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Abstract

Heterogeneous Face Recognition

By

Brendan F. Klare

One of the most difficult challenges in automated face recognition is computing

facial similarities between face images acquired in alternate modalities. Called het-

erogeneous face recognition (HFR), successful solutions to this recognition paradigm

would allow the vast collection of face photographs (acquired from driver’s licenses,

passports, mug shots, and other sources of frontal face images) to be matched against

face images from alternate modalities (e.g. forensic sketches, infrared images, aged

face images). This dissertation offers several contributions to heterogeneous face

recognition algorithms. The first contribution is a framework for matching forensic

sketches to mug shot photographs. In developing a technique called Local Feature-

based Discriminant Analysis (LFDA), we are able to significantly improve sketch

recognition accuracies with respect to a state of the art commercial face recogni-

tion engine. The improved accuracy of LFDA allows for facial searches of criminal

offenders using a hand drawn sketch based on a verbal description of the subject’s

appearance, called a forensic sketch. The second contribution of this dissertation is a

generic framework for heterogeneous face recognition. By representing images from

alternate modalities with their non-linear similarity to a set of prototype subjects

who provide images from each corresponding modalities, the need to directly com-

pare face images from alternate modality is eliminated. This property generalizes the

algorithm, called Prototype Random Subspaces (P-RS), to any HFR scenario. The

viability of this algorithm is demonstrated on four separate HFR databases (near

infrared, thermal infrared, forensic sketch, and viewed sketch). The third contribu-



tion of this dissertation is a large scale examination of face recognition algorithms

in the presence of aging. We study whether or not aging-invariant face recognition

algorithms generalize to non-aging scenarios. By demonstrating that they do not

generalize, we conclude that the heterogeneous appearances between faces that have

aged casts aging-invariant face recognition problem in the same category as hetero-

geneous face recognition. That is, much like images acquired in alternate modalities,

aged face images should be matched using specially trained algorithms. The fourth

contribution of this dissertation is an examination of how heterogeneous demograph-

ics (i.e. gender, race, and age) affect the recognition accuracy of face recognition

systems. Using six different face recognition systems (including commercial systems,

non-trainable systems, and a trainable face recognition system), the experiments con-

clude that all systems have a consistently lower recognition accuracy on the following

demographic cohorts: (i) females, (ii) black subjects, and (iii) young subjects. This

study also examined whether or not recognition accuracy could be improved for a

specific demographic cohort by training a system exclusively on that cohort. The

fifth contribution of this dissertation is an examination of the problem of identifying

a subject from a caricature. A caricature is a facial sketch of a subject’s face that

exaggerates identifiable facial features beyond realism, yet humans still have a pro-

found ability to identify subjects from their caricature sketch. Automated caricature

recognition with the intent of discovering improved facial feature representations with

respect to face recognition as a whole. To enable this task, we propose a set of qualita-

tive facial features that encodes the appearance of both caricatures and photographs.

We utilized crowdsourcing, to assist in the labeling of the qualitative features. Using

these features, we combine logistic regression, multiple kernel learning, and support

vector machines to generate a similarity score between a caricature and a facial pho-

tograph. Experiments are conducted on a dataset of 196 pairs of caricatures and

photographs, which we have made publicly available.
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Chapter 1

Introduction

Automated face recognition is a rapidly growing field that uses computer algorithms

to determine the similarity between two face images [73]. Automating this process of

facial identification has enormous implications towards improving public safety and

security, and increasing the ubiquitous nature with which we interact with intelligent

machines.

The progress of face recognition technology over the past two decades has been

substantial, as benchmarked by the National Institute of Standards and Technology

(NIST) [34] (see Figure 1.1). Because error rates are shown to have dropped at an

exponential rate, one would justifiably assume that face recognition is becoming a

largely solved problem. Unfortunately, this is far from the case as many challenges in

face recognition still remain (see Figure 1.2). The reduction in error rates shown in

Figure 1.1 is for face images captured in a controlled environment with cooperative

subjects. However, face recognition performance significantly deteriorates when vari-

ations in facial pose, facial expression, and illumination (collectively known as PIE)

are introduced [108]. Examples of such variations can be found in Figure 1.3. Other

factors such as image quality (e.g., resolution, compression, blur), time lapse or facial

aging (see Figure 1.4), and occlusion also contribute to face recognition errors [43,44].
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Figure 1.1: The reduction in error rates over the past 20 years for state of the art
face recognition systems, as benchmarked by the National Institute of Standards and
Technology [34]. For interpretation of the references to color in this and all other
figures, the reader is referred to the electronic version of this dissertation.

When considering face recognition in videos, issues such as segmenting the face in

varying illuminations [63] and compression artifacts [61] must be considered as well.

One of the most challenging tasks in automated face recognition is matching be-

tween two face images that have been sensed in either alternate imaging modalities

(e.g. infrared images, hand drawn sketches, or depth images) or in different sensing

environments and time (e.g. face images of the same person taken 10 years apart).

Called heterogeneous face recognition, successful solutions to this face recognition

paradigm extend the capabilities of face recognition to covert capture scenarios (e.g

face recognition at a distance and face recognition in nighttime environments), situ-

ations where no face image even exists (forensic sketch recognition), or in situations

where face images exhibit changes through the effects of aging (aging-invariant face

recognition). Thus, while the majority of face recognition research seeks to mimic the

capabilities of humans, heterogeneous face recognition offers the prospect of recog-

nition capabilities beyond that of humans. The goals and objectives of the research
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(a)

(b)

(c)

Figure 1.2: Some of the major challenges in automated face recognition. These
challenges include (a) heterogeneous face recognition (top row shows face images of
subjects in non-visible modalities and the bottom row shows corresponding faces in
visible light), (b) unconstrained face recognition (images from [39]), and (c) aging-
invariant face recognition (same subject at four different ages).
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(a) (b) (c)

Figure 1.3: Pose, illumination and expression (PIE) challenges. (a) A face image
with controlled pose, expression, and illumination. Face images with variations in
(b) facial pose, (c) illumination, and (d) facial expression. These factors are common
sources of error in automated face recognition systems.
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Figure 1.4: The decrease in accuracy of a leading commercial face recognition algo-
rithm as a function of the time lapse between the probe and gallery images. Measured
on a mug shot database containing 94,631 face images of 28,031 subjects, this perfor-
mance degradation illustrates one of several challenges in face recognition research.
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presented in this thesis are to develop representations and matching schemes that will

improve the state of the art in heterogeneous face recognition.

The remainder of the introduction to this thesis on heterogeneous face recognition

is organized as follows. In Section 1.1 we will trace some of the lineage of face

recognition research. In Section 1.2 we will provide an overview of how automated face

recognition algorithms are designed. An overview of heterogeneous face recognition

will be presented in Section 1.3. Section 1.4 will outline the contributions of this

thesis. Finally, Section 1.5 will discuss the organization of the remaining chapters of

this thesis.

1.1 The Lineage of Face Recognition

Dating as far back as the invention of the abacus, we have sought for machines to

replicate intelligent tasks performed by the human brain. The current state of intel-

ligent automation is such that we are able to design machines that perform some of

the most complicated human tasks, such as piloting vehicles, natural language pro-

cessing, and face recognition. The key advancements that have allowed us to realize

these technologies are the progression of computing capacities at a rate predicted by

Moore’s Law [106], and advancements in computer algorithms.

The progression in computing algorithms that has enabled today’s intelligent ma-

chines may be attributed to research in the broad field known as artificial intelligence.

With an aim to automate intelligent tasks otherwise performed by biological lifeforms,

artificial intelligence spans a host of engineering applications and has attempted to

leverage mathematical developments from almost every academic field.
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(a) (b)

(c)

Figure 1.5: Examples images from three different heterogeneous face recognition sce-
narios. The top row contains probe images from (a) near-infrared, (b) thermal in-
frared, and (c) forensic sketch modalities. The bottom row contains the corresponding
gallery (visible band face image) photographs.
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Figure 1.6: The human visual system starts with the eyes (top of the image in red)
which senses visible light waves. The path of information detected by the eyes ends
with the visual cortex of the brain (bottom of the image in red). The visual cortex
is the largest component in the brain, and is responsible for such intelligent tasks as
object recognition, motion detection, and face recognition.
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The academic discipline of pattern recognition is a field within artificial intelli-

gence that (broadly) seeks to infer high level information from low level data. Many

similarities lie between pattern recognition and the closely related field of machine

learning. In theory, pattern recognition algorithms are not concerned with the partic-

ular source of the data (e.g. digital images, object measurements, depth fields), but

instead on the structure of the data (e.g. real-valued, nominal, ordinal, unstructured)

and what information needs to be inferred from the data (e.g. classification, cluster-

ing, regression) [24]. Typically, inference from data is achieved after implementing a

learning stage, which uses empirical samples of data exemplar to the inference task

at hand in order to develop decision boundaries that best generalize to the aggregate

of the training data to unseen test samples.

When applying pattern recognition algorithms to digital images we enter the field

of computer vision [126]. Computer vision faces the bold task of replicating the largest

processing system in the human brain: the visual system. The human visual system

is the primary method of sensing (and hence responding to) the environment for most

humans. The visual system operates by transmitting visible light waves detected by

the eye to the visual cortex region of the brain (see Figure 1.6). When the signals

arrive to the visual cortex, the information is transmitted through the dorsal and

ventral streams of the brain. Studies have indicated that the ventral stream is used

to process information regarding a person’s location in relation to his environment,

and the ventral stream has been shown to perform object recognition related tasks

from the visible light waves sensed [32].

Strong evidence shows that when the appearance of a face enters the ventral

stream, the task of associating an identity with that face is performed by a dedicated

region of the brain, called the fusiform face area [47, 91]. The Thatcher effect [140],

illustrated in Figure 1.7, allows us to readily observe evidence supporting the sugges-

tion that we have a dedicated area of the brain for face processing.
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Shifting focus to automated face recognition algorithms, we realize that research

in the field of automated face recognition goes beyond finding solutions to a typical

application of pattern recognition and computer vision. Face recognition research

seeks to replicate an entire region of the brain that is predominately dedicated to

this one task: extracting information from human faces. That the human brain

has evolved to weight this identification task with such resources demostrates the

importance and the benefit of designing computer algorithms capable of replicating

this task.

1.2 Automated Face Recognition Algorithms

The challenges in designing automated face recognition algorithms are numerous.

Charged with the task of outputting a measure of similarity between a given pair

of face images, such challenges manifest in the following stages performed by most

face recognition algorithms: (i) face detection, (ii) face alignment, (iii) appearance

normalization, (iv) feature description, (v) feature extraction, and (vi) matching.

This section provides an overview of each of the above mentioned stages in auto-

mated face recognition, and follows the same ordering illustrated in Figure 1.8. The

predominant focus will be on the face representation and feature extraction stages.

This is because our research on heterogeneous face recognition has generally relied on

improvements in these two stages to increase recognition accuracies between hetero-

geneous face images.

1.2.1 Detection, Alignment, and Normalization

The first step in automated face recognition is the detection and alignment of face

images. Often viewed as a preprocessing step, this stage is critical to both detecting

the presence of a face in a digital image, and alignment of the face with the spatial
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(a)

(b)

Figure 1.7: The Thatcher effect. (a) Most people will notice only minor differences
between the two inverted face images shown. (b) However, when turned upright, the
differences between the same two face images are noticed to be far more severe. Our
reduced ability to see the strong differences between the images in (a) is believed to
be because inverted faces do not trigger the fusiform face area of the brain.
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Figure 1.8: The common steps utilized by most face recognition algorithms.

(a) (b) (c)

Figure 1.9: Different methods for face alignment. (a) Face images before (left column)
and after (right column) alignment through planar rotation and scaling. (b) Face
images aligned using a morphable model (images from [13]), and (c) a video sequence
aligned using a 3D model whose parameters were solved from a structure from motion
algorithm (images from [102])
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coordinate system used in the succeeding face description.

The face detector proposed by Viola and Jones [146], which uses a cascaded clas-

sifier in conjunction with images represented using a verbose set of Haar-like features,

set the precedent for all modern detectors with it’s robust accuracy and scalable com-

putational complexity. While many methods have been proposed to improve upon

Viola and Jones detector, it still serves as an optimistic baseline of state of the art

performance [105].

Face alignment is typically performed by first detecting the location of some fixed

set of anthropometric landmarks on the face. In its simplest form, these landmarks

are the centers of the two eyes. Using the two eye locations, a 2D affine transforma-

tion is performed to fix the angle and distance between the two eyes. More advanced

methods use 3D affine transformations, or Procustes alignment, on a more verbose set

of landmarks (such as a set of landmarks outlining the locations on the mouth, nose,

and face outline). The landmarks are generally detected by Active Shape Models

(ASM) [21] or active appearance appearance models (AAM) [22]. Additional tech-

niques include the use of 3D morphable models [13] and structure from motion [102].

Examples of face image alignment are shown in Figure 1.9.

Appearance normalization seeks to compensate for variations in illumination. A

variety of methods have been proposed to perform such compensation, including

the contrast equalization and difference of Gaussian filters proposed by Tan and

Triggs [136], cones models by Georghiades et al. [30], and light field modeling by

Gross et al. [33].

1.2.2 Feature Representation

The feature representation stage encodes different facial characteristics (often implic-

itly) in a feature descriptor vector. Such descriptive information can range from a

vector of ordered image pixel values, to distance measurements between facial com-
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ponents (e.g. the distance from the nose to the mouth), or to even more complex

features such as convolutions of a face image with a set of Gabor filters.

The range of representations used in face recognition is quite. Klare and Jain

developed an organization of such features to facilitate studies of facial individuality

and help standardize the face recognition process [56]. Below we introduce this tax-

onomy to provide a better understanding of the different methods by which a face

images can be represented.

Klare and Jain’s taxonomy organized the vast gamut of facial feature representa-

tions leveraged in automated and manual face recognition into three levels: Level 1,

Level 2, and Level 3. Level 1 features consist of gross facial characteristics that are

easily observable in a face, such as skin color, gender, and the general appearance of

the face. Level 2 features consist of localized face information that requires special-

ized cortex processing, such as the structure of the face, the relationship among facial

components, and the precise shape of the face. Level 3 features consist of certain

irregularities in the facial skin, which includes micro features such as facial marks,

skin discoloration, and moles. An example of this proposed feature grouping can be

found in Figure 1.10.

This categorization of facial features is intended to provide a better understanding

and standardization of both manual and automated face recognition processes. The

benefit of this categorization is two fold: (i) facilitating an individuality measure for

face images that can be used in legal testimony, and (ii) improving the accuracy of

commercial matchers through a more careful selection of facial features. The current

fingerprint feature categorization [87], accepted by both forensic scientists as well

as fingerprint vendors, served as a guiding principle for our categorization of facial

features. Compared to face recognition, fingerprint matching has over 100 years of

history and success. Furthermore, features used in automatic fingerprint matchers

(AFIS) are compact and have a physical interpretation in terms of the ridge flow
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(a)

Gabor 

LBP 

Shape 

(b)

(c)

Figure 1.10: Examples of the three levels of facial features [56]. (a) Level 1 features
contain low dimensional appearance information that is useful for determining highly
level identifying information such as ethnicity, gender, and the general shape of a
face. (b) Level 2 features require detailed processing for face recognition and captures
information regarding the structure and specific shape and texture of the face. (c)
Level 3 features include marks, moles, scars, and other irregular micro features of the
face.
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patterns in the fingerprint. Indeed state-of-the-art AFIS utilize essentially the same

features that are utilized by human fingerprint examiners. This is not necessarily

true for face recognition; features extracted by humans are not easy to precisely

describe, and thus cannot be utilized in automatic face recognition systems. Salient

features in fingerprints are categorized into three levels: Level 1 features encompass

the global structure or ridge pattern (e.g. arch, loop, whorl). Level 2 features consist

of minutiae location and orientation, and are primarily used for matching. Level 3

features consist of information available at higher spatial resolutions, such as dots,

incipients and ridge width. An example of these fingerprint features can be found

in Figure 1.11. The analogy between these widely accepted fingerprint feature levels

and the proposed face feature levels will be established below.

A major benefit of Klare and Jain’s facial feature taxonomy is that the same fea-

ture levels can be defined for both face recognition engines as well as human face

examiners. The lack of a well defined and accepted method used in human face

identification is being noticed as automated face recognition systems continue to ma-

ture [132]. The rapid growth in the use of face images captured from surveillance

cameras in legal proceedings in courts has also drawn into question the methods by

which human face examiners determine a person’s identity using typically low qual-

ity video frames [25]. The absence of a defined set of face features prevents: (i) a

generally well accepted method of human face examination, and (ii) an understand-

ing of the statistical uniqueness of face features derivable by humans [132], and (iii)

a likelihood of a false association occurring in automated face recognition systems.

Ongoing studies on the individuality of fingerprints [101] are also motivated by chal-

lenges to fingerprint evidence in court cases. A report from the National Academy of

Sciences on forensics [23] highlights the need for such individuality studies not only

for fingerprints but for other biometric traits as well. A recent volume on forensic

facial comparison [26] also mentions this report among other motivating factors for
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Figure 1.11: A fingerprint image and its (a) Level 1, (b) Level 2, and (c) Level 3
features. The organization of facial feature is analogous to such feature levels [56].

developing face individuality models. The organization of facial features assists in

conducting a study on the individuality of facial features.

Face Feature Levels

Level 1 Level 1 facial features encompass the global nature of the face, and can be

extracted from low resolution face images (< 30 interpupilary pixel distance (IPD)). In

automated face recognition, Level 1 features include appearance-based methods such

as PCA (Eigenfaces [143]) and LDA (Fisherfaces [10]). For example, these features

can generally discriminate between: (i) a short round face and an elongated thin

face; (ii) faces possessing predominantly male and female characteristics; or (iii) faces

from members of different ethnicities. Level 1 features cannot, however, accurately

identify an individual over a large population of candidates. This is illustrated in

Figure 1.12, where a query image can easily be differentiated from a subject that has

a very different appearance, but cannot be distinguished from a more similar looking

subject.

Level 1 facial features derivable by humans and machines are the gender, race,

and general age. The postulated feedfoward nature of human face recognition also

uses Level 1 features, where the initial layers can quickly discard a match candidate
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Table 1.1: Example features from each of the three different levels of facial features
that are used to represent face images by (a) humans, and (b) machines.

Source: Humans and machine

Level 1 gender, race, age

Level 2 anthropometric features

Level 3 moles, scars, freckles, birth marks

(a)

Source: Machine Only

Level 1 appearance-based methods (PCA, LDA, etc.)

Level 2
distribution-based feature descriptors (LBP, SIFT, etc.),

shape distribution models, texture descriptors

Level 3 high spatial frequency

(b)
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if they have a largely different facial appearance [18].

Level 1 face features are quite analogous to Level 1 fingerprint features. In each of

these two traits, Level 1 features are simple to compute even in low resolution images.

However, Level 1 features alone are generally only useful for indexing or reducing the

search space. Level 1 features should be explicitly leveraged to improve the matching

speed by using them in early stages of a cascaded face recognition system.

Level 2 Level 2 features are representations that are explicit to face recognition,

and require more detailed face observations. These features are locally derived and

describe structures in the face that are only relevant to face recognition (as opposed

to general object recognition) due to their spatial uniqueness. Examples of such face

features in automated face recognition include the use of Gabor wavelets in elastic

bunch graph matching (EBGM) [151], local binary patterns (LBP) [3], SIFT feature

descriptors [59, 93], point distribution models [22], texture appearance models [22],

biologically inspired features proposed by Riesenhuber and Poggio (R&P) [93, 122],

and explicit face geometry [124] (which includes the Bertillon system [11]).

Level 2 features are essential for face recognition. Given the strong evidence

that suggests face recognition activity in humans takes place in the fusiform face

area [47,142], which is a cortical region that appears to be dedicated to face recogni-

tion. In an attempt to replicate human visual processing for face recognition, the use

of Level 2 biologically inspired features in the form of Gabor wavelets have been suc-

cessfully utilized in machine face recognition [93]. Along with other features such as

the local binary patterns and gradient-based methods, these features are face specific,

provided they are defined with respect to their spatial coordinates on the face. For ex-

ample, EBGM extracts Gabor descriptors at specified locations on the face [151], and

LBP and SIFT-descriptor methods extract these descriptors at uniformly distributed

locations on a face that has been normalized using the eye coordinates [3, 59].
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Level 2 face features are analogous to minutiae location and orientation in finger-

print recognition. In both face and fingerprint, the Level 2 features are defined with

respect to a particular spatial coordinate reference, and in each case the local features

can generally be computed independently of one another.

While Level 2 features are the most discriminative face features, and are predomi-

nantly used for face recognition, certain matching scenarios exist in which they alone

are not sufficient. One example is face recognition in monozygotic twins [60, 134]

(i.e. identical twins). Because the facial appearance of monozygotic twins is nearly

identical at medium resolutions (roughly 20 to 100 IPD), Level 2 features alone are

generally not sufficient for such a task. Another example where Level 2 features alone

may be insufficient is age-invariant face recognition [57, 104]. As humans age, the

bone structure (in early aging) and cartilage (in late aging) of the face expands and

the skin wrinkles, causing both the facial shape and texture to change.

While humans extract “biological features” (i.e. neuron encodings of facial fea-

tures) to recognize faces, we are limited in our knowledge of how to precisely describe

these features. As a result, expert testimony for face recognition in the legal system

is generally restricted to the geometric Level 2 features, such as face measurements

and ratios (e.g. the ratio of the distance between the eyes and the nose width).

These anthropomorphic methods were applied to systematic face recognition, prior

to the advent of fingerprint identification, in the Bertillon system [11, 119]. While

the uniqueness of such anthropometric features is not currently leveraged in face ex-

amination, anthropometric features: (i) have gained informal acceptance in the legal

system, and (ii) are computable by both humans and machines [22]. Thus, despite

the fact that anthropometric-based face recognition (i) is not a typical approach to

automated face recognition, and (ii) is currently used without a consistent and proven

methodology in court cases [25], a thorough examination of their uniqueness must be

undertaken. Such a study could be guided by similar statistical studies on the unique-
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Probe Gallery Images

PCA Distance: 0.1723 0.1379 0.7673
(a) (b) (c) (d)

Figure 1.12: An example of how Level 1 features can easily filter out faces that
exhibit large differences, but cannot distinguish faces that possess many similarities.
The probe image in (a) was matched to each gallery image using a Level 1 image
pixel representation (difference in PCA features using the euclidean distance). Note
that a larger PCA distance indicates that the faces are less similar. Using this Level
1 representation, the face in (a) matched well to an image of a similar looking subject
(c) than its true mate (b), but was easily differentiated from other subjects that
looked largely different (d). The information in Level 1 features is sufficient for
quickly discarding some subjects (d), but more detailed Level 2 features are needed
to discriminate between similar looking subjects (c). These images are from the AR
face database [89].

ness of fingerprints [101] that are critical for the acceptance of fingerprint evidence in

the legal system.

Level 3 Level 3 features contain unstructured, micro level features on the face,

which includes scars and facial marks. Only recently has this identifiable information

been explicitly considered for face recognition [60,103]. One challenging face recogni-

tion problem where Level 3 features are critical is the discrimination of monozygotic

(i.e. identical) twins [60]. Because identical twins are extremely difficult for even

humans to distinguish, the presence of any small identifying mark on a face could be

the difference between successful and mistaken identification. Research in the medi-

cal community has shown that while the number of moles (or nevus) in monozygotic

twins is correlated, the locations of these moles are not [159] (see Figure 1.13). Level

3 features have been shown to also improve the matching accuracy in standard face
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Figure 1.13: Face images of two identical twins. While their Level 1 and Level 2
features are the same, the facial mark information contained in the Level 3 features
(shown in red circles) offers discriminating information [60].

recognition scenarios [103].

Level 3 features in the form of marks should be relatively easy to extract by both

humans and computers. Given a good quality face image, the presence of freckles,

moles, marks, and scars can be manually marked. An automated approach to mark

extraction is also viable [103], though more attention is needed to develop robust

solutions. For high resolution images (> 100 IPD) machines are also able to extract

micro texture information, though very few studies have been conducted to explicitly

understand how micro texture analysis can improve face recognition. Results from the

2006 Face Recognition Vendor Test (FRVT) [110] demonstrated that high resolution

face images are able to improve the matching accuracy of most commercial matchers,

supporting the usefulness of micro texture information.

In fingerprints, Level 3 features include micro information such as incipient ridges

and pores, and irregular information such as scars, creases and other permanent de-

tails [41]. This information is typically used by latent fingerprint examiners. In the

case of AFIS matching, higher resolution fingerprint images (1000 ppi) are necessary

to extract pore and ridge information to improve the matching accuracy, which is

generally consistent with the proposed Level 3 face features: many moles and facial

marks are not detectable at lower image resolutions. In the context of latent examina-

tion, the partial fingerprints available may require the use of Level 3 features to make
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a reliable determination of a subject’s identity since there may not be a sufficient

number of Level 2 features (minutiae) available. Similarly, forensic examination of

face images may need to leverage face mark information to make a successful identity

determination [133].

It is clear now that no optimal feature representation or encoding exists for face

images. However, the feature description stage is consolidated across all such repre-

sentations in that each representation outputs some feature vector x that describes

the face. It is from this feature vector representation that automated algorithms

ultimately measure how similar two face images are.

1.2.3 Feature Extraction

With a face image I now represented by a vector x, where x is the feature vector from

the above mentioned feature descriptors encodings (LBP descriptors, pixel values,

etc.), a host of subspace manifold methods exist for leveraging training data (i.e.

exemplar face images) to extract feature combinations which project the original

features into a feature space with improved face class separation.

Principal Component Analysis Dating back to the original Eigenfaces method

[143], principal component analysis (PCA) has played a vital role in the field of

face recognition. PCA seeks to find an orthogonal subspace Ψ that reduces the

dimensionality of the original feature space while preserving the majority of the data

variance. This is achieved by performing an eigendecomposition on the covariance

matrix computed from samples in the feature space. Given n samples xi ∈ Rd,1, i =

1 . . . n, where xi can be any of the feature representations discussed previously (LBP,

pixels, etc.), the first step in PCA is to compute the sample mean µ = 1
n

∑n
i=1 xi.

Letting X ∈ Rd,n be a matrix containing each data instance centered at the mean

(i.e. X = [x1−µ, x2−µ, . . . , xn−µ]), we compute the scatter matrix S as S = XXT.
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Finally, we seek the subspace Ψ, where

Ψ = arg max
Ψ′

Ψ′TSΨ′ (1.1)

Ψ can be solved by performing an eigendecomposition on S, which yields the matrices

of eigenvectors Ψ and eigenvalues Λ, where the eigenvector in the i-th column of Ψ

corresponds to the i-th diagonal entry in Λ. That is,

SΨ = ΛΨ (1.2)

Generally, d′ < d eigenvectors are retained, such that

d′ =

arg min
d̃

∑d̃′
i=1 Λ(i, i)∑d
i=1 Λ(i, i)

> Ve

 (1.3)

where Ve ∈ (0, 1) is the fraction of data variation to be retained (e.g. 0.98).

A computational burden in solving for Ψ lies in the computation of S. This is due

to the fact that often d >> n. That is, the dimensionality d of the feature vectors x

is much greater than the number of images n. For example, if we had 1,000 images to

learn the PCA space Ψ, and x was an image pixel representation for 128 x 128 sized

images, then n = 103 and d ≈ 1.6 · 104. Thus, d is an order of magnitude larger than

n. This means that the computational complexity for computing S is O(d2n).

Though S is a d x d dimensional matrix, the rank of S will only be n. Turk and

Pentland [143] showed that Ψ could instead be solved by

XTXΨ = Λ′Ψ′ (1.4)

because

XXTXΨ = Λ′Ψ′ (1.5)
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which means Ψ = XΨ′. Solving Ψ in this manner reduces the computational com-

plexity to O(dn2).

The chief benefit of PCA lies in reducing the feature dimensionality from d to d′

(d′ < d). Typically the majority of the data variation is captured in the eigenvectors

associated with large eigenvalues, and the eigenvectors associated with small eigen-

values correspond to noisy measurements. By discarding the eigenvectors associated

with small eigenvalues, the feature dimensionality is greatly reduced without losing

data variance information.

