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Abstract

Multibiometric Systems: Fusion Strategies and Template

Security

By

Karthik Nandakumar

Multibiometric systems, which consolidate information from multiple biometric

sources, are gaining popularity because they are able to overcome limitations such as

non-universality, noisy sensor data, large intra-user variations and susceptibility to

spoof attacks that are commonly encountered in unibiometric systems. In this thesis,

we address two critical issues in the design of a multibiometric system, namely, fusion

methodology and template security.

First, we propose a fusion methodology based on the Neyman-Pearson theorem for

combination of match scores provided by multiple biometric matchers. The likeli-

hood ratio (LR) test used in the Neyman-Pearson theorem directly maximizes the

genuine accept rate (GAR) at any desired false accept rate (FAR). The densities of

genuine and impostor match scores needed for the LR test are estimated using finite

Gaussian mixture models. We also extend the likelihood ratio based fusion scheme

to incorporate the quality of the biometric samples. Further, we also show that the

LR framework can be used for designing sequential multibiometric systems by con-

structing a binary decision tree classifier based on the marginal likelihood ratios of the

individual matchers. The LR framework achieves consistently high recognition rates



across three different multibiometric databases without the need for any parameter

tuning. For instance, on the WVU-Multimodal database, the GAR of the LR fusion

rule is 85.3% at a FAR of 0.001%, which is significantly higher than the corresponding

GAR of 66.7% provided by the best single modality (iris). The use of image quality

information further improves the GAR to 90% at a FAR of 0.001%.

Next, we show that the proposed likelihood ratio based fusion framework is also

applicable to a multibiometric system operating in the identification mode. We further

investigate rank level fusion strategies and propose a hybrid scheme that utilizes both

ranks and scores to perform fusion in the identification scenario.

While fusion of multiple biometric sources significantly improves the recognition

accuracy, it requires storage of multiple templates for the same user corresponding to

the individual biometric sources. Template security is an important issue in biomet-

ric systems because unlike passwords, stolen biometric templates cannot be revoked.

Hence, we propose a scheme for securing multibiometric templates as a single entity

using the fuzzy vault framework. We have developed fully automatic implementa-

tions of a fingerprint-based fuzzy vault that secures minutiae templates and an iris

cryptosystem that secures iriscode templates. We also demonstrate that a multibio-

metric vault achieves better recognition performance and higher security compared

to a unibiometric vault. For example, our multibiometric vault implementation based

on fingerprint and iris achieves a GAR of 98.2% at a FAR of less than 0.01% and

provides approximately 49 bits of security. The corresponding GAR values of the

individual iris and fingerprint vaults are 88% and 78.8%, respectively. When the iris

and fingerprint vaults are stored separately, the security of the system is only 41 bits.
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Chapter 1

Introduction

Personal identity refers to a set of attributes (e.g., name, social security number, etc.)

that are associated with a person. Identity management is the process of creating,

maintaining and destroying identities of individuals in a population. A reliable iden-

tity management system is urgently needed in order to combat the epidemic growth

in identity theft and to meet the increased security requirements in a variety of appli-

cations ranging from international border crossing to accessing personal information.

Establishing (determining or verifying) the identity of a person is called person recog-

nition or authentication and it is a critical task in any identity management system.

The three basic ways to establish the identity of a person are “something you know”

(e.g., password, personal identification number), “something you carry” (e.g., physical

key, ID card) and “something you are” (e.g., face, voice) [44].

Surrogate representations of identity such as passwords and ID cards can be eas-

ily misplaced, shared or stolen. Passwords can also be easily guessed using social

engineering [136] and dictionary attacks [110]. Hence, the effective security provided
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by passwords is significantly less than the expected security. Studies by the National

Institute of Standards and Technology (NIST) [18] have estimated that on average,

an 8-character ASCII (7 bits/character) password effectively provides only 18 bits of

entropy, which is much less than the expected 56 bits of security. Moreover, passwords

and ID cards cannot provide vital authentication functions like non-repudiation and

detecting multiple enrollments. For example, users can easily deny using a service

by claiming that their password has been stolen or guessed. Individuals can also

conceal their true identity by presenting forged or duplicate identification documents.

Therefore, it is becoming increasingly apparent that knowledge-based and token-based

mechanisms alone are not sufficient for reliable identity determination and stronger

authentication schemes based on “something you are”, namely biometrics, are needed.

1.1 Biometric Systems

Biometric authentication, or simply biometrics, offers a natural and reliable solution

to the problem of identity determination by establishing the identity of a person based

on “who he is”, rather than “what he knows” or “what he carries” [84]. Biometric

systems automatically determine or verify a person’s identity based on his anatomical

and behavioral characteristics such as fingerprint, face, iris, voice and gait. Biometric

traits constitute a strong and permanent “link” between a person and his identity

and these traits cannot be easily lost or forgotten or shared or forged. Since biometric

systems require the user to be present at the time of authentication, it can also deter

users from making false repudiation claims. Moreover, only biometrics can provide
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negative identification functionality where the goal is to establish whether a certain

individual is indeed enrolled in the system although the individual might deny it.

Due to these reasons, biometric systems are being increasingly adopted in a number

of government and civilian applications either as a replacement for or to complement

existing knowledge and token-based mechanisms. Some of the large scale biometric

systems include the Integrated Automated Fingerprint Identification System (IAFIS)

of the FBI [150], the US-VISIT IDENT program [149], the Schiphol Privium scheme

at Amsterdam’s Schiphol airport [176] and the finger scanning system at Disney

World, Orlando [77].

A number of anatomical and behavioral body traits can be used for biometric

recognition (see Figure 1.1). Examples of anatomical traits include face, fingerprint,

iris, palmprint, hand geometry and ear shape. Gait, signature and keystroke dynamics

are some of the behavioral characteristics that can be used for person authentication.

Voice can be considered either as an anatomical or as a behavioral trait because

certain characteristics of a person’s voice such as pitch, bass/tenor and nasality are

due to physical factors like vocal tract shape, and other characteristics such as word

or phoneme pronunciation (e.g., dialect), use of characteristic words or phrases and

conversational styles are mostly learned. Ancillary characteristics such as gender,

ethnicity, age, eye color, skin color, scars and tatoos also provide some information

about the identity of a person. However, since these ancillary attributes do not pro-

vide sufficient evidence to precisely determine the identity, they are usually referred

to as soft biometric traits [89]. Each biometric trait has its advantages and limita-

tions, and no single trait is expected to effectively meet all the requirements such as
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accuracy, practicality and cost imposed by all applications [99]. Therefore, there is

no universally best biometric trait and the choice of biometric depends on the nature

and requirements of the application.

A typical biometric system consists of four main components, namely, sensor,

feature extractor, matcher and decision modules. A sensor is used to acquire the

biometric data from an individual. A quality estimation algorithm is sometimes used

to ascertain whether the acquired biometric data is good enough to be processed

by the subsequent components. When the data is not of sufficiently high quality, it

is usually re-acquired from the user. The feature extractor gleans only the salient

information from the acquired biometric sample to form a new representation of the

biometric trait, called the feature set. Ideally, the feature set should be unique for

each person (extremely small inter-user similarity) and also invariant with respect

to changes in the different samples of the same biometric trait collected from the

same person (extremely small intra-user variability). The feature set obtained during

enrollment is stored in the system database as a template. During authentication,

the feature set extracted from the biometric sample (known as query or input or

probe) is compared to the template by the matcher, which determines the degree of

similarity (dissimilarity) between the two feature sets. The decision module decides

on the identity of the user based on the degree of similarity between the template

and the query.
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Figure 1.1: Examples of body traits that can be used for biometric recognition.
Anatomical traits include face, fingerprint, iris, palmprint, hand geometry and ear
shape, while gait, signature and keystroke dynamics are some of the behavioral char-
acteristics. Voice can be considered either as an anatomical or as a behavioral char-
acteristic.
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1.2 Biometric Functionalities

The functionalities provided by a biometric system can be categorized1 as verification

and identification. Figure 1.2 shows the enrollment and authentication stages of a bio-

metric system operating in the verification and identification modes. In verification,

the user claims an identity and the system verifies whether the claim is genuine, i.e.,

the system answers the question “Are you who you say you are?”. In this scenario,

the query is compared only to the template corresponding to the claimed identity.

If the user’s input and the template of the claimed identity have a high degree of

similarity, then the claim is accepted as “genuine”. Otherwise, the claim is rejected

and the user is considered an “impostor”. Formally, verification can be posed as the

following two-category classification problem: given a claimed identity I and a query

feature set XQ, we need to decide if (I, XQ) belongs to “genuine” or “impostor”

class. Let XI be the stored template corresponding to identity I. Typically, XQ is

compared with XI and a match score S, which measures the similarity between XQ

and XI , is computed. The decision rule is given by

(I, XQ) ∈

⎧⎪⎪⎨
⎪⎪⎩

genuine, if S ≥ η,

impostor, if S < η,

(1.1)

where η is a pre-defined threshold. In this formulation, the match score S is assumed

to measure the similarity between XQ and XI , i.e., a large score indicates a good

match. It is also possible for the match score to be a dissimilarity or distance measure

1Throughout this dissertation, the terms recognition or authentication will be used interchange-
ably when we do not wish to make a distinction between the verification and identification
functionalities.
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(i.e., a large score indicates a poor match) and in this case, the inequalities in the

decision rule shown in equation (1.1) should be reversed.

Identification functionality can be classified into positive and negative identifica-

tion. In positive identification, the user attempts to positively identify himself to

the system without explicitly claiming an identity. A positive identification system

answers the question “Are you someone who is known to the system?” by determin-

ing the identity of the user from a known set of identities. In contrast, the user in

a negative identification application is considered to be concealing his true identity

from the system. Negative identification is also known as screening and the objec-

tive of such systems is to find out “Are you who you say you are not?”. Screening

is often used at airports to verify whether a passenger’s identity matches with any

person on a “watch-list”. Screening can also be used to prevent the issue of multi-

ple credential records (e.g., driver’s licence, passport) to the same person. Negative

identification is also critical in applications such as welfare disbursement to prevent

a person from claiming multiple benefits (i.e., double dipping) under different names.

In both positive and negative identification, the user’s biometric input is compared

with the templates of all the persons enrolled in the database and the system outputs

either the identity of the person whose template has the highest degree of similarity

with the user’s input or a decision indicating that the user presenting the input is not

an enrolled user.

Formally, the problem of identification can be stated as follows: given a

query feature set XQ, we need to decide the identity I of the user, where I ∈

{I1, I2, · · · , IN , IN+1}. Here, I1, I2, · · · , IN correspond to the identities of the N
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users enrolled in the system and IN+1 indicates the case where no suitable identity

can be determined for the given query. If XIn is the stored template correspond-

ing to identity In and Sn is the match (similarity) score between XQ and XIn , for

n = 1, 2, · · · , N , the decision rule for identification is,

XQ ∈

⎧⎪⎪⎨
⎪⎪⎩

In0 , if n0 = arg max
n

Sn and Sn0 ≥ η,

IN+1, otherwise,

(1.2)

where η is a pre-defined threshold. In some practical biometric identification systems

such as FBI-IAFIS, identification is semi-automated, i.e., the biometric system out-

puts the identities of the top m matches (1 < m � N) and a human expert manually

determines the identity (among the m selected identities) that best matches the given

query. Note that the number of enrolled users in the database can be quite large.

For example, there are more than 80 million subjects in the FBI-IAFIS system [150].

The presence of large number of identities in the database makes the identification

task significantly more challenging than verification.

1.3 Performance of a Biometric System

Samples of the same biometric trait of a user obtained over a period of time can differ

dramatically. The variability observed in the biometric feature set of an individual

is known as intra-user variations. For example, in the case of fingerprints, factors

such as placement of finger on the sensor, applied finger pressure, skin condition and

feature extraction errors lead to large intra-user variations [129]. Figure 1.3 shows
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two impressions of the same finger obtained on different days. Note how these im-

pressions differ with respect to translation, rotation and non-linear distortion. On

the other hand, features extracted from biometric traits of different individuals can

be quite similar. For example, some pairs of individuals can have nearly identical

facial appearance due to genetic factors (e.g., father and son, identical twins, etc.).

Appearance-based facial features will exhibit a large similarity for these pairs of in-

dividuals and such a similarity is usually referred to as inter-user similarity.

A biometric system can make two types of errors, namely, false non-match and

false match. When the intra-user variation is large, two samples of the same biometric

trait of an individual (mate samples) may not be recognized as a match and this leads

to a false non-match error. A false match occurs when two samples from different

individuals (non-mate samples) are incorrectly recognized as a match due to large

inter-user similarity. Therefore, the basic measures of the accuracy of a biometric

system are False Non-Match Rate (FNMR) and False Match Rate (FMR). FNMR

refers to the fraction of matches between two mate samples that are not recognized

as a match and FMR is the proportion of matches between two non-mate samples

that are incorrectly recognized as a match.

A False Non-Match Rate of 5% indicates that on average, 5 in 100 genuine at-

tempts do not succeed. A majority of the false non-match errors are usually due to

incorrect interaction of the user with the biometric sensor and can be easily rectified

by allowing the user to present his/her biometric trait again. This is similar to the

case where the user in a password-based authentication system makes a mistake while

entering a password and is allowed to reenter the password.
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Figure 1.3: Illustration of biometric intra-class variability. Two different impres-
sions of the same finger obtained on different days are shown with minutia points
marked on them. Due to differences in finger placement and distortion introduced
by finger pressure variations, the number and location of minutiae in the two images
are different (33 and 26 in the left and right images, respectively). The number of
corresponding/matching minutiae in the two images is only 16 and some of these
correspondences have been indicated in the figure.
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A False Match Rate of 0.01% indicates that on average, 1 in 10, 000 impostor

attempts are likely to succeed. However, it must be emphasized that the security of a

biometric system operating at 0.01% FMR is not equivalent to the security provided

by a 4-digit PIN due to three reasons. Firstly, the adversary has to guess input values

in the biometric feature space, which is requires significantly more effort and domain

knowledge (e.g., knowledge about the features used in a particular biometric system,

the statistical distribution of the features, the format of the stored templates, etc.)

than what is required for guessing a PIN. Secondly, even if the adversary guesses

the feature values, he must circumvent a physical component in the biometric system

(sensor, feature extractor, or communication channels) in order to input the guessed

features. This circumvention can be made very difficult by securing the physical

infrastructure of the biometric system through appropriate techniques such as liveness

detection, secure code execution and cryptographic protocols. Finally, it should be

noted that the effective security provided by a 4-digit PIN is typically much less than

1 success in 10, 000 impostor attempts, because most users tend to use numbers that

are easy to remember (e.g., 1234, year of birth, etc.) and such PINs can be easily

guessed by the adversary in a few attempts.

Apart from false non-match and false match, two other types of failures are also

possible in a practical biometric system. If an individual cannot interact correctly

with the biometric user interface or if the biometric samples of the individual are of

very poor quality, the sensor or feature extractor may not be able to process these

individuals. Hence, they cannot be enrolled in the biometric system and the propor-

tion of individuals who cannot be enrolled is referred to as Failure to Enroll Rate
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(FTER). In some cases, a particular sample provided by the user during authentica-

tion cannot be acquired or processed reliably. This error is called failure to capture

and the fraction of authentication attempts in which the biometric sample cannot be

captured is known as Failure to Capture Rate (FTCR).

In the context of biometric verification, FNMR and FMR are also known as False

Reject Rate (FRR) and False Accept Rate (FAR), respectively. A match score is

termed as genuine or authentic score if it indicates the similarity between two mate

samples. An impostor score measures the similarity between two non-mate samples.

