all 

the training keystroke feature vectors from the intended 

user. 

The adoption of the new distance metric helps suppress 

the adverse effects of outliers during the classification 

stage. However, outliers could still corrupt the training 

data and deteriorate the authentication performance. We 

Figure 3. Keystroke dynamics features for static key string “.tie5Roanl” from the CMU keystroke dynamics benchmark 

dataset [17]. The dwell time and digraphs for the first four data collection sessions for three subjects are shown.   

Although the keystroke features provide sufficient distinguishing patterns for each subject, they are highly correlated, 

with large scale variations, and contain noise and outliers. Our proposed distance metric is effective in handling these 

challenges that are intrinsic to keystroke dynamics data. 
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employed an outlier removal process during the training 

phase. For the ith feature variable, we sort the 

measurements from the training data and compute the 

median i  and standard deviation i  using all training 

measurements excluding those in the upper and lower  p  

percentiles. Only the training feature vectors with their ith 

variable falling in the interval  ,i i i ik k     are 

retained and those falling outside of the interval are 

discarded from the training data. Once the outliers are 

removed from the training data, we use the Nearest 

Neighbor classifier with the new distance metric to 

classify the test keystroke feature vectors. So, we 

essentially have two different new metric based nearest 

neighbor classification algorithms: one without outlier 

removal and one with outlier removal. 

5. Experiments 

We evaluated the proposed keystroke authentication 

algorithms using the CMU keystroke dynamics benchmark 

dataset [17] because it comes with the performance 

numbers for a range of existing keystroke dynamics 

algorithms for objective comparison.  

The CMU benchmark dataset contains keystroke 

dynamics consisting of the dwell time for each key and the 

latencies between two successive keys for static password 

string “.tie5Roanl”. There are 51 subjects in the dataset. 

For each subject, there are eight data collection sessions 

with at least one day interval between two sessions. A 

total of 50 feature vectors were extracted in each session, 

resulting in a total of 400 feature vectors for each subject. 

We show in Figure 3 four sessions of keystroke dynamics 

features collected for three subjects. The absolute value of 

the covariance matrix of the keystroke features for one 

subject is also visualized in Figure 4. 

Although the keystroke features provide sufficient 

distinguishing patterns for each subject, they are highly 

correlated, with large scale variations, and contain noise 

and outliers. Our proposed distance metric is effective in 

handling these challenges that are intrinsic to keystroke 

dynamics data. 

We used the exact same protocol and evaluation 

methodology as in [17] to ensure objective performance 

comparisons. For each subject, we used the first 200 

feature vectors as the training data. The remaining 200 

feature vectors were used as positive test data and the first 

50 feature vectors from the remaining 50 subjects are used 

to form 250 negative feature vectors as imposters in the 

authentication phase for this user. The authentication 

accuracy is evaluated using the equal error rate (ERR), 

where the miss rate and false alarm rate are equal, and the 

zero-miss false alarm rate (ZMFAR), which is the 

minimum false alarm rate when the miss rate is zero. The 

evaluation is performed for each subject; the mean and 

standard deviation of error rates for the 51 subjects are 

reported. 

Using the nearest neighbor classifier with the proposed 

new distance metric, we achieved an average EER of  

8.7%, and ZMFAR of 42.3% across all 51 subjects. The 

error rate is reduced to 8.4% for ERR and 40.5% for 

Algorithm Equal-error rate  Algorithm Zero-miss false-alarm rate 

Nearest Neighbor (new distance metric) 

+ outlier removal 
0.084 (0.056) Nearest Neighbor (new distance metric) 

+ outlier removal 
0.405 (0.268) 

Nearest Neighbor (new distance metric) 0.087 (0.060) Nearest Neighbor (new distance metric) 0.423 (0.269) 

Manhattan (scaled) [17] 0.096 (0.069) Nearest Neighbor (Mahalanobis) [17] 0.468 (0.272) 

Nearest Neighbor (Mahalanobis) [17] 0.100 (0.064) Mahalanobis [17] 0.482 (0.273) 

Figure 4. Keystroke dynamics features are correlated. 

Shown in the figure is the absolute value of the covariance 

matrix of the training keystroke features for one subject, 

normalized so that the diagonal entries are 1. 

Table 1. The proposed keystroke biometric algorithms outperform existing detectors reported in [17]. Shown in bold in the table 

are the average equal error rate (with the standard deviation shown in brackets) and the zero-miss false-alarm rate of our two 

keystroke dynamics algorithms: Nearest neighbor classifier with the proposed new distance metric for keystroke dynamics 

features, and NN classifier using the new distance metric with additional outlier removal in training phase. We also show the 

performances of the top two performers for either of the error categories reported in [17]. The proposed new distance metric is 

shown to be advantageous in handling the challenges intrinsic to the keystroke dynamics data by reducing both errors. 
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ZMFAR by further removing outliers from the training 

dataset. We used p = 5 and k = 4 in the experiments for 

outlier removal. Our proposed algorithms outperform the 

best reported algorithms in both metrics, as shown in 

Table 1. 

6. Conclusions and Future Work 

We studied the characteristics of keystroke dynamics for 

computer user authentication and proposed a new distance 

metric which decouples correlated data, normalizes feature 

variations, and suppresses outliers. As outliers and data 

correlations are typical in keystroke dynamics data, it is 

not surprising that classifiers using the new distance 

metric outperform existing top performing keystroke 

dynamics classifiers which use traditional distance 

metrics.  

Although we applied the new distance metric to the 

problem of matching keystroke dynamics features, it is a 

general distance metric that can be applied to any distance 

computation in feature vector spaces where the traditional 

Mahalanobis distance is applicable, with the additional 

advantage of robustness to outliers. 

We have applied the proposed distance metric to 

improve the accuracy of keystroke dynamics using static 

text. In the future, we will investigate application of our 

new distance metric to the more challenging problem of 

keystroke biometrics using free text, develop richer key 

stroke features, and study context dependent sub-word and 

across-word models. 
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