Linear Discriminant Analysis While PCA is effective in reducing the feature

dimensionality to a more tractable size, it is not able to leverage the category infor-

mation (class labels) in the training data to improve recognition accuracy. Belhumeur

et al. [10] adapted linear dicrminant analysis (LDA) as a face recognition subspace

technique that seeks a linear subspace projection Ψ that maximizes the discriminablity

of the feature space with respect to the Fisher criterion

Ψ = arg max
Ψ′

ΨTSBΨ

ΨTSWΨ
(1.6)

where SB is the between-class scatter matrix and SW is the within-class scatter

matrix. That is, SB is the scaled covariance between images of different subjects,

and SW is the scaled covariance between images of the same subject. By solving Eq.

4.1, a subspace projection is learned where (ideally) the images of the same subjects

form compact groups, and images of different subjects are not well separated.

An LDA subspace projection is learned from a training set of face images of nS

different subjects, with at least two images per subject. For each subject i, the ni

feature vectors x
j
i , j = 1 . . . ni, for the i-th subject are used to compute the mean

vector µi = 1
ni

∑ni
j=1 x

j
i . From this, we compute the between-class scatter matrix SB

and the within-class matrix SW as
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SB =

nS∑
i=1

ni(µi − µ)(µi − µ)T (1.7)

SW =

nS∑
i=1

ni∑
j=1

(x
j
i − µi)(x

j
i − µi)

T (1.8)

where µ is the mean of all feature vectors x
j
i . Finally, Ψ is detertmined from the

solution of the generalized eigenvalue problem

SBΨ = ΛSWΨ (1.9)

Generally, this is equivalent to performing an eigendecomposition on S−1
W SB .

However, the rank rW of SW will be rW = (
∑nS
j=1 nj)−nS . If rW < d (as is typically

the case), then SW will be singular and non-invertible. The common solution to this

problem is to first perform PCA on the feature space to reduce the dimensionality to

d′ where d′ ≤ rW . After this dimensionality reduction, LDA can be applied on the

PCA reduced feature space.

Random Sampling Linear Discriminant Analysis Ideally, the aforementioned

LDA algorithm will learn subspace projections that offer improved recognition accu-

racies over a PCA subspace. However, in practice, this is often not the case due to

the small sample size (SSS) problem [115]. Specifically, the problem being solved by

LDA is often ill-posed because the number of training samples per subject (i.e. face

images for each subject) is too small with respect to the number of feature dimen-

sions. Because of this, subspaces learned through LDA may have high generalization

errors.

A solution to the SSS problem is the random sample linear discrminant analysis

(RSLDA). This approach was first introduced by Wang and Tang [148] using image
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pixel representations. Li et al. later extended this method in order to make it

applicable to Level 2 features (SIFT and LBP) [76]. Klare and Jain showed the

effectiveness of the RSLDA framework on a large aging dataset [57].

Random sampling LDA mitigates the small sample size problem by decomposing

the feature space into more compact and solvable subsets. This approach follows the

concept of an ensemble classifier, where Schapire combined multiple weak classifiers

into a single strong classifier [125].

RSLDA learns B different subspaces. For each subspace, the d-dimensional feature

space spanned by x is randomly sampled so that a subset of size dr < d of the

original d features is retained. LDA is then performed using this reduced feature

space. However, in addition to sampling the feature space, the training subjects are

also randomly sampled. Thus, only a portion of the original subjects are used in each

of the B stages.

Once the set of subspaces has been learned, a face feature vector is projected into

each of the B subspaces (resulting in B feature vectors describing the face). These

feature vectors may then be concatenated into a single vector for matching.

1.2.4 Matching

The matching stage outputs a measure of similarity (or dissimilarity) between two

face images, where the feature vectors used to compute such (dis)similarities are the

outputs from the feature extraction stage discussed above. Most simply, matching is

performed using the nearest neighbor classification algorithm [24]. That is, a probe

(or query) image is matched against a gallery (or database) by finding the face image

in the gallery with the minimum distance (such as the Euclidean or cosine distance)

or maximum similarity.

Often the matching stage can be augmented by an additional stage of statistical

learning (that is, in addition to the learning that occurred in the feature extraction
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stage). A common notion here is to map the task of generating a measure of similarity

between two faces images to a binary classification problem that determines whether

or not two face images are of the ‘same subject’ or a ‘different subject’. This notion can

easily leverage a host of binary classification algorithms from machine learning and

pattern recognition literature by creating new feature vectors that are the difference

between feature vectors extracted from two face images.

The method by Moghaddam et al. was seminal in using this binary classification

approach by modeling the difference vectors with Bayesian maximum a posteriori

density estimation [96] to generate a probabilistic measure of similarity between two

face images. This technique has also been applied using support vector machines [36].

Fusion techniques, as discussed by Ross and Jain [123], may also by exploited

to improve face matching. While typically applied to multi-biometric scenarios, the

same approach is viable for face recognition scenarios where, for example, the use of

multiple face representations (such as LBP and Gabor), multiple views of a face, or

multiple RSLDA subspaces can be consolidated to achieve better discrimination.

1.3 Heterogeneous Face Recognition

Now that we better understand the face recognition process, we can shift our at-

tention to the topic of heterogeneous face recognition (HFR). The key difficulty in

matching face images from alternate modalities is that face images of the same sub-

ject may differ in appearance due to the change in image modality. Heterogeneous

face recognition algorithms must develop representation schemes to be invariant to

such intra-class variations. Two of the most intuitive methods for achieving this

invariance are the selection of feature descriptor encodings that are stable between

heterogeneous modalities, and learning feature extractions from such encodings that

further compensate for such undesired differences.
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(a) (b)

Figure 1.14: Most heterogeneous face recognition scenarios leverage large visible light
face image databases to determine a subject’s identity from their face image acquired
in some non-visible modality. (a) Between driver’s licenses, passports, and mug shots,
a visible light face image exists for a majority of the population. (b) Many forensic
and law enforcement scenarios only have face images available from alternate imaging
sources such as infrared, LIDAR, or forensic sketches.
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The most frequent heterogeneous face recognition scenario involves gallery

databases with visible light face images, and probe images from some alternate modal-

ity such as infrared, sketch, or depth images (see Figure 1.14). The motivation behind

solutions to these scenarios is that through sources such as state DMV driver license

photos, law enforcement mug shot records, the FBI’s Next Generation Identification

initiative, and the US-VISIT program, visible photograph databases cover the major-

ity of the U.S. population. In fact, visible face images databases cover the population

of most other developed nations as well.

While the standard face recognition paradigm is to match against the above men-

tioned face databases with homogeneous face images (e.g. surveillance images, mug

shots, images from social networking sites), heterogeneous face recognition seeks to

query these databases with images captured from imaging devices of an alternate

modality.

Many scenarios exist in which the only available probe images are not visible light

face images. For example, when no face image exists of a subject (suspect), a forensic

sketch may be developed through a verbal description of a subject’s appearance. In

nighttime environments infrared imaging must be used to capture a subject’s face

biometric. In order to identify subjects in these scenarios, specialized algorithms for

heterogeneous face recognition must be employed.

The collection of solutions to heterogeneous face recognition can be organized into

three approaches:

• Synthesis methods: Synthesis methods seek to generate a synthetic visible

light photograph from the alternate modality face image. Once a synthetic

visible face image has been generated, it can be matched using standard face

recognition algorithms. Synthesis solutions to heterogeneous face recognition

are generative methods, and have been solved using local linear embedding [82]

or Markov random fields [149]. Park et al. handled the heterogeneity in facial
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aging by synthesizing the aging process [104].

• Feature-based methods: Feature-based methods encode face images from

both modalities using feature descriptors that are largely invariant to changes

between the two domains. For example, local binary patterns [99] and SIFT

feature descriptors [84] have been shown to be stable between sketch and visible

photographs [59], near-infrared face images and visible photographs [77], and

time-separated (aged) face images [57,76]. Once face images from both modal-

ities are represented using feature descriptors, feature extraction methods such

as LDA can be used to improve the discriminative abilities of the representation.

The matching stage of the feature-based methods is performed by measuring

the distance or similarity between the feature vector representation of two face

images.

• Prototype similarity methods: As we will discuss in Chapter 3, prototype

similarity methods represent a face image as a vector of similarities to a collec-

tion of prototype face images [54]. The prototypes are a collection of subjects

that each contain a face image from both the probe and gallery modalities. The

prototypes are analogous to a training set - in this case they help approximate

the distribution of faces. Because each prototype has a face image from each

modality, the vector of similarities for a face image is measured against the

images from the corresponding modality. Similarities are measured between

feature-based representations (e.g. LBP, SIFT) of the face images. The use of

similarities naturally extends to kernel similarities, with the kernel space offer-

ing a non-linear feature space. Linear discriminant analysis may also be applied

on the vectors of prototype similarities to improve the recognition accuracy. A

chief benefit of prototype similarity algorithms is that the feature representation

in which the similarities are computed may be different for the probe and gallery
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modalities. This property is important for scenarios such as 3D to 2D matching,

where common feature descriptors do not exist between the modalities.

1.4 Contributions

The contributions of this dissertation are as follows:

1. A framework for feature-based heterogeneous face recognition is developed. This

framework, called Local Feature-based Discriminant Analysis (LFDA), achieves

state of the art accuracy when applied to the heterogeneous face recognition task

of matching sketches and photographs.

2. An approach to heterogeneous face recognition is developed which uses proto-

type similarities to eliminate the need to directly measure the similarity between

images from heterogeneous modalities. In requiring that face similarities be

computed within each modality only, the prototype heterogeneous face recog-

nition method generalizes to any HFR scenario.

3. In showing that aging-invariant face recognition systems do not generalize to

face images that have not aged, it is demonstrated that face recognition in

the presence of time lapse can be viewed as a heterogeneous face recognition

problem.

4. Different sources of demographic information (race, gender, and age) are ex-

ploited to perform dynamic face matcher selection. This paradigm for face

recognition uses the available demographics of the probe image to improve face

recognition accuracies.

5. A set of qualitative facial features is developed to enable matching caricature

sketches to photographs. These features are: (i) able to encode key facial char-

acteristics that are used in caricatures to convey a subject’s identity, and (ii)
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robust to facial variations such as the unconstrained exaggerations performed

by a caricaturists.

1.5 Thesis Organization

In Chapter 2 we present a solution to the problem of heterogeneous face recognition

between forensic sketches and mug shot photographs. In Chapter 3, a framework for

heterogeneous face recognition is introduced which uses prototype similarity features

to generalize the heterogeneous face recognition task to any scenario. Chapter 4

presents a study on the generalization of aging-invariant face recognition to non-aging

scenarios. Chapter 5 presents a study on how heterogeneous demographics may be

exploited to improve face recognition performance. Chapter 6 studies the task of a

matching a caricature sketch to a facial photograph. Finally, we conclude with the

findings of this dissertation and suggestions for future research in Chapter 7.
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Chapter 2

Forensic Sketch Recognition

2.1 Introduction

Progress in biometric technology has provided law enforcement agencies additional

tools to help determine the identity of criminals. In addition to DNA and circumstan-

tial evidence, if a latent fingerprint is found at an investigative scene, or a surveillance

camera captures an image of a suspect’s face, then these cues may be used to help

determine the culprit’s identity using automated biometric identification. However,

many crimes occur where none of this information is present, but instead an eye-

witness account of the crime is available. In these circumstances a forensic artist is

often used to work with the witness in order to draw a sketch that depicts the facial

appearance of the culprit according to the verbal description. Once the sketch image

of the transgressor is complete, it is then disseminated to law enforcement officers

and media outlets with the hope that someone will come forward who knows the

suspect. These sketches are known as forensic sketches and this chapter describes a

robust method for matching forensic sketches to large mughshot (image) databases

maintained by law enforcement agencies.

Improving forensic sketch recognition performance is perhaps the most impactful
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area of heterogeneous face recognition research [55]. This is because enabling a search

of a large mug shot or driver license database using a forensic sketch is equivalent to

a face search using a verbal description. That is, we are able to search digital face

image databases without even having a face image as a query. As such, the research

presented in this chapter offers a strong contribution to the goals of this dissertation.

Two different types of face sketches are discussed in this chapter: viewed sketches

and forensic sketches (see Figure 2.1). Viewed sketches are sketches that are drawn

while viewing a photograph of the person or the person himself. Forensic sketches,

on the other hand, are drawn by interviewing a witness to gain a description of the

suspect. Published research on sketch to photo matching to this point has primar-

ily focused on matching viewed sketches [53] [138] [82] [158] [149], despite the fact

that real world scenarios only involve forensic sketches. Both forensic sketches and

viewed sketches pose challenges to face recognition due to the fact that probe sketch

images contain different textures compared to the gallery photographs they are being

matched against. However, forensic sketches pose additional challenges due to a wit-

ness’s inability to exactly remember the appearance of a suspect and her subjective

account of the description, which often results in inaccurate and incomplete forensic

sketches. Experimental results on viewed sketches1 are included primarily for histor-

ical reasons since all available research to date on sketch recognition has focused on

viewed sketches.

We highlight two key difficulties in matching forensic sketches: (1) Matching across

image modalities, and (2) performing face recognition despite possibly inaccurate de-

pictions of the face. In order to solve the first problem we use local feature-based dis-

criminant analysis (LFDA) to perform minimum distance matching between sketches

1A viewed sketch is a facial sketch drawn while viewing a
photograph of the subject. The scenario is not particularly
interesting because the photograph itself could be queried in
the FR system.
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(a) (b)

(c)

Figure 2.1: The difference between viewed sketches and forensic sketches. (a) Viewed
sketches and their corresponding photographs. (b) Two pairs of good quality forensic
sketches and the corresponding photographs. (c) Two pairs of poor quality forensic
sketches and the corresponding photographs. Sketches were labeled as “good” if they
(subjectively) exhibited a mostly accurate portrayal of a subject. Otherwise, if a
sketch did not strongly resemble the subject, it was labeled as “poor”.
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and photos, which is described in Section 2.3 and summarized in Figure 2.2 and Figure

2.3. The second problem is considered in Section 2.5, where analysis and improve-

ments are offered for matching forensic sketches against large mugshot galleries.

The contributions of the chapter are summarized as follows: (i) We observe a

substantial improvement in matching viewed sketches to photos over published algo-

rithms using the proposed local feature-based discriminant analysis; (ii) we present

the first large-scale published experiment on matching operational forensic sketches;

(iii) using a mugshot gallery of 10,159 images, we perform race and gender filtering

to improve the matching results; (iv) all experiments are validated by comparing the

proposed method against a leading commercial face recognition engine. The last point

is significant since earlier studies on viewed sketches used PCA (eigenface) matcher

as the baseline. It is now well known that the performance of a PCA matcher can be

easily surpassed by other face matchers.

2.2 Related Work

Most research on sketch matching has dealt with viewed sketches. Much of the early

work in matching viewed sketches was performed by Tang et al. [137] [138] [82] [149]

[78]. These studies share a common approach in that a synthetic photograph is

generated from a sketch (or vice-versa), and standard face recognition algorithms are

then used to match the synthetic photographs to gallery photographs. The different

synthesis methods used include an eigentransformation method (Tang and Wang [137]

[138]), Local Linear Embedding (Liu et al. [82]), and belief propagation on a Markov

random field (Wang and Tang [149]). Other synthesis methods have been proposed

as well [158] [29] [152] [83] [74]. The impact of matching sketches drawn by different

artists was studied by Al Nizami et al. [98].

We also proposed a method of sketch matching that uses the same feature-based
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approach that has been successful in other heterogeneous face recognition scenarios

(specifically matching near infrared face images to visible light) [53]. In using SIFT

feature descriptors [84], the intrapersonal variations between the sketch and photo

modality was diminished while still maintaining sufficient information for interclass

discrimination. Such an approach is similar to other methods proposed in the lit-

erature [77] [68] [52] of matching near infrared images (NIR) to visible light images

(VIS), where local binary pattern (LBP) [99] feature descriptors are used to describe

both NIR and VIS images.

In this chapter we extend our previous feature-based approach to sketch matching

[53]. This is achieved by using local binary patterns (LBP) in addition to the SIFT

feature descriptor, which is motivated by LBP’s success in a similar heterogeneous

matching application by Liao et al. [77]. Additionally, we extend our feature-based

matching to learn discriminant projections on “slices” of feature patches, which is

similar to the method proposed by Lei and Li [68].

2.3 Feature-based Sketch Matching

Feature descriptors describe an image or image region using a feature vector that

captures the distinct characteristics of the image [95]. Image-based features have

been shown to be successful in face recognition, most notably with the use of local

binary patterns [3].

2.3.1 Feature-based Representation

We will now describe how to represent a face with image descriptors. Because most

image descriptors are not sufficiently verbose to fully describe a face image, the de-

scriptors are computed over a set of uniformly distributed subregions of the face. The

feature vectors at sampled regions are then concatenated together to describe the en-
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Figure 2.2: An overview of training using the LFDA framework. Each sketch and
photo is represented by SIFT and MLBP feature descriptors extracted from overlap-
ping patches. After grouping “slices” of patches together into feature vectors Φ(k)
(k = 1 · · ·N), we learn a discriminant projection Ψk for each slice.
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Figure 2.3: An overview of matching using the LFDA framework. Recognition is
performed after combining each projected vector slice into a single vector ϕ and
measuring the normed distance between a probe sketch and gallery photo.
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tire face. The feature sampling points are chosen by setting two parameters: a region

(or patch) size s, and a displacement size δ. The region size s defines the size of the

square window over which the image feature is computed. The displacement size δ

states the number of pixels the patch is displaced for each sample, thus (s− δ) is the

number of overlapping pixels in two adjacent patches. This is analogous to sliding

a window of size sxs across the face image in a raster scan fashion. For a HxW

image the number of horizontal (N) and vertical (M) sampling locations are given by

N = (W−s)/δ+1, and M = (H−s)/δ+1. At each of the M ·N patches, we compute

the d-dimensional image feature vector φ. These image feature vectors are concate-

nated into one single (M ·N · d)-dimensional image vector Φ. Whereas f(I) : I → φ

denotes the extraction of a single feature descriptor from an image, sampling multiple

features using overlapping patches is denoted as F (I) : I → Φ. Minimum distance

sketch matching can be performed directly using this feature-based representation of

subjects i and j by computing the normed vector distance ||F (Ii)− F (Ij)|| [53].

In our sketch matching framework, two feature descriptors are used: SIFT and

LBP. The SIFT feature descriptor quantizes both the spatial location and gradient

orientations within a sxs sized image patch, and computes a histogram in which each

bin corresponds to a combination of a particular spatial location and orientation. For

each image pixel, the histogram bin corresponding to its quantized orientation and

location are incremented by the product of: (i) the magnitude of the image gradient

at that pixel, and (ii) the value of a Gaussian function centered on the patch with a

standard deviation of s/2. Tri-linear interpolation is used on the quantized location

of the pixel, which addresses image translation noise. The final vector of histogram

values is normalized to sum to one. The reader is referred to [84] for a more detailed

description of how the SIFT feature descriptor is designed. It is important to reiterate

that because we are sampling SIFT feature descriptors from a fixed grid, we do not use

SIFT keypoint detection; the SIFT feature descriptor is computed at predetermined
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locations.

For the local binary pattern feature descriptor [99], we extended the LBP to

describe the face at multiple scales, by combining the LBP descriptors computed

with radii r ∈ {1, 3, 5, 7}. We refer to this as the multi-scale local binary pattern

(MLBP). MLBP is similar to other variants of the LBP, such as MB-LBP [77], but

we obtained slightly improved face recognition accuracy using MLBP.

The choice of the MLBP and SIFT feature descriptors was based on reported suc-

cess in heterogeneous face recognition and through a quantitative evaluation of their

ability to discriminate between subjects in sketches and photos [58]. Though variants

of LBPs have lead to substantial success in previous heterogeneous face recognition

scenarios, the use of SIFT feature descriptors for this application is quite novel. How-

ever, recent work [53] clearly demonstrates the success of SIFT feature descriptors

for viewed sketch recognition. SIFT feature descriptors have also been shown to

perform comparatively with LBP feature descriptors in a standard face recognition

scenario [93]. These feature descriptors are well suited for sketch recognition because

they describe the distribution of the direction of edges in the face; this information is

contained in both sketches and photos. By densely sampling these descriptors, suffi-

cient discriminatory information is retained to more accurately determine a subject’s

identity over previously used synthesis methods [53].

The feature-based representation requires each sketch and photo image to be nor-

malized by rotating the angle between the two eyes to 0◦, scaling the images to a

75 interocular pixel distance, and cropping the image size to 200 by 250 pixels. The

experimental results reported in Sections 2.4 and 2.6 for each of the two descriptors

are based on a sum of score fusion of the match scores generated from computing

descriptors with patch sizes of s = 16 and s = 32. This also holds for the global

discriminant described in Section 2.3.2; we fuse the matching scores computed using

two separate patch sizes of 16 and 32. When combining the SIFT and MLBP features,
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sum of score fusion is used as well.

2.3.2 Local Feature-based Discriminant Analysis

With both sketches and photos characterized using SIFT and MLBP image descrip-

tors, we further refine this feature space using discriminant analysis. This is done

to reduce the large dimensionality of the feature vector Φ. A straightforward ap-

proach would be to apply classical subspace analysis (such as LDA) directly on Φ,

and to extract discriminant features for classification. However, there are several

problems with this approach. First, the feature dimensionality is too high for direct

subspace analysis. In our experiments each image is divided into either 154 overlap-

ping patches (for s = 32) or 720 overlapping patches (for s = 16), with each patch

producing a 128-dimensional SIFT descriptor or a 236-dimensional MLBP descriptor.

The second problem is the possibility of overfitting due to the small sample size (SSS)

problem [115].

In order to handle the combination of a large dimensionality (feature size) and

small sample size, an ensemble of linear discriminant classifiers, called local feature-

based discriminant analysis (LFDA), is proposed. Other discriminant analysis meth-

ods have been proposed to handle the SSS problem, such as random sampling

LDA [148], regularized LDA [85], and direct LDA [45]. However, we choose the

proposed LFDA method because it is designed to work with a feature descriptor rep-

resentation (as opposed to an image pixel representation), and it resulted in high

recognition accuracy.

In LFDA framework each image feature vector Φ is first divided into “slices”

of smaller dimensionality, where slices correspond to the concatenation of feature

descriptor vectors from each column of image patches. Next, discriminant analysis

is performed separately on each slice by performing the following three steps: PCA,

within-class whitening, and between-class discriminant analysis. Finally, PCA is
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applied to the new feature vector to remove redundant information among the feature

slices to extract the final feature vector.

To train the LFDA, we use a training set consisting of pairs of a corresponding

sketch and photo of n subjects (which are the n classes). This results in a total of 2n

training images with two supports for each subject i: the image feature representation

of the sketch Φis = F (Iis) and the photo Φip = F (Iip). We combine these feature vectors

as a column vector in training matrices and refer to them as Xs = [Φ1
s Φ2

s . . .Φ
n
s ] for

the sketch, Xp = [Φ1
p Φ2

p . . .Φ
n
p ] for the photo, and X = [Φ1

s . . .Φ
n
s Φ1

p . . .Φ
n
p ] for the

photo and sketch combined.

The first step in LFDA is to separate the image feature vector into multiple

sub-vectors or slices. Given the MxN array of patches consisting of SIFT or MLBP

descriptors, we create one slice for each of the N patch columns. With a d-dimensional

feature descriptor, each of the N slices is of dimensionality (M · d). We call this a

“slice” because it is similar to slicing an image into N pieces. After separating the

feature vectors into slices, the training matrices now become Xs
k ∈ RM ·d,n, X

p
k ∈

RM ·d,n, and Xk ∈ RM ·d,2n (k = 1 . . . N), which are all mean centered.

We next reduce the dimensionality of each training slice matrix Xk using the PCA

matrix Wk ∈ RM ·d,r with r eigenvectors. The purpose is to remove the noisy features

which are usually associated with the trailing eigenvectors with the smallest eigen-

values. In our experiments we use the 100 eigenvectors with the largest eigenvalues

(which preserves about 90% of the variance). The discriminant extraction proceeds

by generating the mean projected class vectors

Yk = WT
k (Xs

k +X
p
k)/2 (2.1)

which are used to center the sketch and photo training instances of each class by
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Table 2.1: Rank-1 recognition rates for matching viewed sketches using the CUHK
public dataset. The standard deviation across the five random splits for each method
in the middle and right columns is less than 1%.

Baseline

Method Rank-1 Accuracy (%)

FaceVACS [1] 90.37
BP Synthesis [149] 96.30
SIFT Descriptor-based [53] 97.87

Without LFDA

Method Rank-1 Accuracy (%)

SIFT 97.00
MLBP 96.27
SIFT + MLBP 97.33

LFDA

Method Rank-1 Accuracy (%)

SIFT 99.27
MLBP 98.60
SIFT + MLBP 99.47

X̃s
k =WT

k Xs
k − Yk

X̃
p
k =WT

k X
p
k − Yk

(2.2)

To reduce the intra-personal variation between the sketch and photo, a whitening

transform is performed. Whitening the within-class scatter matrix reduces the dimen-

sionality by discarding features that represent the principal intra-personal variations,

which in this case corresponds to intra-personal differences between sketches and pho-

tos. To do so, we recombine the training instances into X̃k = [X̃s
k X̃

p
k ]. PCA analysis

is performed on X̃k, such that the computed PCA projection matrix Ṽk ∈ R100×100

retains all of the data variance from X̃k. Let Λk ∈ R100×100 be a diagonal matrix

whose entries are the eigenvalues of the corresponding PCA eigenvectors Ṽk. The
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whitening transform matrix is Vk =

(
Λ
−1

2
k V T

k

)T

.

The final step is to compute a projection matrix that maximizes the intra-person

scatter by performing PCA on V TYk (which is the whitening transform of the mean

class vectors). Using all but one of the eigenvectors in the PCA projection matrix,

the resultant projection matrix is denoted as Uk ∈ R100×99. This results in the final

projection matrix for slice k

Ψk = WkVkUk (2.3)

With each local feature-based discriminant trained, we match sketches to photos

using the nearest neighbor matching on the concatenated slice vectors. We first

separate the feature representation of an image into individual slices

Φ = [Φ(1)T Φ(2)T . . .Φ(N)T ]T (2.4)

where Φ(i) ∈ RM ·d is the i-th slice feature vector. We then project each slice using

the LFDA projection matrix Ψk yielding the new vector representation ϕ ∈ RM ·99

ϕ =
[
(ΨT

k Φ(1))T (ΨT
k Φ(2))T . . . (ΨT

k Φ(N))T
]T

(2.5)

With the LFDA representation of a sketch ϕs and photo ϕp, the normed distance

||ϕs−ϕp|| is used to select the gallery photo with the minimum distance to the probe

sketch.

The proposed LFDA algorithm is a simple yet effective method. From the re-

sults in Section 2.4, we can clearly see that LFDA is able to significantly improve

the recognition performance over the basic feature-based sketch matching framework.

Similar to other variants of LDA that are designed to handle the small sample size

problem [45] [85] [148], LFDA has several advantages over traditional linear discrimi-
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nant analysis (LDA). First, LFDA is more effective in handling large feature vectors.

The idea of segregating the feature vectors into slices allows us to work on more

manageable sized data with respect to the number of training images. Second, be-

cause the subspace dimensionality is fixed by the number of training subjects, when

dealing with the smaller sized slices the LFDA algorithm is able to extract a larger

number of meaningful features. This is because the dimensionality of each slice sub-

space is bounded by the same number of subjects as a subspace for the entire feature

representation.

2.4 Viewed Sketch Matching Results

In order to compare our proposed LFDA framework to published methods on sketch

matching, we evaluated our method using viewed sketches from the CUHK dataset2

[149]. This dataset consists of 606 corresponding sketch/photo pairs that was drawn

from three face datasets: (1) 123 pairs from the AR face database [89], (2) 295

pairs from the XM2VTS database [92], and (3) 188 pairs from the CUHK student

database [137]. Each of these sketch images were drawn by an artist while looking at

the corresponding photograph of the subject. Two examples of these viewed sketches

are shown in Figure 2.1(a). For the methods presented in this chapter, all results

shown are the recognition rates averaged over five separate random splits of 306

training subjects and 300 test subjects.

The results of viewed sketch matching experiment are summarized in Table 2.1.