As discussed in section 1.2, a verification system makes a decision by comparing the

match score S to a threshold η. Therefore, FRR can be defined as the proportion

of genuine scores that are less than the threshold η and FAR can be defined as the

fraction of impostor scores that are greater than or equal to η. Let fgen(s) = p(S =

s|genuine) and fimp(s) = p(S = s|impostor) be the probability density functions of

the genuine and impostor scores, respectively. The FAR and FRR of the biometric

system are given by

FAR(η) = p(S ≥ η|impostor) =

∫ ∞
η

fimp(s)ds, (1.3)

FRR(η) = p(S < η|genuine) =

∫ η

−∞
fgen(s)ds. (1.4)

Both FRR and FAR are functions of the system threshold η. If the threshold is

increased, FAR will decrease but the FRR will increase and vice versa. Hence, for

a given biometric system, it is not possible to decrease both these errors simultane-
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ously by varying the threshold. The Genuine Accept Rate (GAR) can be used as

an alternative to FRR while reporting the performance of a biometric verification

system. GAR is defined as the fraction of genuine scores that exceed the threshold

η. Therefore,

GAR(η) = p(S ≥ η|genuine) = 1 − FRR(η). (1.5)

The FAR and FRR of a biometric verification system at different values of thresh-

old η can be summarized in the form of a Detection Error Tradeoff (DET) or Receiver

Operating Characteristic (ROC) curve. While the DET plot uses the normal devi-

ate scale, ROC curves are plotted in a linear, semi-logarithmic or logarithmic scale.

Equal Error Rate (EER) is the point in a DET or ROC curve where the FAR equals

the FRR. A lower EER value indicates better performance. In this dissertation, we

plot the ROC curve (GAR against FAR) on the semi-logarithmic scale to summarize

the verification performance. Figure 1.4(a) shows the genuine and impostor score

densities of the Face-G matcher in the NIST-BSSR1 database [151] and figure 1.4(b)

shows the corresponding ROC curve.

The performance of a biometric identification system is measured in terms of

the identification rate. Identification rate is the proportion of times the identity

determined by the system is the true identity of the user providing the query biometric

sample. If the biometric system outputs the identities of the top m matches, the

rank-m identification rate, Rm, is defined as the proportion of times the true identity

of the user is contained in the top m matching identities. The identification rate at
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Figure 1.4: Performance of a biometric system operating in the verification mode. (a)
The genuine and impostor match score densities corresponding to the Face-G matcher
in the NIST BSSR1 database. The threshold, η, determines the FAR and GAR of the
system. (b) Receiver operating characteristic (ROC) curve for the Face-G matcher
which plots the GAR against FAR on a semi-logarithmic scale.
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different ranks can be summarized using the Cumulative Match Characteristic (CMC)

curve [139] (see Figure 1.5), which plots Rm against m for m = 1, 2, · · · , N , where N

is the number of enrolled users. When the same matcher is used for both verification

and identification, then the corresponding ROC and CMC curves are related and the

CMC curve can be estimated from the genuine and impostor score densities fgen(s)

and fimp(s) [12, 75].

1.4 Challenges in Biometrics

Though biometric systems have been successfully deployed in a number of real-world

applications, biometrics is not yet a fully solved problem. The three main factors

that contribute to the complexity of biometric system design are accuracy (FAR,

GAR and rank-1 identification rate), scalability (size of the database) and usability

(ease of use, security and privacy). Jain et al. [92] state that the grand challenge

in biometrics is to design a system that operates in the extremes of all these three

factors. In other words, the challenge is to develop a biometric system that is highly

accurate and secure, convenient to use and easily scalable to a large population. We

now discuss the major obstacles that hinder the design of such an “ideal” biometric

system.

1.4.1 Accuracy

An ideal biometric system should always provide the correct identity decision when

a biometric sample is presented. However, a biometric system seldom encounters a
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Figure 1.5: Cumulative match characteristic (CMC) curve for the Face-G matcher
in the NIST BSSR1 database which plots the rank-m identification rate for various
values of m. In this example, the rank-1 identification rate is ≈ 78% which means
that for ≈ 78% of the queries, the true identity of the query user is selected as the
best matching identity.
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sample of a user’s biometric trait that is exactly the same as the template. This

results in a number of errors as discussed in section 1.3 and thereby limits the system

accuracy. The main factors affecting the accuracy of a biometric system [97] are:

(a) (b)

Figure 1.6: Examples of noisy biometric data; (a) A noisy fingerprint image due to
smearing, residual deposits, etc.; (b) A blurred iris image due to loss of focus.

(a) (b) (c)

Figure 1.7: Non-universality of a biometric trait. This figure shows three impressions
of a user’s finger in which the ridge details are worn-out.

• Noisy sensor data: Noise can be present in the acquired biometric data mainly

due to defective or improperly maintained sensors. For example, accumulation
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of dirt or the residual remains on a fingerprint sensor can result in a noisy

fingerprint image as shown in Figure 1.6(a). Failure to focus the camera appro-

priately can lead to blurring in face and iris images (see Figure 1.6(b)). The

recognition accuracy of a biometric system is highly sensitive to the quality of

the biometric input and noisy data can result in a significant reduction in the

GAR of a biometric system [72,204].

• Non-universality: If every individual in the target population is able to present

the biometric trait for recognition, then the trait is said to be universal. Uni-

versality is one of the basic requirements for a biometric identifier. However,

not all biometric traits are truly universal. The National Institute of Standards

and Technology (NIST) has reported that it is not possible to obtain a good

quality fingerprint from approximately two percent of the population (people

with hand-related disabilities, manual workers with many cuts and bruises on

their fingertips, and people with very oily or dry fingers) [189] (see Figure 1.7).

Hence, such people cannot be enrolled in a fingerprint verification system. Simi-

larly, persons having long eye-lashes and those suffering from eye abnormalities

or diseases like glaucoma, cataract, aniridia, and nystagmus cannot provide

good quality iris images for automatic recognition [147]. Non-universality leads

to high FTER and FTCR in a biometric system.

• Inter-user similarity: Inter-user similarity refers to the overlap of the biomet-

ric samples from two different individuals in the feature space. The lack of

uniqueness in the biometric feature set restricts the discriminative ability of the
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biometric system and leads to an increase in the FMR. In the case of a bio-

metric identification system, the inherent information constraint in the feature

set results in an upper bound on the number of unique individuals that can be

accommodated.

• Lack of invariant representation: Biometric samples of an individual usually

exhibit large intra-user variations (see Figure 1.3). The variations may be due

to improper interaction of the user with the sensor (e.g., changes due to ro-

tation, translation and applied pressure when the user places his finger on a

fingerprint sensor, changes in pose and expression when the user stands in front

of a camera, etc.), use of different sensors during enrollment and verification,

changes in the ambient environmental conditions (e.g., illumination changes in

a face recognition system) and inherent changes in the biometric trait (e.g.,

appearance of wrinkles due to aging or presence of facial hair in face images,

presence of scars in a fingerprint, etc.). Ideally, the features extracted from the

biometric data must be relatively invariant to these changes. However, in most

practical biometric systems the features are not invariant and therefore complex

matching algorithms are required to take these variations into account. Large

intra-user variations usually decrease the GAR of a biometric system.

Due to the above factors, the error rates associated with biometric systems are

higher than what is required in many applications. Table 1.1 summarizes the error

rates of fingerprint, face, iris and voice biometric systems obtained through various

technology evaluation tests. Although the error rates presented in Table 1.1 are

20



dependent on a number of test conditions such as the sensor used, the acquisition

protocol, the number and demographic profile of the subjects involved and the time

lapse between successive biometric acquisitions, they provide a good estimate of the

accuracy of state-of-the-art unibiometric systems because these results are obtained

by independent third-party testing of competing algorithms on common databases.

The results of these evaluations clearly indicate that biometric systems have non-zero

error rates and there is scope for improving the accuracy of biometric systems.

Table 1.1: False reject and false accept rates associated with state-of-the-art finger-
print, face, voice and iris verification systems. Note that the accuracy estimate of a
biometric system depends on a number of test conditions.

Biometric Test Test Conditions False False
Trait Reject Accept

Rate Rate
Fingerprint FVC 2006 [148] Heterogeneous 2.2% 2.2%

population including
manual workers

and elderly people
FpVTE 2003 [204] U.S. government 0.1% 1%

operational data
Face FRVT 2006 [153] Controlled illumination, 0.8-1.6% 0.1%

high resolution
Voice NIST 2004 [156] Text independent, 5-10% 2-5%

multi-lingual
Iris ICE 2006 [153] Controlled illumination, 1.1-1.4% 0.1%

broad quality range

1.4.2 Scalability

In the case of a biometric verification system, the size of the database (number of

enrolled users in the system) is not an issue because each authentication attempt
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basically involves matching the query with a single template. In the case of large

scale identification systems where N identities are enrolled in the system, sequentially

comparing the query with all the N templates is not an effective solution due to two

reasons. Firstly, the throughput2 of the system would be greatly reduced if the value

of N is quite large. For example, if the size of the database is 1 million and if each

match requires an average of 100 microseconds, then the throughput of the system

will be less than 1 per minute. Furthermore, the large number of identities also affects

the false match rate of the system adversely. Hence, there is a need for efficiently

scaling the system. This is usually achieved by a process known as filtering or indexing

where the database is pruned based on extrinsic (e.g., gender, ethnicity, age, etc.) or

intrinsic (e.g., fingerprint pattern class) factors and the search is restricted to a smaller

fraction of the database that is likely to contain the true identity of the user. There

are very few published studies on efficiently indexing biometric databases [9, 52, 73]

and this is still an active area of research in the biometrics community.

1.4.3 Security and Privacy

Although it is difficult to steal someone’s biometric traits, it is still possible for an

impostor to circumvent a biometric system in a number of ways [160]. For example,

it is possible to construct fake or spoof fingers using lifted fingerprint impressions

(e.g., from the sensor surface) and utilize them to circumvent a fingerprint recogni-

tion system [133, 134]. Behavioral traits like signature [78] and voice [58] are more

2Throughput of a biometric system is defined as the number of queries (authentication attempts)
that can be processed per unit time.

22



susceptible to such attacks than anatomical traits.

The most straightforward way to secure a biometric system is to put all the system

modules and the interfaces between them on a smart card (or more generally a secure

processor). In such systems, known as match-on-card or system-on-card technology,

sensor, feature extractor, matcher and template reside on the card [91]. The advantage

of this technology is that the user’s biometric data never leaves the card which is in

the user’s possession. However, system-on-card solutions are not appropriate for most

large-scale verification applications because they are still expensive and users must

carry the card with them at all times. Moreover, system-on-card solutions cannot be

used in identification applications.

One of the critical issues in biometric systems is protecting the template of a user

which is typically stored in a database or a smart card. Stolen biometric templates can

be used to compromise the security of the system in the following two ways. (i) The

stolen template can be replayed to the matcher to gain unauthorized access, and (ii) a

physical spoof can be created from the template (see [2,21,171]) to gain unauthorized

access to the system (as well as other systems which use the same biometric trait).

Note that an adversary can covertly acquire the biometric information of a genuine

user (e.g., lift the fingerprint from a surface touched by the user). Hence, spoof

attacks are possible even when the adversary does not have access to the biometric

template. However, the adversary needs to be in the physical proximity of the person

he is attempting to impersonate in order to covertly acquire his biometric trait. On

the other hand, even a remote adversary can create a physical spoof if he gets access

to the biometric template information.
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Unlike passwords, when biometric templates are compromised, it is not possible

for a legitimate user to revoke his biometric identifiers and switch to another set

of uncompromised identifiers. Due to this irrevocable nature of biometric data, an

attack against the stored templates constitutes a major security and privacy threat

in a biometric system.

Since a biometric trait is a permanent link between a person and his identity, it can

be easily prone to abuse in such a way that a person’s right to privacy and anonymity

is compromised. A common type of abuse of biometric identifiers is function creep [84]

where the acquired biometric identifiers are later used for purposes other than the

intended purpose. For example, Disney World in Orlando collects fingerprints from

park visitors in order to prevent customers from sharing the tickets with others [77].

However, it is possible that the same fingerprints may be used later for searching

against a criminal fingerprint database or cross-link it to a person’s health records.

Hence, strategies to prevent function creep and to ensure an individual’s privacy are

urgently needed.

1.5 Summary

Biometric recognition is the process of establishing the identity of a person based on

his anatomical or behavioral characteristics. Since biometric traits provide irrefutable

evidence linking a person to his identity, biometric authentication is a natural and

reliable solution to the problem of establishing the identity of an individual in any

identity management system. While biometric systems offer a number of functional-

24



ities such as verification, positive identification and screening, these systems are not

perfect. Due to factors like intra-user variations and inter-user similarity, the error

rates associated with biometric systems is non-zero. Besides the accuracy, the high

failure rates (FTER and FTCR), scalability and various vulnerabilities also limit

the deployment of biometric systems in many applications. While rapid progress

has been made in the development and deployment of biometric systems in the past

few decades, a number of core research issues in biometrics have not yet been fully

addressed.

Solutions to advance the state of the art in biometrics include the design of new

sensors that can acquire the biometric traits of an individual in a more reliable, con-

venient and secure manner, the development of invariant representation schemes and

robust and efficient matching algorithms, combining evidence from multiple biometric

sources to compensate for the limitations of the individual sources and the develop-

ment of techniques for liveness detection, template security and privacy enhancement

of biometric systems. In this thesis, we focus on biometric systems that integrate cues

obtained from multiple biometric sources and these systems are commonly referred to

as multibiometric systems. Multibiometric systems offer a number of advantages that

can alleviate the problems associated with traditional (uni)biometric systems. This

thesis addresses two critical issues in the design of a multibiometric system, namely,

fusion methodology and template security.
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1.6 Thesis contributions

The first part of this dissertation addresses the problem of fusion in a multibiomet-

ric system and the second part deals with the problem of multibiometric template

security. The major contributions of this dissertation are as follows.

• We propose a principled approach based on the likelihood ratio test for fusion of

match scores from multiple biometric matchers in the verification scenario. The

proposed fusion framework is based on the Neyman-Pearson theorem, which

guarantees that at any specified FAR, the likelihood ratio test maximizes the

GAR, provided the genuine and impostor match score densities are known.

We use a semi-parametric density estimation approach, namely, finite Gaussian

mixture models (GMM) to estimate the joint densities of match scores. We

demonstrate that fusion based on these density estimates achieves consistently

high performance on different multibiometric databases involving face, finger-

print, iris, and speech modalities. We also extend the likelihood ratio based

fusion scheme to incorporate the quality of the biometric samples and define

new quality metrics known as pairwise quality indices for fingerprint and iris

images. We also propose a technique based on decision trees to design cascade

multibiometric systems within the likelihood ratio framework.

• We investigate rank and score level fusion schemes in a multibiometric identi-

fication system and show that the genuine and impostor likelihood ratios used

in the verification scenario can also be applied in the case of identification if

we assume that the match scores of the individual users are independent and
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identically distributed.

• We propose a feature level fusion scheme for securing multibiometric templates

using the fuzzy vault framework. The proposed framework can handle multiple

samples (e.g., two impressions from the same finger), multiple instances (e.g.,

impressions from left and right index fingers of a person) and multiple biomet-

ric traits (e.g., fingerprint and iris). Towards this end, we have developed a

fully automatic implementation of a fingerprint-based fuzzy vault where helper

data derived from the fingerprint orientation field is used to align the template

and query minutiae. We have also developed an iris-based fuzzy vault for se-

curing iriscode templates. Finally, we show that a multibiometric vault that

utilizes multiple fingerprint impressions or multiple fingers or fingerprint and

iris achieves better accuracy and security compared to a unibiometric vault.
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Chapter 2

Multibiometric Systems

Systems that consolidate evidence from multiple sources of biometric information in

order to reliably determine the identity of an individual are known as multibiomet-

ric systems [169]. Multibiometric systems can alleviate many of the limitations of

unibiometric systems because the different biometric sources usually compensate for

the inherent limitations of the other sources [81]. Multibiometric systems offer the

following advantages over unibiometric systems.

1. Combining the evidence obtained from different sources using an effective fusion

scheme can significantly improve the overall accuracy of the biometric system.

The presence of multiple sources also effectively increases the dimensionality of

the feature space and reduces the overlap between the feature spaces of different

individuals.