The first column of the table shows the baseline methods, which includes the top two

performing methods in the literature [53] [149] (each used 306 training subjects and

300 test subjects) and Cognitec’s FaceVACS commercial face recognition engine [1].

FaceVACS has been shown [53] to perform at the same level as earlier solutions

2The CUHK Face Sketch Database is available for download at:
http://mmlab.ie.cuhk.edu.hk/facesketch.html
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specifically trained for viewed sketch recognition [138]. In the second column the

matching accuracies achieved by directly comparing SIFT and MLBP feature vectors

Φ are listed. The method ‘SIFT + MLBP’ indicates a sum of score fusion [123] of

the match scores from SIFT matching and MLBP matching. While both the SIFT

and MLBP methods offer similar levels of performance, using LFDA (third column)

the accuracy increases to the point where (on average) fewer than two sketches are

incorrectly identified out of the 300 sketches in the probe set.

While LFDA was able to reduce the error in half, the use of LDA actually induced

higher error. In the same experiment shown in Table 2.1, we applied LDA on the

entire feature vector Φ instead of breaking it into slices and performing LDA on

each slice vector as is done in LFDA. The accuracy of LDA+SIFT was 95.47%,

LDA+MLBP was 91.53%, and (SIFT+MLBP)+LDA was 97.07%. In each case LDA

actually lowered the accuracy from the LFDA case. The decrease in accuracy observed

when applying the standard LDA is due to the small sample size problem and the

resulting curse of dimensionality [115]. Given our large feature representation (for

a 32 pixel patch size, the SIFT representation contains 19,712 components and the

MLBP representation contains 36,344 components), the subspace projections are over

fit to the training data. Because LFDA is an ensemble method, it is better suited to

overcome this overfitting problem. Other LDA variants have been shown to handle

the small sample size problem as well, such as RSLDA [148] and regularized LDA

(R-LDA) [85].

2.5 Matching Forensic Sketches

The available methods for matching forensic sketches to photos is limited. Uhl and

Lobo [144] proposed a now antiquated method of matching sketches drawn by forensic

artists using photometric standardization and facial features. Yuen and Man [156]
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Table 2.2: Demographics of the 159 forensic sketch images and the 10,159 mugshot
gallery images.

Forensic Sketches Mugshot Gallery

Caucasian 58.49% 46.43%
African American 31.45% 46.93%

Other 10.06% 6.64 %

Male 91.19% 84.33%
Female 8.81% 15.52%

Unknown 0.00% 0.03%

(a) (b) (c)

Figure 2.4: An example of the internal (b) and external (c) features of the face image
in (a). Humans tend to use the internal facial features for recognizing faces they
are familiar with, and the external features for recognizing faces they are unfamiliar
with [155]. Witnesses of a crime are generally unfamiliar with the culprit, therefore
the external facial features should be more salient in matching forensic sketches.

matched lab generated forensic composites to photographs based on point distribution

models.

2.5.1 Forensic Sketch Database

In our study we used a dataset consisting of 159 forensic sketches, each with a cor-

responding photograph of the subject that was later identified by the law enforce-

ment agency to belong to the suspect. All of these sketches were drawn by forensic

sketch artists working with witnesses who provided verbal descriptions after crimes

were committed by an unknown culprit. The corresponding photographs (mugshots)

are the result of the subject later being identified, possibly due to citizens coming

forward to provide clues. The forensic sketch data set used here comes from four
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different sources: (1) 73 images from forensic sketch artist Lois Gibson [31], (2) 43

images from forensic sketch artist Karen Taylor [139], (3) 39 forensic sketches pro-

vided by the Michigan State Police Department, and (4) 4 forensic sketches provided

by the Pinellas County Sheriff’s Office. In addition to these 159 corresponding foren-

sic sketch and photo pairs, we also made use of a dataset of 10,159 mugshot images

provided by the Michigan State Police to enlarge the gallery size. Thus, the matching

experiments attempt to replicate real world scenarios where a law enforcement agency

would query a large gallery of mugshot images with a forensic sketch. Examples of

the forensic sketches used in our experiments are shown in Figures 2.1, 2.9, 2.10, and

2.10.

In some cases a witness’s memory and hence the description of a suspect is inac-

curate. This causes forensic sketches drawn from such witness’s descriptions to be of

poor quality in terms of not accurately capturing all the facial features of the sus-

pect. For most of these sketches, it is unlikely that they can be successfully matched

automatically to the corresponding photos because they barely resemble the subject.

For this reason, we separated our forensic sketches into two categories: good qual-

ity and poor quality. This separation was performed subjectively by looking at the

corresponding pairs (sketch and photo) and labeling them as “good” if the sketch

possessed a reasonable resemblance to the subject in the photo, and labeling them as

“poor” if the sketch was grossly inaccurate. We believe this leads to a more accurate

portrayal of the performance of proposed automatic sketch to photo matching. Figure

2.1 shows the difference between good quality and poor quality sketches.

2.5.2 Human Memory and Forensic Sketches

A distinct difference between a viewed sketch and a forensic sketch is that the forensic

sketch may have many inaccuracies due to the witness’s inability to correctly remem-

ber the suspect’s face. A body of psychological research exists that focuses on a
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person’s ability to successfully recall the appearance of an individual she is unfamil-

iar with and whom she viewed only momentarily [17, 27, 155]. A consistent finding

of these studies is that the facial features used to recognize someone depends on the

level of familiarity. In this respect, facial features are separated into internal and

external features (see Figure 2.4).

When we are familiar with the person we are attempting to recognize (e.g. a

co-worker, family member, or celebrity), we predominantly make use of the internal

facial features for identification [17, 155]. These features include the nose, eyes, eye

brows, and mouth. Most research in automatic face recognition has observed that

these internal features are also the most discriminative areas of the face. [67]. When

we are attempting to recognize someone who is unfamiliar to us, the external features

of the face are predominantly used to establish identity [17, 155]. External features

consist of the outer region of the face, including the chin, hairstyle, and general shape

of the face.

Frowd et al. [27] studied whether humans are best able to match forensic sketches

using the internal or external features of the face. In their experiments, test subjects

were shown the photograph of a celebrity they were unfamiliar with and given approx-

imately one minute to remember the appearance. Two days later the subjects worked

with a forensic sketch artist to draw a sketch of the person they viewed earlier in the

photograph. Using these composites, a separate set of subjects that had familiarity

with the same celebrities were asked to identify two different versions of the sketches:

(i) sketches with only the interior regions of the face shown, and (ii) sketches with

only the exterior regions of the face shown. The experiments concluded that higher

identification rates were achieved using the exterior regions of the face [27].

Frowd et al.’s results are based on a controlled experiment, so we must tread

lightly in using them for automated face recognition. One of the most important

properties for a biometric trait is permanence [40], which the external regions of the
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Internal External Eyes
(a) (b) (c)

Nose Mouth Chin
(d) (e) (f)

Figure 2.5: Masks used for region based forensic sketch matching. Shown above are
the mean photo patches of each patch used for a particular region. The mosaic effect
is due to the fact that face patches are extracted in an overlapping manner.

face do not satisfy well. By growing or removing a beard, changing hairstyles, or

donning headgear, a person can drastically change the appearance of their external

facial features. Therefore, assigning a higher prior probability to the decisions made

from external forensic sketch regions over internal regions may not be a wise choice.

2.5.3 Forensic Sketch Region Saliency

Due to the observation in the human cognition studies that different regions of the

face have different saliency, we measure the performance of automatic sketch matching

using only certain regions of the face. For our feature-based framework, it is quite

easy to implement this by only selecting the patches in the face that correspond to

a given region. We considered six separate face regions for localized identification:

(1) internal, (2) external, (3) eyes, (4) nose, (5) mouth, and (6) chin. Figure 2.5

shows the patches used for each of these face regions (with patch size s = 32) and the
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Figure 2.6: Performance of matching forensic sketches that were labeled as good (49
sketches) and poor (110 sketches) against a gallery of 10,159 mugshot images without
using race/gender filtering.

average intensity for each patch (the mean patch). Thus, when matching using one

of the masks, we performed distance matching using only the patches shown in each

mask.

In Section 2.6 we will show the results of forensic sketch matching using only these

face regions.

2.5.4 Large-Scale Forensic Sketch Matching

Matching forensic sketches to large mugshot galleries is different in several respects

from traditional face identification scenarios. When presenting face recognition results

in normal recognition scenarios, we are generally concerned with exactly identifying
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the subject in question in a fully automated manner. For example, when preventing

multiple passports from being issued to the same person, human interaction should

be limited to only ambiguous cases. This is due to the large volume of requests such

a system must process. The same is true for matching arrested criminals against ex-

isting mugshot databases to confirm their identity. However, when matching forensic

sketches it is not critical for the top retrieval result to be the correct subject, as long

as it is in the top R retrieved results, say R = 50. This is because the culprit being

depicted in a forensic sketch typically has committed a heinous crime (e.g murder,

rape, armed robbery) that will receive a large amount of attention from investigators.

Instead of accepting or dismissing only the top retrieved photo, law enforcement offi-

cers will consider the top R retrieval results as potential suspects. Generally, many of

the returned subjects can be immediately eliminated as suspects for various reasons,

such as if they are currently incarcerated or deceased. The remaining candidates can

each then be investigated for their culpability of committing the crime. This scenario

is also true of crimes in which a photograph of a suspect is available. Investigators

will consider the top R retrieval results instead of only the highest match. Based on

the practice followed in forensics, we would like R to be around 50; that is, we are

mainly concerned with whether or not the true subject is within the top 50 retrieved

images.

In order improve the accuracy of matching forensic sketches, we utilize ancillary or

demographic information provided by the witness, to be used as a soft biometric [42].

For example, suppose the witness reports that the race of the culprit is Caucasian,

then we can eliminate all non-Caucasian members of the gallery to not only speed up

the matching but also to improve the matching performance. The same is true for

gender: if the suspect is reported to be a female then we disregard any male subjects

in the gallery. To use this approach, we manually labeled all of the 10,159 mugshot

images and all the forensic sketch/photo pairs in our database with race and gender.
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Figure 2.7: Performance of matching good sketches with and without using ancillary
demographic information (race and gender) to filter the results.

For gender, we considered one of three possible categories: male, female, and (in rare

cases) unknown. For race we considered one of three categories: Caucasian, African-

American, and “other”. The “other” includes individuals who are of Hispanic, Asian,

or multiple races. Table 2.2 lists the percentage of members from each race and gender

category in the forensic sketches and the mugshot gallery used in our experiments.

We lack additional ancillary information (e.g., age, height, scars, marks and tat-

toos) that could potentially be used to further improve the matching accuracy.
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2.6 Forensic Sketch Matching Results

Forensic sketch recognition performance using the 159 forensic sketch images (probe

set) and 10,159 mugshot images (gallery) will now be presented. In these matching

experiments we use the local feature-based discriminant analysis (LFDA) framework

presented in Section 2.3. Our matching uses sum-score fusion of MLBP and SIFT

LFDA, as this provided the highest recognition performance for matching viewed

sketches (Table 2.1).

The performance of matching sketches classified as good and poor can be found

in Figure 2.6. There is a substantial difference in the matching performance of good

sketches and poor sketches. Despite the fact that poor sketches are extremely difficult

to match, the CMC plots in Figure 2.6 shows that the proposed method performs

roughly the same on the poor sketches than a state of the art commercial matcher

(FaceVACS) performs on the good sketches.

Figure 2.7 shows the recognition performance when race and gender information is

used to filter the gallery. By utilizing this ancillary information, we can significantly

increase the performance of forensic sketch recognition. We noticed a larger perfor-

mance gain by using race information than the gender information. This is likely due

to the more uniform distribution of race membership than gender membership in our

gallery. The use of other demographic information such as age and height should offer

further improvements.

Discriminatory information contained in individual face regions (eyes, nose,

mouth, etc.) is shown in Figure 2.8. Again, this is achieved by first applying the

masks in Figure 2.5 to the face features patches. These results mostly agree with

cognitive science research (Section 2.5.2) that indicates that external regions of the

face provide more discriminating information in matching forensic sketches. Between

the eyes, nose, mouth, and chin, we found the chin to be the most informative region

of the face. In fact, only using the chin region for region recognition we were able
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Figure 2.8: Matching performance on the good sketches using race/gender filtering
with SIFT and MLBP feature-based matching on only specific face regions.
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Probe Sketch Top Retrieval True Subject

Figure 2.9: Two examples of typical cases in which the true subject photo (third
column) was not retrieved at rank 1, but the impostor subject (second column) re-
trieved at rank 1 visually looks more similar to the sketch (first column) than the
true subject.

to achieve Rank-50 accuracy of 22.45% with a gallery size of 10,159 images, which is

interesting, given the fact that the chin is not generally regarded as an overly valuable

feature in face recognition research.

Examples of failed retrievals are shown in Figure 2.9. While the top retrieved

mugshot is not correct in these two examples, the probe sketch appears to be more

similar to the top matched photo than the true photograph. This was nearly always

the case: the top retrieved images appeared highly similar to the probe sketch in

the incorrect matchings. This can be explained by the subjective and often incorrect

verbal description of the suspect provided by the witness.

Figure 2.10 shows three of the best matches and Figure 2.11 shows three of the

worst matches amongst all the good sketches using the proposed LFDA recognition

method. For each image, we have listed the match rank returned by LFDA and

FaceVACS.
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One limitation of our study is the small number of forensic sketches in our dataset,

but obtaining a large collection of forensics sketches and the mated photographs from

law enforcement agencies has not been easy. Not only does a small database limit

the evaluation of our method, but it also affects the performance of our local feature-

based discriminant analysis. The LFDA needs a reasonably large number of training

examples to learn the most discriminative projections. In the case of viewed sketch

recognition we used 306 pairs of sketches and photos for training. For the forensic

sketches, even if we performed leave-one-out cross validation there would still be only

a small number of good quality training samples. For this reason, we trained the

discriminant on the viewed sketches when matching forensic sketches. However, we

believe that with a larger number of forensic sketches we could more properly train

our discriminant and further improve the matching performance. The bottleneck in

finding additional forensic sketches for our experiments is in obtaining the photograph

mates for the sketches of the suspects who have not yet been identified (cold cases).

While forensic sketches exist from numerous crimes, even if there is an eventual

identification of the subject, the mated sketch and photo are often not stored together

in a central database. We are currently working with various law enforcement agencies

to increase our dataset of forensic sketch pairs.

2.7 Summary

We have presented methods and experiments in matching forensic sketches to pho-

tographs. Matching forensic sketches is a very difficult problem in heterogeneous face

recognition for two main reasons. (1) Forensic sketches are often an incomplete por-

trayal of the subject’s face. (2) We must match across image modalities since the

gallery images are photographs and the probe images are sketches.

One of the key contributions of this chapter is using SIFT and MLBP feature
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Method Rank

LFDA 1
FaceVACS 320

Eyes 210
Nose 152

Mouth 1
Chin 33

Internal 3
External 3

Method Rank

LFDA 1
FaceVACS 299

Eyes 198
Nose 159

Mouth 31
Chin 304

Internal 2
External 31

Method Rank

LFDA 1
FaceVACS 2131

Eyes 5
Nose 2

Mouth 823
Chin 24

Internal 1
External 6

Figure 2.10: Examples of the three of the best matches using LFDA. Below each ex-
ample are the rank scores obtained by using the proposed LFDA method, FaceVACS,
and component-based matching.
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Method Rank

LFDA 775
FaceVACS 2255

Eyes 166
Nose 298

Mouth 1776
Chin 3508

Internal 101
External 2231

Method Rank

LFDA 1599
FaceVACS 215

Eyes 3237
Nose 2974

Mouth 1018
Chin 3742

Internal 3012
External 2402

Method Rank

LFDA 1617
FaceVACS 429

Eyes 1992
Nose 3634

Mouth 3725
Chin 52

Internal 2246
External 692

Figure 2.11: Examples of the three of the worst matches using LFDA. Below each ex-
ample are the rank scores obtained by using the proposed LFDA method, FaceVACS,
and component-based matching.
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descriptors to represent both sketches and photos. We have improved the accuracy

of this representation by applying an ensemble of discriminant classifiers, and termed

this framework local feature-discriminant analysis (LFDA). The LFDA feature-based

representation of sketches and photos was clearly shown to perform better on a public

domain viewed sketch data set than previously published approaches.

Another major contribution of the chapter is the large-scale experiment on match-

ing forensic sketches. While previous research efforts have focused on viewed sketches,

most real world problems only involve matching forensic sketches. Using a collection

of 159 forensic sketches, we matched the sketches against a gallery populated with

10,159 mugshot images. Further improvements to the LFDA method were achieved

by utilizing ancillary information such as race and gender to filter the 10,159 mem-

ber gallery. For a fair evaluation of our methods, we used a state-of-the-art face

recognition system, FaceVACS [1].

Together, these improvements in forensic sketch recognition advance the state

of the art and demonstrate the utility of heterogeneous face recognition which is

the focus of this dissertation. In developing a sketch recognition algorithm with

substantially improved recognition accuracy, we offer a tool that is critical for assisting

law enforcement agencies in apprehending suspects.
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Chapter 3

Heterogenous Face Recognition

using Kernel Prototype Similarities

3.1 Introduction

In the previous chapter we discussed a solution to forensic sketch recognition. The

solution provided was specific to forensic sketch recognition, and will generally not

extend to other face recognition scenarios. The heterogeneous face recognition algo-

rithm presented in this chapter is not built for any specific HFR scenario. Instead, it

is designed to generalize to any HFR scenario. Further, this framework can be used

for homogeneous face recognition (e.g. visible to visible face recognition) as well. Such

a framework offers a strong contribution to the proposed thesis of this dissertation

by providing an improvement to the problem of heterogeneous face recognition as a

whole.

Again, the motivation behind heterogeneous face recognition is that circumstances

exist in which face image to be identified is available only in a particular modality.

For example, when a subject’s face can only be acquired in nighttime environments,

the use of infrared imaging may be the only modality for acquiring a useful face
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(a) (b) (c) (d)

Figure 3.1: Examples images from each of the four heterogenous face recognition
scenarios tested in our study, as also shown in Chapter 1. The top row contains
probe images from (a) near-infrared, (b) thermal infrared, (c) viewed sketch, and
(d) forensic sketch modalities. The bottom row contains the corresponding gallery
photograph (visible band face image, called VIS) of the same subject.

image of the subject. Another example is situations in which no imaging system was

available to capture the face image of a suspect, as addressed in Chapter 2. In this

case a forensic sketch, drawn by a police artist based on a verbal description provided

by a witness or the victim, is likely to be the only available source of a face image.

Despite continued progress in the accuracy of face recognition systems [110], most

commercial off the shelf (COTS) face recognition systems (FRS) are not designed to

handle HFR scenarios. The need for face recognition systems specifically designed for

the task of matching heterogeneous face images is of substantial interest.

This chapter proposes a unified approach to heterogeneous face recognition that

(i) achieves high accuracy on multiple HFR scenarios, (ii) does not necessitate feature

descriptors that are invariant to changes in image modality, (iii) facilitates recogni-

tion using different feature descriptors in the probe and gallery modalities, and (iv)

naturally extends to additional HFR scenarios due to properties (ii) and (iii) above.
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3.2 Related Work

3.2.1 Heterogeneous Face Recognition

A flurry of research has emerged providing solutions to various heterogeneous face

recognition problems. This began with sketch recognition using viewed sketches, and

has continued into other modalities such as near-infrared (NIR) and forensic sketches.

In this section we will highlight a representative selection of studies in heterogeneous

face recognition as well as studies that use kernel based approaches for classification.

Tang et al. spearheaded the work in heterogeneous face recognition with several

approaches to synthesize a sketch from a photograph (or vice-versa) [82, 138, 149].

Tang and Wang initially proposed an eigen-tranformation method [138]. Later, Liu

et al. performed the transformation using local linear embedding to estimate the cor-

responding photo patch from a sketch patch [82]. Wang and Tang proposed a Markov

random field model for converting a sketch into a photograph [149]. Other synthesis

methods have been proposed as well [29,157]. A key advantage of synthesis methods

is that once a sketch has been converted to a photograph, matching can be performed

using existing face recognition algorithms. The proposed prototype framework is

similar in spirit to these methods in that no direct comparison between face images

in the probe and gallery modalities is needed. The generative transformation-based

approaches have generally been surpassed by discriminative feature-based approaches.

A number of discriminative feature-based approaches to HFR have been pro-

posed [12,52,59,77], which have shown good matching accuracies in both the sketch

and NIR domains. These approaches first represent face images using local feature

descriptors, such as variants of local binary patterns (LBP) [99] and SIFT descrip-

tors [84]. Liao et al. first used this approach on NIR to VIS face recognition by

processing face images with a difference of Gaussian filter, and encoding them using

multi-block local binary patterns (MB-LBP). Gentle AdaBoost feature selection was
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used in conjunction with R-LDA to improve the recognition accuracy. Klare and Jain

followed this work on NIR to VIS face recognition by also incorporating SIFT feature

descriptors and an RS-LDA scheme [52]. Bhatt et al. introduced an extended uniform

circular local binary pattern to the viewed sketch recognition scenario [12]. Klare et

al. encoded both viewed sketches and forensic sketches using SIFT and MLBP feature

descriptors, and performed local feature-based discriminant analysis (LFDA) to im-

prove the recognition accuracy [59]. Yi et al. [154] offered a local patch-based method

to perform HFR on partial NIR face images.

The synthesis method by Li et al. is the only known method to perform recogni-

tion between thermal IR and visible face images [71]. The only method to perform

recognition between forensic sketches and visible face images is Klare et al. [59], which

is also one of two methods, to our knowledge, that has been tested on two different

HFR scenarios (viewed sketch and forensic sketch). The other method is Lin and

Tang’s [78] common discriminant recognition framework which was applied to viewed

sketches and near-infrared images. In this work the proposed prototype random sub-

space framework is tested on four different HFR scenarios.

3.2.2 Kernel Prototype Representation

The core of the proposed approach involves using a relational feature representation

for face images (illustrated in Figure 3.2). By using kernel similarites between a novel

face pattern and a set of prototypes, we are able to exploit the kernel trick [9], which

allows us to generate a high dimensional, non-linear representation of a face image

using compact feature vectors.

The benefit of a prototype-based approach is provided by Balcan et al. [9]. Given

access to the data distribution and a kernel similarity function, a prototype rep-

resentation is shown to approximately maintain the desired properties of the high

dimensional kernel space in a more efficient representation by using the kernel trick.
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While it is not common to refer to kernel methods as prototype representations, in

this work we emphasize the fact that kernel methods use a training set of images

(which serve as prototypes) to implicitly estimate the distribution of the patterns in

a non-linear feature space. One key to our framework is that each prototype has one

pattern for each image modality.

The proposed kernel prototype approach is similar to the object recognition

method of Quattoni et al. [112]. Kernel PCA [48] and Kernel LDA [46,81] approaches

to face recognition have used a similar approach, where a face is represented as the

kernel similarity to a collection of prototype images in a high dimensional space.

These differ from the proposed method because only a single prototype is used per

training subject, and our approach is designed for heterogeneous face recognition.

Our earlier work [53] utilized a similar approach but did not exploit the benefit of

non-linear kernels, but, like the proposed method, it used a separate pattern from

each image modality (sketch and photo) for each prototype.

3.2.3 Proposed Method

The proposed method presents a new approach to heterogeneous face recognition,

and extends existing methods in face recognition. The use of a kernel similarity

representation is well suited for the HFR problem because a set of training subjects

with an image from each modality can be used as the prototypes, and, depending

on the modality of a new image (probe or gallery), the image from each prototype

subject can be selected from the corresponding modality. Unlike previous feature-

based methods, where an image descriptor invariant to changes between the two

HFR modalities was needed, the proposed framework only needs descriptors that are

effective within each domain. Further, the proposed method is effective even when

different feature descriptors are used in the probe and gallery domains. The proposed

prototype framework is described in detail in Section 3.4.
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Figure 3.2: The proposed face recognition method describes a face as a vector of
kernel similarities to a set of prototypes. Each prototype has one image in the probe
and gallery modalities.
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The accuracy of the HFR system is improved using a random subspace frame-

work in conjunction with linear discriminant analysis, as described in Section 3.5.

The previous method of feature-based random subspaces [52] is revisited in Section

3.6. Experimental results on four different heterogeneous face recognition scenarios

(thermal, near-infrared, viewed sketch, and forensic sketch) are provided in Section

3.7, and all the results are benchmarked with a commercial face matcher.

We demonstrate the strength of the propsed framework on many different HFR

scenarios, however the parameters controlling the framework are the same across all

tested scenarios. This is due to the fact that the contribution of this work is a generic

framework for improving solutions to the general HFR problem. Future use of the

proposed framework will benefit from tuning the parameters to a specific scenario.

3.3 Preprocessing and Representation

All face images are initially represented using a feature-based representation. The

use of local feature descriptors has been argued to closely resemble the postulated

representation of the human visual processing system [122], and they have been shown

to be well suited for face recognition [56].

3.3.1 Geometric Normalization

The first step in representing face images using feature descriptors is to geometrically

normalize the face images with respect to the location of the eyes. This step reduces

the effect of scale, rotation, and translation variations. The eye locations for the face

images from all modalities are automatically estimated using Cognitec’s FaceVACS

SDK [1]. The only exceptions are the thermal face images where the eyes are manually

located for both the proposed method and the FaceVACS baseline. For thermal

images, the available eye detectors do not work.
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Probe Image Gallery Image

DoG CSDN Gauss GaussCSDNDoG

SIFT MLBP SIFT MLBP SIFT MLBP SIFT MLBP SIFT MLBP SIFT MLBP

Figure 3.3: Example of thermal probe and visible gallery images after being filtered
by a difference of Gaussian, center surround divisive normalization, and Gaussian im-
age filters. The SIFT and MLBP feature descriptors are extracted from the filtered
images, and kernel similarities are computed within this image descriptor representa-
tion.

Face images are geometrically normalized by (i) performing planar rotation to set

the angle between the eyes to 0 degrees, (ii) scaling the images so that the distance

between the two pupils is 75 pixels, and (iii) cropping the images to a height of 250

pixels and a width of 200 pixels, with the eyes horizontally centered and vertically

placed at row 115.

3.3.2 Image Filtering

Face images are filtered with three different image filters. These filters are intended

to help compensate for both intensity variations within an image domain (such as

non-uniform illumination changes), as well appearance variations between image do-

mains. The second aspect is of particular importance for the direct random subspace
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framework (Section 3.6). An example of the effects of each image filter can be seen

in Figure 3.3.

The three image filters used are:

1. Difference of Gaussian A difference of Gaussian (DoG) image filter has been

shown by Tan and Triggs to improve face recognition performance in the presence of

varying illumination [136], as well as in an NIR to VIS matching scenario by Liao et

al. [77]. A difference of Gaussian image is generated by convolving an image with a

filter obtained by subtracting a Gaussian filter of width σ1 from a Gaussian filter of

width σ2 (σ2 > σ1). In this chapter, σ1 = 2 and σ2 = 4.

2. Center-Surround Divisive Normalization Meyers and Wolf [93] introduced

the center-surround divisive normalization (CSDN) filter in conjunction with their

biologically inspired face recognition framework. The CSDN filter divides the value

of each pixel by the mean pixel value in the sxs neighborhood surrounding the pixel.

The non-linear nature of the CSDN filter is seen as a compliment to the DoG filter.

In our implementation s = 16.

3. Gaussian The Gaussian smoothing filter has long been used in image processing

applications to remove noise contained in high spatial frequencies while retaining the

remainder of the signal. The width of the filter used in our implementation is σ = 2.

3.3.3 Local Descriptor Representation

Once an image is geometrically normalized and filtered using one of the three filters,

local feature descriptors are extracted from uniformly distributed patches across the

face. In this work we use two different feature descriptors to represent the face

image: the SIFT descriptor [84] and Local Binary Patterns (LBP) [99]. The SIFT

feature descriptor has been used effectively in face recognition [56], sketch to VIS
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matching [59], and NIR to VIS matching [52]. LBP features have a longer history of

successful use in face recognition. Ahonen et al. originally proposed their use for face

recognition [3], Li et al. demonstrated their use in NIR to NIR face matching [72],

and they have also been successfully applied to several HFR scenarios [12,52,59,77].

The SIFT and LBP feature representations are effective in describing face images

due to their ability to encode the structure of the face and their stability in the

presence of minor external variations [56]. Each feature descriptor describes an image

patch as a d-dimensional vector that is normalized to sum to one. The face image

is divided into a set of N overlapping patches of size 32x32. Each patch overlaps its

vertical and horizontal neighbors by 16 pixels. With a face image of size 200x250,

this results in a total of 154 total patches.

Multi-scale local binary patterns (MLBP) [59], a variant of the LBP descriptor,

is used in place of LBP in this work. MLBP is the concatenation of LBP feature

descriptors with radii r = {1, 3, 5, 7}.

Let I be a (normalized and filtered) face image. Let fF,D(I, a) denote the lo-

cal feature descriptor extracted from image I at patch a, 1 ≤ a ≤ N using image

filter F and feature descriptor D. The DoG, CSDN, and Gaussian image filters

are, respectively, referred to as Fd, Fc, and Fg. The MLBP and SIFT descriptors

are, respectively, referred to as Dm and Ds. The SIFT descriptor yields a 128-

dimensional feature descriptor, fF,Ds(I, a) ∈ R128. The LBP descriptor yields a

59-dimensional feature descriptor, resulting in a 236-dimensional MLBP feature de-

scriptor (fF,Dm(I, a) ∈ R236). Finally, we have

fF,D(I) =
[
fF,D(I, 1)T, . . . , fF,D(I,N)T

]T
(3.1)

which is the concatenation of all N feature descriptors. Thus, fF,Ds(I) ∈ R128·N and

fF,Dm(I) ∈ R236·N .

Using the three filters and two descriptors, we have six different representations
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available for face image I, namely fFd,Dm
(I), fFc,Dm(I), fFg,Dm(I), fFd,Ds

(I),

fFc,Ds(I), and fFg,Ds(I).

3.4 Heterogeneous Prototype Framework

The heterogeneous prototype framework begins with images from the probe and

gallery modalities represented by (possibly different) feature descriptors for each of

the N image patches, as described in the previous section. For compactness, let f (I)

represent fF,D(I). The similarity between two images is measured using a kernel

function k : f (I) x f (I)→ R.

Let T1 be a set of training images consisting of nt1 subjects. The training set

contains a probe image Pi and gallery image Gi for each of the nt1 subjects. That is

T1 = {P1, G1, . . . , Pnt1
, Gnt1

} (3.2)

For both the probe and gallery modalities, two positive semi-definite kernel ma-

trices KP and KG are computed between the training subjects. The probe kernel

matrix is KP ∈ Rnt1 ,nt1 , and the gallery kernel matrix is KG ∈ Rnt1 ,nt1 . The entry

in the i-th row and j-th column of KP and KG are

KP (i, j) = k( f(Pi) , f(Pj) ) (3.3)

KG(i, j) = k( f(Gi) , f(Gj) ) (3.4)

where k( · , · ) is the kernel similarity function. All the experiments in this chapter

use the third degree polynomial kernel k(f(Pi), f(Gi)) = (f(Pi)
T ·f(Gi))

3, which was

empirically choosen over a radial basis function kernel and a second degree polynomial

kernel. Again, a generic framework is being presented, and parameter choices such
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as the kernel function should be optimized when this framework is engineered into a

solution for a specific problem.

Let P and G, respectively, be new probe and gallery face images, i.e. (P,G /∈ T1).

The function φ′(P ) returns a vector containing the kernel similarity of image P to

each image Pi in T1. For gallery image G, φ′(G) returns a vector of kernel similarities

to the gallery prototypes Gi. Thus, face images are represented as the relational

vector φ′(P ) ∈ Rnt1 for a probe image, and φ′(G) ∈ Rnt1 for a gallery image. More

precisely, we have

φ′(P ) =
[

k(f(P ), f(P1)), . . . , k(f(P ), f(Pnt1
))
]T

(3.5)

φ′(G) =
[

k(f(G), f(G1)), . . . , k(f(G), f(Gnt1
))
]T

(3.6)

Because the feature vectors φ′(P ) and φ′(G) are a measure of the similarity be-

tween the image and the prototype training images, the feature spaces for similarity

computation do not have to be the same for the probe and gallery modalities. For ex-

ample, the probe images could be represented using FF,Ds(P ) and the gallery images

could be represented using FF,Dm(G). Despite the fact that the SIFT and MLBP

feature descriptors are heterogeneous features, the relational representation allows

them to be represented in a common feature space. This is based on the assumption

that

k(f(P ), f(Pi)) ≈ k(f(G), f(Gi)) (3.7)

In practice we find that Eq. (3.7) does not precisely hold. To compensate for this, we

introduce a method called the “R” transform to better align the probe and gallery

modalities. The “R” transform uses a matrix R to align the probe prototype feature

space with the gallery prototype feature space by:
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R = KG((KP )
T
KP )−1(KP )

T
(3.8)

We prove in Appendix A that the R transform is, in fact, a special case of Tang

and Wang’s eigen-transformation method [138]. Thus, while this transformation was

originally applied to synthesize the appearance of a sketch in the photo domain [138],

we improve this linear transformation method by incorporating (i) a non-linear fea-

ture space (i.e., the kernel prototype similarities), and (ii) a feature descriptor based

representation (i.e., the LBP or SIFT representation used to measure the kernel simi-

larities). We do not call the R transform an eigen-transformation because our special

case allows for a simpler solution that does not make use of an eigen-decomposition.

The importance of this R transform step is experimentally demonstrated in Section

3.7. It is important to note that the scale (or distribution) of KP and KG will already

be similar because the σ parameter in the RBF kernel is tuned for each modality. Any

extreme input values to the system (e.g. a non-face image), will cause the kernel sim-

ilarity to degenerate to 0, and thus allowing the system to remain stable with respect

to scale.

The strength of the R transformation lies in its ability to leverage the constraint

that the prototype representation will be nt1-dimensional and the number of training

samples at this phase being nt1 . This allows the R transformation to exactly align

the probe prototype feature space to the gallery feature space (with respect to the

training set). While this would cause concern that the solution is too tightly fit to the

training data, the extension of random sampling provided below alleviates concerns

of this being the case.

The benefit of the R transformation is demonstrated quantitatively in the exper-

imental results. Qualitatively, the R transformation is seen as a method to handle

additional heterogeneous properties remaining in the new prototype similarity vec-

tors. Despite the fact that φ′(·) offers a common representation for both modalities,
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issues such as the similarities in each modality having different scales (e.g. from the

use of differed descriptors in the probe and gallery modalities) are addressed by the R

transformation. Using R, we now introduce the final prototype based representation

φ(·) as

φ(P ) = R · φ′(P ) (3.9)

φ(G) = φ′(G) (3.10)

We alter the tersely presented notation to φF,D(I) to specify which feature descriptor

and image filter are initially being used to represent the image I. For example,

φFc,Ds(I) denotes the prototype similarity of image I when represented using the

CSDN image filter and SIFT descriptors.

3.4.1 Discriminant Analysis

A second training set is used to enhance the discriminative capabilities of the proto-

type representation. This independent training set T2 consists of probe and gallery

images of nt2 subjects such that ∀{P ′i , G
′
i} ∈ T2, {P ′i , G

′
i} /∈ T1.

A linear subspace of the prototype representation φ(·) is learned using linear dis-

criminant analysis (LDA) [10] on the images in T2. LDA (and its variants) has

consistently demonstrated its ability to improve the recognition accuracy of various

algorithms. The benefits of LDA in the context of face recognition have been demon-

strated on image pixel representations [10,147], global Gabor features [75], and image

descriptors [59,77].

We learn the linear projection matrix W by following the conventional approach

for high dimensional data, namely by first applying PCA, followed by LDA [10]. In

all experiments the PCA step was used to retain 99.0% of the data variance. Let X
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be a matrix whose columns contain the prototype representation of each image in T2,

X =
[
φ(P ′1), φ(G′1), . . . , φ(P ′nt2

), φ(G′nt2
)
]

(3.11)

Let X ′ denote the mean-centered version of X. The initial step involves learning the

subspace projection matrix W ′1 by performing principal component analysis (PCA)

on X ′ to reduce the dimensionality of the feature space. Next, the within-class and

between-class scatter matrices of W ′1
T ·X ′, respectively, SW and SB , are computed.

The dimension of the subspace W ′1 is such that SW will be of full rank. The scatter

matrices are built using each subject as a class, where one image each from the probe

and gallery modality represents each class. Lastly, the matrix W ′2 is learned by solving

the generalized eigenvalue problem

SB ·W ′2 = Λ · SW ·W ′2 (3.12)

This yields the LDA projection matrix W , where

W =
(
W ′2

T ·W ′1
T
)T

(3.13)

Letting µ denote the mean of X, the final representation for an unseen probe or

gallery image I using the prototype framework is WT · (φ(I) − µ). Subsequent uses

of W in this chapter will assume the appropriate removal of the mean µ from φ(I)

for terseness.
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3.5 Random Subspaces

3.5.1 Motivation

The proposed heterogeneous prototype framework uses training data to (i) define the

prototypes, (ii) learn the prototype transformation matrix R, and (iii) learn the linear

subspace projection matrix W .

The reliance on training data raises two (somewhat exclusive) issues in the pro-

totype representation framework. The first issue is that the number of subjects in

T1 (i.e. the number of prototypes) is generally too small for an expressive prototype

representation. Balcan et al. demonstrated that the number of prototypes does not

need to be large (with respect to the margin) to approximately replicate the data

distribution [9]. However, their applications primarily dealt with binary classification

and a small number of features. When applying a prototype representation to face

recognition, a large number of classes (or subjects) and features are present. The small

sample size problem implies that the number of prototypes needed to approximate

the underlying data distribution should be large [115].

The second issue is also related to the small sample size problem [115]. This com-

mon problem in face recognition arises from too few training subjects to learn model

parameters that are not susceptible to generalization errors. In the heterogeneous

prototype framework this involves learning the R and W matrices that generalize

well.

A number of solutions exist to the small sample size problem in face recognition.

Most are designed to handles deficiencies in the subspace W , such as dual-space LDA

[147], and direct LDA [45]. Regularization methods such as R-LDA [85] also address

degenerative properties of W , and could potentially be extended to the learned matrix

R as well. However, these methods do not address the issue of too few prototypes for

an expressive representation.
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Another approach to handle deficiencies in learning parameters is the use of ran-

dom subspaces [37]. The random subspace method samples a subset of features and

performs training in this reduced feature space. Multiple sets (or bags) of randomly

sampled features are generated, and for each bag the parameters are learned. This

approach is similar to the classical bagging classification scheme [15], where the train-

ing instances are randomly sampled into bags multiple times and training occurs on

each bag separately. Ensemble methods such as Ho’s random subspaces [37] and

Breiman’s bagging classifiers have been demonstrated to increase the generalization

ability of an arbitrary classifier [125].

Wang and Tang demonstrated the effectiveness of random sampling LDA (RS-

LDA) for face recognition. Their approach combined random subspaces and bagging

by sampling both features and training instances. For each random sample space,

a linear subspace was learned. Klare and Jain utilized this approach in the HFR

scenario of NIR/VIS by using multiple subset samples of face patches described by

local feature descriptors [52].

We consider random sampling ideal for the prototype recognition framework be-

cause it is able to satisfactorily address the two limitations: (i) the number of proto-

types is multiplied by the number of bags, which improves the expressiveness of the

prototype representation, and (ii) the use of an ensemble method improves deficien-

cies in the W and R matrices. Further unification of these two separate problems

into a single solution offers a simpler framework.

3.5.2 Prototype Random Subspaces

The prototype random subspace (P-RS) framework uses B different bags (or samples)

of the N face patches. Each sample consists of α · N patches, 0 ≤ α ≤ 1. For bag

b, b = 1 . . . B, we have the integer vector κb ∈ Zα·N , where each component of κb is

a unique randomly sampled value from 1 . . . N . It is assumed that α is selected such
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(a) (b) (c) (d)

Figure 3.4: The process of randomly sampling image patches is illustrated. (a) All
image patches. (b), (c), (d) Bags of randomly sampled patches. The kernel sim-
ilarity between SIFT and MLBP descriptors at each patch of an input image and
the prototypes of corresponding modality are computed for each bag. Images are
from [89]

that α · N is an integer. An example of randomly sampled face patches is shown in

Figure 3.4.

Let f(I, κb) denote the concatenation of the α ·N descriptors from the randomly

selected patch indices in κb. That is,

f(I, κb) =
[
f(I, κb(1))T, . . . , f(I, κb(α ·N))T

]T
(3.14)

Letting KP
b and KG

b denote the probe and gallery kernel similarity matrices for bag

b, we modify Eqs. (3.3) and (3.4) to

KP
b (i, j) = k(f(Pi, κb) , f(Pj , κb)) (3.15)

KG
b (i, j) = k(f(Gi, κb) , f(Gj , κb)) (3.16)

The preliminary prototype representation φ′(·) is now modified to φ′(·, ·) as
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φ′(P, κb) = [ k(f(P, κb), f(P1, κb)) , . . . ,

k(f(P, κb), f(Pnt1
, κb))

]T (3.17)

φ′(G, κb) = [ k(f(G, κb), f(G1, κb)) , . . . ,

k(f(G, κb), f(Gnt1
, κb))

]T (3.18)

A separate transformation matrix Rb is now learned for each bag as

Rb = KG
b · (K

P
b )−1 (3.19)

resulting in the final prototype representation (modification of Eqs. (3.9) and (3.10))

as

φ(P, κb) = Rb · φ′(P, κb) (3.20)

φ(G, κb) = φ′(G, κb) (3.21)

Linear discriminant analysis is performed separately for each bag. Using training

set T2, we learn B subspace projection matrices Wb, b = 1 . . . B.

A new face image I is represented in the random subspace prototype framework

as Φ(I), where Φ(I) is the concatenation of each linearly projected prototype repre-

sentation from each of the B random subspace bags. That is,

Φ(I) =

[(
WT

1 · φ(I, κ1)
)T

, . . . ,
(
WT
B · φ(I, κB)

)T
]T

(3.22)

For terseness we have omitted the subscripts F and D in the above equations. For

example, in Eq. (3.22), ΦF,D(I) is abbreviated to Φ(I) by omitting image filter F
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Global Parameters
# of bags B, random sample vectors κb,
image filter F , feature descriptor D

Training
Input: Training sets T1 = {P1, G1, . . . , Pnt1

, Gnt1
},

T2 = {P ′1, G
′
1, . . . , P

′
nt2

, G′nt2
}

Output: R1, . . . RB ,W1, . . . ,WB
-FOR b = 1 . . . B:

- Compute kernel matrices KP
b , KG

b
using prototypes in T1 Eqs. (3.15), (3.16)

- Solve Rb using KP
b and KG

b Eq. (3.19)

- FOREACH image I in T2:
- Compute φF,D(I, κb)) Eqs. (3.20), (3.21)

- Using all I ∈ T2, learn LDA subspace Wb
using representation φF,D(I, κb)

Face Enrollment
Input: Image I ′, T1(prototypes), R1, . . . , RB ,

W1, . . . ,WB
Output: Φ
- FOR b = 1 . . . B:

- IF I ′ is probe:
- φ′F,D(I ′) = [k

(
fF,D(I ′, κb), fF,D(P1, κb)

)
, . . . ,

k(fF,D(I ′, κb), fF,D(Pnt1
, κb))] Eq. (3.17)

- φF,D(I ′) = Rb · φ′(I ′, κb) Eq. (3.20)

- ELSE I ′ is gallery:
- φF,D(I ′) = [k

(
fF,D(I ′, κb), fF,D(G1, κb)

)
, . . . ,

k(fF,D(I ′, κb), fF,D(Gnt1
, κb))] Eq. (3.18)

- Φb = WT
b · φF,D(I ′)

- Concatenate vectors Φ = [Φ1; . . . ; ΦB ] Eq. (3.22)

Figure 3.5: Proposed Prototype Random Subspace framework algorithm. Following
the offline training phase, a face image I ′ is enrolled and the vector Φ is returned for
matching.
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and descriptor D to represent I.

A summary of the training and image enrollment steps can be found in Figure

3.5.

3.5.3 Recognition

Given a probe face image P and a gallery face image G, we define their similarity

S(P,G) using the cosine similarity measure

S(P,G) =
〈Φ(P ),Φ(G)〉
||Φ(P )|| · ||Φ(G)||

(3.23)

Further, we let S
F1,D1
F2,D2

(P,G) denote the similarity between the probe P represented

using filter F1 and descriptor D1, and gallery image G represented in terms of filter

F2 and descriptor D2. That is

S
F1,D1
F2,D2

(P,G) =
〈ΦF1,D1

(P ), ΦF2,D2
(G)〉

||ΦF1,D1
(P )|| · ||ΦF2,D2

(G)||
(3.24)

This similarity measure facilitates recognition using a threshold for a verification

scenario (claimed identity for the probe is true or false), or a nearest neighbor matcher

for an identification scenario (which one of N identities (classes) should be assigned

to the probe).

3.5.4 Score Level Fusion

The proposed framework naturally lends to fusion of the different feature represen-

tations. For example, given one image filter F and two feature descriptors D1 and

D2, we can utilize the following sum of similarity scores between probe image P and

gallery image G: {SF1,D1
F1,D1

(P,G) + S
F2,D2
F2,D2

(P,G) + S
F1,D1
F2,D2

(P,G) + S
F2,D2
F1,D1

(P,G)}.

Min-max score normalization is performed prior to fusion.
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3.6 Baselines

3.6.1 Commercial Matcher

The accuracy of the proposed prototype random subspace framework is compared

against Cognitec’s FaceVACS [1] COTS FRS. Comparing the accuracy of our system

against this leading COTS FRS offers an unbiased baseline for each HFR scenario.

FaceVACS was chosen because in our internal tests it excels at HFR scenarios (with

respect to other commercial matchers). For example, the accuracy of FaceVACS on

NIR to VIS [52] and Viewed Sketch to VIS [59] performed at par with some previously

published HFR methods.

3.6.2 Direct Random Subspaces

In addition to a commercial face recognition system, the proposed prototype recog-

nition system is compared against a recognition system that directly measures the

difference between probe and gallery images using a common feature descriptor rep-

resentation. As discussed previously, most recent approaches to heterogeneous face

recognition involve directly measuring the similarity between two face images from

alternate modalities using feature descriptors [12, 52,59,77].

The random subspace framework from [52] is used as the baseline because it is most

similar to the proposed prototype framework, thus helping to isolate the difference

between using kernel prototype similarities versus directly measuring the similarity.

Further, because most of the datasets tested in Section 3.7 are in the public domain,

the proposed framework may also be compared against any other published method

on these data sets.

To briefly summarize the direct random subspace (D-RS) approach using our

notation, for each bag b the D-RS framework represents an image as fF,D(I, κb).

LDA is performed on each bag to learn the projection matrix W̃b. Because only one
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Table 3.1: Rank-1 accuracies for the proposed Prototype Random Subspace (P-RS)
method across five recognition scenarios using an additional 10,000 subjects in the
gallery.

Rank-1 Accuracy (%)
Method NIR Thermal Sketch Forensic *

P-RS 88.4± 4.99 55.3± 2.62 99.4± 0.54 19.6± 6.06
D-RS 90.1± 2.71 20.1± 2.23 97.2± 1.03 28.7± 4.09
(P-RS) + (D-RS) 91.9± 2.91 57.4± 2.25 99.6± 0.41 26.8± 9.66

FaceVACS 79.7± 3.75 20.7± 1.54 82.4± 2.39 4.2± 3.38

* Results for forensic sketch are the Rank-50 accuracy.

training set is needed, LDA is learned from the images in T1 and T2 combined. The

final representation Ψ(·) is the concatenation of the projected vector on the subspace

for each bag

ΨF,D(I) =

[(
W̃T

1 · fF,D(I, κ1)
)T

, . . . ,

(
W̃T
B · fF,D(I, κB)

)T
]T (3.25)

The dissimilarity S̃ between probe image P and gallery image G (each represented

with filter F and descriptor D) is

S̃F,D(P,G) = ||ΨF,D(P )−ΨF,D(G)||2 (3.26)

Unlike P-RS, D-RS must use the same D for the probe and gallery images. This

is obvious as ff,D1
(I) and ff,D2

(I) will be of different dimensionality, and also have

a different interpretation.

D-RS will be used in conjunction with the six filter/descriptor representations

presented in Section 3.3 (SIFT + DoG, MLBP + CSDN, etc.). Results will be

presented from the sum-score fusion of the min-max normalized scores from these six

representations.
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Table 3.2: Rank-1 accuracies for the proposed Prototype Random Subspace (P-RS)
method on a standard photograph to photograph matching scenario using an addi-
tional 10,000 subjects in the gallery.

Rank-1 Accuracy (%)
Method Standard

P-RS 95.0± 1.58
D-RS 94.0± 1.30
(P-RS) + (D-RS) 95.3± 1.42

FaceVACS 99.5± 0.31

3.7 Experiments

The results reported below use the parameter values α = 0.1 and B = 200. A third

degree polynomial kernel was used to compute the prototype similarity and 99.0% of

the variance was retained in the PCA step of LDA.

3.7.1 Databases

Five different matching scenarios are tested in this chapter: four heterogeneous face

recognition scenarios, and one standard (homogeneous) face recognition scenario. Ex-

ample images from each of HFR dataset can be found in Figure 3.1. Results shown on

each dataset are the average recognition accuracy and the standard deviation over five

random splits of training and testing subjects. No subject that was used in training

was used for testing.

Dataset 1 - Near-Infrared to Visible (Fig. 3.1(a)) The first dataset consists

of 200 subjects with probe images captured in the near-infrared spectrum ( 780-

1,100 nm) and gallery images captured in the visible spectrum. Portions of this

dataset are publicly available for download1. This dataset was originally used by Li

et al. [72, 77]. Our experiments used only one NIR and one VIS image per subject,

1http://www.cbsr.ia.ac.cn/english/Databases.asp

85



making the scenario more difficult than previous experiments which benefited from

multiple images per subject in training and gallery enrollment [52,77]. The data was

split as follows: nt1 = 67 subjects were used for training set T1, nt1 = 66 subjects

were used for training set T2, and the remaining 67 subjects were used for testing.

Dataset 2 - Thermal to Visible (Fig. 3.1(b)) The second dataset is a private

dataset collected by the Pinellas County Sheriff’s Office, and consists of 1,000 sub-

jects with thermal infrared probe images and visible (mug shot) gallery images. The

thermal infrared images were collected using a FLIR Recon III ObservIR camera,

which has sensitivity in the range of 3-5 µm and 8-12 µm. The data was split as

follows: nt1 = 333 subjects were used for training set T1, nt1 = 334 subjects were

used for training set T2, and the remaining 333 subjects were used for testing.

Dataset 3 - Viewed Sketch to Visible (Fig. 3.1(c)) The third dataset is the

CUHK sketch dataset2, which was used by Tang and Wang [138, 149]. The CUHK

dataset consists of 606 subjects with a viewed sketch image for probe and a visible

photograph for gallery. A viewed sketch is a hand drawn sketch of a face which is

drawn while looking at a photograph of the subject. The photographs in the CUHK

dataset are from the AR [89], XM2VTS [92], and CUHK student [138,149] datasets.

The 606 subjects were equally divided to form the training sets T1, T2, and the test

set.

Dataset 4 - Forensic Sketch to Visible (Fig. 3.1(d)) The fourth and final

heterogeneous face dataset consists of real-world forensic sketches and mug shot pho-

tos of 159 subjects. This dataset is described in [59]. Forensic sketches are drawn

by an artist based only on an eye witness description of the subject. The forensic

sketch dataset is a collection of images from Gibson [31], Taylor [139], the Michigan

2The CUHK dataset is publicly available for download at
http://mmlab.ie.cuhk.edu.hk/facesketch.html
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State Police, and the Pinellas County Sheriff’s Office. Each sketch contains a suspect

involved in a real crime, and the mug shot photo was only available after the subject

had later been identified by means other than face recognition. Forensic sketches con-

tain incomplete information regarding the subject, and are one of the most difficult

HFR scenarios because the sketches often do not closely resemble the photograph of

the true suspect. Here 53 different subjects each are used in T1, T2, and the test set.

Dataset 5: Standard Face Recognition A fifth non-heterogeneous (i.e. ho-

mogeneous) dataset is used to demonstrate the ability of the proposed approach to

operate in standard face recognition scenarios. The dataset consists of one probe

and one gallery photograph of 876 subjects, where 117 subjects were from the AR

dataset [89], 294 subjects were from the XM2VTS dataset [92], 193 subjects from the

FERET dataset [109], and 272 subjects were from a private data set collected at the

University of Notre Dame. This is the same dataset used in [56].

Enlarged Gallery A collection of 10,000 mug shot images were used in certain

experiments to increase the size of the gallery. These mug shot images were provided

by the Michigan State Police, and were also used in [59]. Any experiment using these

additional images will have a gallery with the number of testing subjects plus these

additional 10,000 mug shot images. Experiments with a large gallery are meant to

present results that more closely resemble real-world face matching scenarios.

3.7.2 Results

Tables 3.1 and 3.2 lists the results of P-RS, D-RS, and FaceVACS for each dataset

using the additional 10,000 gallery images for each experiment. The results for P-

RS are the fusion of the match scores from {SFd,DsFd,Ds
+S

Fc,Ds
Fc,Ds

+S
Fg,Ds
Fg,Ds

+S
Fd,Dm
Fd,Dm

+S
Fc,Dm
Fc,Dm

+S
Fg,Dm
Fg,Dm

}, i.e. the same features are used in the probe and gallery images.

Similarly, D-RS is the fusion of the match scores from {S̃Fd,Ds +S̃Fc,Ds +S̃Fg,Ds
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Figure 3.6: CMC plot for the NIR HFR scenario. Results use an additional 10,000
gallery images to better replicate real world matching scenarios. Listed are the ac-
curacies for the proposed Prototype Random Subspace (P-RS) method, the Direct
Random Subspace (D-RS) method [52], the sum-score fusion of P-RS and D-RS, and
Congitec’s FaceVACS system [1].
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Figure 3.7: CMC plot for the thermal HFR scenario. Results use an additional 10,000
gallery images.
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Figure 3.8: CMC plot for the viewed sketch HFR scenario. Results use an additional
10,000 gallery images.
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Forensic Sketch
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Figure 3.9: CMC plot for the forensic sketch HFR scenario. Results use an additional
10,000 gallery images.
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+S̃Fd,Dm
+S̃Fc,Dm +S̃Fg,Dm}. Results from these same matchers are also displayed

in CMC (cumulative match characteristic) plots in Figures 3.6, 3.7, 3.8, and 3.9.

Again, the P-RS method represents face images using their similarity to a set of

prototype subjects, while the D-RS method directly measures the similarity between

two face images using SIFT and LBP descriptors.

The CMC results of matching NIR face images to standard face images are shown

in Figure 3.6. The Rank-1 accuracy of 88.4% from Table 3.1 and Figure 3.6 demon-

strates that the proposed P-RS matcher is able to perform at a similar level as D-RS

and FaceVACS. FaceVACS was earlier benchmarked as performing at the same level

as the top methods [52]. Thus, the proposed P-RS method is on par with leading

methods in NIR to VIS matching.

The CMC results of matching thermal face images to standard face images are

shown in Figure 3.7. P-RS is able to achieve an average Rank-1 accuracy of 55.3%.

By comparison, it is observed that the D-RS method achieves a Rank-1 accuracy of

only 20.1% and FaceVACS has a Rank-1 accuracy of 20.7%. This drastic improve-

ment demonstrates the benefit of P-RS’s notable property of not requiring a feature

descriptor that is invariant to changes in the probe and gallery modalities. A Rank-

1 accuracy of 55.3% still falls short of the accuracy desired in lights out systems,

however, the examples in Figures 3.1 and 3.12 show that even humans would have

difficulty in this recognition task. The only previous method on thermal to visible

matching achieved a Rank-1 accuracy of 50.06% but it was evaluated on only 47 sub-

jects in the gallery [71]. By contrast, the Rank-1 accuracy of 55.3% of the proposed

P-RS method used a gallery consisting of 10,333 subjects.

The CMC results of matching viewed sketch face images to standard face images

are shown in Figure 3.8. P-RS achieved near perfect accuracy with an average Rank-1

accuracy of 99.4%. Other methods have also achieved nearly 99% Rank-1 accuracy

[59, 157], though the results in Figure 3.8 are based on a gallery with over 10,000
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subjects compared to a gallery size of less than 1, 000 in previous studies.