2. Multibiometric systems can address the non-universality problem and reduce

the FTER and FTCR. For example, if a person cannot be enrolled in a finger-
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print system due to worn-out ridge details, he can still be identified using other

biometric traits like face or iris.

3. Multibiometric systems can also provide a certain degree of flexibility in user

authentication. Suppose a user enrolls into the system using several different

traits. Later, at the time of authentication, only a subset of these traits may

be acquired based on the nature of the application under consideration and the

convenience of the user. For example, consider a banking application where the

user enrolls into the system using face, voice and fingerprint. During authenti-

cation, the user can select which trait to present depending on his convenience.

While the user can choose face or voice modality when he is attempting to ac-

cess the application from his mobile phone equipped with a digital camera (see

Figure 2.1), he can choose the fingerprint modality when accessing the same

application from a public ATM or a network computer.

4. The availability of multiple sources of information considerably reduces the

effect of noisy data. If the biometric sample obtained from one of the sources is

not of sufficient quality during a particular acquisition, the samples from other

sources may still provide sufficient discriminatory information to enable reliable

decision-making.

5. Multibiometric systems can provide the capability to search a large database

in a computationally efficient manner. This can be achieved by first using a

relatively simple but less accurate modality to prune the database before using

the more complex and accurate modality on the remaining data to perform
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the final identification task. This will improve the throughput of a biometric

identification system.

6. Multibiometric systems are more resistant to spoof attacks because it is difficult

to simultaneously spoof multiple biometric sources. Further, a multibiometric

system can easily incorporate a challenge-response mechanism during biometric

acquisition by acquiring a subset of the traits in some random order (e.g, left

index finger followed by face and then right index finger). Such a mechanism

will ensure that the system is interacting with a live user. Further, it is also

possible to improve the template security by combining the feature sets from

different biometric sources using an appropriate fusion scheme.

Multibiometric systems also have a few disadvantages when compared to unibio-

metric systems. They are more expensive and require more resources for computation

and storage than unibiometric systems. Multibiometric systems generally require ad-

ditional time for user enrollment, causing some inconvenience to the user. Finally, the

accuracy of a multibiometric system can actually be lower than that of the unibio-

metric system if an appropriate technique is not followed for combining the evidence

provided by the different sources. Still, multibiometric systems offer features that are

attractive and as a result, such systems are being increasingly deployed in security-

critical applications (e.g., FBI-IAFIS [150], US-VISIT IDENT program [149], etc.).
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Figure 2.1: A hypothetical mobile banking application where the user has the flex-
ibility to choose all or a subset of available biometric traits (e.g., face, voice and
fingerprint) for authentication depending on his convenience. Research is under way
to perform iris recognition based on images captured using the camera on the mobile
phone [100].
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2.1 Design Issues in Multibiometrics

The design of a multibiometric system is dependent on the requirements of the appli-

cation. The major issues that need to be considered in the design of a multibiometric

system are described below.

1. Sources of biometric information include multiple sensors, multiple representa-

tions and matching algorithms, multiple samples of the same biometric trait,

multiple instances of a biometric trait and multiple biometric traits. For a given

application, the system designer needs to decide which of these sources should

be used in designing the multibiometric system.

2. The sequence in which the multiple sources of information are acquired and

processed could be serial (cascade or sequential), parallel or hierarchical (tree-

like). Depending on the application scenario, an appropriate acquisition and

processing architecture must be selected.

3. The process of integrating evidence provided by different biometric sources is

known as biometric fusion. Four types of information can be obtained from the

biometric sources, namely, raw biometric samples, feature sets, match scores and

decision labels. Depending on the type of information that is fused, the fusion

scheme can be classified as sensor level, feature level, score level and decision

level fusion. The choice of the fusion level is the most important design issue

in a multibiometric system and it has a substantial impact on the performance

of the system.
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4. Given the type of information to be fused, a number of techniques are available

for fusion of information provided by the multiple sources. Many of these fusion

schemes may be admissible in an application and the challenge is to find the

optimal one.

It must be mentioned that a majority of the design decisions are based on a cost-

benefit analysis. Typically, there is a tradeoff between the additional cost and the

improvement in performance of a multibiometric system. The cost could be a function

of the number of sensors deployed, the time required for acquisition and processing

(throughput), performance gain (reduction in FAR/FRR), storage and computational

requirements and perceived (in)convenience to the user.

2.2 Sources of Multiple Evidence

Sources of information in a multibiometric system (see Figure 2.2) may include (i)

multiple sensors to capture the same biometric trait (e.g., face captured using optical

and range sensors), (ii) multiple representations or multiple algorithms for the same

biometric trait (e.g., texture and minutiae-based fingerprint matchers), (iii) multiple

instances of the same biometric trait (e.g., left and right iris), (iv) multiple samples

of the same biometric trait (e.g., two impressions of a person’s right index finger),

and (v) multiple biometric traits (e.g., face and iris).

In the first four scenarios, multiple sources of information are derived from the

same biometric trait. In the fifth scenario, information is derived from different bio-

metric traits and these systems are known as multimodal biometric systems. In fact,
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biometric fusion can also be carried out on any arbitrary combination of the above

five sources and such systems can be referred to as hybrid multibiometric systems [26].

An example of a hybrid multibiometric system is the system proposed by Brunelli

et al. [15] where the results of two speaker recognition algorithms are combined with

three face recognition algorithms at the match score and rank levels using a HyperBF

network. Hence, this system is multi-algorithmic as well as multimodal in its design.

Multibiometric
Sources

Optical Solid
State

Multiple Sensors

Multiple Biometric Traits

Face Iris
Minutiae Texture

Multiple Representations

Right Eye Left Eye

Multiple Instances Multiple Samples

Figure 2.2: Various sources of information that can be fused in a multibiometric
system. In four of the five scenarios (multiple sensors, representations, instances and
samples), multiple sources of information are derived from the same biometric trait.
In the fifth scenario, information is derived from different biometric traits and such
systems are known as multimodal biometric systems.

34



2.3 Acquisition and Processing Sequence

The order or sequence in which biometric samples are acquired and processed can have

a significant impact on the time required for enrollment and authentication, failure to

enroll rate (FTER) and user convenience. Typically, the acquisition and processing

architecture of a multibiometric system is either serial or parallel (see Figure 2.3). In

the serial or cascade or sequential architecture, the acquisition and processing of the

different sources take place sequentially and the outcome of one matcher may affect

the processing of the subsequent sources. In the parallel design, different sources are

processed independently and their results are combined using an appropriate fusion

scheme. Both these architectures have their own advantages and limitations.

In the case of biometric acquisition, both serial and parallel architectures are

quite common. It is usually convenient and cost-effective to acquire physically related

biometric traits simultaneously. For example, face, voice and lip movement can be

simultaneously acquired using a video camera [69]. Similarly, palmprint and hand-

geometry information can be acquired in parallel using a single camera [112]. On the

other hand, when multiple instances of the same trait (e.g., iris images from both the

eyes) or physically unrelated biometric traits (e.g., fingerprint and face) need to be

acquired, the acquisition is usually done sequentially.

Most of the multibiometric systems proposed in the literature follow a parallel

architecture for processing the biometric information. This is because the primary

goal of system designers has been a reduction in the error rate of biometric systems

and the parallel mode of processing generally has a higher accuracy because it utilizes
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Figure 2.3: Acquisition and processing architecture of a multibiometric system; (a)
Serial (Cascade or Sequential) and (b) Parallel.
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more evidence about the user for recognition [167, 180]. However, a cascading archi-

tecture may have other advantages such as increased user convenience and higher

throughput, which may be useful in large scale identification tasks. For example,

when a cascaded multibiometric system has sufficient confidence on the identity of

the user after processing the first biometric source, the user may not be required

to provide the other sources of information. The system can also allow the user to

decide which information source he/she would present first. Finally, if the system

is faced with the task of identifying the user from a large database, it can utilize

the outcome of each matcher to successively prune the database, thereby making the

search faster and more efficient. Thus, a cascaded system can be more convenient to

the user and generally requires less recognition time when compared to its parallel

counterpart. An example of a cascaded multibiometric system is the one proposed

by Hong and Jain [80]. In this system, face recognition is used to retrieve the top m

matching identities and fingerprint recognition is used to verify these identities and

make a final identification decision.

The choice of the system architecture depends on the application requirements.

User-friendly and low security applications like bank ATMs can use a cascaded multi-

biometric system. On the other hand, parallel multibiometric systems are more suited

for applications where security is of paramount importance (e.g., access to military

installations). It is also possible to design a hierarchical (tree-like) architecture to

combine the advantages of both cascade and parallel architectures. This hierarchical

architecture can be made dynamic so that it is robust and can handle problems like

missing and noisy biometric samples that often arise in biometric systems [129]. How-
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ever, the design of a hierarchical multibiometric system has not yet received adequate

attention from researchers.

2.4 Levels of Fusion

One of the fundamental issues in the design of a multibiometric system is to determine

the type of information that should be fused. Depending on the type of information

that is fused, the fusion scheme can be classified as sensor level, feature level, score

level and decision level fusion. Typically, the amount of information available to the

system decreases as one proceeds from the sensor module to the decision module (see

Figure 2.4). The raw biometric data (e.g., face image in the case of face biometric) has

the highest information content, which gets reduced by subsequent processing (e.g.,

after extraction of PCA features). In the verification mode, the final decision label

contains only a single bit of information (match or non-match). However, the different

stages of biometric data processing are expected to decrease the intra-user variability

and the amount of noise that is contained in the available information. Further, in

many practical multibiometric systems, higher levels of information such as the raw

images or feature sets are either not available (e.g., proprietary feature sets used in

commercial-off-the-shelf systems) or the information available from different sources

is not compatible (e.g., fingerprint minutiae and eigenface coefficients). On the other

hand, in most of the multibiometric systems, it is relatively easy to access and combine

the match scores generated by different biometric matchers. Therefore, information

fusion at the match score level offers the best tradeoff in terms of information content
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and ease in fusion. Consequently, score level fusion is the most commonly used

approach in multibiometric systems.

Figure 2.5 shows examples of fusion at the various levels in a multibiometric

system. The four levels of fusion can be broadly categorized as (i) fusion prior to

matching and (ii) fusion after matching [173]. This distinction is made because once

the biometric matcher is applied, the amount of information available to the system

drastically decreases.

2.4.1 Fusion Prior to Matching

Prior to matching, integration of information from multiple biometric sources can

take place either at the sensor level or at the feature level.

Sensor Level Fusion

The raw data from the sensor(s) are combined in sensor level fusion [83]. Sensor level

fusion can be performed only if the sources are either samples of the same biometric

trait obtained from multiple compatible sensors or multiple instances of the same

biometric trait obtained using a single sensor. For example, multiple 2D face images

obtained from different viewpoints can be stitched together to form a 3D model of

the face [123] or a panaromic face mosaic [207]. Another example of sensor level

fusion is the mosaicing of multiple fingerprint impressions to form a more complete

fingerprint image [40,95,140,159,212]. In sensor level fusion, the multiple cues must

be compatible and the correspondences between points in the raw data must be either

known in advance (e.g., calibrated camera systems) or reliably estimated.
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Raw Data Extracted Features Match Score Final decision

Figure 2.4: The amount of information available for fusion decreases progressively af-
ter each layer of processing in a biometric system. The raw data represents the richest
source of information, while the final decision (in a verification scenario) contains just
a single bit of information. However, the raw data is corrupted by noise and may
have large intra-class variability, which is expected to be reduced in the subsequent
modules of the system. (Reproduced from [169])

Feature Level Fusion

Feature level fusion refers to combining different feature sets that are extracted from

multiple biometric sources. When the feature sets are homogeneous (e.g., multiple

fingerprint impressions of a user’s finger), a single resultant feature set can be calcu-

lated as a weighted average of the individual feature sets (e.g., mosaicing of fingerprint

minutiae [170]). When the feature sets are non-homogeneous (e.g., feature sets of dif-

ferent biometric modalities like face and hand geometry), we can concatenate them to

form a single feature set. Feature selection schemes can then be applied to reduce the

dimensionality of the resultant feature set [166]. Concatenation is not possible when

the feature sets are incompatible (e.g., fingerprint minutiae and eigenface coefficients).

When the multiple feature sets correspond to different samples of the same biometric

trait that are processed using the same feature extraction algorithm, then feature

level fusion can be considered as template update or template improvement [101].
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Integration at the feature level is difficult to achieve in practice due to the following

reasons:

• The relationship between the feature spaces of different biometric sources may

not be known. In the case where the relationship is known in advance, care

needs to be taken to discard those features that are highly correlated. This

requires the application of feature selection algorithms prior to classification.

• The feature sets may be incompatible. For example, the minutiae set of finger-

prints and eigenface coefficients cannot be directly combined because the former

is a variable length feature set whose individual values represent the attributes

of a minutia point while the latter is a fixed length feature set whose individual

values are scalar entities.

• Concatenating two feature vectors results in a feature vector with larger dimen-

sionality which may lead to the ‘curse of dimensionality’ problem [85] where

the classification accuracy actually degrades with the addition of new features

due to the limited number of training samples. Although this is a well-known

problem in most pattern recognition applications, it is more severe in biomet-

ric applications because of the time, effort and cost involved in collecting large

amounts of biometric (training) data.

• Most commercial biometric systems do not provide access to the feature sets

used in their products due to proprietary reasons.

Examples of feature level fusion schemes proposed in the literature can be found in
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Chibelushi et al. [37] (voice and lip shape), Son and Lee [182] (face and iris), Kumar

et al. [113] (hand geometry and palmprint) and Ross and Govindarajan [166] (face

and hand geometry). Due to the constraints mentioned above, most of the attempts

at feature level fusion have met with only limited success. Hence, very few researchers

have studied integration at the feature level in a multibiometric system and fusion

schemes at the match score and decision levels are generally preferred.

2.4.2 Fusion After Matching

Schemes for integration of information after the classification/matcher stage can be

divided into four categories: dynamic classifier selection, fusion at the decision level,

fusion at the rank level and fusion at the match score level. A dynamic classifier

selection scheme chooses the biometric source that is most likely to give the correct

decision for the specific input pattern [205]. This is also known as the winner-take-

all approach and the module that performs this selection is known as an associative

switch [30].

Score Level Fusion

Match score is a measure of the similarity between the input and template biometric

feature vectors. When match scores output by different biometric matchers are con-

solidated in order to arrive at a final recognition decision, fusion is said to be done

at the match score level. This is also known as fusion at the measurement level or

confidence level. The general flow of information in a match score level fusion scheme

is shown in Figure 2.6. It must be noted that the match scores generated by the indi-
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vidual matchers may not be homogeneous. For example, one matcher may output a

distance or dissimilarity measure (a smaller distance indicates a better match) while

another may output a similarity measure (a larger similarity value indicates a better

match). Furthermore, the outputs of the individual matchers need not be on the same

numerical scale (range). Finally, the match scores may follow different probability

distributions and may be correlated. These factors make match score level fusion a

challenging problem.

Rank Level Fusion

When the output of each biometric system is a subset of possible matches (i.e., iden-

tities) sorted in decreasing order of confidence, the fusion can be done at the rank

level. This is relevant in an identification system where a rank may be assigned to the

top matching identities. Ho et al. [79] describe three methods to combine the ranks

assigned by different matchers. In the highest rank method, each possible identity

is assigned the best (minimum) of all ranks computed by different systems. Ties are

broken randomly to arrive at a strict ranking order and the final decision is made

based on the consolidated ranks. The Borda count method uses the sum of the ranks

assigned by the individual systems to a particular identity in order to calculate the

fused rank. The logistic regression method is a generalization of the Borda count

method where a weighted sum of the individual ranks is used. The weights are deter-

mined using logistic regression. Another technique for rank level fusion is the mixed

group ranks approach [135], which attempts to find a tradeoff between the general
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preference for specific matchers and the confidence in specific results (as indicated by

the ranks).