The CMC results of matching forensic sketch face images to standard face images

are shown in Figure 3.9. For forensic sketches the Rank-50 accuracy is most relevant

because the Rank-1 accuracy is too low to be useful in practice: forensic investigators

generally examine roughly the top 50 retrieved matches from a query. It is observed

that this is the one scenario in which P-RS (Rank-50 accuracy of 19.6%) was outper-

formed by D-RS (Rank-50 accuracy of 28.7%). The only previous method to publish

results on forensic sketch matching also used the same extended gallery and achieved

a Rank-50 accuracy of 13.4% [59] (this number is the weighted average of a 32.65%

Rank-50 accuracy on 49 good sketches and a 8.16% accuracy on 110 poor sketches).

It is important to note that the matcher in [59] was trained on viewed sketches, and

not forensic sketches like P-RS and D-RS.

The decreased accuracy of P-RS compared to D-RS on the forensic sketch dataset

is attributed to two factors. The primary factor is the small size of the data set.

While both methods utilize learning, D-RS is able to leverage the a priori knowledge

that SIFT and MLBP perform well for direct similarity measurement. Further, D-RS

is able to use both training sets to learn the LDA subspaces. By contrast, P-RS

must use the first training set to develop the prototypes. An additional reason for

P-RS’s lower accuracy on forensic sketch matching is that these sketches are often not

completely accurate due to the inability of a witness to adequately describe the face

of a suspect, which impacts the assumption in Eq. (3.7). Despite these limitations,

P-RS still achieved approximately four times accuracy improvement over a leading

COTS FRS.

Examples cases where (i) P-RS succeeds but FaceVACS fails and (ii) P-RS fails

but FaceVACS succeeds are shown for the two most difficult HFR scenarios (thermal

and forensic sketch) in Figure 3.12.

Figures 3.10 and 3.11 demonstrate the ability of the P-RS framework to perform
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NIR

Gallery Features

DoG DoG CSDN CSDN Gauss Gauss
Probe Features SIFT MLBP SIFT MLBP SIFT MLBP

DoG SIFT 77.9 72.8 77.9 76.7 66.6 58.8
DoG MLBP 60.6 85.4 59.1 78.8 48.7 57.0
CSDN SIFT 75.8 63.9 81.8 76.7 74.0 68.1
CSDN MLBP 66.6 77.9 69.6 84.8 69.0 75.5
Gauss SIFT 62.4 49.0 72.5 72.5 72.2 66.9
Gauss MLBP 52.8 56.1 59.1 70.4 63.0 67.5

(a)

Thermal

Gallery Features

DoG DoG CSDN CSDN Gauss Gauss
Probe Features SIFT MLBP SIFT MLBP SIFT MLBP

DoG SIFT 50.8 46.1 49.1 47.7 36.0 34.7
DoG MLBP 42.0 57.8 35.9 49.7 23.6 30.0
CSDN SIFT 46.7 35.7 50.2 47.3 40.1 36.4
CSDN MLBP 41.9 49.0 44.7 55.1 33.6 37.1
Gauss SIFT 29.0 20.5 37.4 33.2 36.0 32.1
Gauss MLBP 24.4 22.6 31.6 36.3 28.8 32.6

(b)

Figure 3.10: Rank-1 accuracies (%) on the NIR and thermal modalities using the
proposed P-RS framework. The rows list the features used to represent the probe
images, and the columns list the features for the gallery images. The non-diagonal
entries in each table (in bold) use different feature descriptor representations for the
probe images than the gallery images. These results demonstrate another “heteroge-
neous” aspect of the proposed framework: recognition using heterogeneous features
between the probe and gallery images.
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Viewed Sketch

Gallery Features

DoG DoG CSDN CSDN Gauss Gauss
Probe Features SIFT MLBP SIFT MLBP SIFT MLBP

DoG SIFT 98.6 95.6 98.3 95.1 96.8 89.4
DoG MLBP 87.5 96.3 82.3 92.5 60.8 66.8
CSDN SIFT 98.4 91.0 98.7 95.1 97.6 93.2
CSDN MLBP 85.8 92.3 87.6 96.2 75.1 81.2
Gauss SIFT 96.6 74.2 98.3 91.6 97.8 94.6
Gauss MLBP 90.5 83.7 94.8 95.1 95.6 98.0

(a)

Forensic Sketch

Gallery Features

DoG DoG CSDN CSDN Gauss Gauss
Probe Features SIFT MLBP SIFT MLBP SIFT MLBP

DoG SIFT 6.4 7.2 8.7 6.4 7.5 9.1
DoG MLBP 6.0 10.6 6.0 9.4 5.7 8.7
CSDN SIFT 7.5 4.5 5.7 6.4 5.7 6.0
CSDN MLBP 6.8 8.3 8.7 11.3 5.7 4.9
Gauss SIFT 4.9 3.8 6.4 5.3 7.5 9.1
Gauss MLBP 6.4 5.3 7.9 5.3 9.1 10.9

(b)

Figure 3.11: Rank-1 accuracies (%) on the viewed sketch and forensic sketch modali-
ties using the proposed P-RS framework. The rows list the features used to represent
the probe images, and the columns list the features for the gallery images. The non-
diagonal entries in each table (in bold) use different feature descriptor representations
for the probe images than the gallery images. These results demonstrate another
“heterogeneous” aspect of the proposed framework: recognition using heterogeneous
features between the probe and gallery images.
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P-RS: Rank 1 P-RS: Rank 891
FaceVACS: Rank 7622 FaceVACS: Rank 1

(a) (b)

P-RS: Rank 1 P-RS: Rank 891
FaceVACS: Rank 7622 FaceVACS: Rank 1

(c) (d)

Figure 3.12: Examples of thermal recognition not successfully matched by (a) Face-
VACS, and (b) the proposed P-RS method. Examples of forensic sketch recognition
not successfully matched by (c) FaceVACS, and (d) P-RS. In each image pair the left
and right images are the probe and gallery, respectively.
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recognition using different feature descriptors for the probe and gallery images. Figure

3.10 lists the Rank-1 accuracy for the NIR and thermal HFR scenarios, and Figure

3.11 lists the same for the viewed sketch and forensic sketch scenarios. These scores

are averaged over five random training/testing splits but do not use the additional

10,000 gallery images. The columns indicate each of the six different image filter and

feature descriptor combinations used to represent the gallery, and the rows indicate

the representations used for the probe images. Thus, the non-diagonal entries for

each scenario are when the probe and gallery images are represented with different

features. The accuracy is generally higher when the same features are used for faces

in the probe and gallery (i.e. the diagonal entries). Various levels of accuracy are

achieved when using different image features, ranging from poor to high.

The ability to perform face recognition with the probe and gallery images using

different representations is a property that previous feature-based methods did not

possess. This property is important to mention because it demonstrates the proposed

method’s ability to generalize to other unknown HFR scenarios. For example, in

the case of thermal to visible recognition, if a local feature descriptor is developed

that performs at a very high level in matching thermal to thermal, it can be incor-

porated into this framework even if it does not work well in the visible domain. As

other HFR scenarios are attempted (such as matching 3D depth map to 2D visible

photograph), this property could prove extremely useful in overcoming the hurdle of

finding a feature descriptor that is invariant to changes between the two domains,

which feature-based methods rely on.

Table 3.3 lists the Rank-1 accuracy (without the additional gallery) for each sce-

nario with and without various components of the prototype random subspace frame-

work (namely LDA, the transformation matrix R, and random subspaces, RS). The

improvement in recognition accuracy when using the R tranformation quantitatively

demonstrates the importance of this step in our algorithm.
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The proposed P-RS framework also generalizes to standard face recognition sce-

narios. Using the standard dataset, Figure 3.14(a) compares the accuracy of P-RS,

D-RS, and FaceVACS. FaceVACS clearly outperforms P-RS and D-RS as it is con-

sistently one of the top performers in NIST face recognition benchmarks. However,

using four different face datasets we see that P-RS and D-RS both achieve Rank-1

accuracies around 95% with 10,876 subjects in the gallery, compared to 99.5% accu-

racy for FaceVACS. In Figure 3.14(b) the results of matching using different feature

descriptors in the probe and gallery domain are shown. The ability to match probe

and gallery images using different feature representations is novel and could benefit

situations in which only the face templates, instead of the face image are available.

The proposed P-RS method is computationally scalable to meet the demands of

real world face recognition systems. Running in Matlab and using a single core from

a 2.8GHz Intel Xeon processor, the breakdown of compute time is needed to enroll

a single face image is as follows. Image filtering requires roughly 0.008 sec for DoG,

1.1 sec for CSDN, and 0.004 sec for Gauss. The image MLBP and SIFT features

descriptors each take roughly 0.35 sec to compute. Because each image filtering is

performed once, and each feature descriptor is computed three times (once for each

filter), computing all six filter/descriptor combinations takes around 3.2 sec. The

Table 3.3: Effect of each component in the P-RS framework on recognition accuracy.
Components tested are LDA, the transformation matrix R, and random subspaces
(RS). Listed are the average Rank-1 accuracies for each scenario without the addi-
tional 10,000 gallery images.

LDA No LDA

R No R R No R

RS No RS RS No RS RS No RS RS No RS

NIR 0.904 0.901 0.725 0.699 0.722 0.472 0.600 0.319
Thermal 0.643 0.637 0.508 0.474 0.217 0.174 0.178 0.120

Viewed Sketch 0.994 0.992 0.981 0.970 0.970 0.867 0.939 0.618
Forensic Sketch 0.136 0.147 0.143 0.140 0.102 0.064 0.094 0.068
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Standard Photograph Matching
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Figure 3.13: CMC plot of matcher accuracies with an additional 10,000 gallery images
when photos are used for both the probe and gallery (i.e. non-heterogeneous face
recognition).

Gallery Features
DoG DoG CSDN CSDN Gauss Gauss

Probe Features SIFT MLBP SIFT MLBP SIFT MLBP

DoG SIFT 93.0 85.6 90.8 84.4 81.8 72.9
DoG MLBP 78.4 92.9 73.0 89.2 53.5 61.6
CSDN SIFT 90.7 79.8 93.6 88.4 90.4 85.7
CSDN MLBP 73.8 87.3 79.7 94.1 73.4 81.6
Gauss SIFT 80.5 53.3 89.8 81.0 93.2 90.6
Gauss MLBP 71.0 65.7 84.9 88.6 89.9 95.1

Figure 3.14: Face recognition results (%) when photos are used for both the probe
and gallery (i.e. non-heterogeneous face recognition). The layout is the same as in
Figure 3.10 (i.e. results shown are when different features are used to represent the
probe and gallery images).
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prototype random subspace representation with 200 bags takes roughly 0.3 sec to

compute for a single filter/descriptor combination. Thus, all six filter/descriptor

combinations take roughly 1.8 sec. In total, a face image needs around 5.0 sec. to

enroll in Matlab. With a gallery of ng subjects and the final feature vector Φ of size

d′, identification of a subject takes O(d′ ·ng) time. Depending on the number of bags,

the number of prototypes for each scenario, and the variance retained in the PCA

step, d′ is of the order 1, 000.

3.8 Summary

A method for heterogeneous face recognition, called Prototype Random Subspaces (P-

RS), is proposed. Probe and gallery images are initially filtered with three different

image filters, and two different local feature descriptors are then extracted. A training

set of prototypes is selected, in which each prototype subject has an image in both

the gallery and probe modalities. The non-linear kernel similarity between an image

and the prototypes is measured in the corresponding modality. A random subspace

framework is employed in conjunction with LDA subspace analysis to further improve

the recognition accuracy.

The proposed method leads to excellent matching accuracies across four different

HFR scenarios (near infrared, thermal infrared, viewed sketch, and forensic sketch).

Results were compared against a leading commercial face recognition engine. In most

of our experiments the gallery size was increased with an additional 10,000 subjects to

better replicate real matching scenarios. In addition to excellent matching accuracies,

one key benefit of the proposed P-RS method is that different feature descriptors

can be used to represent the probe and gallery images. Finally, the P-RS method

performed comparable to a leading commercial face recognition engine on a visible to

visible matching scenario (i.e. non-heterogeneous face recognition).
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Future work will focus on (i) improving the accuracy of each of the tested HFR

scenarios separately, (ii) improving the runtime complexity of the prototype rep-

resentation, and (iii) incorporating additional HFR scenarios. Tailoring the P-RS

parameters and learning weighted fusion schemes for each HFR scenario separately

should offer further accuracy improvements. Another potential technique to improve

the recognition accuracies is to allow the P-RS method to leverage multiple training

samples per subject. That is, in the conducted experiments each training subject

has only one image per modality. However, in many operational scenarios training

data will be available with multiple images per modality for each subject. This addi-

tional information will improve the ability to estimate the within-class scatter in our

discriminant analysis. We will also continue to improve aspects of the D-RS method

(which achieved high accuracy on several of the HFR scenarios), such as the similarity

metrics and image filters. Improvements to the runtime complexity is of the P-RS

method should be explored through an examination of the maximum number of pro-

totypes needed to achieve the highest recognition accuracy on a given scenario, and

kernel approximation methods such as the Nystrom method [150]. One additional

HFR scenario that should be considered is 3D to 2D face matching. P-RS should

be particularly impact fool in this scenario because heterogeneous features will be

required to represent faces in the 3D and 2D modalities.

While a vast majority of previous algorithms for heterogeneous face recognition

have been designed for a specific application (e.g. sketch recognition [12, 59, 82, 138,

149] and near-infrared recognition [52, 77]), the algorithm presented in this chapter

generalizes to any HFR scenario. By providing a generalized approach to hetero-

geneous face recognition this chapter offers a strong contribution the field of het-

erogeneous face recognition. As new heterogeneous face recognition scenarios are

attempted (such as much depth images acquired from LIDAR), the P-RS algorithm

proposed in this chapter should allow for success in these future endeavors.
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Chapter 4

Face Recognition Across Time

Lapse

4.1 Introduction

In addition to changes in image modality, another variate that is known to greatly

impact face recognition performance is the alteration in facial appearance that occurs

through the aging process [120].

This chapter will look at the performance of aging-invariant face recognition sys-

tems in both aging and non-aging scenarios. By showing that aging invariant face

recognition systems do not generalize to non-aging scenarios, we are able to pose

aging-invariant face recognition as a heterogeneous face recognition problem. That

is, the identifiable facial features for faces that have not undergone aging are largely

heterogeneous from the identifiable features of faces that have aged. This is evidenced

by the different discriminative subspaces that are learned from aged face images than

non-aged face images.

Unlike the pose, expression, and illumination, aging factors cannot be constrained

in order to improve face recognition performance. For example, many years may pass
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Jan 1995 Jul 1998 Nov 1999 Nov 2003 Feb 2005

Gallery seed Score=0.99 Score=0.62 Score=0.41 Score=0.26

Figure 4.1: Multiple images of the same subject are shown, along with the match
score (obtained by a leading face recognition system) between the initial gallery seed
and the image acquired after a time lapse. As the time lapse increases, the recognition
score decreases. This phenomenon is a common problem in face recognition systems.
The work presented in this chapter (i) demonstrates this phenomenon on the largest
aging dataset to date, and (ii) demonstrates that solutions to improve face recognition
performance across large time lapse impact face recognition performance in scenarios
without time lapse.

before a released prisoner is recidivate, resulting in a large time lapse between the

mug shot image in the gallery and the current booking image (probe). Similarly, a

U.S. passport is valid for ten years, and most state driver’s licenses only need to be

renewed every five to ten years. Thus, in many critical applications the success of

face recognition technology may be impacted by the large time lapse between a probe

image and its true mate in the gallery.

Over the past five years there has been a growing interest in understanding the

impact of aging on face recognition performance and proposing solutions to mitigate

any negative impact from aging. A major contributor to these advances has been

the availability of the MORPH database by Ricanek et al. [116, 121]. The MORPH

database consists of two albums, which, in total, contains roughly 100,000 images

of about 25,000 subjects. The MORPH dataset has facilitated studies on synthetic

aging [104,135], age invariant face recognition [76,104], age estimation [35], and aging

analysis [107]. A broader examination of facial aging methods in the literature can

be found in the summary provided by Ramanathan et al. [114].
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Various approaches for improving face recognition performance in the presence of

aging can be dichotomized into two groups. The first contains generative synthesis

methods which seek to learn an aging model that can estimate the appearance of an

aged face from an input image. While these methods have shown some success in

mimicking the aging process [104, 129, 135], generative methods are challenging due

to the large number of parameters that must be estimated. Synthesis methods also

rely on the appearance of the face in order to simulate the aging process, which can

suffer from the minor pose and illumination variations that are encountered in large

datasets. Further, synthesis methods do not handle the problem of face recognition,

and need a separate face engine to perform matching. Of course, this also speaks to

one of the advantages of synthetic aging methods: they can be easily integrated with

existing face recognition engines.

An alternative solution to improving face recognition performance across time

lapse is through discriminative learning methods [76, 79, 86, 113]. Such methods seek

to find the weighted combination of features that are most stable across a particular

time lapse. Discriminative approaches are able to leverage both the wide range of

facial feature representations [56], as well as the family of learning methods in face

recognition. Beginning with Belhuemer’s FisherFaces approach [10], discriminative

learning approaches have been critical to the advancement of face recognition over

the past two decades.

Li et al. used a discriminative random subspace method that outperforms a lead-

ing commercial face recognition engine on the MOPRH dataset [76]. This work helped

demonstrate that a face recognition system could be trained to improve performance

in the presence of aging [76]. While these contributions helped advance the state

of the art in face recognition in the presence of time lapse, they also raise another

question regarding the design of face recognition systems: does the learned subspace

for face recognition across time lapse impact the face recognition performance in a
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non-aging scenario? In other words, while we can improve face recognition perfor-

mance in the presence of a large time lapse between the probe and gallery images, we

also want to maintain the performance on two images with minimal time lapse. This

question, to our knowledge, has not yet been addressed before.

The contributions of the research presented in this chapter are motivated by the

need to answer the question posed above. This question is answered by providing the

largest study to date on the impact of aging on face recognition performance. Lever-

aging a dataset of 200,000 mug shot images from 64,000 subjects, we demonstrate

(i) a degradation in face recognition performance from two leading commercial-of-

the-shelf (COTS) face recognition systems (FRS) on match sets partitioned by the

amount of time lapse occurring between the probe and gallery images, and (ii) train-

ing to improve performance on a particular time lapse range impacts performance on

other time lapse ranges. These findings suggest that face recognition systems should

update face templates after a certain time interval has passed from the original ac-

quisition date in order to maximize the benefit of age invariant subspaces without

impacting face recognition in non-aging scenarios.

The remainder of this chapter is outlined as follows. In Section 4.2 we discuss

the face dataset used in this research. In Section 4.3 we revisit the random subspace

framework and discuss how it was adopted for this work. Section 4.4 presents ex-

periments on the impact of training for age invariant face recognition, as well as the

computational demands that were born from undertaking such a large scale study.

4.2 Dataset

This study leverages a set of 200,000 mug shot images from roughly 64,000 subjects

collected in the state of Florida, U.S.A. Each image contains a subject id and an

image acquisition date, which enables the time lapse between any two images to be
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determined. The 200,000 images are a subset of a larger 1.5 million image dataset

available to us; these 200,000 images were selected so that different time lapse ranges

were equally represented in this study.

The time lapse ranges (between a probe and gallery image) analyzed in this study

were (i) 0 to 1 year, (ii) 1 to 5 years, (iii) 5 to 10 years, and (iv) more than 10 years.

Training sets for each of these time lapse ranges are generated so that each range

has 8,000 subjects. The only exception is the 10+ year time lapse range, where only

around 2,000 subjects were available in the database in the database for training.

Similarly, test sets were generated to represent each of the time lapse ranges listed

above. For each time lapse range, 12,000 subjects were used for testing. Again, the

10+ year time lapse test set contained only 2,000 subjects, similar to the training set.

For each subject in the study, their oldest face image was used as the gallery seed

image. Multiple probe images that fell within the time lapse range for a subject were

often available as well. For example, the 1 to 5 year test set contained 12,000 gallery

images and 33,443 probe images, where each probe image was taken between one to

five years after the corresponding gallery image.

All parameter tuning in this work was performed using the training set. This was

performed by using the first half of the training set to train on different parameter

values and the second half of the training set to determine the optimal parameter

combination (with respect to face recognition performance). Thus, the second half of

the training set also served as a validation set.

The analysis performed on this dataset is the largest such study reported to date.

Further, because the images are pulled from a larger pool of an operational database

of mug shot images, the study is unique in that it controls the time lapse variate

so that the same number of subjects are available to analyze 5 to 10 years aging

as 0 to 1 year aging (for example). As such, measuring the performance of COTS

FRS on this dataset will provide a convincing demonstration of how commercially
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Figure 4.2: The performance of two commercial face recognition systems as a function
of time lapse between probe and gallery images.

available face recognition technology performs in the presence of aging. Because

both Li et al. [76] and Ling et al. [79] have been able to surpass the performance of

COTS FRS by performing discriminative learning on face images with time lapse,

it is generally accepted that face recognition performance degrades monotonically as

the time between image acquisition increases.

We analyzed to performance of two commercial-of-the-shelf face recognition sys-

tems: Cognitec’s FaceVACS SDK [1], and PittPatt’s Face Recognition SDK [2]. Both

matchers were competitive participants in the 2010 NIST Multi-Biometrics Evalua-

tion (MBE) [34]. Recognition results reported here list the two matchers as “COTS

1” and “COTS 2” in order to make anonymous each matcher’s performance relative

to the other.

Figure 4.2 shows the matching accuracies of the two COTS matchers as a function

of the time lapse between the probe and gallery image. The decrease in performance

as the time lapse increases clearly shows the difficulty face recognition systems have

with age variation.
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4.3 Random Subspace Face Recognition

In this work we adopt a random subspace linear discriminant analysis (RS-LDA)

algorithm, based on Wang and Tang’s original face subspace method [148]. More

recently, Li et al. [76] have used a variant of this approach to improve face recognition

in the presence in aging. Klare and Jain have also demonstrated the benefit of RS-

LDA on a heterogeneous face recognition scenario [52,54].

RS-LDA is based on the FisherFace linear discriminant analysis algorithm [10],

where a linear subspace Ψ is learned from the original feature space by solving the

generalized eigenvalue problem Sb ·Ψ = Λ ·Sw ·Ψ with the between-class and within-

class matrices Sb and Sw built from a set of training images. In RS-LDA, multiple

subspaces Ψb, b = 1 . . . B, are learned using both randomly sampled subsets of the

original feature space as well as randomly sampled subjects from the set of training

instances. The motivation for using RS-LDA over standard LDA is due to degenera-

tive properties that often manifest in Sw (which must be of full rank to solve S−1
w ·Sb).

While Level 2 facial feature representations [56] (such the local binary patterns [99]

used in this work) offer improved recognition accuracies, they also increase the di-

mensionality of the facial feature vectors. This in turn increases the likelihood that

Sw is degenerate, and further necessitates the need for a method such as RS-LDA.

Other LDA variants offer solutions to this small sample size problem [45,85], however

RS-LDA is preferred due to the ease of implementation and wider range of successful

applications in face recognition [52,54,76,148].

The approach used in this work is mostly based on the method by Li et al. [76],

however we had to modify their method in order to reduce the computational re-

quirements because the number of images handled in this experiment is an order of

magnitude larger than their work. Again, the intent of this work is not to provide a

method that can improve on commercially available face recognition technology (this

capability has already been demonstrated [76, 79]). Instead, we wish to understand
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how training a face recognition system to improve recognition accuracies on a par-

ticular time lapse scenario performs on scenarios with a larger or smaller amount of

time lapse than training time lapse.

4.3.1 Face Representation

We represent face images in this experiment with multi-scale local binary patterns

(MLBP), which is the concatenation of local binary patterns [99] of radius 1, 3, 5,

and 7. Ahonen et al. first demonstrated the effectiveness of representing face images

with LBP descriptors [3].

In order to represent a face with MLBP feature descriptors, the face is first ge-

ometrically normalized using the eye locations to (i) perform planar rotation so the

angle between the eyes is 0 degrees, (ii) scale the face so the inter-pulilary distance

between eyes is 75 pixels, and (iii) crop the face 250x200 pixels. Once geometrically

normalized, MLBP feature descriptors are densely sampled from patches of size 24x24

across the face, with an overlap of 12 pixels. In total, this yields 285 MLBP descrip-

tors representing the face. The size of the patch (24x24) was selected by using the

training set to perform parameter validation.

To reduce the total feature vector size, principal component analysis (PCA) was

performed on one half of the training set to learn a subspace for each of the 285

MLBP feature sampling locations. The second half of the training set was used to

determine the minimum energy variation that needed to be retained without impact-

ing face recognition performance. It was determined that 98% of the variance could be

retained without impacting the recognition performance. The original MLBP descrip-

tor is 236 dimensional (4 · 59). After PCA dimensionality reduction, the descriptor

size, on average, was reduced to 99 dimensions at each of the 285 sampling locations.

After the dimensionality of the MLBP descriptor for each face patch was reduced, all

descriptors are concatenated together, resulting in a feature vector of dimensionality
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d = 28, 187. Without this PCA step, the feature dimensionality would have been

67, 260.

4.3.2 Random Subspaces

A total of B random LDA subspaces Ψb are learned from B random samples of the d-

dimensional feature space. The eigenvalues corresponding to each feature dimension

extracted from the PCA step were used to weight the random sampling so that

features with higher variation energy will have a larger likelihood of being selected.

The benefit of this approach was confirmed by evaluation on the validation set. The

number of features sampled with the weighted random sampling was controlled by the

parameter ρ (0 < ρ < 1) in order to select d′ = ρ·d features at each stage b = 1, . . . , B.

Additionally, from the N training subjects available, a subset of size N ′ < N was

randomly sampled to build the between-class scatter matrix SbBtwn ∈ Rd′,d′ and the

within-class scatter matrix SwWthn ∈ Rd′,d′ at each stage b. Finally, we learn the

subspace Ψb as

Ψb = argmax
Ψ′

||Ψ′T · SbBtwn ·Ψ
′||

||Ψ′T · SbWthn ·Ψ
′||

(4.1)

After learning the set of B subspaces Ψb, b = 1 . . . B, a new face image is repre-

sented as the concatenation of the each of the B subspace projections. The dissimi-

larity between two faces is then measured by their L-2 norm.

Despite reducing the feature dimensionality and only using a ρ percent of the

(d′ = ρ · d) features, we still have a feature vector that is too large to accurately solve

Eq. 4.1. To resolve this, a second PCA step was applied at each stage b to perform

feature reduction on the d′-dimensional feature vector. This second PCA step was

performed by retaining 0 < p < 1 percent of the variance in the training instances at

stage b.
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The parameters in the RS-LDA framework are the number of training subjects to

use at each stage (N ′), the percentage of features to sample at each stage (ρ), the

number of random sample stages (B), and the percentage of variance in the PCA

step for each stage (p). Using the training set for validation to find the highest

recognition accuracies, the following parameters values were selected: N ′ = 300,

ρ = 0.45, B = 20, and p = 0.95.

4.4 Experiments

Figure 4.2 shows the negative correlation between face recognition accuracy and the

amount of time lapse between probe and gallery image capture. A strong case has

been made to handle this problem by training discriminative face recognition systems

[76, 79]. Here we will use the random subspace framework developed in Section 4.3

to understand if training a face recognition system to improve performance on aging

impacts the standard face recognition scenarios.

Using the training set splits discussed in Section 4.2, we trained five different

versions of RS-LDA matcher using the algorithm presented in Section 4.3.

• The first RS-LDA matcher was trained on the 8,000 training subjects with 0 to

1 year time lapse between probe and gallery image.

• The second matcher was trained on 8,000 subjects with 1 to 5 year time lapse.

• The third matcher was trained on 8,000 subjects with 5 to 10 year time lapse.

• A fourth matcher was trained on 2,000 subjects with over 10 years times lapse

(again, only 2,000 subjects were available with such a large time lapse).