Decision Level Fusion

In a multibiometric system, fusion is carried out at the abstract or decision level when

only the decisions output by the individual biometric matchers are available. Many

commercial off-the-shelf (COTS) biometric matchers provide access only to the final

recognition decision. When such COTS matchers are used to build a multibiometric

system, only decision level fusion is feasible. Methods proposed in the literature

for decision level fusion include “AND” and “OR” rules [49], majority voting [116],

weighted majority voting [114], Bayesian decision fusion [206], the Dempster-Shafer

theory of evidence [206] and behavior knowledge space [82].

2.5 Challenges in Multibiometric System Design

While multibiometric systems offer several advantages such as better recognition ac-

curacy, increased population coverage, greater security and flexibility, the design of

a multibiometric system is not an easy task. Multibiometric system design is a chal-

lenging problem because it is very difficult to predict the optimal sources of biometric

information and the optimal fusion strategy for a particular application. This diffi-

culty arises due to the following factors.

1. Heterogeneity of information sources: Integration at an early stage of

processing is believed to be more effective because the amount of information
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available to the fusion module decreases as we move from the sensor level to

the decision level. However, fusion at the sensor or feature level is not always

possible due to the heterogeneity or incompatibility of the information content.

For example, in a multibiometric system that uses face and fingerprint, it may

not be possible to fuse either the raw images or the features extracted from

them (e.g., fingerprint minutiae and eigenface coefficients).

2. Fusion complexity: Even when the sources of information are compatible

(e.g., two impressions of the same finger, minutiae sets from two different fin-

gers of an individual, etc.), the complexity of the fusion algorithm may nullify

the advantages of fusion. For instance, fusion at the sensor or feature levels in-

volves additional processing complexities such as registration and design of new

algorithms to match the fused data. Further, the raw data from the sensor and

the extracted feature sets are usually corrupted by various types of noise (e.g.,

background clutter in a face image, spurious minutiae in a fingerprint minutiae

set, etc.). Hence, fusion at the sensor and feature level may not lead to any

performance improvement.

3. Varied discriminative ability: The amount of discriminatory information

provided by each biometric source can be quite different. Consider a multi-

biometric system with two matchers A and B, where the matcher A has very

high accuracy compared to matcher B. If a simple fusion rule that assigns equal

weights to the information from the two matchers is employed, the accuracy of

the multibiometric system is likely to be lower than the accuracy of the individ-
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ual matcher A. Furthermore, some multibiometric systems utilize soft biometric

traits like gender, ethnicity, height, etc., which have significantly lower discrim-

inatory information content compared to traditional biometric identifiers such

as fingerprint, face and iris. Hence, it is essential to estimate the amount of dis-

criminatory information in each source and assign appropriate weights to the

different sources based on their information content.

4. Correlation between sources: In many multibiometric systems, the different

biometric sources may not be statistically independent. Examples of multibio-

metric systems in which different information sources are correlated include

(i) systems using physically related traits (e.g., speech and lip movement of a

user), (ii) multiple matchers operating on the same biometric data or feature

representation (e.g., two different face matchers that operate on the same raw

face image) and (iii) multiple samples of the same biometric trait (e.g., two

impressions of a person’s right index finger). In general, fusion of independent

evidences can be expected to provide a larger improvement in accuracy com-

pared to fusion of correlated sources. But the impact of correlation among the

biometric sources on the fusion performance is not completely known.

Apart from the above four factors, the conflicting performance requirements of an

application also contribute to the difficulty of the fusion problem. A typical example

is an identification system where both the accuracy and throughput requirements

need to be satisfied. While utilizing more sources of evidence increases the accuracy,

it may reduce the throughput of the system and it is hard to find the optimal tradeoff
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between the two. Due to these reasons, information fusion in biometrics is still an

active area of research despite the fact that information fusion has been well studied

in the wider pattern recognition context.

2.6 Summary

Multibiometric system design depends on various factors such as sources of informa-

tion, acquisition and processing architecture, level of information fusion and fusion

methodology. There has been a proliferation of work exploring the fusion of a variety

of biometric sources and discussing different fusion techniques. Tables 2.1, 2.2, 2.3,

and 2.4 summarize some of the representative work in the multibiometrics literature

and these tables have been categorized based on the sources of information used.

From these tables, it is quite apparent that fusion at the match score level has

received the maximum attention from the biometrics community. However, most

of the proposed score level fusion schemes involve ad-hoc techniques for normaliz-

ing the match scores and assigning optimal weights to different matchers. Hence,

one of the goals of this dissertation is to develop a principled statistical framework

for match score fusion in multibiometric systems. Score fusion in a multibiometric

verification system can be formulated as a two-class classification problem and a sig-

nificant number of training samples are usually available for both the genuine and

impostor classes. On the other hand, fusion in multibiometric identification systems

is typically characterized by (i) a large number of classes (identities), (ii) frequent

change in the number of classes during system operation due to addition/deletion
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of users and (iii) insufficient number of training samples for the individual classes

(often, only one score per matcher is available available for each user). Due to these

reasons, we consider the fusion strategies for verification and identification systems

separately in this dissertation. In chapter 3, we present a likelihood ratio based fu-

sion framework for multibiometric verification systems. The fusion framework for

multibiometric identification is presented in chapter 4. Furthermore, while template

security has been receiving substantial attention, the issue of multibiometric template

security has not been adequately addressed in the literature. Therefore, in chapter 5

we develop techniques that can protect multibiometric templates as a single entity.
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Table 2.1: Examples of multi-sensor systems.

Sensors Fused Authors Level of
Fusion

Fusion Methodology

Optical and
capacitive

fingerprint sensors

[130] Match
score

Sum and product rules; logistic
regression

2D camera and
range scanner for

face

[26] Match
score

Weighted sum and product rules

[124] Match
score

Weighted sum rule; hierarchical
matching

2D camera and IR
camera for face

[181] Match
score

Weighted sum rule

[31] Match
score;
rank

Sum rule; logistic regression

2D camera, range
scanner and IR
camera for face

[27] Match
score

Weighted sum rule

Red, Green, Blue
channels for face

[109] Match
score

Sum and min rules

[166] Feature;
match
score

Feature selection and
concatenation; sum rule

51



Table 2.2: Examples of multi-algorithm systems.

Representations
and/or Matchers

Fused

Authors Level of
Fusion

Fusion Methodology

Fingerprint
(minutiae and

texture features)

[132,
155,168]

Match
score

Likelihood ratio, weighted sum
rule, sum and product rules,

perceptron
Face (PCA, LDA,

ICA)
[125,

131,166]
Feature,
match
score

Sum and max rules, nearest
neighbor, RBF network, feature

selection and concatenation
Face (LDA, PM,

HST)
[45] Match

score
Sum, product, min, max and

median rules; quadratic Bayes;
Parzen; weighted sum rule

Face (global and
local features)

[59] Feature ANFIS (Adaptive Neuro-Fuzzy
Inference System); SVM

Face (two different
sets of PCA-based

features)

[208] Feature Feature concatenation; two sets of
features form the real and

imaginary parts of the
concatenated feature vector in the

complex plane
Signature (global and

local features)
[64,71] Match

score
Sum and max rules, SVM

Hand (geometry and
texture features)

[112] Feature;
match
score

Feature concatenation; sum rule

Voice (SVM and
GMM)

[20] Match
score

Weighted sum rule; perceptron

Voice (multi-level
features)

[162] Match
score

Perceptron

Voice (spectral
features, utterance

verification)

[165] Match
score

Sum, product, min, max and
median rules; neural network

Voice (LPCC,
MFCC, ARCSIN,
FMT features)

[107] Feature;
match
score;

decision

Feature concatenation; sum rule;
majority voting

Voice (MFCC, CMS,
MACV features)

[172] Feature;
match
score

Feature concatenation; weighted
sum rule

Palmprint (Gabor,
line,

appearance-based)

[113] Match
score;

decision

Sum rule (for Gabor and line
features) followed by product rule;
SVM; neural network; AND rule

Palmprint (geometry,
texture, fuzzy
“interest” line)

[211] Decision Hierarchical (serial) matching
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Table 2.3: Examples of multi-sample and multi-instance systems.

Modality Authors Level of
Fusion

Fusion Methodology

Fingerprint (10
fingers)

[204] Match
score

No details are available

Fingerprint (2
fingers)

[72] Match
score

Sum rule

Fingerprint (2
impressions, 2

fingers)

[155] Match
score

Likelihood ratio computed from
non-parametric joint density

estimates
Fingerprint (2
impressions)

[95] Sensor;
feature

Mosaicing of templates at the
image level; mosaicing of minutiae

sets
[140] Feature Mosaicing of minutiae sets

Face (sequence of
images from video)

[213] Match
score

Temporal integration

[121] Match
score

Temporal integration through
construction of identity surfaces

Voice (multiple
utterances)

[36] Match
score

Zero sum fusion after sorting of
scores
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Table 2.4: Examples of multimodal systems.

Modalities Fused Authors Level of
Fusion

Fusion Methodology

Face and voice [15] Match
score;
rank

Geometric weighted average;
HyperBF

[108] Match
score

Sum, product, min, max and
median rules

[6] Match
score

SVM; multilayer perceptron; C4.5
decision tree; Fisher’s linear

discriminant; Bayesian classifier
[10] Match

score
Statistical model based on

Bayesian theory
Face, voice and lip

movement
[69] Match

score;
decision

Weighted sum rule; majority
voting

Face and fingerprint [80] Match
score

Product rule

[180] Match
score

Sum rule, Weighted sum rule

Face, fingerprint and
hand geometry

[167] Match
score

Sum rule; decision trees; linear
discriminant function

Face, fingerprint and
voice

[88] Match
score

Likelihood ratio

Face and iris [203] Match
score

Sum rule; weighted sum rule;
Fisher’s linear discriminant; neural

network
Face and gait [178] Match

score
Sum rule

[104] Match
score

Sum and product rules

Face and ear [25] Sensor Concatenation of raw images
Face and palmprint [60] Feature Feature concatenation
Fingerprint, hand

geometry and voice
[190] Match

score
Weighted sum rule

Fingerprint and
hand geometry

[191] Match
score

Reduced multivariate polynomial
model

Fingerprint and
voice

[192] Match
score

Functional link network

Fingerprint and
signature

[65] Match
score

SVM in which quality measures
are incorporated

Voice and signature [111] Match
score

Weighted sum rule
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Chapter 3

Multibiometric Verification

While fusion in a multibiometric verification system can be performed at the sensor,

feature, match score and decision levels, score level fusion is generally preferred be-

cause it offers the best trade-off in terms of the information content and the ease in

fusion. One of the challenges in combining match scores is that scores from differ-

ent matchers are typically not homogeneous. Consider the scores provided by the

two face matchers in the NIST-Face database [151]. The scores from the first face

matcher are in the range [−1, 1], whereas scores from the second face matcher are in

the range [0, 100] (see Figure 3.1). The match scores of different matchers (i) can be

either distance or similarity measures, (ii) may follow different probability distribu-

tions and (iii) matcher accuracies may be quite different. For example, in the case of

the MSU-Multimodal database [90], the fingerprint matcher outputs similarity scores

whereas the face matcher outputs distance scores; the score distributions for these

two modalities are quite different (see Figure 3.3) and the fingerprint matcher is more

accurate than the face matcher. Biometric matchers may also be correlated as shown
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in Figure 3.1; the correlation coefficient1 for the genuine and impostor scores of the

two face matchers in Figure 3.1 are 0.7 and 0.3, respectively.
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Figure 3.1: Non-homogeneity in the match scores provided by the two face matchers
in the NIST-Face database. Note that about 0.2% of the scores output by matcher 1
are discrete scores with value -1, which are not shown in this plot.

Score fusion techniques can be divided into the following three categories.

• Transformation-based score fusion: The match scores are first normalized

(transformed) to a common domain and then combined using product, sum, max

or min rules [108]. Choice of the normalization scheme and combination weights

is data-dependent and requires extensive empirical evaluation [90,167,180,190].

• Classifier-based score fusion: Scores from multiple matchers are treated as a fea-

ture vector and a classifier is constructed to discriminate genuine and impostor

1In this dissertation, we estimate correlation using the Pearson’s product-moment correlation
coefficient, which measures the strength and direction of linear relationship between two random
variables [164]. The correlation between two matchers is defined as the correlation between the
scores of the two matchers.
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scores [15,66,127]. When biometric score fusion is considered as a classification

problem, the following issues pose challenges. (i) Unbalanced training set: The

number of genuine match scores available for training is O(N), but the number

of impostor scores is O(N2), where N is the number of users in the database.

(ii) Cost of misclassification: Depending on the biometric application, the cost

of accepting an impostor may be very different from the cost of rejecting a

genuine user. For example, a biometric system deployed in a security applica-

tion typically is required to have a false accept rate (FAR) of less than 0.1%.

Therefore, the fusion strategy needs to minimize the false reject rate (FRR) at

the specified FAR values rather than minimizing the total error rate (sum of

FAR and FRR) [155]. (iii) Choice of classifier: Given a variety of admissible

classifiers, selecting and training a classifier that gives the optimal performance

(minimum FRR at a specified FAR) on a given data set is not easy.

• Density-based score fusion: This approach is based on the likelihood ratio test

and it requires explicit estimation of genuine and impostor match score densities

[74,155]. The density based approach has the advantage that it directly achieves

optimal performance at any desired operating point (FAR), provided the score

densities can be estimated accurately. In fact, a comparison of eight biometric

fusion techniques conducted by NIST [195] with data from 187, 000 subjects

concluded that “Product of Likelihood Ratios was consistently most accurate,

but most complex to implement” and “complexity in this implementation is

in the modeling of distributions, rather than fusion per se”. The statement
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in [195] about the complexity of density estimation was based on the use of

kernel density estimator (KDE). The selection of kernel bandwidth and density

estimation at the tails proved to be the most complex steps in estimating the

score densities using KDE in [195].

Among the three approaches, density based fusion is a more principled approach

because it achieves optimal fusion performance if the score densities are estimated

accurately. Hence, we follow the density-based score fusion approach in this thesis.

We investigate two different techniques for accurately estimating the genuine and im-

postor match score densities, namely, the Gaussian mixture model (GMM) and the

non-parametric kernel density estimator (KDE). We show that (i) GMM is quite effec-

tive in modeling the genuine and impostor score densities and is simpler to implement

than KDE, (ii) fusion based on the resulting density estimates achieves consistently

high performance on three multibiometric databases involving face, fingerprint, iris,

and speech modalities and (iii) biometric sample quality can be easily incorporated

in the likelihood ratio based fusion framework.

3.1 Likelihood Ratio Test

Let S be a random variable denoting the match score provided by a matcher.

Let the distribution function for the genuine scores be denoted as Fgen(s) (i.e.,

P (S ≤ s|S is genuine) = Fgen(s)) with the corresponding density function fgen(s).

Similarly, let the distribution function for the impostor scores be denoted as Fimp(s)

with the corresponding density function fimp(s). Suppose we need to decide between
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the genuine and impostor classes (to verify a claimed identity) based on the observed

match score s. Let Ψ be a statistical test for testing the null hypothesis H0: score

S corresponds to an impostor against the alternative hypothesis H1: score S corre-

sponds to a genuine user. Let Ψ(s) = i imply that we decide in favor of Hi, where

i = 0, 1. The probability of rejecting H0 when H0 is true is known as the false accept

rate (also referred to as the size or level of the test). The probability of correctly

rejecting H0 when H1 is true is known as the genuine accept rate (also referred to as

the power of the test). The Neyman-Pearson theorem [118] states that

1. For testing H0 against H1, there exists a test Ψ and a constant η such that

P (Ψ(S) = 1|H0) = α (3.1)

and

Ψ(s) =

⎧⎪⎪⎨
⎪⎪⎩

1, when
fgen(s)
fimp(s) > η,

0, when
fgen(s)
fimp(s) < η.