• A final matcher was trained using 8,000 subjects whose time lapse was equally

distributed amongst the four time lapse splits considered above. Thus, this
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(0-1) (1-5) (5-10) (10+) (All) MLBP Only COTS1 COTS2

94.5% 94.1% 93.1% 91.8% 94.1% 71.2% 96.3% 89.8%

19,996

239,572,034

Test set: 0 to 1 year time lapse

RS-LDA trained on (time lapse in years): Baselines:

# of Match Comparions:

# of Non-Match Comparions:

(a)

(0-1) (1-5) (5-10) (10+) (All) MLBP Only COTS1 COTS2

90.3% 90.5% 89.1% 87.7% 90.2% 62.9% 94.3% 84.6%

33,443

401,282,557# of Non-Match Comparions:

Test set: 1 to 5 year time lapse

RS-LDA trained on (time lapse in years): Baselines:

# of Match Comparions:

(b)

(0-1) (1-5) (5-10) (10+) (All) MLBP Only COTS1 COTS2

75.2% 81.2% 82.0% 80.4% 81.3% 46.7% 88.6% 75.5%

24,036

215,795,208# of Non-Match Comparions:

Test set: 5 to 10 year time lapse

RS-LDA trained on (time lapse in years): Baselines:

# of Match Comparions:

(c)

(0-1) (1-5) (5-10) (10+) (All) MLBP Only COTS1 COTS2

65.6% 72.2% 72.4% 71.0% 71.2% 39.2% 80.5% 61.7%

6,221

12,995,669# of Non-Match Comparions:

Test set: 10+ year time lapse

RS-LDA trained on (time lapse in years): Baselines:

# of Match Comparions:

(d)

Figure 4.3: The true accept rates (TAR) at a fixed false accept rate (FAR) of 1.0%
across datasets with different amounts of time lapse between the probe and gallery
images. Four different RS-LDA subspaces were trained on a separate set of subjects
with the different time lapse ranges tested above. The results suggests the need for
multiple recognition subspaces depending on the time lapse.
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matcher trained on subjects with 0 year time lapse up to 17 years (17 years is

the maximum time lapse in the 10+ aging set).

Figure 6.1 shows the accuracy on each of the four test sets using the five trained

systems. The first test set (Fig. 6.1(a)) has 0 to 1 year time lapse between the probe

and gallery images for 12,000 subjects. The results show that the best performance

from the five trained systems is the system trained on 0 to 1 year time lapse. As the

time lapse between the training set and the test set increases, the face recognition

accuracy decreases. These results help provide the following answer to the question

originally posed: training a face recognition system to improve on face aging does

seem to reduce its performance when facial aging has not occurred.

The recognition performance on face images that have 1 to 5 years time lapse

(Fig. 6.1(b)) shows the best performance from the five RS-LDA systems is the system

trained on 1 to 5 year lapse. However, the performance from 0 to 1 year time lapse

training is not much lower. In fact, the difference between training and testing on

0 to 1 year and 1 to 5 years is rather minimal. This is likely due the fact that only

minor aging changes have occurred in these time spans.

The recognition performance on face images with 5 to 10 years time lapse (Fig.

6.1(c)) shows how learning can help improve recognition accuracies in the presence of

a large amount of aging. The true accept rate improves by nearly 7.0% when trained

on the 5 to 10 years set than with the 0 to 1 year training set. Thus, the feature

subspaces learned on data with minimal aging did not generalize well to data with

larger amounts of aging.

The recognition results on aging over 10 years (Fig. 6.1(c)) is the only scenario

in which the subspace trained on the same time lapse as tested on did not offer the

highest results. However, the 10+ year subspace only had 2,000 subjects to train on

while the other subspaces had 8,000 subjects available for training. This could also

be explained by the complex nature of face aging that manifests itself in different
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ways for different individuals especially when the time lapse is large.

In each testing scenario the subspace labeled (All) is the one trained on 8,000

subjects exhibiting all the time lapse ranges considered above. While this subspace

never had the top accuracy with respect to the other RS-LDA subspaces, it consis-

tently performed well on all time lapses. This indicates that choosing training with

equally distributed amount of time lapse is a viable solution when learning multiple

subspace models is not reasonable.

The performance of COTS1 exceeded the RS-LDA system in each testing sce-

nario. However, the RS-LDA system was purposely designed to be relatively simple

to help facilitate the scope of this study. Incoporating additional features such as the

SIFT descriptors and multiple patch sizes that Li et al. used in their aging-invariant

recognition system [76] would result in improved performance. Despite this, the role

of the training set in training RS-LDA is clearly established when examining the

performance of the RS-LDA subspaces over the baseline MLBP only performance.

MLBP only makes use of the initial MLBP feature representation to measure the

(dis)similarity between the faces, but does not perform training. Through the use of

RS-LDA the recognition accuracy is improved substantially.

The large time lapse dataset with a large number of subjects presented in this

study also enabled us to examine which regions of the face remained the most persis-

tent or retained the most discriminative power over time. To examine this stability,

we measured the Fisher separability at each patch where the MLBP feature descrip-

tors were computed. For a given face patch, we measured the Fisher separability

as the ratio of the sum of eigenvalues from the between-class scatter to the sum of

eigenvalues from the within-class scatter. This indicates the inherent separability

provided by the Level 2 MLBP features at different regions of the face. These Fisher

separability values at different time lapses are shown in Figure 4.4. The results show

that while, as expected, the inherent separability decreases for each facial region as
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Fisher Seperability:

19.120.0

Fisher Seperability:

(a) (b)

O to 1 Years 

Aging

1 to 3 Years 

Aging

3 to 5 Years 

Aging

5 to 7 Years 

Aging

7 to 9 Years 

Aging
9 + Years 

Aging

(c)

Figure 4.4: Inherent separability of different facial regions with aging. (a) The mean
pixel values at each patch where MLBP feature descriptors are computed. (b) The
scale of the Fisher separability criterion used. (c) The heat map showing Fisher
separability values at each image patch across different time lapses. As time lapse
increases, the eyes and mouth regions seem to be the most stable sources of identifiable
information.
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time increases, the mouth region has more discriminative information than the nose

region, especially with the progression of time or aging. This also confirms the dis-

criminative information contained in the region of the face around the eyes. Such

information could be useful in explicitly assigning different weights to different face

regions.

4.4.1 Computational Demands

Future work will attempt to leverage the additional face images contained in the 1.5

million mug shot image dataset available to us. However, one of the major difficulties

we anticipate in this analysis is the computational demands for processing such a

wide corpus of data. In this section we briefly highlight some of the challenges of

processing a large scale face database.

In this study, each of the roughly 120,000 test images used were enrolled by the

Cognitec’s and PittPatt’s FRS. After enrollment, 869 million match comparisons were

performed by each matcher to measure the performance on each time lapse data set.

The analysis of RS-LDA on the MLBP feature representation used all the 200,000

images. This, in turn, required all images to be geometrically normalized using the

eye locations automatically detected by the FaceVACS system. Once the images

were aligned, the MLBP feature descriptors was extracted. With a 236-dimensional

MLBP descriptor extracted at 285 patches across each face, roughly 48Gb of space

was needed for storing these features.

For analyzing RS-LDA performance on each of the five time lapse training sets,

a total of 869 million test set comparisons needed to be performed five times, result-

ing in a total of 4.34 billion comparisons. Other computational demands arose from

the training of the RS-LDA subspaces on various sets of 8,000 subjects, perform-
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ing parameter validation on four different parameter combinations1 in the RS-LDA

framework, and generating the ROC curves for each score matrix.

Machines with large amounts of RAM were also required to efficiently process the

data. For example,the covariate analysis necessary for RS-LDA needed the MLBP

features from all 8,000 subjects to be loaded into the main memory. For testing, a

major bottleneck occurred loading the MLBP feature descriptors from each of the

12,000 subjects from disk. This made it necessary to keep the MLBP features in

memory as each of the 20 random subspaces were being processed (as opposed to

releasing the memory as each image was projected into one of the subspaces).

Efficient code design helped overcome some of these computational challenges.

However, this study was primarily made possible by MSU’s High Performance Com-

puting Center (HPCC), which provides a cloud computing service where at times over

40 different compute nodes, each with over 10gb of RAM, were used at the same time

to meet the computational demands of this study.

4.5 Conclusions

This chapter presents studies on the largest face aging dataset reported to date.

These results demonstrate that (i) face recognition systems degrade monotonically as

the time lapse between face images to be matched increases, (ii) training to improve

face recognition performance in the presence of aging can lower its performance in

non-aging scenarios, and (iii) the best performance on a particular amount of time

lapse is achieved by training a system on that particular time lapse. Indeed, we see

that face recognition across time lapse is similar to more traditional heterogeneous

face recognition problems in that a different sets of feature subspaces are necessary

to maximize the recognition accuracies. Similar to heterogeneous face recognition

1Recognition accuracies based on training on roughly 10,000 subjects and testing
on 10,000 subjects was explored on over two hundred parameter combinations.
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Figure 4.5: The ability to improve face recognition performance by training on the
same time lapse being tested on suggests face recognition systems should update
templates over time. For example, at fixed intervals from the original acquisition
date the template is updated to reside in a subspaces trained for the time lapse that
has occurred since acquisition. Probe images would be projected into each subspace
and matched in the subspace corresponding to each gallery image.

between different image modalities, these feature subspaces do not generalize well to

the more constrained case (i.e. minimal time lapse).

The findings presented in this chapter suggest a periodic update of face templates

(see Figure 4.5). With a significant time lapse, updating the face template to reside

in a subspace designed to capture the most discriminative features is likely to help

improve the recognition performance in the presence of aging without compromising

performance in cases where only a minimal amount of aging has occurred. Thus,

much like heterogeneous face recognition between images from differing modalities,

expanding face recognition algorithms to also handle different time lapses between

face images requires multiple system configurations that are designed for specific

recognition scenarios (e.g. matching faces with large amounts of aging, matching

sketches, infrared images to photos).
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Chapter 5

Face Recognition Performance:

Role of Demographic Information

5.1 Introduction

In the previous chapter we examined heterogeneity with respect to differences in age

of the same person. In this chapter we will examine heterogeneity with the respect

to differences in the race/ethnicity, gender, and age of different persons. That is,

previously we examined the impact of within-class demographic variations (namely,

age). The chapter presents the complement study: an examination of the impact of

between-class demographic variations.

As discussed in the first chapter, sources of errors in automated face recognition

algorithms are generally attributed to the well studied variations in pose, illumination,

and expression [108], collectively known as PIE. Other factors such as image quality

(e.g., resolution, compression, blur), time lapse (facial aging), and occlusion also

contribute to face recognition errors [43]. Previous studies have also shown within a

specific demographic group (e.g., race/ethnicity, gender, age) that certain cohorts are

more susceptible to errors in the face matching process [34, 111]. However, there has
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yet to be a comprehensive study that investigates whether or not we can train face

recognition algorithms to exploit knowledge regarding the demographic cohort of a

probe subject.

This study presents a large scale analysis of face recognition performance on three

different demographics (see Figure 5.1): (i) race/ethnicity, (ii) gender, and (iii) age.

For each of these demographics, we study the performance of six face recognition algo-

rithms belonging to three different types of systems: (i) three commercial off the shelf

(COTS) face recognition systems (FRS), (ii) face recognition algorithms that do not

utilize training data, and (iii) a trainable face recognition algorithm. While the COTS

FRS algorithms leverage training data, we are not able to re-train these algorithms;

instead they are black box systems that output a measure of similarity between a

pair of face images. The non-trainable algorithms use common feature representa-

tions to characterize face images, and similarities are measured within these feature

spaces. The trainable face recognition algorithm used in this study also outputs a

measure of similarity between a pair of face images. However, different versions of

this algorithm can be generated by training it with different sets of face images, where

the sets have been separated based on demographics. Both the trainable algorithms,

and (presumably) the COTS FRS, initially use some variant of the non-trainable

representations.

The study of COTS FRS performance on each of the demographics considered is

intended to augment previous experiments [34, 111] on whether these algorithms, as

used in government and other applications, exhibit biases. Such biases would cause

the performance of commercial algorithms to vary across demographic cohorts. In

evaluating three different COTS FRS, we confirmed that not only do these algorithms

perform worse on certain demographic cohorts, they consistently perform worse on

the same cohorts (females, Blacks, and younger subjects).

Even though biases of COTS FRS on various cohorts were observed in this study,
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Age Gender
Young Middle-Aged Old

(a) (b) (c)

Female Male

(d) (e)

Race/Ethnicity
Black White Hispanic

(f) (g) (h)

Figure 5.1: Examples of the different demographics studied. (a-c) Age demographic.
(d-e) Gender demographic. (f-h) Race/ethnicity demographic. Within each demo-
graphic, the following cohorts were isolated: (a) ages 18 to 30, (b) ages 30 to 50, (c)
ages 50 to 70, (d) female gender, (e) male gender, (f) Black race, (g) White race,
and (h) Hispanic ethnicity. The first row shows the “mean face” for each cohort. A
“mean face” is the average pixel value computed from all the aligned face images in a
cohort. The second and third rows show different sample images within the cohorts.
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these algorithms are black boxes that offer little insight into to why such errors man-

ifest on specific demographic cohorts. To understand this, we also study the per-

formance of non-commercial trainable and non-trainable face recognition algorithms,

and whether statistical learning methods can leverage this phenomenon.

By studying non-trainable face recognition algorithms, we gain an understanding

of whether or not the errors are inherent to the specific demographics. This is because

non-trainable algorithms operate by measuring the (dis)similarity of face images based

on a specific feature representation that, ideally, encodes the structure and shape of

the face. This similarity is measured independent of any knowledge of how face images

vary for the same subject and between different subjects. Thus, cases in which the

non-trainable algorithms have the same relative performance within a demographic

group as the COTS FRS indicates that the errors are likely due to one of the cohorts

being inherently more difficult to recognize.

Relative differences in performance between the non-trainable algorithms and the

COTS FRS indicate that the lower performance of COTS FRS on a particular cohort

may be due to imbalanced training of the COTS algorithm. We explore this hy-

pothesis by training the Spectrally Sampled Structural Subspace Features (4SF) face

recognition algorithm [50] (i.e., the trainable face recognition algorithm used in this

study) on image sets that consist exclusively of a particular cohort (e.g., White only).

The learned subspaces in 4SF are applied to test sets from different cohorts to un-

derstand how unbalanced training with respect to a particular demographic impacts

face recognition accuracy.

The 4SF trained subspaces also help answer the following question: to what extent

can statistical learning improve accuracy on a demographic cohort? For example, it

will be shown that females are more difficult to recognize than males. We will inves-

tigate how much training on only females, for example, can improve face recognition

accuracy when matching females. Such improvements suggest the use of multiple dis-
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criminative subspaces (or face recognition algorithms), with each trained exclusively

on different cohorts. The results of these experiments indicate we can improve face

recognition performance on the race/ethnicity cohort by using an algorithm trained

exclusively on different demographic cohorts. This finding leads to the notion of dy-

namic face matcher selection, where demographic information may be submitted in

conjunction with a probe image in order to select the face matcher trained on the

same cohort. This framework, illustrated in Figure 5.2, should lead to improved face

recognition accuracies.

The remainder of this chapter is organized as follows. In Section 5.2 we discuss

previous studies on demographic introduced biases in face recognition algorithms

and the design of face recognition algorithms. Section 5.3 discusses the data corpus

that was utilized in this study. Section 5.4 identifies the different face recognition

algorithms that were used in this study (commercial systems, trainable and non-

trainable algorithms). Section 6.7 describes the matching experiments conducted on

each demographic. Section 5.6 provides analysis of the results in each experiment and

summarizes the contributions of this chapter.

5.2 Prior Studies and Related Work

Over the last twenty years the National Institute of Standards and Technology (NIST)

has run a series of evaluations to quantify the performance of automated face recog-

nition algorithms. Under certain imaging constraints these tests have measured a

relative improvement of over two orders of magnitude in performance over the last

two decades [34]. Despite these improvements, there are still many factors known to

degrade face recognition performance (e.g., PIE, image quality, aging). In order to

maximize the potential benefit of face recognition in forensics and law enforcement

applications, we need to improve the ability of face recognition to sort through facial
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images more accurately and in a manner that will allow us to perform more spe-

cialized or targeted searches. Facial searches leveraging demographics represents one

such avenue for performance improvement.

While there is no standard approach to automated face recognition, most face

recognition algorithms follow a similar pipeline [73]: face detection, alignment, ap-

pearance normalization, feature representation (e.g., local binary patterns [99], Gabor

features [151]), feature extraction [10, 148]), and matching [96]. Feature extraction

generally relies on an offline training stage that utilizes exemplar data to learn im-

proved feature combinations (such as feature subspaces). For example, variants of

the linear discriminant analysis (LDA) algorithm [10, 148] use training data to com-

pute between-class and within-class scatter matrices. Subspace projections are then

computed to maximize the separability of subjects based on these scatter matrices.

This study examines the impact of training on face recognition performance.

Without leveraging training data, face recognition algorithms are not able to dis-

cern between noisy facial features and facial features which offer consistent cues to

a subject’s identity. As such, automated face recognition algorithms are ultimately

based on statistical models of the variance between individual faces. These algorithms

seek to minimize the measured distance between facial images of the same subject,

while maximizing the distance between the subject’s images and those of the rest of

the population. However, the feature combinations discovered are functions of the

data used to train the recognition system. If the training set is not representative

of the data a face recognition algorithm will be operating on, then the performance

of the resulting system may deteriorate. For example, the most distinguishing fea-

tures for Black subjects may differ from White subjects. As such, if a system was

predominantly trained on White faces, and later operated on Black faces, the learned

representation may discard information useful for discerning Black faces.

The observation that the performance of face recognition algorithms could suffer
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Figure 5.2: Dynamic face matcher selection. The findings in this study suggest that
many face recognition scenarios may benefit from multiple face recognition systems
that are trained exclusively on different demographic cohorts. Demographic informa-
tion extracted from a probe image may be used to select the appropriate matcher,
and improve face recognition accuracy.

if the training data is not representative of the test data is not new. One of the

earliest studies reporting this phenomenon is not in the automated face recognition

literature, but instead in the context of human face recognition. Coined the “other-

race effect”, humans have consistently demonstrated a decreased ability to recognize

subjects from races different from their own [14, 127]. While there is no generally

agreed upon explanation for this phenomenon, many researchers believe the decreased

performance on other races is explained by the “contact” hypothesis, which postulates

that the lower performance on other races is due to a decreased exposure [20]. While

the validity of the contact hypothesis has been disputed [97], the presence of the

“other-race effect” has not.

From the perspective of automated face recognition, Phillips et als findings in the

2002 government sponsored NIST Face Recognition Vendor Test (FRVT) is believed

to be the first finding that face recognition algorithms have different recognition
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accuracies depending on a subject’s demographic cohort [111]. Among other findings,

this study demonstrated for commercial face recognition algorithms on a dataset

containing roughly 120,000 images that (i) female subjects were more difficult to

recognize than male subjects, and (ii) younger subjects were generally more difficult

to recognize than older subjects.

More recently, Grother et als measured the performance of seven commercial face

recognition algorithms and three university face recognition algorithms in the 2010

NIST Multi-Biometric Evaluation [34]. The experiments conducted also concluded

that females were more difficult to recognize than males. This study also measured

the recognition accuracy of different races and ages.

Previous studies have investigated what impact the distribution of a training set

has on recognition accuracy. Furl et als [28] and O’Toole et als [100] conducted

studies to investigate the impact of cross training and matching on White and Asian

races. Similar training biases were investigated by Klare and Jain [57], who showed

that aging-invariant face recognition algorithms suffer from decreased performance in

non-aging scenarios.

The study in [100] was motivated by a rather surprising result in the 2006 NIST

Face Recognition Vendor Test (FRVT) [110]. In this test, the various commercial

and academic face recognition algorithms tested exhibited a common characteristic:

algorithms which originated in East Asia performed better on Asian subjects than

did algorithms from the West. The reverse was true for White subjects: algorithms

developed in the western hemisphere performed better. O’Toole et als suggested that

this discrepancy was due to the different racial distribution in the training sets for

the Western and Asian algorithms.

The impact of these training sets on face recognition algorithms cannot be overem-

phasized; face recognition algorithms do not generally rely upon explicit physiological

models of the human face for determining match or non-match. Instead, the measure
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of similarity between face images is based on statistical learning, generally in the

feature extraction stage [10,80] or during the matching stage [96].

In this work, we expand on previous studies to better demonstrate and understand

the impact of a training set on the performance of face recognition algorithms. While

previous studies [28,100] only isolated the race variate, and only considered two races

(i.e., Asian and White), this study explores both the inherent biases and training

biases across gender, race (three different races/ethnicities) and age. To our knowl-

edge, no studies have investigated the impact of gender or subject age for training

face recognition algorithms.

5.3 Face Database

This study was enabled by a collection of over one million mug shot face images

from the Pinellas County Sheriff’s Office1 (examples of these images can be found in

Figure 5.1). Accompanying these images are complete subject demographics. The

demographics provide the race/ethnicity, gender, and age of the subject in each image,

as well as a subject ID number.

Given this large corpus of face images, we were able to use the metadata provided

to control the three demographics studied: race/ethnicity, gender, and age. For

gender, we partitioned image sets into cohorts of (i) male only, and (ii) female only.

For age, we partitioned the sets into three cohorts: (i) young (18 to 30 years old),

(ii) middle-age (30 to 50 years old), and (iii) old (50 to 70 years old). There were

very few individuals in this database with age less than 18 and older than 70. For

race/ethnicity2, we partitioned the sets into cohorts of (i) White, (ii) Black, and (iii)

1The mug shot data used in this study was acquired in the public domain through
Florida’s ”Sunshine” laws. Subjects shown in this manuscript may or may not have
been convicted of a criminal charge, and thus should be presumed innocent of any
wrongdoing.

2Racial identifiers (i.e. White, Black, and Hispanic) follow the FBI’s National
Crime Information Center code manual.
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Table 5.1: Number of subjects used for training and testing for each demographic
category. Two images per subject were used. Training and test sets were disjoint. A
total of 102,942 face images were used in this study.

Demographic Cohort # Training # Testing

Gender Female 7995 7996

Male 7996 7998

Race Black 7993 7992

White 7997 8000

Hispanic 1384 1425

Age 18 to 30 7998 7999

30 to 50 7995 7997

50 to 70 2801 2853

Hispanic3. A summary of these cohorts and the number of subjects available for each

cohort can be found in Table 5.1. Asian, Indian, and Unknown race/ethnicities were

not considered because an insufficient number of samples were available.

For each of the eight cohorts (i.e., male, female, young, middle-aged, old, White,

Black, and Hispanic), we created independent training and test sets of face images.

Each set contains a maximum of 8,000 subjects, with two images (one probe and one

gallery) for each subject. Table 5.1 lists the number of subjects included for each set.

Cohorts far less than 8,000 subjects (i.e., Hispanic and older) reflect a lack of data

available to us. Cases with cohorts containing only slightly fewer than 8,000 subjects

are the result of removing a few images that could not be successfully enrolled in the

COTS FRS.

The dataset of mug shot images did not contain a large enough number of Asian

subjects to measure that particular race/ethnicity cohort. However, studies by Furl

et al. [28] and O’Toole et al. [100] investigated the impact of the Whites and East

Asians. As previously discussed, these studies concluded that algorithms developed

3Hispanic is not technically a race, but instead an ethnic category.
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in the Western Hemisphere did better on White subjects and Asian algorithms did

better on Asian subjects.

5.4 Face Recognition Algorithms

In this section we will discuss each of the six face recognition algorithms used in this

study. We have organized these algorithms into commercial algorithms (Sec. 5.4.1),

non-trainable algorithms (Sec. 5.4.2), and trainable algorithms (Sec. 5.4.3).

5.4.1 Commercial Face Recognition Algorithms

Three commercial face recognition algorithms were evaluated in this study: (i) Cog-

nitec’s FaceVACS v8.2, (ii) PittPatt v5.2.2, and (iii) Neurotechnology’s MegaMatcher

v3.1. The results in this study obfuscate the names of the three commercial matchers.

These commercial algorithms are three of the ten algorithms evaluated in the

NIST sponsored Multi-Biometrics Evaluation (MBE) [34]. As such, these algorithms

are representative of the state of the art performance in face recognition technology.

5.4.2 Non-Trainable Face Recognition Algorithms

Two non-trainable face recognition algorithms were used in this study: (i) local bi-

nary patterns (LBP), and (ii) Gabor features. Both of these methods operate by

representing the face with Level 2 facial features (LBP and Gabor), where Level 2

facial features are features that encode the structure and shape of the face, and are

critical to face recognition algorithms [56].

These non-trainable algorithms perform an initial geometric normalization step

(also referred to as alignment) by using the automatically detected eye coordinates

(eyes were detected using FaceVACS SDK) to scale, rotate, and crop a face image.

After this step, the face image has a height and width of 128 pixels. Both algorithms
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are custom implementations by the authors.

Local Binary Patterns

A seminal method in face recognition is the use of local binary patterns [99] (LBP) to

represent the face [3]. Local Binary Patterns are Level 2 features that represent small

patches across the face with histograms of binary patterns that encode the structure

and texture of the face.

Local binary patterns describe each pixel using a p-bit binary number. Each bit

is determined by sampling p pixel values at uniformly spaced locations along a circle

of radius r, centered at the pixel being described. For each sampling location, the

corresponding bit receives the value 1 if it is greater than or equal to the center pixel,

and 0 otherwise.

A special case of LBP, called the uniform LBP [99], is generally used in face

recognition. Uniform LBP assigns any non-uniform binary number to the same value,

where uniformity is defined by whether more than u transitions between the values

0 and 1 occur in the binary number. In the case of p = 8 and u = 2, the uniform

LBP has 58 uniform binary numbers, and the 59th value is reserved for the remaining

256 − 58 = 198 non-uniform binary numbers. Thus, each pixel will take on a value

ranging from 1 to 59. Two different radii are used (r = 1 and r = 2), resulting in

two different local binary pattern representations that are subsequently concatenated

together (called Multi-scale Local Binary Patterns, or MLBP).

In the context of face recognition, LBP values are first computed at each pixel

in the (normalized) face image as previously described. The image is tessellated into

patches with a height and width of 12 pixels. For each patch i, a histogram of the

LBP values S′i ∈ Zds is computed (where ds = 59). This feature vector is then

normalized to the feature vector Si ∈ Rds by Si =
S′i∑ds
i S′i

. Finally, we concatenate

the N vectors into a single vector x of dimensionality ds ·N .
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Figure 5.3: Overview of the Spectrally Sampled Structural Subspace Features (4SF)
algorithm. This custom algorithm is representative of state of the art methods in face
recognition. By changing the demographic distribution of the training sets input into
the 4SF algorithm, we are able to analyze the impact the training distribution has
on various demographic cohorts.

In our implementation, the illumination filter proposed by Tan and Triggs [136] is

used prior to computing the LBP codes in order to suppress non-uniform illumination

variations. This filter resulted in improved recognition performance.

Gabor Features

Gabor features are one of the first Level 2 facial features [56] to have been used with

wide success in representing facial images [80, 128, 151]. One reason Gabor features

are popular for representing both facial and natural images is their similarity with

human neurological receptor fields [94,122].

A Gabor image representation is computed by convolving a set of Gabor filters

with an image (in this case, a face image). The Gabor filters are defined as

G(x, y, θ, η, γ, f) =
f2

πγη
e
−
(
f2

γ2 x
′2+

f2

γ2 y
′2
)
e

(
j2πfx′

)
(5.1)

x′ = x cos θ + ysinθ (5.2)

y′ = −xsinθ + y cos θ (5.3)
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where f sets the filter scale (or frequency), θ is the filter orientation along the major

axis, γ controls the filter sharpness along the major axis, and η controls the sharpness

along the minor axis. Typically, combinations across the following values for the scale

f and orientation θ are used: f = {0, 1, . . . , 4} and θ = {π/8, π/4, 3π/8, . . . , π}. This

creates a set (or bank) of filters with different scales and orientations. Given the

bank of Gabor filters, the input image is convolved with each filter, which results in

a Gabor image for each filter. The combination of these scale and orientation values

results in 40 different Gabor filters, which in turn results in 40 Gabor images (for

example).

In this chapter, the recognition experiments using a Gabor image representation

operate by: (i) performing illumination correction using the method proposed by

Tan and Triggs [136], (ii) computing the phase response of the Gabor images with

f = {1, 2}, and θ = 0, π/4, π/2, 3π/4, (iii) tessellating the Gabor image(s) into patches

of size 12x12, (iv) quantizing the phase response (which ranges from 0 to 2π) into 24

values and computing the histogram within each patch, and (v) concatenating the

histogram vectors into a single feature vector. Given two (aligned) face images, the

distance between their corresponding Gabor feature vectors is used to measure the

dissimilarity between the two face images.