(3.2)

When fgen(s)/fimp(s) is equal to η, Ψ(s) is zero with probability γ and one

with probability 1−γ. Here, γ is chosen such that the level of the test is exactly

equal to α.

2. If a test satisfies equations (3.1) and (3.2) for some η, then it is the most powerful

test for testing H0 against H1 at level α.
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According to the Neyman-Pearson theorem, given the false accept rate (FAR) α, the

optimal test for deciding whether a match score S corresponds to a genuine user or

an impostor is the likelihood ratio test given by equation (3.2). For a fixed FAR,

we can select a threshold η such that the likelihood ratio test maximizes the genuine

accept rate (GAR) and there does not exist any other decision rule with a higher

GAR. However, this optimality of the likelihood ratio test is guaranteed only when

the underlying densities are known. In practice, we only have a finite set of genuine

and impostor match scores, so we need to reliably estimate the densities fgen(s) and

fimp(s) before applying the likelihood ratio test.

3.2 Estimation of Match Score Densities

Density estimation techniques can be classified as parametric or non-parametric [179].

In parametric density estimation, the form of the density function (e.g., Gaussian) is

assumed to be known and only the parameters of this density function (e.g., mean and

standard deviation) are estimated from the training data. Non-parametric techniques

(e.g., density histogram and kernel density estimator) do not assume any standard

form for the density function and are essentially data-driven. A mixture of densities

whose functional forms are known (e.g., mixture of Gaussians) can also be used for

density estimation. This mixture method can be categorized as either parametric or

semi-parametric depending on whether the number of mixture components is fixed a

priori or is allowed to vary based on the observed data [67].

In the context of biometric systems, it is very difficult to choose a specific para-
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metric form for the density of genuine and impostor match scores. It is well known

that the Gaussian density is usually not appropriate for genuine and impostor match

scores because the score distributions generally have a large tail and may have more

than one mode (see Figure 3.2). The simplest non-parametric density estimator is

the histogram method, which has the following limitations [202]: (i) it is sensitive to

the placement of the bin-edges, (ii) it estimates the density by a step function and

(iii) the asymptotic rate of convergence2 of the histogram is lower than that of other

density estimators. Due to the above reasons, we do not use histograms for estimating

the score densities.

Griffin [74] used the following non-parametric approach to estimate the match

score densities. The distribution functions Fgen(s) and Fimp(s) are approximated

using polynomials whose coefficients are obtained empirically from the receiver oper-

ating characteristic (ROC) curve of the biometric matcher. The marginal densities

fgen(s) and fimp(s) are then obtained by differentiating the corresponding distri-

bution functions. Although this method is relatively simple, the main limitation is

that the choice of polynomial degree to be used for approximating the distribution

functions is arbitrary. Further, there is no guarantee that the estimated densities

will converge to the true underlying densities. To overcome these limitations, Prab-

hakar and Jain [155] used kernel density estimators (also known as the Parzen window

method [57]) for estimating the score densities.

2The asymptotic rate of convergence of a density estimator is defined as the rate at which the
integrated mean squared error between the true and estimated densities approaches zero as the
number of samples available for density estimation tends to infinity.
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Figure 3.2: Histograms of match scores and the corresponding Gaussian density es-
timates for the Face-G matcher in the NIST BSSR1 database. (a) Genuine and (b)
Impostor. Note that the Gaussian density does not account well for the tail in the
genuine score distribution and the multiple modes in the impostor score distribution.

62



3.2.1 Kernel Density Estimation

In practice, many biometric matchers apply thresholds at various stages in the match-

ing process. When the required threshold conditions are not met, pre-specified match

scores are output by the matcher. For example, a fingerprint matcher may output

a specific score value (say s1) if the orientation field of the input fingerprint does

not match well with the template; the same matcher may provide a different score

value (say s2) if the number of minutia points in the input fingerprint is less than

a threshold. This leads to discrete components in the match score distribution that

cannot be modeled accurately using a continuous density function. Hence, we propose

a modified kernel density estimator [48] in which the marginal density is modeled as

a mixture of continuous and discrete components (referred to as generalized density)

and the joint density is estimated using copula functions.

Generalized Marginal Density

A generic score value s0 is said to be discrete if P (S = s0) > 0. In such a situation,

F cannot be represented by a density function in the neighborhood of s0 (since this

would imply that P (S = s0) = 0). Hence, our approach consists of first detect-

ing discrete components in the genuine and impostor match score distributions, and

then modeling the observed distribution of match scores as a mixture of discrete and

continuous components.

Given a set of match scores, S, we first identity if there are any discrete compo-

nents in it, namely, score values s0 with P (S = s0) ≥ T , where T is a threshold;
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0 ≤ T ≤ 1. The value of T can be determined using the algorithm described in the

Appendix B.1. We estimate the probability P (S = s0) by
N(s0)

N , where N(s0) is the

number of observations in S that equal s0 and N is the total number of observations.

The collection of all discrete components for a match score distribution is denoted by

D ≡ { s0 :
N(s0)

N
≥ T}. (3.3)

The discrete components constitute a proportion pD ≡ ∑
s0∈D

N(s0)
N of the

complete set of match scores, S. We obtain the subset C, C ⊆ S, by removing all

the discrete components from S, C = S −D. The scores in C constitute a proportion

pC ≡ (1 − pD) of S, and they are used to estimate the continuous component of

the density (fC(s)). The continuous component of match score density is estimated

using a kernel density estimate of fC(s), which is given by

f̂C(s) =
1

hNC

∑
x∈C

K
(

s − x

h

)
, (3.4)

where K is a function satisfying
∫∞
−∞K(s)ds = 1, called the kernel, h is a positive

number, called the bandwidth of the kernel and NC ≡ N pC . Usually K is chosen

to be a unimodal probability density function symmetric about zero. We use the

Gaussian kernel (K(s) = φ(s), where φ(s) is the standard normal density) for density

estimation.

The choice of kernel bandwidth is a critical factor in kernel density estimation.

In [155], a simple heuristic was used to estimate the bandwidth of the kernel (set to

0.01σ̂, where σ̂ is the standard deviation of the observed match scores). However, the
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above heuristic is not always optimal and does not provide accurate density estimates

on a variety of multibiometric databases. Hence, we use an automatic bandwidth es-

timator known as “solve-the-equation” bandwidth selector [202] to obtain the optimal

bandwidth. The “solve-the-equation” bandwidth estimator has been shown to give

very good density estimates for a large class of underlying functions. This band-

width estimator minimizes a mean square error criterion asymptotically. In other

words, the density estimate obtained from the “solve-the-equation” bandwidth esti-

mator preserves most of the characteristics (e.g., peaks and tails) of the distribution

of match scores without over-smoothing, thus, achieving a good compromise between

the bias and the variance of the density estimate (see Figure 3.3).

The generalized density (a mixture of discrete and continuous components) is

defined as

f̂(s) = pC f̂C(s) +
∑

s0∈D

N(s0)

N
· I{s = s0}, (3.5)

where I{x = s0} = 1 if s = s0, and 0, otherwise. The distribution function corre-

sponding to the generalized density estimate is defined as

F̂ (s) = pC

∫ s

−∞
f̂C(u) du +

∑
s0∈D, s0≤s

N(s0)

N
. (3.6)

The above approach for estimating the generalized density can be applied to the

genuine and impostor match scores from different matchers. For a multibiometric

system with K matchers, we denote the kth generalized marginal density estimated

from the genuine scores as f̂gen,k(s), k = 1, 2, . . . , K. The corresponding estimates
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Figure 3.3: Histograms of match scores and the corresponding generalized density
estimates for MSU-Multimodal database. (a) and (b) Genuine and impostor match
scores for face modality. (c) and (d) Genuine and impostor match scores for fingerprint
modality. (e) and (f) Genuine and impostor match scores for hand geometry modality.
The solid line above the histogram bins is the density estimated using the kernel
density estimator, and the spikes in (d) correspond to the discrete components.
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based on the impostor scores are denoted by f̂imp,k(s), k = 1, 2, . . . , K. Figure

3.3 gives the plots of f̂gen,k(s) and f̂imp,k(s), k = 1, 2, 3 for the distribution of

observed genuine and impostor match scores in the MSU-Multimodal database (see

Appendix for a description of this database). Figure 3.3 also gives the histograms

of the genuine and impostor match scores for the three modalities, namely, face,

fingerprint and hand-geometry. Discrete components were detected only in the case

of impostor match scores of the fingerprint modality; see the “spikes” in Figure 3.3(d)

that represent the detected discrete components for T = 0.008 in equation (3.3).

A comparison between the continuous and generalized density estimates for im-

postor match scores provided by the first face matcher in the NIST-Face database is

shown in Figure 3.4. This matcher can output a discrete match score with value −1.

Figure 3.4(a) shows the continuous density estimate over the entire range of scores

([−1, 1]) and the same estimate only in the range [0.4, 0.7] that covers a majority

of the scores. The scores with value −1 affect the kernel bandwidth significantly

(h = 0.00001 when the scores with value −1 are present, while h = 0.0027 when they

are removed). As a result, the continuous density estimates of the impostor scores

are not accurate in the range [0.4, 0.7]. On the other hand, the generalized density

estimates shown in Figure 3.4(b) are very accurate in modeling the match scores.

Generalized Multivariate Density Using Copula Models

The methodology described in section 3.2.1 provides only the marginal genuine and

impostor score densities for each of the K matchers. When the matchers are assumed

to be mutually independent, the joint (multivariate) density of the K match scores can
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Figure 3.4: Comparison of continuous and generalized density estimates for impostor
match scores provided by the first face matcher in the NIST-Face database. (a)
Continuous density estimates in the entire score range [−1, 1] and only in the range
[0.4, 0.7]. (b) Generalized density estimates (T = 0.002) in the entire score range
[−1, 1] and only in the range [0.4, 0.7].

68



be estimated as the product of the marginal densities. However, if the matchers are

correlated, it may be important to model the dependence between them. When the

marginal distributions are continuous, the joint density can be directly estimated us-

ing multidimensional kernels. Since the marginal distribution of match scores contains

discrete components, we use copula functions [146] to estimate the multivariate dis-

tribution. The copula-based joint density estimation is semi-parametric because the

marginals are non-parametric and the copula function that combines the marginals

to get the joint density is parametric.

Let H1, H2, . . . , HK be K continuous distribution functions and H be a K-

dimensional distribution function with the kth marginal given by Hk, k = 1, 2, . . . , K.

According to Sklar’s theorem [146], there exists a unique function C(u1, u2, . . . , uK)

from [0, 1]K to [0, 1] satisfying

H(s1, s2, . . . , sK) = C(H1(s1), H2(s2), . . . , HK(sK)), (3.7)

where s1, . . . , sK are K real numbers. The function C is known as a K-copula

function that “couples” the univariate distributions H1, H2 . . . , HK to obtain the

K-variate distribution H.

We use the family of Gaussian copula functions [34] to model the joint distributions

of match scores3. These functions incorporate the second-order dependence among

the K matchers using a K × K correlation matrix R. The K-dimensional Gaussian

copula function is given by

3The Gaussian copula function does not assume that the joint or marginal match score distribu-
tions are Gaussian.
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CK
R (u1, u2, . . . , uK) = ΦK

R (Φ−1(u1), Φ−1(u2), . . . , Φ−1(uK)), (3.8)

where each uk ∈ [0, 1] for k = 1, 2, . . . , K, R is the correlation matrix, Φ(·) is the

distribution function of the standard normal, Φ−1(·) is its inverse, and ΦK
R is the K-

dimensional distribution function of a random vector Z = (Z1, Z2, . . . , ZK)T with

component means and variances given by 0 and 1, respectively. The density of CK
R ,

denoted by cKR , is defined as

cKR (u1, u2, . . . , uK) ≡ ∂CK
R (u1, u2, . . . , uK)

∂u1∂u2 . . . ∂uK
=

φK
R (Φ−1(u1), Φ−1(u2), . . . , Φ−1(uK))∏K

k=1 φ(Φ−1(uk))
,

(3.9)

where φK
R (s1, s2, . . . , sK) is the density function of the K-variate normal distribution

with mean 0 and covariance matrix R (since the variance of each component of Z is

1, the covariance matrix is the same as the correlation matrix R), and φ(x) is the

standard normal density.

The (m,n)-th entry of R, ρmn, measures the degree of correlation between the

mth and nth matchers for m,n = 1, 2, . . . , K. Since the K ×K correlation matrix R

is unknown, we estimate it using the Pearson’s product-moment correlation of normal

quantiles [164] corresponding to the given match scores from the K matchers. This

method assumes that the K match scores come from the multivariate distribution H

with continuous marginals, H1, H2, . . . , HK . However, the marginals associated with

the genuine and impostor distributions of the K matchers may have discrete compo-
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nents. Therefore, the generalized distributions are first “converted” into continuous

distributions. This is achieved by perturbing each discrete component of F̂gen,k(s)

and F̂imp,k(s) through the addition of a Gaussian noise process with mean 0 and stan-

dard deviation σ = 0.0001. Note that the discrete scores are perturbed only when

estimating R, and not during the estimation of the marginal distributions F̂gen,k(s)

and F̂imp,k(s). Hence, the multivariate density obtained by using the copula function

is still a generalized (mixture of discrete and continuous) density.

We model the joint distribution function of genuine match scores for K matchers,

FK
gen, as shown in equations (3.7) and (3.8) for some correlation matrix Rgen. For

the genuine case, the kth marginal will be estimated by F̂gen,k(s) for k = 1, 2, . . . , K.

The joint distribution function of the impostor match scores, FK
imp, is of the same

form as FK
gen, but with a correlation matrix Rimp. In the impostor case, the kth

marginal is estimated by F̂imp,k(s) for k = 1, 2, . . . , K. Figure 3.5 shows the joint

density estimates of the genuine match scores output by the two matchers in the

NIST-Face database when they are estimated using (i) product of the marginals

(under the assumption of statistical independence) and (ii) copula functions. We can

observe that the joint density estimated using copula functions is able to capture the

correlation between the two face matchers (see Figure 3.5(b)) and hence, is a better

estimate of the underlying genuine match score density.
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Figure 3.5: Joint density of the genuine match scores output by the two matchers in
the NIST-Face database estimated using (a) product of marginal densities and (b)
copula functions. The density estimate in (b) captures the correlation between the
matchers.
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3.2.2 GMM-based Density Estimation

Although the modified kernel density estimation approach resulted in good fusion

performance [48], it is not clear whether our heuristic used for detecting the discrete

components and the use of a parametric copula function to estimate the joint density

are optimal. To avoid these issues, we employ a well-known technique based on

Gaussian mixture models (GMM) for density estimation [142]. Note that Gaussian

mixture models can be used to estimate arbitrary densities and the theoretical results

in [119, 157] show that the density estimates obtained using finite mixture models

indeed converge to the true density.

Let S = [S1, S2, · · · , SK ] be the random vector corresponding to the match scores

of K different biometric matchers, where Sk is the random variable representing the

match score provided by the kth matcher, k = 1, 2, · · · , K. Let fgen(s) and fimp(s)

be the conditional joint density of the K match scores given the genuine and impostor

classes, respectively, where s = [s1, s2, · · · , sK ]. Let φK (s; μ, Σ) be the K-variate

Gaussian density with mean vector μ and covariance Σ, i.e.,

φK (s; μ, Σ) = (2π)−K/2|Σ|−1/2 exp

(
−1

2
(s − μ)T Σ−1(s − μ)

)
. (3.10)

The estimates of fgen(s) and fimp(s) are obtained as a mixture of Gaussians as

follows.
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f̂gen(s) =

Mgen∑
j=1

pgen,jφ
K
(
s; μgen,j , Σgen,j

)
, (3.11)

f̂imp(s) =

Mimp∑
j=1

pimp,jφ
K
(
s; μimp,j , Σimp,j

)
, (3.12)

where Mgen (Mimp) is the number of mixture components used to model the density

of the genuine (impostor) scores, μgen,j (μimp,j) and Σgen,j (Σimp,j) are the mean

vector and covariance matrix corresponding to the jth mixture component in f̂gen(s)

(f̂imp(s)) and pgen,j (pimp,j) is the weight assigned to the jth mixture component in

f̂gen(s) (f̂imp(s)). In equations (3.11) and (3.12), the sum of the component weights

is 1, i.e.,
∑Mgen

j=1 pgen,j = 1 and
∑Mimp

j=1 pimp,j = 1.

We use the algorithm proposed by Figueiredo and Jain [67] to estimate the param-

eters of the mixture densities in equations (3.11) and (3.12). Selecting the appropriate

number of components is one of the most challenging issues in mixture density estima-

tion; while a mixture with too many components may result in over-fitting, a mixture

with too few components may not approximate the true density well. The GMM fit-

ting algorithm proposed in [67] 4 automatically estimates the number of components

and the component parameters using an EM algorithm and the minimum message

length (MML) criterion. This algorithm is also robust to initialization of parameter

values (mean vectors and covariance matrices) and can handle discrete components in

the match score distribution by modeling the discrete scores as a mixture component

4The MATLAB code for this algorithm is available at http://www.lx.it.pt/~mtf/
mixturecode.zip
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with very small variance. This is achieved by adding a small value (regularization

factor) to the diagonal of the covariance matrices. The actual value of this variance

does not affect the performance as long as it is insignificant compared to the vari-

ance of the continuous components in the match score distribution. For example, the

lowest value of variance in the match score data used in our experiments is of the

order of 10−3. Hence, we used the value of 10−5 as the lower bound for the variance.

Our experiments indicate that a value smaller than 10−5 (say, 10−7 or 10−9) does

not change the performance of GMM. Since we do not place any restrictions on the

component covariance matrices Σgen,j and Σimp,j , the estimates of the joint densi-

ties f̂gen(x) and f̂imp(x) also take into account the correlation between the match

scores. Figures 3.6 and 3.7 show that Gaussian mixture model reliably estimates

the 2-D genuine and impostor densities of the two face matchers in the NIST-Face

database.

3.3 Incorporating Image Quality in Fusion

The quality of acquired biometric data directly affects the ability of a biometric

matcher to perform the matching process effectively. Noise can be present in the

biometric data due to defective or improperly maintained sensors, incorrect user in-

teraction or adverse ambient conditions. For example, when noisy fingerprint images

are processed by a minutiae based fingerprint recognition algorithm, a number of

false (spurious) minutia points will be detected. Figures 3.8(c) and 3.8(d) show the

minutiae extracted from good quality (Figure 3.8(a)) and noisy fingerprint (Figure
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Figure 3.6: Density estimation based on Gaussian mixture models for the genuine
scores in the NIST-Face database. (a) Scatter plot of the genuine scores along with
the fitted mixture components and (b) density estimates of the genuine scores. In
this case, 12 mixture components were found.
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Figure 3.7: Density estimation based on Gaussian mixture models for the impostor
scores in the NIST-Face database. (a) Scatter plot of the impostor scores along with
the fitted mixture components and (b) density estimates of the impostor scores. In
this example, 19 mixture components were found.
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3.8(b)) images, respectively, using the minutiae extraction algorithm proposed in [86].

We observe that no false minutia is detected in the good quality fingerprint image

shown in Figure 3.8(c). On the other hand, Figure 3.8(d) shows that several spurious

minutiae are detected in the noisy image. In practice, some true minutiae may not be

detected in poor quality images. These spurious and missing minutiae will eventually

lead to errors in fingerprint matching [32].

Estimating the quality of a biometric sample and predicting the performance of

a biometric matcher based on the estimated quality can be very useful in building

robust multibiometric systems. This will allow us to dynamically assign weights to

the individual biometric matchers based on the quality of the input sample to be

verified. For example, consider a bimodal biometric system with iris and fingerprint

as the two modalities. Let us assume that during a particular access attempt by the

user, the iris image is of poor quality but the fingerprint image quality is sufficiently

good. In this case, we can assign a higher weight to the fingerprint match score and a

lower weight to the iris match score. With this motivation in mind, we now describe

methods for automatically determining the quality of iris and fingerprint images and

incorporating them into the fusion process.

To incorporate sample quality in the likelihood ratio framework, we first make

the following observation. Since a poor quality sample will be difficult to classify as

genuine or impostor (see Figure 3.9), the likelihood ratio for such a sample will be

close to 1. On the other hand, for good quality samples, the likelihood ratio will be

greater than 1 for genuine users and less than 1 for impostors. Hence, if we estimate

the joint density of the match score and the associated quality, the resulting likelihood
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(a) (b)

(c) (d)

Figure 3.8: Minutiae extraction results for fingerprint images of varying quality. (a)
A good quality fingerprint image. (b) A noisy fingerprint image. (c) Minutia points
detected in the good quality fingerprint image by an automatic minutiae extraction
algorithm. (d) Minutia points detected in the noisy fingerprint image. The circles
represent true minutia points while the squares represent false (spurious) minutiae.
While no spurious minutia is detected in the good quality fingerprint image, several
false minutia points are detected when the fingerprint image quality is poor.
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ratios will be implicity weighted by the respective sample quality. We can still use

the Gaussian mixture based density estimation technique described in section 3.2.2.

To perform quality-based fusion, we need to automatically extract quality in-

formation from the input biometric samples. Since biometric quality estimation is a

challenging task in itself, we demonstrate the advantages of our scheme using only fin-

gerprint and iris modalities for which quality estimators are readily available [32,33].

However, the proposed quality-based fusion scheme is generic and can be applied to

any biometric modality or matcher. Note that the match score depends on the quality

of both the template and query samples, so we need to define a single quality index,

known as pairwise quality [143], that takes into account the quality of both template

and query images. We now describe techniques to compute the pairwise quality index

for fingerprint and iris modalities.

3.3.1 Pairwise Fingerprint Quality

We estimate the local quality in a fingerprint image using the coherence measure

described in [32]. Let Tf and Qf represent the template and the query fingerprint

images, respectively. We partition Tf and Qf into blocks of size 12 × 12 pixels and

estimate the coherence γ and γ′ for each block in Tf and Qf , respectively. Let

M1, . . . , Mm be the m minutiae in Tf , where M i = {xi, yi, θi}, i = 1, . . . ,m. Let

M ′
1, . . . , M ′

n be the n minutiae in Qf , where M ′
j = {x′j , y′j , θ′j}, j = 1, . . . , n. Let

γ(x, y) and γ′(x, y) be the quality (coherence) of the block which contains the location

(x, y) in Tf and Qf , respectively. Let t(x, y, Δ) be the rigid transformation function
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Figure 3.9: Variation of match score with quality for fingerprint modality in the
WVU-Multimodal database. We observe that the genuine and impostor match scores
are well-separated only for good quality (with quality index > 0.5) samples.

that transforms a point (x, y) in Tf to a point (x′, y′) in Qf . Here, Δ = [Δx, Δy, Δθ]

represents the translation and rotation parameters which are estimated using the 2-D

dynamic programming based minutiae matcher described in [93]. Let A and A′ be the

area of the fingerprint regions in the template and the query. The area of overlap, Ao,

between the fingerprint regions of Tf and Qf can be computed using Δ. The overall

quality of the match between the template and query fingerprint images, qf (Tf , Qf ),

is then defined as follows.

qf (Tf , Qf ) =

(
r1 + r2
m + n

)(
2Ao

A + A′
)

, (3.13)

where
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r1 =
m∑

i=1
γ(xi, yi)γ

′(t(xi, yi, Δ)) and

r2 =
n∑

j=1
γ(t(x′j , y′j ,−Δ))γ′(x′j , y′j).

Here, 0 ≤ qf (Tf , Qf ) ≤ 1. Note that if a minutia point in the template (query) falls

outside the fingerprint region of the query (template) image, then the quality of that

minutia is set to zero. Given good quality template and query fingerprint images with

large overlap, qf (Tf , Qf ) ≈ 1.

3.3.2 Pairwise Iris Quality

We estimate the quality of match between the template and query iris images using a

modified version of the wavelet-based iris quality assessment scheme proposed in [33].

The template (Ti) and query (Qi) iris images are segmented into iris and non-iris

regions [33]. A 2-D isotropic Mexican hat wavelet filter is applied to the iris regions

of Ti and Qi at three different scales (0.5, 1.0, 2.0) and the product of the responses

at the three scales is obtained. In order to account for the variations in the pupil

dilation, iris size and rotation, the rubber sheet model proposed by Daugman [50]

is used to normalize the wavelet responses. Let wr,s be the product of the wavelet

responses at the rth radius (r = 1, . . . , R) and sth angle (s = 1, . . . , S) in Ti and

let w′
r,s be the corresponding wavelet response in Qi. The average wavelet response

at each radius r is computed as wr (= 1
S

∑S
s=1 wr,s) and w′

r (= 1
S

∑S
s=1 w′

r,s)
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in Ti and Qi, respectively. The quality of match between the template and query

iris images, qi(Ti, Qi), is defined as the correlation coefficient between the vectors

w = [w1, . . . , wR] and w′ = [w′
1, . . . , w′

R]. Here, −1 ≤ qi(Ti, Qi) ≤ 1.

3.4 Likelihood Ratio Based Fusion Rules

Based on the likelihood ratio test described in section 3.1, we consider three fusion

rules: (i) complete likelihood ratio based fusion, (ii) product fusion and (iii) quality-

based product fusion. The complete likelihood ratio based fusion rule does not involve

any assumptions about the match score densities. In this case, the joint density is

directly estimated by fitting the Gaussian mixture model as outlined in section 3.2.

Given a vector of match scores s = (s1, . . . , sK) generated by K matchers, the

complete likelihood ratio fusion rule can be stated as,

Assign s to the genuine class if

CLR(s) =
f̂gen(s)

f̂imp(s)
≥ τ, (3.14)

where τ is the decision threshold that is determined based on the specified FAR.

The product fusion rule can be used when the matchers are assumed to be inde-

pendent. Here, the joint density of the match scores is estimated as the product of

the marginal densities. For a vector of match scores s = (s1, . . . , sK) generated by

K matchers, the product fusion rule is given by

Assign s to the genuine class if
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PLR(s) =
K∏

k=1

f̂gen,k(sk)

f̂imp,k(sk)
≥ τ, (3.15)

where f̂gen,k(·) and f̂imp,k(·) are the marginal densities of the genuine and impostor

scores of the kth matcher.

The quality-based product fusion rule assumes independence between the K bio-

metric matchers. However, within each biometric matcher the match score and the

quality measure can be correlated. Let qk be the quality of the match provided by

the kth matcher, for k = 1, . . . , K. Let f̂gen,k(sk, qk) ((f̂imp,k(sk, qk)) be the joint

density of the match score and the quality estimated from the genuine (impostor)

template-query pairs of the kth matcher. The quality-based product fusion rule is

given by

Assign s to the genuine class if

QPLR(s, q) =
K∏

k=1

f̂gen,k(sk, qk)

f̂imp,k(sk, qk)
≥ τ. (3.16)

It is also possible to compute the joint density of the K match scores and K

quality values without assuming the independence of the matchers. However, we do

not consider this rule because it requires estimating the joint density of a rather large

number of variables (K × 2), which may not be reliable with limited training data

that is often encountered in practice.

The likelihood ratio based fusion framework can also be used for fusion of soft

biometric information (e.g., gender, ethnicity and height) with the primary biometric

identifiers (e.g., fingerprint and face). For instance, Jain et al. [89] used the product
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fusion rule proposed here for fusion of soft and primary biometric traits. This requires

computation of soft biometric likelihoods as described in [169].

3.5 Sequential Fusion Using Likelihood Ratio

Framework

The likelihood ratio based fusion rules proposed in section 3.4 can be applied only in

a multibiometric verification system operating in the parallel mode where the scores

from all the matchers are available prior to fusion. However, in some applications a

multibiometric system operating in the cascade or sequential mode (see section 2.3)

may be more appropriate because a sequential system has higher throughput and is

more convenient for the user. For example, when a cascaded multibiometric system

has sufficient confidence on the identity of the user after processing the first biometric

source, the user may not be required to provide the other sources of information.

One method to extend the likelihood ratio based fusion framework for a sequential

multibiometric system is to employ the sequential probability ratio test (SPRT) [201].

At stage k in a SPRT, the score (sk) output by the kth matcher is used to compute

the marginal likelihood ratio, Lk, where

Lk =
f̂gen,k(sk)

f̂imp,k(sk)
. (3.17)

Here, f̂gen,k(·) and f̂imp,k(·) are the marginal densities of the genuine and impostor

scores of the kth matcher and k = 1, 2, · · · , K. The marginal likelihood ratio (Lk,
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k = 1, 2, · · ·K − 1) is compared to two different thresholds Ak and Bk, where Ak >

Bk. When Lk > Ak, we decide in favor of the genuine class. On the other hand,

if Lk < Bk, we decide in favor of the impostor class. Only when Bk ≤ Lk ≤ Ak,

the test proceeds to the next stage (k + 1). At stage K, if no decision has been

made, the process can be truncated by setting AK = BK . While the SPRT is a

principled approach to handle fusion in a cascade multibiometric system, it has the

following limitations. Firstly, determining the optimal values of the thresholds Ak’s

and Bk’s is not an easy task, particularly when the score densities do not have a

simple parametric form. Secondly, the SPRT assumes that the sequence in which the

matchers are to be invoked is fixed a priori. Finally, while Devijver and Kittler [53]

have shown that it is possible to incorporate the cost of invoking a matcher when

determining the thresholds in a SPRT, such an approach adds further complexity in

the threshold determination process. Due to these reasons, we use a simple binary

decision tree classifier [57] based on the marginal score densities of the individual

matchers to extend the likelihood ratio framework for the sequential fusion scenario.

During the training phase, the marginal genuine and impostor score densities

are estimated as described in section 3.2 and the marginal likelihood ratios of the

training samples are obtained. The marginal likelihood ratios are treated as features

and are used to train a binary decision tree classifier using the C4.5 decision tree

learning algorithm [57]. During the authentication phase, the biometric modalities

are acquired and the marginal likelihood ratios are computed in the order in which the

different modalities appear in the decision tree starting from the root node. The main

advantage of the decision tree based approach for sequential fusion is its simplicity in
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terms of learning and implementation. However, the major limitation of this approach

is that it is not straightforward to control the tree complexity (number of levels in

the tree and positions of the leaf nodes). Since the goal of a cascade multibiometric

system is to increase the throughput and user convenience, the number of levels in

the tree should be small and the leaf nodes should be as close as possible to the top of

the tree (especially for the genuine class), thereby favoring early decisions. Heuristic

pruning approaches are needed to obtain a decision tree that satisfies the above two

requirements.

3.6 Experimental Results

The performances of likelihood ratio based fusion rules were evaluated on two public-

domain databases, namely, NIST-BSSR1 and XM2VTS-Benchmark databases. The

performance of the quality-based product fusion rule was evaluated only on the WVU-

Multimodal database since the other databases do not contain raw fingerprint and iris

images to enable us to estimate the biometric sample quality. A description of these

multibiometric databases can be found in the Appendix. Density estimates based

on both the modified kernel density estimator and Gaussian mixture model-based

estimator lead to almost identical fusion results on all the databases. Therefore, we

report only the performance of GMM-based density estimation in the subsequent

sections.
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3.6.1 Evaluation Procedure

For each experiment, half of the genuine and impostor match scores were randomly

selected to be in the training set for estimating the marginal densities and the corre-

lation matrices5. The remaining genuine and impostor scores were used for analyzing

the effectiveness of the fusion rules. The above training-test partitioning was repeated

m times (m = 20) and the reported ROC curves correspond to the mean GAR values

over the m trials at different FAR values.