5.4.3 Trainable Face Recognition Algorithm

The trainable algorithm used in this study is the Spectrally Sampled Structural Sub-

space Features algorithm [50], which is abbreviated as 4SF@. This algorithm uses

multiple discriminative subspaces to perform face recognition. After geometric nor-

malization of a face image using the automatically detected eye coordinates (eyes

were detected using FaceVACS SDK), illumination correction is performed using the

illumination correction filter presented by Tan and Triggs [136]. Face images are

then represented using histograms of local binary patterns at densely sampled face
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patches [3] (to this point, 4SF is the same as the non-trainable LBP algorithm de-

scribed in Sec. 5.4.2). For each face patch, principal component analysis (PCA) is

performed so that 98.0% of the variance is retained. Given a training set of subjects,

multiple stages of weighted random sampling is performed, where the spectral densi-

ties (i.e., the eigenvalues) from each face patch are used for weighting. The randomly

sampled subspaces are based on Ho’s original method [37], however the proposed ap-

proach is unique in that the sampling is weighted based on the spectral densities. For

each stage of random sampling, LDA [10] is performed on the randomly sampled com-

ponents. The LDA subspaces are learned using subjects randomly sampled from the

training set (i.e., bagging [15]). Finally, distance-based recognition is performed by

projecting the LBP representation of face images into the per-patch PCA subspaces,

and then into each of the learned LDA subspaces. The sum of the Euclidean distance

in each subspace is the dissimilarity between two face images. The 4SF algorithm is

summarized in Figure 5.3.

As shown in the experiments conducted in this study, the 4SF algorithm performs

on par with several commercial face recognition algorithms. Because 4SF is initially

the same approach as the non-trainable LBP matcher, the improvement in recogni-

tion accuracies (in this study) between the non-trainable LBP matcher and the 4SF

algorithm clearly demonstrates the ability of 4SF to leverage training data. Thus, a

high matching accuracy and the ability to leverage training data make 4SF an ideal

face recognition algorithm to study the effects of training data on face recognition

performance. The 4SF algorithm was developed in house.
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Figure 5.4: Performance of the COTS-A commerical face recognition system on
datasets seperated by cohorts within the gender demographic.
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Figure 5.5: Performance of the COTS-B commerical face recognition system on
datasets seperated by cohorts within the gender demographic.
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Figure 5.6: Performance of the COTS-C commerical face recognition system on
datasets seperated by cohorts within the gender demographic.
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Figure 5.7: Performance of the local binary pattern-based non-trainable face recog-
nition system on datasets seperated by cohorts within the gender demographic.
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Figure 5.8: Performance of the Gabor-based non-trainable face recognition system on
datasets seperated by cohorts within the gender demographic.
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4SF trained on all cohorts equally
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Figure 5.9: Performance of the 4SF algorithm trained on an equal number of samples
from each gender on datasets seperated by cohorts within the gender demographic.
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4SF evaluated on Females
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Figure 5.10: Performance of the different trained versions of the 4SF algorirthm on
the Females cohort.
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4SF evaluated on Males
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Figure 5.11: Performance of the different trained versions of the 4SF algorithm on
the Male cohort.
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Figure 5.12: Performance of the COTS-A commercial face recognition system on
datasets seperated by cohorts within the race demographic.

142



COTS−B

False Accept Rate

Tr
ue

 A
cc

ep
t R

at
e

0.5

0.6

0.7

0.8

0.9

1.0

●

●

10−4 10−3 10−2 10−1 100

Dataset

● Black
White
Hispanic

Figure 5.13: Performance of the COTS-B commercial face recognition system on
datasets seperated by cohorts within the race demographic.
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Figure 5.14: Performance of the COTS-C commercial face recognition system on
datasets seperated by cohorts within the race demographic.
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Figure 5.15: Performance of the local binary pattern-based non-trainable recognition
system on datasets seperated by cohorts within the race demographic.
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Gabor
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Figure 5.16: Performance of the Gabor-based non-trainable recognition system on
datasets seperated by cohorts within the race demographic.
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4SF trained on all cohorts equally
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Figure 5.17: Performance of the 4SF algorithm trained on an equal number of samples
from each race on datasets seperated by cohorts within the race demographic.

5.5 Experimental Results

For each demographic (gender, race/ethnicity, and age), three separate matching

experiments are conducted. The results of these experiments are presented per de-

mographic. Figures 5.4 to 5.11 delineate the results for all the experiments on the

gender demographic. Figures 5.12 to 5.20 delineate the results for all experiments on

the race/ethnicity demographic. Finally, Figures 5.21 to 5.29 delineate the results for

all experiments on the age demographic. The true accept rate at a fixed false accept
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4SF evaluated on Black
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Figure 5.18: Performance of the different trained versions of the 4SF algorithm on
the Black cohort.
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4SF evaluated on White
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Figure 5.19: Performance of the different trained versions of the 4SF algorithm on
the White cohort.
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4SF evaluated on Hispanic
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Figure 5.20: Performance of the different trained versions of the 4SF algorithm on
the Hispanic cohort.
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Figure 5.21: Performance of the COTS-A commercial face recognition system on
datasets seperated by cohorts within the age demographic.
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Figure 5.22: Performance of the COTS-B commercial face recognition system on
datasets seperated by cohorts within the age demographic.
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Figure 5.23: Performance of the COTS-C commerical face recognition system on
datasets seperated by cohorts within the age demographic.
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Figure 5.24: Performance of the local binary pattern-based non-trainable face recog-
nition system on datasets seperated by cohorts within the age demographic.
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Figure 5.25: Performance of the Gabor-based non-trainable face recognition system
on datasets seperated by cohorts within the age demographic.
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4SF trained on all cohorts equally
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Figure 5.26: Performance of the 4SF algorithm trained on an equal distribution of
samples acoress age on datasets seperated by cohorts within the age demographic.
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4SF evaluated on Ages 18 to 30
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Figure 5.27: Performance of the different trained versions of the 4SF algorithm on
the Ages 18 to 30 cohort.
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4SF evaluated on Ages 30 to 50
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Figure 5.28: Performance of the different trained versions of the 4SF algorithm on
the Ages 30 to 50 cohort.
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4SF evaluated on Ages 50 to 70
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Figure 5.29: Performance of the different trained versions of the 4SF algorithm on
the Ages 50 to 70 cohort.
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rate of 0.1% for all the aforementioned plots are summarized in Tables 5.2, 5.3, and

5.4.

The first experiment conducted on each demographic measures the relative per-

formance within the demographic cohort for each COTS FRS@. That is, for a par-

ticular commercial matcher (e.g., COTS-A), we compare it’s matching accuracy on

each cohort within that demographic. For example, on the gender demographic, this

experiment will measure the difference in recognition accuracy for commercial match-

ers on males versus females. The results from this set of experiments can be found

in Figures 5.4, 5.5, and 5.6 for the gender demographic, Figures 5.12, 5.13, 5.14 for

the race/ethnicity demographic, and Figures 5.21, 5.22, and 5.23 for the age demo-

graphic. The second experiment conducted on each demographic cohort measures the

relative performance within the cohort for non-trainable face recognition algorithms.

Because the non-trainable algorithms do not leverage statistical variability in faces,

they are not susceptible to training biases. Instead, they reflect the inherent (or a pri-

ori) difficulty in recognizing cohorts of subjects within a specific demographic group.

The results from this set of experiments can be found in Figures 5.7 and 5.8 for the

gender demographic, Figures 5.15 and 5.16 for the race/ethnicity demographic, and

Figures 5.24 and 5.25 for the age demographic.

The final experiment investigates the influence of the training set on recogni-

tion performance. Within each demographic cohort, we train several versions of the

4SF algorithm (one for each cohort). These differently trained versions of the 4SF

algorithm are then applied to separate testing sets from each cohort within the par-

ticular demographic. This enables us to understand within the gender demographic

(for example), how much training exclusively on females (i) improves performance on

females, and (ii) decreases performance on males. In addition to training 4SF exclu-

sively on each cohort, we also use a version of 4SF trained on an equal representation

of specific demographic cohorts (referred to as “Trained on All”). For example, in the
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gender demographic, this would mean that for “All”, 4SF was trained on 4,000 male

subjects and 4,000 female subjects. The results from this set of experiments can be

found in Figures 5.9 to 5.11 for the gender demographic, Figures 5.17 to 5.20 for the

race/ethnicity demographic, and Figures 5.26 to 5.29 for the age demographic.

5.6 Analysis

In this section we provide an analysis of the findings of the experiments described in

Section 6.7. A strength of this study is the large face dataset leveraged; accuracies

measured on each cohort (except Hispanic and Old cohorts) are from roughly 8,000

subjects.

5.6.1 Gender

Each of the three commercial face recognition algorithms performed significantly

worse on the female cohort than the male cohort (see Figures 5.4, 5.5, and 5.6). Ad-

ditionally, both non-trainable algorithms (LBP and Gabor) performed significantly

worse on females (see Figures 5.7 and 5.8).

The agreement in relative accuracies of the COTS FRS and the non-trainable LBP

method on the gender demographic suggests that the female cohort is more difficult to

recognize using frontal face images than the male cohort. That is, if the results in the

COTS algorithms were due to imbalanced training sets (i.e., training on more males

than females), then the LBP matcher should have yielded similar matching accuracies

on males and females. Instead, the non-trained LBP and Gabor matchers performed

worse on the female cohort. When training on males and females equally (Figure 5.9),

the 4SF algorithm also did significantly worse on the female cohort. Together, these

results strongly suggest that the female cohort is inherently more difficult to recognize.

The results of the 4SF algorithm on the female cohort (Figure 5.10) offer additional
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Table 5.2: Listed are the true accept rates at a fixed false accept rate of 0.1% for each
matcher on the gender demographic.

Females Males

COTS-A 89.5 94.4

COTS-B 81.6 89.3

COTS-C 70.3 80.9

LBP 54.4 74.0

Gabor 56.0 68.2

4SF trained on All 73.0 86.2

4SF trained on Females 71.5 85.0

4SF trained on Males 69.0 86.3

evidence about the nature of the discrepancy. The performance of training on only

females is not higher than the performance of training on a mix of males and females

(labeled “All”). Further, the difference in performance when training on only males

versus training on only females is much lower than the difference in performance

between males and females on the non-trainable algorithm. In other words, the

difficulty in recognizing females seems to be due to a higher ratio of inter-class variance

to intra-class variance in the initial face image representations.

Different factors may explain why females appear more difficult to recognize

than males. One explanation may be that because females often use cosmetics (i.e.,

makeup), and males generally do not, there is a higher within-class variance in fe-

males. This hypothesis is supported by the match score distributions for males and

females (see Figures 5.30 and 5.31). A greater difference in the true match distri-

butions is noticed when compared to the false match distributions. The increased

dissimilarities between images of the same female subjects demonstrate intra-class

variability. Again, a cause of this may be due to the application of cosmetics.
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Table 5.3: Listed are the true accept rates at a fixed false accept rate of 0.1% for each
matcher on the race dataset.

Black White Hispanic

COTS-A 88.7 94.4 95.7

COTS-B 81.3 89.0 90.7

COTS-C 74.0 79.8 87.3

LBP 65.3 70.5 73.5

Gabor 61.6 63.7 70.9

4SF trained on All 78.4 83.0 86.3

4SF trained on Black 80.2 81.0 59.8

4SF trained on White 75.4 84.5 59.9

4SF trained on Hispanic 74.5 80.2 60.1

Table 5.4: Listed are the true accept rates at a fixed false accept rate of 0.1% for each
matcher on the age dataset.

18 to 30 y.o. 30 to 50 y.o. 50 to 70 y.o.

COTS-A 91.7 94.6 94.4

COTS-B 86.1 89.1 87.5

COTS-C 76.5 80.7 83.6

LBP 69.4 74.7 75.1

Gabor 61.7 68.2 65.7

4SF trained on All 81.5 85.6 83.6

4SF trained on 18 to 30 y.o. 83.3 85.9 80.7

4SF trained on 30 to 50 y.o. 82.1 86.0 82.2

4SF trained on 50 to 70 y.o. 78.7 84.5 82.0
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5.6.2 Race

When examining the race/ethnicity cohort, all three commercial face recognition al-

gorithms achieved the lowest matching accuracy on the Black cohort (see Figures 5.12

to 5.14). The two non-trained algorithms had similar results (Figures 5.15 and 5.16).

When matching against only Black subjects (Figure 5.18), 4SF has higher accuracy

when trained exclusively on Black subjects (about a 5% improvement over the system

trained on Whites and Hispanics only). Similarly, when evaluating 4SF on only

White subjects (Figure 5.19), the system trained on only the White cohort had the

highest accuracy. However, when comparing the 4SF algorithm trained equally on all

race/ethnicity cohorts (Figure 5.17), we see that the performance on the Black cohort

is still lower than on the White cohort. Thus, even with balanced training, the Black

cohort still is more difficult to recognize.

The key finding in the training results shown in Figures 5.17 to 5.20 is the abil-

ity to improve recognition accuracy by training exclusively on subjects of the same

race/ethnicity. Compared to balanced training (i.e., training on “All”), the perfor-

mance of 4SF when trained on the same race/ethnicity it is recognizing is higher.

Thus, by merely changing the distribution of the training set, we can improve the

recognition rate by nearly 2% on the Black cohort and 1.5% on the White cohort (see

Table 5.3).

The inability to effectively train on the Hispanic cohort is likely due to the insuffi-

cient number of training samples available for this cohort. However, the biogeographic

ancestry of the Hispanic ethnicity is generally attributed to a three-way admixture

of Native American, European, and West Black populations [88]. Even with an in-

creased number of training samples, we believe this mixture of races would limit the

ability to improve recognition accuracy through race/ethnicity specific training.
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5.6.3 Age Demographic

All three commercial algorithms had the lowest matching accuracy on subjects

grouped in the ages 18 to 30 (see Figures 5.21 to 5.23). The COTS-A matcher

performed nearly the same on the 30 to 50 year old cohort as the 50 to 70 year old

cohort. However, COTS-B had slightly higher accuracy on 30 to 50 age group than

50 to 70 age group, while COTS-C performed slightly better on 50 to 70 than 30 to

50 age groups.

The non-trainable algorithms (Figures 5.24 and 5.25) also performed the worst on

the 18 to 30 age cohort.

When evaluating 4SF on only the 18 to 30 year old cohort (Figure 5.27) and

the 30 to 50 year old cohort (Figure 5.28), the highest performance was achieved

when training on the same cohort. Table 5.4 helps elaborate on the exact accuracies.

Similar to race, we were able to improve recognition accuracy by merely changing the

distribution of the training set.

When comparing the 4SF system that is trained with equal number of subjects

from all age cohorts, the performance on the 18 to 30 year old cohort is the lowest.

This is consistent with the accuracies of the commercial face recognition algorithms.

The less effective results from training on the 50 to 70 year old cohort is likely due

to an small number of training subjects. This is consistent with the training results

on the Hispanic cohort, which also had a small number of training subjects.

5.6.4 Impact of Training

The demographic distribution of the training set generally had a clear impact

on the performance of different demographic groups. Particularly in the case of

race/ethnicity, we see that training on a set of subjects from the same demographic

cohort as being matched offers an increase in the True Accept Rate (TAR). This find-

ing is particularly important because in most operational scenarios, particularly those
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Figure 5.30: Match score distributions for the (a) male and (b) female genders using
the 4SF system trained with an equal number of male and female subjects. All
histograms are aligned on the same horizontal axis.
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Figure 5.31: Geniune and impostor score distributions for the male and female genders
using the 4SF system trained with an equal number of male and female subjects.
The increased distances (dissimilarities) for the true match comparisons in the female
cohort suggest increased within-class variance in the female cohort. All histograms
are aligned on the same horizontal axis.
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dealing with forensics and law enforcement, the use of face recognition is not being

done in a fully automated, “lights out” mode. Instead, an operator is usually inter-

acting with a face recognition system, performing a one-to-one verification task, or

exploring the gallery to group together candidates in clusters for further exploitation.

Each of these scenarios can benefit from the use of demographic-enhanced matching

algorithms, as described below.

Scenario 1 - 1:N Search In many large face recognition database searches, the

objective is to have the true match candidates ranked high enough to be found by

the analyst performing the candidate adjudication. While it will not always be the

case, under many conditions, the analyst will be able to categorize the demographics

of the probe image based on age, gender, and/or race/ethnicity. In such a situation,

if the analyst has the option to select a different matching algorithm that has been

trained for that specific demographic group, then improved matching results should

be expected. An schematic of this is shown in Figure 5.2. This individual could be

searched using an algorithm trained on male, Whites, and aged 18 to 30. If a true

match is not found using that algorithm, then a more generic algorithm might be used

as a follow up to further search the gallery. Note that this scenario does not require

that the gallery images be pre-classified based on specific demographic information.

Instead, the algorithm should simply generate higher match scores for subjects that

share the characteristics of that demographic cohort. We call this method of face

search dynamic face matcher selection. In cases where the demographic is unclear

(e.g., a mixed race/ethnicity subject), the matcher trained on all cohorts equally can

be used. Examples of improved retrieval instances through applying this technique

can be found in Figure 5.32.

Scenario 2 - 1:1 Verification It is often the case that investigators will identify

a possible match to a known subject and will request an analyst to perform a 1:1
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Probe Images:

Gallery Mates:

Retrieval Rank for 4SF Trained on all cohorts equally:

873 866 763 679 628 5 3

Retrieval Rank for 4SF Trained on White cohort exclusivly:

10 42 48 20 10 48 42

(a)

Probe Images:

Gallery Mates:

Retrieval Rank for 4SF Trained on all cohorts equally:

820 .112 730 640 574 7 6

Retrieval Rank for 4SF Trained on Black cohort exclusively:

20 34 43 9 43 42 41

(b)

Figure 5.32: Shown are examples where dynamic face matcher selection improved
the retrieval accuracy. The final two columns show the less frequent case where
such a technique reduced the retrieval accuracy. Retrieval ranks are out of roughly
8,000 gallery subjects for each cohort. Leveraging demographic information (such
as race/ethnicity in this example) allows a face recognition system to perform the
matching using statistical models that are tuned to the differences within the specific
cohort.
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verification of the match. This also happens as a result of a 1:N search, once a

potential match to a probe is identified. In either case, the analyst must reach a

determination of match or no-match. In fully automated systems, this decision is

based on a numerical similarity threshold. In some environments, the analyst is

prevented from seeing the similarity score out of concern that his judgment will be

biased. But in others, the analyst is permitted to incorporate this into his analysis. In

either case, it is anticipated that an algorithm trained on a specific demographic group

will return higher match scores for true matches than one that was more generic. As

a result, the analyst is more likely to get a hit and the 1:1 matching results process

will be improved.

Scenario 3 - Verification at Border Crossings The results presented here pro-

vide support for further testing of additional demographic groups, potentially in-

cluding specific country or geographic-region of origin. Assuming such demographics

proved effective at improving match scores, then use of dynamic face matcher selec-

tion could be extended to immigration or border checks on entering subjects to verify

that their passport or other documents accurately reflects their country of origin.

Scenario 4 - Face Clustering Another analyst-driven application involves the

exploitation of large sets of uncontrolled face imagery. Images encountered in in-

telligence or investigative applications often include large sets of videos or arbitrary

photographs taken with no intention of enrolling them in a face recognition environ-

ment. Such image sets offer a great potential for development of intelligence leads by

locating multiple pictures of specific individuals and giving analysts an opportunity

to link subjects who may be found within the same photographs. Clustering methods

are now being used on these datasets to group faces that appear to represent the

same subject. Implementations of such clustering methods today usually rely upon

a single algorithm to perform the grouping and an analyst must perform the quality
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control step to determine if a particular cluster contains only a single individual. By

combining multiple demographic-based algorithms into a sequential analysis, it may

be possible to improve the clustering of large sets of face images and thereby reduce

the time required for the analyst to perform the adjudication of individual clusters.

5.7 Conclusions

In this chapter we examined face recognition performance on different demographic

cohorts on a large operational database of 102,942 face images. Three demographics

were analyzed: gender (male and female), race/ethnicity (White, Black, and His-

panic), and age (18 to 30 years old, 30 to 50 years old, and 50 to 70 years old).

For each demographic cohort, the performances of three commercial face recogni-

tion algorithms were measured. The performances of all three commercial algorithms

were consistent in that they all exhibited lower recognition accuracies on the following

cohorts: females, Blacks, and younger subjects (18 to 30 years old).

Additional experiments were conducted to measure the performance of non-

trainable face recognition algorithms (local binary pattern-based and Gabor-based),

and a trainable subspace method (the Spectrally Sampled Structural Subspace Fea-

tures (4SF) algorithm). These experiments offered additional evidence to form hy-

potheses about the observed discrepancies between certain demographic cohorts.

Some of the keys findings in this study are:

• The female, Black, and younger cohorts are more difficult to recognize for all

matchers used in this study (commercial, non-trainable, and trainable).

• Face recognition performance on race/ethnicity and age cohorts generally im-

prove when training exclusively on that same cohort.

• The above finding suggests the use of dynamic face matcher selection, where

multiple face recognition systems, trained on different demographic cohorts, are
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available as a suite of systems for operators to select based on the demographic

information of a given query image (see Figure 5.2).

• In scenarios where dynamic matcher selection is not possible, training face recog-

nition systems on datasets that are well distributed across all demographics is

critical to reduce face matcher vulnerabilities on specific demographic cohorts.

Finally, as with any empirical finding, additional ways to exploit the findings of

this research are likely to be found. Of particular interest is the observation that

women appear to be more difficult to identify through facial recognition than men.

If we can determine the cause of this difference, it may be possible to use that infor-

mation to improve the overall matching performance.

The experiments conducted in this chapter should have a significant impact on

the design of face recognition algorithms. Similar to the large body of research on al-

gorithms that improve face recognition performance in the presence of other variates

known to compromise recognition accuracy (e.g., pose, illumination, and aging), the

results in this study should motivate the design of algorithms that specifically target

different demographic cohorts within the race/ethnicity, gender and age demograph-

ics. By focusing on improving the recognition accuracy on such confounding cohorts

(i.e., females, Blacks, and younger subjects), researchers should be able to further

reduce the error rates of state of the art face recognition algorithms and reduce the

vulnerabilities of such systems used in operational environments.
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Chapter 6

Towards Automated Caricature

Recognition

6.1 Introduction

Among the remarkable capabilities possessed by the human visual system, perhaps

none is more compelling than our ability to recognize a person from a caricature.

A caricature is a face image in which certain facial attributes and features have

been exaggerated to a degree that is often beyond realism, and yet the face is still

recognizable (see Fig. 6.1). As Leopold et al. discussed [69], the caricature generation

process can be conceptualized by considering each face to lie in a face space. In this

space, a caricature face beyond the line connecting the mean face1 and a subject’s

face. In other words, a caricature is an extrapolated version of the original face.

Despite the (often extreme) exaggeration of facial features, the identity of a subject

in a caricature is generally obvious, provided the original face is known to the viewer.

In fact, studies have suggested that people may be better at recognizing a familiar

person through a caricature portrait than from a veridical portrait2 [90, 118].

1A mean face is the average appearance of all faces.
2A verdical portrait is a highly accurate facial sketch of a subject.
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(a) (b) (c) (d)

Figure 6.1: Examples of caricatures (top row) and photographs (bottom row) of four
different personalities. Shown above are: (a) Angelina Jolie (drawn by Rok Dovecar),
(b) Adam Sandler (drawn by Dan Johnson), (c) Bruce Willis (drawn by Jon Moss),
and (d) Taylor Swift (drawn by Pat McMichael).

So why is it that an exaggerated, or extrapolated, version of a face can be so

easy to recognize? Studies in human cognition have suggested this phenomenon is

correlated to how humans represent and encode facial identity [90]. Empirical studies

suggest that this representation involves the use of prototype faces, where a face image

is encoded in terms of its similarity to a set of prototype face images [69, 130, 145].

Under this assumption, the effectiveness of a caricature would be due to its ability

to emphasize deviations from prototypical faces. This would also explain why faces

that are “average” looking, or typical, are more difficult to recognize [145].

Automated face recognition, despite its significant progress over the past decade

[34], still has many limitations. State of the art face recognition algorithms are not

able to meet the performance requirements in uncontrolled and non-cooperative face

matching scenarios, such as surveillance. We believe clues on how we can better com-

pute the similarity between faces may be found through investigating the caricature
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matching process [51].

In this chapter we further expand our contributions of heterogeneous face recog-

nition by studying the process of automatically matching a caricature to a facial

photograph. To accomplish this, we define a set of qualitative facial attributes (e.g.

“nose to mouth distance”) that are used to encode the appearance of a face (car-

icature or photograph). These features, called “qualitative features”, are generally

on a nominal scale (and occasionally on an ordinal scale) that characterize when a

particular facial attribute is either typical or atypical (deviates from the mean face).

Statistical learning is performed to learn feature weighting and the optimal subset of

these features.

While several methods exist for automating the caricature generation process, to

our knowledge, this is the first attempt to automate the caricature recognition pro-

cess. In addition to posting impressive accuracies on this difficult heterogeneous face

recognition task, we are also releasing a caricature recognition dataset, experimental

protocol, and qualitative features to the research community. Through the design

and performance evaluation of caricature recognition algorithms, it is our belief that

we will help advance the state of automatic face recognition through the discovery of

additional facial representations and feature weightings [5].

6.2 Related Work

Caricature recognition belongs to a face recognition paradigm known as heterogeneous

face recognition (HFR) [54], which has been well discussed in this dissertation. In

brief, heterogeneous face recognition is the task of matching two faces from alternate

modalities.

Solutions to heterogeneous face recognition problems generally follow one of two

approaches. The first approach, popularized by Wang and Tang [149], seeks to syn-
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thesize an image from one of the modalities (e.g. sketch) in the second modality (e.g.

photograph). Once this synthesis has occurred, standard matching algorithms can be

applied in the now common modality.

The second approach to HFR is to densely sample feature descriptors (such as local

binary patterns (LBP) [99]) from the images in each modality. The feature descriptor

is selected such that it varies little when moving between the imaging modalities,

while still capturing key discriminative information. A benefit of this feature-based

approach is that it facilitates statistical subspace learning (such as linear discriminant

analysis (LDA) [10] and its variants) to further improve the class separability. This

approach has been successfully used by Liao et al. [77], Klare and Jain [52, 54, 59],

and Bhatt et al. [12].

In the context of caricature recognition, an image feature descriptor-based ap-

proach is challenged because the descriptors from the caricature and photograph may

not be highly correlated due to misalignment caused by feature exaggerations (e.g. the

nose in the caricature may extend to where the mouth or chin is in the photograph).

However, the application of LDA, in a manner similar to other HFR studies [52, 59],

somewhat compensates for these misalignments. Further, LDA offers a solution to

the intra-artist variability through the modeling of the within-class scatter. For these

reasons, the study in this chapter also makes use of the image feature descriptor-based

approach in addition to the qualitative feature based approach (see Section 6.6).

A major contribution of this of this chapter is the definition of a set of categori-

cal, or nominal, facial attributes. This approach is similar to the attribute and simile

features proposed by Kumar et al. [65], who demonstrated the benefit of this nominal

feature representation for recognizing face images. While we present a similar rep-

resentation, the features proposed here have been carefully defined by a professional

artist with experience in drawing caricatures.

A number of methods in graphics have been developed for automatically generat-
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ing caricature images [6,7,16,64,70]. However, to our knowledge, no previous research

on matching caricatures to photographs has been conducted. The method proposed

by Hsu and Jain [38] was the closest attempt, where facial photographs were matched

by first synthesizing them into caricature drawings. Klare and Jain considered the

task of matching facial carvings [62] and avatar face images [153], both of which

exhibited some facial disproportions that are similar to caricatures.

6.3 Caricature Dataset

In this section we describe the dataset that was used in this study. Future studies

comparing accuracies on this dataset should follow the protocol detailed in Section

6.7.

The dataset consists of pairs of a caricature sketch and a corresponding facial

photograph from 196 subjects (see Fig. 1 for examples). Two sources were used to

collect these images. The first was through contacts with various artists who drew

the caricatures. For these images, permission was granted to freely distribute the

caricatures. In total 89 caricatures were collected from this source.