The following procedure is used to test if the difference in performances of two

different fusion algorithms is significant. Let GAi and GBi be the GAR of two

different fusion rules A and B, respectively, at a specific value of FAR for the ith

trial, i = 1, · · · ,m. Let Di = (GAi − GBi) be the difference between the GAR

values of the two rules for the ith trial and let μD be the expected difference. If we

assume that Di’s are independent and normally distributed with variance σ2
D, then

hypotheses about μD can be tested using a paired t test [164]. To determine if the

performance of rule A is better than that of rule B, we test the null hypothesis H0:

μD ≤ 0 against the alternative hypothesis H1: μD > 0. Here, rejecting the null

hypothesis indicates that the performance of rule A is better than that of rule B.

The test statistic is given by

t =
D̄

sD/
√

m
, (3.18)

5For experiments on the XM2VTS-Benchmark database, we do not randomly partition the score
data into training and test sets because this partitioning is already defined by the Lausanne Protocol-
1 [154]. Hence, confidence intervals are not estimated for experiments with the XM2VTS-Benchmark
database.
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where D̄ and sD are the sample mean and standard deviation, respectively, of the

Di’s, i = 1, · · · ,m. For an α level test, the null hypothesis must be rejected if

t ≥ t(α,m−1), where t(α,m−1) is the value such that a fraction α of the area under

the t distribution with m − 1 degrees of freedom lies to the right of tα,m−1. The

100(1 − α)% confidence interval for μD is given by D̄ ± t(α/2,m−1)sD/
√

m. Here, a

100(1−α)% confidence interval denotes that if the database is randomly partitioned

into training and test sets a large number of times and if the confidence interval is

estimated for these trials, then 95% of these confidence intervals would contain the

true value of μD. The value of α is set to 0.05 in our experiments.

3.6.2 Performance of Likelihood Ratio Based Parallel Fusion

The performance of complete likelihood ratio based fusion rule was evaluated on the

three partitions of the NIST-BSSR1 database and the XM2VTS-Benchmark database.

The receiver operating characteristic (ROC) curves of the individual matchers and

the likelihood ratio based fusion rule for these databases are shown in Figures 3.10,

3.11, 3.12 and 3.13. As expected, likelihood ratio based fusion leads to significant

improvement in the performance compared to the best single modality on all the four

databases. At a false accept rate (FAR) of 0.01%, the improvement in the genuine

accept rate (GAR) achieved due to likelihood ratio based fusion is presented in Table

3.1. We observe that the 95% confidence intervals estimated in Table 3.1 are fairly

tight, which indicates that the performance improvement is consistent across different

cross-validation trials.
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Table 3.1: Performance improvement achieved due to likelihood ratio based fusion.
The GAR values in the table correspond to 0.01% FAR.

Database Best Single
Matcher

Mean GAR 95% Confidence
Interval on

Best
Single

Matcher

Likelihood
Ratio
based
Fusion

increase in GAR

NIST-
Multimodal

Right Index Finger 85.3% 99.1% [13.5%, 14%]

NIST-
Fingerprint

Right Index Finger 83.5% 91.4% [7.6%, 8.2%]

NIST-Face Matcher 1 71.2% 77.2% [4.7%, 7.3%]
XM2VTS-
Benchmark

DCTb-GMM Face
Matcher

89.5% 98.7% N/A

3.6.3 Comparison With Other Score Fusion Techniques

The performance of the LR fusion rule is first compared to fusion based on Support

Vector Machine (SVM) classifier. While the performance of SVM based fusion is com-

parable to LR fusion on the NIST-Fingerprint and XM2VTS-Benchmark databases

(see Figures 3.11 and 3.13), it is inferior to LR fusion on the NIST-Multimodal and

NIST-Face databases (see Figures 3.10 and 3.12). Moreover, the kernel function and

the associated parameters for SVM must be carefully chosen in order to achieve this

performance. For example, while linear SVM gave good performance on the NIST-

Multimodal and XM2VTS-Benchmark databases, a radial basis function (RBF) kernel

with different parameter values for the NIST-Fingerprint (γ = 0.005) and NIST-Face

(γ = 0.1) databases was used to obtain the results reported here. In our experiments,
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Figure 3.10: Performance of complete likelihood ratio based fusion rule and linear
SVM-based fusion on the NIST-Multimodal database.
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Figure 3.11: Performance of complete likelihood ratio based fusion rule and SVM-
based fusion on the NIST-Fingerprint database. A radial basis function kernel with
γ = 0.005 was used for SVM fusion.
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Figure 3.12: Performance of complete likelihood ratio based fusion rule and SVM-
based fusion on the NIST-Face database. A radial basis function kernel with γ = 0.1
was used for SVM fusion.
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Figure 3.13: Performance of complete likelihood ratio based fusion rule and linear
SVM-based fusion on the XM2VTS-Benchmark database. Although there are 8 dif-
ferent matchers in the XM2VTS-Benchmark database, only the ROC curves of the
best face matcher (DCTb-GMM) and the best speech matcher (LFCC-GMM) are
shown for clarity.
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the model selection for SVM (kernel type and kernel parameters) was performed by

trial and error. We manually tried the linear SVM and RBF kernel with different

parameter choices (approximately 5 different values) on each database and report the

best results. It is also possible to set the values of the kernel parameters automatically

using techniques proposed in the literature [29,70].

Next, we compare the performance of complete likelihood ratio based fusion rule

with commonly used transformation-based score fusion techniques, where the scores

are first transformed using a normalization scheme and then the normalized scores

are combined using a fusion rule. Among the various possible combinations of nor-

malization schemes and fusion rules [90,180], we selected the min-max normalization

scheme and sum of scores fusion method because our empirical results showed that

this combination gave the best results. The ROC curves for the likelihood ratio

based and sum of scores fusion rules on NIST-Multimodal and XM2VTS-Benchmark

databases are shown in Figure 3.14. In the case of NIST-Multimodal database, we

observe that the complete likelihood ratio based fusion rule does not provide any sig-

nificant improvement over the sum rule (see Figure 3.14(a)). The paired t test rejects

the hypothesis that the performances of the likelihood and sum rules are different.

This is not surprising, because it has been shown in the literature that the sum rule

works quite well in practice due to its robustness to noisy data and errors in density

estimation [108]. However, the performance of the sum rule is inferior to the likeli-

hood ratio based approach in the case of XM2VTS-Benchmark database (see Figure

3.14(b)).

The reason for the sub-optimal performance of sum rule in the case of XM2VTS-
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Figure 3.14: Performance of complete likelihood ratio based fusion rule and sum of
scores fusion rule with min-max normalization on (a) NIST-Multimodal database and
(b) XM2VTS-Benchmark database. In (b), IT-MM denotes that an inverse tangent
function is applied only to the match scores of the MLP classifiers prior to normalizing
all the match scores using min-max normalization.
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Benchmark database is that the match scores are computed based on two types of

classifiers. One of them is a multi-layer perceptron (MLP) while the other is a Bayes

classifier using the Gaussian Mixture Model (GMM). While the distribution of match

scores output by the GMM classifier can be approximated by a Gaussian distribution

(see Figure 3.15(b)), the match score distribution of the MLP classifier is peaked

around 1 and −1 due to the tanh function at the output layer of the perceptron

(see Figure 3.15(a)). Hence, the sum rule does not provide a good approximation to

the likelihood ratio based fusion rule because the nature of match score distributions

is very different. However, if we change the distribution of scores at the output of

the MLP classifier by applying an inverse tangent function to these scores, then the

performance of the sum rule improves and becomes comparable to likelihood ratio

based fusion as observed in Figure 3.14(b). These results demonstrate that while it is

possible to achieve good fusion performance for a specific database using the simple

sum rule by carefully choosing the normalization scheme, the proposed likelihood-

ratio based fusion framework is a general approach that provides good performance

consistently on all the databases considered in this thesis.

3.6.4 Comparison of Product and Complete Likelihood Ratio

Fusion

The complete likelihood ratio based fusion rule is based on the joint density of the

genuine and impostor match scores and hence, takes into account the correlation be-

tween the matchers. On the other hand, the product fusion rule, which is simpler
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Figure 3.15: Distribution of genuine and impostor match scores in the XM2VTS-
Benchmark database for (a) MLP classifier and (b) GMM classifier.
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to implement, ignores the correlation between matchers and approximates the joint

density by the product of the marginal densities. To study the performance differ-

ence between these two rules, we consider two databases for which the correlation

between the various matchers is high. As an example, in the NIST-Face database,

the correlation between the scores of the two matchers is 0.7 for the genuine class

and 0.3 for the impostor class. In the XM2VTS-Benchmark database, we choose the

two speech matchers LFCC-GMM and SSC-GMM because this matcher pair had the

highest correlation value among the different matcher pairs (0.8 for the genuine class

and 0.7 for the impostor class).

The performance of the product and complete likelihood ratio based fusion rules

on the NIST-Face database is shown in Figure 3.16, which indicates that there is no

difference in the performance of the two rules. This is because the difference between

genuine and impostor correlations is not high and the two matchers in this database

are reasonably accurate (the d
′

value6 is 3.2 for both the matchers). Now, we apply

a linear transformation of the form s
′
k = (sk − a)/b to the genuine match scores

from the two matchers, where sk is the original score of the kth matcher and s
′
k is

the modified score. The values of the constants a and b are chosen such that the d
′

metric of the transformed scores is approximately 2. This linear transformation does

not affect the correlation between the genuine scores of the two matchers. We also

remove the correlation between impostor scores by randomly permuting the impostor

scores from one of the two matchers. Note that this permutation does not change the

6The d-prime value (d
′
) measures the separation between the means of the genuine and impostor

distributions in standard deviation units. A higher d
′
value indicates better performance.
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marginal distribution of the impostor scores. As a result of these transformations, the

d
′
value for the modified match scores is approximately 2 and the correlation between

the scores is 0.7 for the genuine class and 0 for the impostor class. The performance of

the complete likelihood ratio based fusion and the product fusion rules on the modified

scores is shown in Figure 3.16. Since the separation between the genuine and impostor

distributions was reduced by applying a linear transformation to the genuine scores,

the accuracy of the individual matchers and hence the fusion performance is reduced

substantially. However, in this case we observe that the complete likelihood ratio

based fusion rule clearly outperforms the product fusion rule. For example, at a

FAR of 0.1%, the average improvement in the GAR is 2.7% and the 95% confidence

interval for the difference in the GAR between the two rules is [2.5%, 2.9%]. This

result indicates that modeling the correlation between the match scores, and hence

the use of complete likelihood ratio fusion rule is justified only if the matchers are of

low accuracy and the difference between genuine and impostor correlation is large.

Similar results were also obtained in the case of correlated matcher pairs in the

XM2VTS-Benchmark database. Figure 3.17 shows the ROC curves for the fusion

of LFCC-GMM and SSC-GMM speech matchers in the XM2VTS database. The

d
′

values for the LFCC-GMM and SSC-GMM matchers are approximately 4 and 3,

respectively. From Figure 3.17, we observe that the complete likelihood ratio based fu-

sion and product fusion rules perform equally well on this pair of matchers. However,

if the d
′

values of the two matchers are reduced by applying a linear transformation

to the genuine scores and if the impostor correlation is removed, we observe that the

complete likelihood ratio based fusion rule provides better fusion performance than
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Figure 3.16: Performance of product and complete likelihood ratio based fusion rules
for the two face matchers in the NIST-Face database.
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the product fusion rule (see Figure 3.17).

3.6.5 Performance of Quality-based Fusion

We investigate the performance of the quality-based product fusion rule on the WVU-

Multimodal database. Recall that for the other two databases, raw images are not

available precluding the use of quality-based fusion. Figure 3.18 shows the perfor-

mance of the product7 and the quality-based product fusion rules. Fusion of finger-

print and iris modalities using the product rule gives a large improvement in the GAR

compared to the best single modality (iris, in this experiment). The quality-based

product fusion rule further improves the GAR. For example, at a FAR of 0.001%, the

mean GAR of the iris modality is 66.7%, while the GAR values of the product and

quality-based product fusion rules are 85.3% and 90%, respectively. The 95% confi-

dence interval for the improvement in GAR obtained by using quality-based product

fusion instead of product fusion is [4.1%, 5.3%].

3.6.6 Performance of Likelihood Ratio Based Sequential Fu-

sion

The performance of the decision tree based approach for likelihood ratio based sequen-

tial fusion was studied using the NIST-BSSR1 database. Since the structure of the

decision tree depends on the set of match scores selected for training, the sequential

fusion rule is not the same across all the cross-validation trials. A typical sequential

7Since the correlation between fingerprint and iris modalities is zero, complete likelihood ratio
based fusion and product fusion rules have the same performance on the WVU-Multimodal database.
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Figure 3.17: Performance of product and complete likelihood ratio based fusion rules
for the LFCC-GMM and SSC-GMM speech matchers in the XM2VTS database.
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fusion rule (decision tree) obtained using the NIST-Fingerprint database is shown in

Figure 3.19. For this database, marginal likelihood ratio corresponding to the right

index finger was usually selected as the root node because it is more accurate than the

left index finger. On average, 92.6% of the genuine attempts required only a single

modality (right index finger). The operating point of the system was modified by

varying the ratio of genuine and impostor samples in the training phase. The average

GAR of the system was observed to be 94.2% at a FAR of 0.2% and 95.9% at a

FAR of 1.3%. The corresponding GAR values obtained in the parallel fusion scenario

are 94.6% and 96.1%. These results show that while there is a marginal degradation

in the GAR when sequential fusion is used instead of parallel fusion, the sequential

system can lead to a significant increase in the user convenience and throughput be-

cause ≈ 92% of the genuine authentication attempts can be processed using just one

modality.

Similar results were also observed in the case of the NIST-Multimodal database.

Since both the face matchers in this database have roughly the same performance, we

consider the scores from a single face matcher and the two fingers in this experiment.

Figure 3.20 shows a typical sequential fusion rule (decision tree) obtained using the

NIST-Multimodal database. Again in this database, the most accurate modality,

namely, the right index finger was usually selected as the root node and on average,

91.1% of the genuine attempts required only a single modality (right index finger).

The average GAR of the system was observed to be 96.9% at a FAR of 0.01% and

97.9% at a FAR of 0.2%. The corresponding GAR values obtained in the parallel

fusion scenario are 97.8% and 98.6%. Thus, sequential fusion significantly reduces
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Figure 3.19: A typical sequential fusion rule (decision tree) obtained using the NIST-
Fingerprint database. Here, L1 and L2 represent the marginal log-likelihood ratios
for the left index finger and right index finger, respectively.

the number of modalities to be acquired during authentication without adversely

affecting the GAR.

3.7 Summary

We have proposed a statistical framework for the fusion of match scores in a multibio-

metric verification system based on the likelihood ratio test. This approach is optimal

provided the underlying genuine and impostor match score densities are known. In

practice, one needs to estimate these densities from the available training set of match

scores. We have modeled the genuine and impostor match scores using a mixture of

Gaussian densities and used the EM algorithm with the minimum message length cri-

terion for estimating the parameters of the mixture density and the number of mixture

components. We have also developed a quality-based fusion scheme within the likeli-
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Figure 3.20: A typical sequential fusion rule obtained using the NIST-Multimodal
database. Here, L1, L2 and L3 represent the marginal log-likelihood ratios for the
left index finger, right index finger and face modalities, respectively.
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hood ratio framework to fuse multiple biometric sources based on the input biometric

sample quality. Finally, we have shown that sequential fusion rules for a cascade

multibiometric system can be generated by constructing a binary decision tree clas-

sifier based on the marginal likelihood ratio of the individual matchers. Experiments

on three different multibiometric databases lead us to the following conclusions.

• Both the modified kernel density estimator and Gaussian mixture models pro-

vide reliable density estimates. However, The GMM-based density estimation is

simpler to implement than KDE. The likelihood ratio based fusion rule based on

the density estimates provided by GMM achieves consistently high recognition

rates without any tuning of parameters by the system designer.

• The performance of a simple fusion rule such as the sum rule with min-max

normalization is often comparable to that of the likelihood ratio based fusion

rule. However, the sum rule requires careful selection of normalization scheme

and fusion weights to achieve good performance. Further, this selection of

normalization scheme and fusion weights is data dependent.