The second source of caricature images was from Google Image searches. For these

caricatures, the url of the image was recorded, and is included in the dataset release

(along with the actual image). There were 107 pairs from this source.

The corresponding face image for each subject was provided by the caricature

artist for caricatures from the first source, and by Google Image search for the second

source. When selecting face photographs, care was taken to find images that had

minimal variations in pose, illumination, and expression. However, such “ideal” im-

ages do not always exist. Thus, many of the PIE (pose, illumination and expression)

factors still persist.
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(a) (b) (c) (d)

Figure 6.2: Different forms of facial sketches (b-d). (a) Photograph of a subject. (b)
Portrait sketch. (c) Forensic sketch drawn by Semih Poroy from a verbal description.
(d) Caricature sketch.

6.4 Qualitative Feature Representation

We define a set of categorical facial features for representing caricature images and

face photographs. These features were developed by one of the authors who is a

cartoonist (in addition to being a professor of electrical engineering [4]).

While face images are typically encoded by high-dimensional numerical features

(such as local binary patterns [99]), the tendency of a caricature to exaggerate distinc-

tive facial features [117] makes such numerical encodings not appropriate for repre-

senting caricatures images. Instead, the proposed qualitative features describe facial

features that a caricature artist may portray as to whether or not it is present. Thus,

if “large distance between the nose and mouth” is a feature the artist chooses to em-

phasize, the proposed representation is able to capture this without being impacted

by exactly how much the artist extrapolates this distance from the norm [5].

A caricaturist can be likened to a “filter” that only retains useful information

in a face for identification. As a filter, the artist uses his talent to analyze a face,

eliminate insignificant facial features, and capture the identity though exaggeration

of the prominent features. Most of the caricaturists start with the description of the

general shape of the head. They assemble the eyes, nose, eyebrows, lips, chin and
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Level 1

Face Length:

Face Shape:

Hairstyle 1:

Beard:

Hairstyle 2:

Mustache:

Level 2

Eye Seperation:

Nose to Eye Distance:

Nose to Mouth Distance:

Mouth to Chin Distance:

Mouth Width:

Nose Width:

Figure 6.3: Illustration of features numbered one through twelve in the set of twenty
five qualitative features used to represent both caricatures and photographs. The
similarity between sketches and photographs were measured within this representa-
tion.
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Level 2

Nose (Up or Down):

Forehead Size:

Thick Eyebrows:

Eyebrows (Up or Down):

Eyebrows Connected:

Eyebrow Shape:

Eye Color:

Sleepy Eyes:

Almond Eyes:

Slanted Eyes:

Sharp Eyes:

Baggy Eyes:

Cheeks:

Figure 6.4: Illustration of the features numbered thirteen through twentyfour in the
set of twenty five qualitative features used to represent both caricatures and pho-
tographs. The similarity between sketches and photographs were measured within
this representation.
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ears with some exaggerations in geometrically correct locations (always maintaining

the appropriate ratios amongst them); finally, they include the hair, moustache and

beard (depending on the gender or their presence in the face).

In this study, following the caricaturists methodology [117], we define a set of 25

qualitative facial features that are classified into two levels (see Figure 6.4). The first

level (Level 1) is defined for the general shapes and sizes of the facial components and

the second level (Level 2) is defined for the size and appearance of facial components,

as well as ratios amongst the locations of different components (e.g. distance of the

mouth from the nose).

6.4.1 Level 1 Qualitative Features

Level 1 features describe the general appearance of the face. These features can be

more quickly discerned than Level 2 features. In standard face recognition tasks,

Level 1 features are less informative than Level 2 features [56] due to their lack of

persistence and uniqueness. However, in caricature recognition experiments these

features are shown to be the most informative (see Section 6.7).

The length of the face is captured by the Face Length feature (narrow or elon-

gated). The shape of the face is described by the Face Shape feature (boxy, round,

or triangular). Two different features are used to capture the hair style, with values

including: short bangs, parted left, parted right, parted middle, bald, nearly bold,

thin middle, and curly. Facial hair is represented with the Beard feature (none, nor-

mal, Abraham Lincoln, thin, thick, and goatee) and Mustache feature (normal, none,

thin, and thick) features. See Figure 6.4 for visual examples of these features.

6.4.2 Level 2 Features

Specific facial details are captured by the Level 2 facial features. Level 2 facial features

will offer more precise descriptions of specific facial components (such as the eyes,
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nose, etc.) compared to Level 1 features.

Several binary features are used to represent the appearance of the eyes. These

include whether or not the eyes are dark, sleepy, “almond” shaped, slanted, sharp,

or baggy. Similarly, the eyebrows are represented by their thickness, connectedness,

direction (up or down), and general shape (normal, rounded, or pointed). The nose

is represented by its width (normal, thin or wide) and direction (normal, points up,

or points down). The mouth is characterized by its width (normal, thin, or wide).

The cheeks are described as being either normal, thin, fat or baggy.

Several features are used to capture the geometric relationships among the facial

components. They describe the distance between the nose and the eyes, the nose

and the mouth, and the mouth and the chin. Two additional features describe the

distance between the eyes, and the length of the forehead.

6.4.3 Feature Labeling

Each image (caricature and photo) was labeled with qualitative features by annotators

provided through Amazon’s Mechanical Turk3. Several annotators combined to label

the entire set of image pairs with each of the 25 qualitative features. Each annotator

was asked to label a single image with a single feature value at a time. Thus, the

annotator was shown an image of either a caricature or a photograph, and each of the

possible feature values (along with their verbal description) for the current feature

being labeled.

To compensate for differences in annotator opinions on less obvious image/feature

combinations, each image was labeled three times by three different annotators. Thus,

given 25 qualitative features and three labelers per feature, a total of 75 feature labels

were available per image. In all, 29,400 labeling tasks were performed through this

crowdsourcing method (costing roughly $300 USD).

3https://www.mturk.com/
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Figure 6.5: Overview of the caricature recognition algorithm.

6.5 Matching Qualitative Features

With each image labeled with 25 qualitative attributes u times (u = 3, see Sec.

6.4.3), each image (photo or caricature) can be represented by a u× 25 matrix C ∈

Zu×25
+ . Note that the matrix elements are nonnegative integers since each feature is

of categorical type.

In order to improve the matching performance, we adopt machine learning tech-

niques for feature subset selection and weighting. To facilitate this, we encode the

categorical attributes into binary features by using ri bits for each attribute, where

ri is the number of possible choices for the ith attribute. For example, ri = 2 for

“Thick Eyebrows” and ri = 3 for “Nose Width” (see Figure 6.4).

Ideally, the binary valued feature vector should lead to a vector with only one non-

zero element per feature. However, the annotators may give contradicting annotations

(e.g. one subject can be labeled as having a “Wide Nose” and “Normal Nose” by

two different annotators). Hence, we accumulate the binary valued feature vectors

into histogram feature vectors. Thus, a single feature will no longer be represented

by an ri-bit binary number, but instead by an ri-dimensional feature vector. Each

component will have a minimum value of 0 and a maximum value of u. Finally,

for each image, we concatenate the 25 individual attribute histograms to get a 77-

dimensional feature vector (x ∈ Z77
+ , ||x||1 = 25u). Given this representation, the

simplest method for matching is to perform nearest neighbor search with Euclidean
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distance (referred to as NNL2
).

Next, we convert the caricature-photo matching problem into a binary classifica-

tion task by calculating the absolute difference vector for every possible caricature-

photo pair in the training set. In the binary classification setting, the difference vector

for the caricature and photo pair of the same subject (i.e. a true match) is labeled as

‘1’ whereas the difference vector for caricature-photo pair of two different subjects (i.e.

a false match) is labeled as ‘-1’. This gives us n positive samples (genuine matches)

and n2 − n negative samples (imposter matches), where n is the number of subjects

in the training set.

With the caricature recognition problem reformulated as a binary classification

task, we leverage a fusion of several binary classifiers. Let {(xi, yi),xi ∈ Rd, yi ∈

{−1, 1}, i = 1, 2, ....,m} be the m pairs of difference vectors, where d = 77. Again,

if xi is a difference vector between a caricature and photograph of the same subject

then yi = 1, otherwise yi = −1.

6.5.1 Logistic Regression

Logistic regression seeks to find a function that maps the difference vectors to their

numerical label (+1 or −1). The output of this regression can be interpreted as a

similarity score, which facilitates fusion and receiver operator characteristic (ROC)

analysis.

The objective function of the logistic regression is as follows

min
β

m∑
i=1

{−yixi′β + log(1 + exp(xi
′β))}+ λR(β), (6.1)

where β is the vector of the feature weights to be learned, R(β) is a regularization

term (to avoid overfitting and impose structural constraints) and λ is a coefficient to

control the contribution of the regularizer to the cost. Two different regularizers are
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Method FAR=10.0% FAR=1.0%

Qualitative Features (no learning):

NNL2
39.2± 5.4

Qualitative Features (learning):

Logistic Regression 50.3± 2.4 11.3± 2.9

MKL 39.5± 3.2 7.4± 3.9

NNMKL 46.6± 3.9 10.3± 3.6

SVM 52.6± 5.0 12.1± 2.8

Logistic Regression+NNMKL+SVM 56.9± 3.0 15.5± 4.6

Image Descriptors (learning):

LBP with LDA 33.4± 3.9 11.5± 2.5

Qualitative Features + Image Descriptors:

Logistic Regression+NNMKL+

SVM+LBP with LDA
61.9± 4.5 22.7± 3.5

Table 6.1: Average verification accuracies of the proposed qualitative, image feature-
based, and baseline methods. Shown are the true accept rates (TAR) at fixed false
accept rates (FAR) of 1.0% and 10.0%. Average accuracies and standard deviations
were measured over 10 random splits of 134 training subjects and 62 testing subjects
(subjects in training and test sets are different).

commonly used: (i) the L1-norm regularizer, R(β) = ||β||1 (also know as Lasso [141]),

which imposes sparseness on the solutions by making most of the coefficients to be

equal to zero for large values of λ, and (ii) the L2-norm regularizer, R(β) = ||β||2,

which leads to non-sparse solutions.

Our experimental results with the implementation of [49] favored the L2-norm

regularizer, which we refer to in Section 6.7 as Logistic Regression. Having solved for

β using a gradient descent method, we compute the similarity value of the difference

vector x between a caricature and photograph as: f(x) = xβ − log(1 + exp(xβ)).
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Method Rank-1 Rank-10

Qualitative Features (no learning):

NNL2
12.1± 5.2 52.1± 7.1

Qualitative Features (learning):

Logistic Regression 17.7± 4.2 62.1± 3.8

MKL 11.0± 3.9 50.5± 4.0

NNMKL 14.4± 2.9 59.5± 3.9

SVM 20.8± 5.6 65.0± 3.8

Logistic Regression+NNMKL+SVM 23.7± 3.5 70.5± 4.4

Image Descriptors (learning):

LBP with LDA 15.5± 4.6 42.6± 4.6

Qualitative Features + Image Descriptors:

Logistic Regression+NNMKL+

SVM+LBP with LDA
32.3± 5.1 74.8± 3.4

Table 6.2: Average identification accuracies of the proposed qualitative, image
feature-based, and baseline methods. Average accuracies and standard deviations
were measured over 10 random splits of 134 training subjects and 62 testing subjects
(subjects in training and test sets are different).
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6.5.2 Multiple Kernel Learning and SVM

One limitation of the logistic regression method is that it is restricted to finding linear

dependencies between the features. In order to learn non-linear dependencies we use

support vector machines (SVM) and multiple kernel learning (MKL) [8].

Given m training images, we let {Kj ∈ Rm×m, j = 1, . . . , 25} represent the set

of base kernels. p = (p1, . . . ,ps)
> ∈ Rs+ denotes the coefficients used to combine

these base kernels, and K(p) =
∑s
j=1 pjKj is the combined kernel matrix. We learn

the coefficient vector p by solving the convex-concave optimization of the MKL dual

formulation [66]:

min
p∈∆

max
α∈Q
L̂(α,p) = 1>α− 1

2
(α ◦ y)>K(p)(α ◦ y), (6.2)

where ◦ denotes the Hadamard (element-wise) product, 1 is a vector of all ones, and

Q = {α ∈ [0, C]m} is the domain for dual variables α. Note that this formulation

can be considered as the dual formulation of SVM for the combined kernel.

One popular choice for domain ∆ is ∆2 =
{
p ∈ Rs+ : ‖p‖2 ≤ 1

}
. Often the L1

norm is used to generate a sparse solution, however, in our application, the small

sample size impacted the accuracy of this approach.

For MKL, each individual attribute is considered as a separate feature by con-

structing one kernel for each attribute (resulting in 25 base kernels). Our MKL

classifier was trained using an off-the-shelf MKL tool [131].

Once this training is complete, we are able to measure the similarity of a

caricature and photograph (represented as the difference vector x) by: f(x) =∑ns
i=1 αiyiKp(xi,x), where ns is the number of support vectors, and Kp(·) is the

combined matrix. In Section 6.7, we refer to this method as MKL.

In addition to the MKL algorithm, we also use the standard SVM algorithm [19]

by replacing the multiple kernel matrix Kp(·) with a single kernel K(·) that utilizes
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all feature components together. In Section 6.7, we refer to this approach as SVM.

Both the MKL and SVM algorithms used RBF kernels (the kernel bandwidth was

determined empirically).

Finally, we introduce a method known as the nearest neighbor MKL (NNMKL).

Because the vector p in Eq. 6.2 assigns weight to each of the 25 qualitative features,

we can explicitly use these weights to perform weighted nearest neighbor matching.

Thus, the dissimilarity between a caricature and photograph is measured as the sum

of weighted differences between each of the qualitative feature vectors.

6.6 Image Descriptor-based Recognition

As discussed, encoding facial images with low level feature descriptors such as local

binary patterns [99] is challenged with respect to matching caricatures to photo-

graph due to the misalignments caused from the feature exaggeration in caricatures.

However, since this approach has seen success in matching facial sketches to pho-

tographs [12, 54, 59], we also employ a similar technique for the caricature matching

task.

The first step in the image descriptor-based algorithm is to align the face images

using the two eye locations. These locations are marked manually due to the wide

variations of pose in both the photographs and (especially) the caricatures. Using

the center of the eyes, we performed planar rotation to fix the face upright, scaled

the image to 75 pixels between the eyes, and cropped the image to a height of 250

pixels and a width of 200 pixels.

For both caricatures and photographs, we densely sampled local binary pattern

histograms from image patches of 32 by 32 pixels. Next, all of the LBP histograms

computed from a single image are concatenated into a single feature vector. Finally,

we performed feature-based random subspace analysis [52] by randomly sampling the
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feature space b times. For each of the b subspaces, linear discriminant analysis (LDA)

is performed to extract discriminative feature subspaces [10]. In Section 6.7 we will

refer to this method as LBP with LDA.

6.7 Experimental Results

The 196 pairs of caricatures and photographs (see Section 6.3), were randomly split

such that 134 pairs (roughly 2/3rd) were made available for training, and 62 pairs

(roughly 1/3rd) was available for testing. These sets were non-overlapping (i.e. no

subject used in training was used for testing). We partitioned the data into training

and testing sets 10 different times, resulting in 10 different matching experiments.

The results shown in this section are the mean and standard deviation of the match-

ing accuracies from those 10 random partitions. The precise splits used for these

experiments are included with the release of the caricature image dataset.

The performance of each matching algorithm was measured using both the cumu-

lative match characteristic (CMC) and the receiver operating characteristic (ROC)

curves. For the CMC scores, we list the Rank-1 and Rank-10 accuracies. With 62

subjects available for testing, the gallery size was 62 images (photographs), and the

scores listed are the average rank retrieval when querying the gallery with the 62

corresponding caricatures. The ROC analysis is listed as the true accept rate (TAR)

at fixed false accept rates (FAR) of 1.0% and 10.0%.

Table 6.1 and Table 6.2 lists the identification and retrieval accuracies (respec-

tively) for each of the recognition algorithms discussed in this work. Even without

learning the qualitative features (NNL2
) still had a higher accuracy than the image

descriptor-based method (LBP with LDA). Thus, while image descriptor-based meth-

ods work well in matching verdical sketches to photographs [59], the misalignments

caused by the exaggerations in the caricatures challenge this method. At a false ac-
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cept rate of 10.0%, several of the proposed learning methods (Logistic Regression,

NNMKL, and SVM) are able to improve the accuracy of the qualitative features by

around 10%. Despite the inability of the MKL method to improve the matching ac-

curacy, using the weights from MKL with the nearest neighbor matcher (NNMKL)

improves the matching accuracy.

Because the classification algorithms used in this study output numerical values

that indicate the similarity of a caricature image and a photograph, we are able to

leverage fusion techniques to further improve the accuracy. Fusion of algorithms in

Table 6.1 and Table 6.2 are denoted by the a ‘+’ symbol between algorithms names.

This indicates the use of sum of score fusion with min-max score normalization [123].

Using only qualitative features, the matching accuracy (at FAR=10.0%) was

improved to nearly 57% (using Logistic Regression+NNMKL+SVM). While the

image descriptor-based method performed poorly with respect to the qualita-

tive features, it proved valuable when added to the fusion process: Logistic

Regression+NNMKL+SVM+LBP with LDA had an accuracy of 61.9%.

Using the estimated p vector in the multiple kernel learning (MKL) algorithm, we

are able to interpret the relative importance of each of the qualitative features. Since

each component of p corresponds to the weight assigned to each of the 25 qualitative

features, we can loosely interpret this vector to understand which features provided

the most discriminative information. Figure 6.6 lists the weights for each of the 25

facial features. Surprisingly, we see that the Level 1 qualitative features are more

discriminative than the Level 2 facial features. While this is counter to a standard

face recognition task [56], caricatures are different in nature than face images. We

believe the relative importance of Level 1 facial features in this setting is akin to the

information an artist filters from the face.
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6.8 Summary

This chapter introduced a challenging new problem in heterogeneous face recogni-

tion: matching facial caricatures to photographs. Unlike the other heterogeneous

face recognition scenarios encountered in this paper, the development of a caricature

recognition system does not have direct societal benefits. However, the indirect bene-

fits of such research may be substantial. Given the human ability to ascertain identify

from these extremely exaggerated sketches, designing common facial representations

for both caricatures and photographs is akin to mimic human facial representations.

In order to facilitate research in caricature matching, we released the initial dataset

of 196 pairs of caricatures and photographs used in this study in order to allow other

researchers to study this problem.

A major contribution of this research is the definition of a set of qualitative facial

features for representing both caricatures and photographs. Given these representa-

tions, a suite of statistical learning algorithms were adopted to learn the most salient

combinations of these features from a training set of caricature and photograph pairs.
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Feature Name Weight Feature Name Weight

Hairstyle 1 2.86 Almond Eyes 0.21

Beard 0.85 Nose (Up or Down) 0.21

Mustache 0.81 Face Shape 0.20

Hairstyle 2 0.70 Forehead Size 0.19

Eyebrows (Up or Down) 0.45 Eye Color 0.18

Nose to Mouth Distance 0.43 Sleepy Eyes 0.14

Eye Seperation 0.43 Sharp Eyes 0.13

Nose Width 0.42 Baggy Eyes 0.12

Face Length 0.27 Nose to Eye Distance 0.12

Cheeks 0.27 Thick Eyebrows 0.11

Mouth Width 0.26 Eyebrows Connected 0.10

Mouth to Chin Distance 0.23 Slanted Eyes 0.10

Eyebrow Shape 0.22

Figure 6.6: The multiple kernel learning (MKL) weights (p), scaled by 10, for each
of the qualitative features. Higher weights indicate more informative features.
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Chapter 7

Summary and Conclusions

This thesis studied the problem of heterogeneous face recognition across both specific

and broad applications. The primary contributions were realized by advancing facial

feature representations to better handle heterogeneous face images, and adapting

feature extraction algorithms (i.e. statistical learning) to better leverage training

data exemplar to a particular heterogeneous face matching task.

7.1 Contributions

In Chapter 2 we developed a framework for matching forensic sketches to facial pho-

tographs that offered the following contributions:

• Presented the first large-scale experiment on automated identification using

operational forensic sketches.

• In encoding sketches and photographs with SIFT and LBP feature descriptors,

we proposed the first feature-based approach to automated sketch recognition.

• Developed a recognition framework called local feature-based discriminant

analysis, which demonstrated a substantial improvement in matching viewed
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sketches to photos over both previously published algorithms and a state of the

art commercial face recognition system.

• Applied race and gender filtering to further improve sketch recognition accuracy.

The prototype-based framework in Chapter 3 offered the following contributions:

• Presented a prototype-based representation for heterogeneous face images. This

approach represents images from each modality as a vector of their similarities

to a common set of prototypes.

• Improved the recognition accuracy of the prototype features by applying linear

discriminant analysis on randomly sampled prototype features, resulting in a

final framework called prototype-random subspaces (P-RS).

• The P-RS framework provides a method for computing inter-modality similari-

ties by using only intra-modality similarity measures, thus extending it (concep-

tually) to any heterogeneous face recognition scenario in which intra-modality

similarities can be computed.

• Demonstrated the ability of the P-RS framework to perform face recognition us-

ing feature templates from alternate facial feature representation (e.g. matching

LBP to SIFT).

The studies of facial aging presented in Chapter 4 offer the following contributions:

• Performed the largest facial aging study to date by using a dataset of 200,000

mug shot images from 64,000 subjects with time lapses up to 17 years between

images of the same subject.

• Demonstrated a degradation in face recognition performance from two leading

commercial-of-the-shelf (COTS) face recognition systems (FRS) as a function

of the amount of time lapse that has occurred between two face images.
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• Showed that training a face recognition system on a particular amount of time

lapse resulted in the highest recognition accuracy on that time lapse.

• The previous finding suggests to the notion of periodically updating face tem-

plates to reside in feature subspaces that are trained for the amount of time

that has lapsed since the image was acquired.

The study on the impact of the demographic distributions on face recognition perfor-

mance from over 50,000 subjects presented in Chapter 5 offered the following contri-

butions:

• A demonstration that female, black, and younger cohorts are more difficult

to recognize for six different face matchers (commercial, non-trainable, and

trainable).

• That training a matcher exclusively on the images of a particular racial cohort

will result in improved recognition accuracies on that cohort.

• The notion of dynamic face matcher selection is presented, where multiple face

recognition systems that are each trained on different demographic cohorts are

available for an operator to use in matching with the goal of improving face

retrieval performance.

Finally, the study on caricature recognition in Chapter 6 offered the following contri-

butions:

• The first study on matching caricatures to photographs was presented.

• Developed a set of qualitative facial features for representing both caricatures

and photographs. The features resulted in the highest accuracy for matching

caricatures to their photographs.
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• Adapted classification algorithms to categorize the difference vector between a

caricature and a photograph as being either a match or non-match.

• Collected a database of caricature and photograph pairs that are freely available

to other researchers.

7.2 Future Work

Though contributions were offered across a range of challenges in heterogeneous face

recognition, the studies presented in this thesis also segue into many new research

challenges that are both within the scope of heterogeneous face recognition and be-

yond.

The studies on forensic sketch recognition developed a system that had near per-

fect accuracy on accurate viewed sketches, while the accuracy on real world forensic

sketches was significantly lower. The chief similarity between these two types of data

is that they are both hand drawn sketches. Thus, we see that the true heterogeneous

aspect of this problem (i.e. matching a sketch to a photo) is largely solved. However,

the difference between viewed and forensic sketches is that forensic sketches rely on

the human memory. While many researchers are still seeking to improve the trivial

problem of sketch recognition on viewed sketches, it is only through a more in depth

examination of forensic sketches that we make the gains needed to close the gap be-

tween the two forms of sketches. Researchers must make greater use of the previous

findings in the cognitive science literature on human witness memory to help shape

the next generation of sketch recognition algorithms.

The prototype-based framework for performing heterogeneous face recognition

demonstrated that heterogeneous facial features could be used to match heteroge-

neous face images. While this was notably demonstrated on the difficult scenario of

matching thermal images to photographs (a task which humans struggle with), more
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ambitious scenarios can now be considered. One such example is the matching of face

depth maps acquired from a LIDAR (Light Detection And Ranging) sensor. LIDAR

sensors have demonstrated the ability to acquire high resolution images across large

distances, making for an ideal heterogeneous face recognition scenario in intelligence

and law enforcement applications.

The prototype framework may also be extended to problems outside the scope of

face recognition. For example, the prototype-based representation should be explored

in the context of cross-lingual retrieval, as well as heterogeneous image retrieval chal-

lenges (such as querying a database of large images with much smaller thumbnail

images).

Both the study on facial aging and demographics demonstrated the tight cou-

pling between face matcher accuracy and the dataset with which it was trained on.

Though quite intuitive, this idea that the demographic distribution of a dataset could

be controlled to generate several different versions of a face recognition system had

not previously been explored. While the experimental findings in the two chapters

on aging and demographics indirectly demonstrated the benefit of these approaches

(namely, template update over time and the use of dynamic face matcher selection),

more explicit experiments should be conducted. While such follow on studies are

perhaps more suited for system-related research (as opposed to pattern recognition

research), they are, none the less, important.

Perhaps the study on caricature recognition presented in this thesis offers the

most avenues for future research. The release of the dataset will hopefully prompt

other researchers to explore orthogonal ideas on how to solve the problem. The union

of many different approaches to this problem should in turn yield a wide set of ap-

proaches that can then be extended to the standard face recognition problem. Within

our approach of encoding caricatures and photographs using qualitative features, sev-

eral new avenues for research exist. One of which is the application of the qualitative
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features to face matching and retrieval.

7.3 Conclusions

A thesis comprised of a set of studies on heterogeneous face recognition has been pre-

sented. In each study contributions are made to improve face recognition performance

given heterogeneous forms of data. The results of these studies is an improvement

to specific problems that are of interest in law enforcement, defense, and intelligence

applications.
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Appendix A

“R” Transform is a Special Case of

Eigen-transform

Given the matrix of probe features Kp and gallery features Kg, Tang and Wang’s

eigen-transformation method [138] performs a transformation from the probe face

modality to the gallery face modality by first performing the eigen-decomposition

using the dominant eigenvector method

(KpK
T
p )KpVp = KpVpΛp (A.1)

(KgK
T
g )KgVg = KgVgΛg (A.2)

Here Kp and Kg are the matrices containing the kernel prototype similarities from the

training instances as described in Eqs. (3.3) and (3.4). Given a feature vector φ′ from

the probe modality, the eigen-transformation method transforms (or synthesizes) φ′

to the vector φ in the gallery modality by
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Up = KpVpΛ
−1/2
p (A.3)

bp = UT
p φ
′ (A.4)

cp = VpΛ
−1/2
p bp (A.5)

φ = Kgcp (A.6)

We will now prove that Eq. (A.6) is equivalent to the R transform shown in

Eq. (3.9), given the special case that Kp and Kg are square matrices (as is always the

case in our framework). For terseness, φ(P ) and φ′(P ) (from Eq. (A.6)) are simply

represented as φ and φ′ (respectively).

Expanding Eq. (A.6) we have

φ = Kgcp (A.7)

= KgVpΛ
−1/2
p bp (A.8)

= KgVpΛ
−1/2
p (Λ

−1/2
p )TV T

p K
T
p φ
′ (A.9)

= KgVpΛ
−1
p V T

p K
T
p φ
′ (A.10)

Now, going back to Eq. (A.6), we see that we transform φ′ to φ as

φ = R φ′ (A.11)

= Kg(K
T
p Kp)

−1KT
p φ
′ (A.12)

If Eq. (A.6) was equivalent to Eq. (3.9), then, from Eq. (A.10) and Eq. (A.12),

we see that it must be true that VpΛ
−1
p V T

p = (KT
p Kp)

−1. By definition, we have
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KT
p Kp = VpΛpV

T
p (A.13)

Because Vp is a square, orthonormal matrix (and, thus, V T
p = V −1

p ), we see that

(KT
p Kp)

−1 = (VpΛpV
T
p )−1 (A.14)

= VpΛpV
T
p (A.15)

Thus, given the special case that Kp and Kg are square matrices, the proposed “R”

transform in Chapter 3 is in fact equivalent to Tang and Wang’s eigen-transformation

method [138].
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