• In practice, the assumption of independence between matchers to be used does

not adversely affect the performance of the fusion scheme, especially when the

individuals matchers are quite accurate (equal error rate is less than 5%). In

other words, the complete likelihood ratio fusion rule and the product likelihood

ratio fusion rule give comparable performance.

• Utilizing biometric sample quality information, when available, in the likeli-

hood ratio based fusion framework leads to a significant improvement in the
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performance of multibiometric systems.

• The sequential fusion rules significantly reduce the number of modalities re-

quired for authentication and hence, increase the throughput and user conve-

nience without degrading the recognition performance significantly.
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Chapter 4

Multibiometric Identification

The likelihood ratio based score fusion framework proposed in Chapter 3 was devel-

oped specifically for the verification scenario where the goal is to decide whether an

input sample belongs to the genuine or impostor class. In verification, the biometric

query is compared only to the template of the claimed identity, resulting in a single

match score for each matcher. However, in an identification system, the biometric

query is compared with all the templates in the database resulting in N match scores

for each matcher, where N is the number of persons enrolled in the database. The

goal is to determine the true identity I of the user based on these N match scores,

where I ∈ {I1, I2, · · · , IN , IN+1}. Here, I1, I2, · · · , IN correspond to the identities

of the N persons enrolled in the system and IN+1 indicates the “reject” option, which

is output when no suitable identity can be determined for the given query. When the

reject option is available to the system, the problem is known as open set identifica-

tion. On the other hand, if the biometric system is forced to make a decision in favor

of one of the N identities, then the problem is referred to as closed set identification.
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In this chapter, we show that likelihood ratio based score fusion framework developed

for the verification scenario is also applicable to multibiometric identification under

certain assumptions. We also demonstrate that likelihood ratio based score fusion

achieves good identification performance compared to other score level and rank level

fusion approaches.

4.1 Score Level Fusion

Let K denote the number of matchers in the multibiometric system and N be the

number of persons enrolled in the system. Let Sk
n denote the random variable corre-

sponding to the match score output by the kth matcher after comparing the query

to the template of the nth person in the database, k = 1, 2, · · · , K; n = 1, 2, · · · , N .

Let S be a N × K matrix defined as

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1
1 . . . Sk

1 . . . SK
1

. . .

S1
n . . . Sk

n . . . SK
n

. . .

S1
N . . . Sk

N . . . sKN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
S1, S2, · · · ,SK

]
= [S1,S2, · · · , SN ]T ,

where Sk =
[
Sk
1 , Sk

2 , · · · , Sk
N

]T
, for k = 1, 2, · · · , K and Sn =

[
S1
n, S2

n, · · · , SK
n

]
,

for n = 1, 2, · · · , N .

Suppose for a given query, we observe the N × K score matrix s =
[
skn

]
. Note
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that skn represents the match score output by the kth matcher for the nth template

in the database, k = 1, 2, · · · , K; n = 1, 2, · · · , N . Our goal is to determine the

true identity I of the given query based on s. According to the Bayesian decision

theory [57], the query should be assigned to the identity In0 that maximizes the

posteriori probability, i.e.,

Assign I → In0 if

P (In0 |s) ≥ P (In|s),∀ n = 1, 2, · · · , N. (4.1)

The above decision rule applies only to closed set identification. For open set iden-

tification, the query is assigned to identity In0 only when equation (4.1) holds and

P (In0|s) ≥ τ , where τ is a threshold.

We can estimate the posteriori probabilities P (In|s) in the following manner.

According to the Bayes theorem,

P (In|s) =
p(s|In)P (In)

p(s)
, (4.2)

where p(s|In) is the likelihood of observing the score matrix s given that the true

identity is In and P (In) is the prior probability of observing the identity In. If we

assume equal prior for all the identities (i.e., P (In) = 1/N, ∀ n = 1, 2, · · · , N), the

posteriori probability P (In|s) is proportional to the likelihood p(s|In). Hence, we

can rewrite the decision rule in equation (4.1) as
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Assign I → In0 if

p(s|In0) ≥ p(s|In), ∀ n = 1, 2, · · · , N. (4.3)

Ideally, we would like to estimate the conditional density of s individually for each

user because it captures the complete information about dependencies between the

scores assigned to the different users and the user-specific characteristics of the match

scores. However, directly estimating the conditional density of s is not practical due

to the following two reasons.

1. Since s is a N×K dimensional matrix and N is usually quite large (can be of the

order of millions), estimating the density of s requires a significant number of

training samples for each user, which is not generally available in multibiometric

databases. Often, only a single template and query is available for each user.

2. The density of s needs to be re-estimated whenever there is a change in the list

of persons enrolled in the biometric system, which may occur frequently.

Two simplifying assumptions are generally used [12, 75] to make the density esti-

mation feasible. Firstly, we assume that the match scores for different persons are

independent of one another. In other words, si and sj are assumed to be independent

for all i �= j, i = 1, 2, · · · ; N, j = 1, 2, · · · , N . Based on this assumption, the likelihood

p(s|In) can be simplified as
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p(s|In) =
N∏

j=1
p(sj |In) = p(sn|In)

N∏
j=1,j �=n

p(sj |In). (4.4)

Here, p(sn|In) represents the density of genuine match scores corresponding to user

In and p(sj |In), j �= n represents the densities of the impostor scores.

The second assumption made is that the genuine match scores of all users are

identically distributed, i.e., p(sn|In) = p(sn|genuine) = fgen(sn),∀ n = 1, 2, · · · , N

and the impostor match scores of all users are identically distributed, i.e., p(sj |In) =

p(sj |impostor) = fimp(sj), ∀ j, n = 1, 2, · · · , N, n �= j. Therefore, equation (4.4) can

be further rewritten as

p(s|In) = fgen(sn)
N∏

j=1,j �=n

fimp(sj). (4.5)

Multiplying and dividing equation (4.5) by fimp(sn), we get

p(s|In) =
fgen(sn)

fimp(sn)

N∏
j=1

fimp(sj). (4.6)

Under the above two simplifying assumptions, the likelihood of observing the score

matrix s given that the true identity is In is proportional to the likelihood ratio that

was used in the verification scenario. Thus, the decision rule in equation (4.3) can be

restated as

Assign I → In0 if
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fgen(sn0)

fimp(sn0)
≥ fgen(sn)

fimp(sn)
, ∀ n = 1, 2, · · · , N. (4.7)

4.2 Rank Level Fusion

When a biometric system operates in the identification mode, for a given query,

the output of the system can be viewed as a ranking of the enrolled identities. In

other words, the output indicates the set of possible matching identities sorted in

a decreasing order of match scores. Although the ranks are derived from the match

scores, the rank information captures the relative ordering of the scores corresponding

to different users. The goal of rank level fusion schemes is to consolidate the ranks

output by the individual biometric subsystems in order to derive a consensus rank

for each identity.

Let K denote the number of matchers in the multibiometric system and N be

the number of persons enrolled in the system. Suppose for a given query, we observe

the N × K rank matrix r =
[
rk
n

]
, where rk

n represents the rank output by the kth

matcher for the nth template in the database, k = 1, 2, · · · , K; n = 1, 2, · · · , N . The

goal in rank level fusion is to determine the true identity I of the given query based

on r. Let r
′
n be a statistic computed for user n such that the user with the lowest

value of r
′
is assigned the highest consensus (or reordered) rank. For example, in the

highest rank method [79], each user is assigned the highest rank (minimum r value)

as computed by different matchers, i.e., the statistic for user n is

r
′
n =

K
min
k=1

rk
n. (4.8)
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Ties are broken randomly to arrive at a strict ranking order based on the new statistic

r
′
. Ho et al. [79] proposed other methods such as Borda Count and logistic regression

which compute the statistic r
′

as a linear combination of ranks provided by the

individual matchers. Melnik et al. [135] proposed the use of non-linear functions to

combine the ranks of the individual matchers.

We now propose a new rank combination statistic based on Bayesian decision

theory. Let Pk(r) be the probability that the identity that is assigned rank r by the

kth matcher is the true identity, r = 1, 2, · · · , N ; k = 1, 2, · · · , N . Note that the

cumulative distribution function of the discrete rank distribution Pk(r) is nothing

but the Cumulative Match Characteristic (CMC) defined in section 1.3. Grother

and Phillips [75] and Bolle et al. [12] show that the rank distribution Pk(r) can be

estimated provided the marginal genuine and impostor match score densities fgen,k(·)

and fimp,k(·) are known. This estimation again requires the same two assumptions

used in section 4.1, namely, (i) scores of the individual users are independent and

(ii) genuine score distributions of different users are identical and the impostor score

distributions of different users are identical.

For a given query, suppose that the identity In is assigned the rank rk
n by the kth

matcher. From the definition of the rank distribution Pk(r), Pk(rk
n) is the posteriori

probability that In is the true identity given rk
n. Further, if we assume that the

matchers are independent, we can compute the new rank combination statistic as the

product of the posterior probabilities of the individual matchers.
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r
′
n =

K∏
k=1

Pk(rk
n), forn = 1, 2, · · · , N. (4.9)

Note that for the rank statistic computed using equation (4.9), the user with the

largest value of r
′
should be assigned the highest consensus rank. The rank posterior

based fusion rule can then be defined as follows.

Assign I → In0 if

r
′
n0 ≥ r

′
n,∀ n = 1, 2, · · · , N. (4.10)

Note that likelihood ratio based score fusion rule shown in equation (4.7) uti-

lizes only the match scores corresponding to a particular user, when computing the

likelihood ratio for that user. In other words, the relative information between the

scores of different users is ignored when computing the score likelihood ratio. On the

other hand, the rank posterior based fusion rule in equation (4.10) considers only the

relative order information between the scores of different users and the actual score

values are ignored. Therefore, we can treat the score and rank information as two

different pieces of evidence and define a hybrid fusion scheme that utilizes both the

match scores and the ranks. Let R the combined score and rank statistic, defined as

Rn(s, r) = P (In|s)r
′
n, (4.11)

where the posterior probability based on the match score matrix s, P (In|s), is com-

puted by substituting equation (4.6) in equation (4.2) and the posterior probability
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based on the rank matrix r is obtained using equation (4.9). The hybrid score-rank

fusion rule can then be defined as

Assign I → In0 if

Rn0 ≥ Rn, ∀ n = 1, 2, · · · , N. (4.12)

4.3 Experimental Results

The identification performance of various score and rank level fusion strategies was

evaluated on the three partitions of the NIST-BSSR1 database. The cumulative

match characteristic (CMC) curves of the individual matchers and the highest rank

and hybrid score-rank fusion rules on the NIST-BSSR1 database are shown in Figures

4.1, 4.2 and 4.3. Similar to the verification scenario, in each experiment, half the users

were randomly selected to be in the training set for estimating the marginal densities

and the rank distribution. The remaining half of the database was used for evaluating

the fusion performance. The above training-test partitioning was repeated 20 times

and the reported CMC curves correspond to the mean identification rates over the

20 trials.

Among the various rank level fusion schemes such as highest rank, Borda count

and logistic regression, we observed that the highest rank method achieves the best

rank-m recognition rate when m ≥ K, where K is the number of matchers. Hence,

only the recognition rates of the highest rank method are reported here. It is well-
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Figure 4.1: Cumulative Match Characteristic (CMC) curve of highest rank fusion and
the hybrid score-rank fusion rules on the NIST-Multimodal database (K = 4, N =
517).
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Figure 4.2: Cumulative Match Characteristic (CMC) curve of highest rank fusion and
the hybrid score-rank fusion rules on the NIST-Fingerprint database (K = 2, N =
6, 000).
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known that the highest rank method works well when the number of users is large

compared to the number of matchers [79], which is usually the case in biometric

identification systems. This is because the highest rank method utilizes the strength

of each matcher effectively. Even if only one matcher assigns a high rank to the

correct user, it is still very likely that the correct user will receive a high rank after

reordering. However, there can be up to K ties at rank 1 due to conflicting decisions

output by the K matchers. Since the ties are broken randomly without considering

the relative accuracies of the matchers, the identification rate of the highest rank

method at ranks 1 to K − 1 is not very high. In fact, the rank-1 accuracy of the

highest rank method is usually less than the rank-1 accuracy of the best individual

matcher.

The recognition rates of the likelihood ratio based score fusion rule, the rank

posterior fusion rule and the hybrid score-rank fusion rule were observed to be quite

similar on all the three partitions of NIST-BSSR1. While the hybrid score-rank fusion

rule achieves a marginal improvement in the recognition rates over the other two fusion

rules, the differences in the recognition rates of the three fusion rules is less than 1%

at all ranks. Therefore, only the performance of the hybrid score-rank fusion rule is

reported in Figures 4.1, 4.2 and 4.3. In the case of the NIST-Multimodal database,

the hybrid score-rank fusion rule provides 100% rank-1 accuracy, while the rank-1

accuracy of the best single matcher (right index finger) was only 93.7%. The hybrid

score-rank fusion rule improves the rank-1 accuracy from 88.9% for the best single

matcher (right index finger) to 94% on the NIST-Fingerprint database. Finally, on

the NIST-Face database the improvement is comparatively lower (81.2% for the best
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Figure 4.3: Cumulative Match Characteristic (CMC) curve of highest rank fusion and
the hybrid score-rank fusion rules on the NIST-Face database (K = 2, N = 3, 000).
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face matcher and 84.1% for the score-rank fusion rule) due to the strong correlation

between the two face matchers.

The results also indicate that the performance of the simplest rank level fusion

scheme, namely, the highest rank method, is quite comparable to performance of

the more complex score and rank fusion strategies for ranks greater than or equal

to K, where K is the number of matchers. Therefore, in practical multibiometric

identification systems with a large number of users, it may be sufficient to use the

highest rank method if the goal is to retrieve the top few matches. However, if the

best rank-1 accuracy is desired and if the match score information is available, then

the hybrid score-rank fusion rule can be employed.

4.4 Summary

While fusion in a multibiometric identification system is a more challenging problem

due to the presence of large number of classes, we have shown that the likelihood

ratio based fusion framework developed for a verification system can also be used

for identification, provided the match scores of different users are assumed to be

independent and identically distributed. We also proposed a scheme for rank level

fusion in multibiometric identification that is based on converting the ranks into

posterior probabilities. Furthermore, the rank posteriors can be directly combined

with the posteriors obtained from the match score distributions to obtain a hybrid

score-rank fusion rule. Finally, we have demonstrated that the proposed hybrid fusion

rule consistently achieves high recognition rates at all ranks.
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Chapter 5

Multibiometric Template Security

One of the most potentially damaging attacks on a biometric system is against the

biometric templates. Attacks on the template can lead to the following four vulnera-

bilities: (i) A template can be replaced by an impostors’s template to gain unautho-

rized access, (ii) a physical spoof can be created from the template (see [3,21,171]) to

gain unauthorized access to the system (as well as other systems that use the same

biometric trait), (iii) the stolen template can be replayed to the matcher to gain unau-

thorized access, and (iv) the templates can be used for cross-matching across different

databases to covertly track a person without his/her consent. Due to these reasons,

biometric templates (or the raw biometric images) should not be stored in plaintext

form and fool-proof techniques are required to securely store the templates such that

both the security of the application and the users’ privacy are not compromised by

adversary attacks. As shown in Chapters 3 and 4, multibiometric systems that fuse

evidence from multiple biometric sources can provide significant improvement in the

recognition accuracy. However, a multibiometric system requires storage of multiple
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templates for the same user corresponding to the different biometric sources. Hence,

template security is even more critical in multibiometric systems where it is essential

to secure multiple templates of a user.

Although a number of approaches such as feature transformation and biometric

cryptosystems have been proposed to secure templates [199], these approaches have

been proposed primarily to secure a single template. While it is possible to apply

these template protection schemes to each individual template separately, such an

approach is not optimal in terms of security. The following simple analogy illustrates

why securing the individual templates separately is not the best approach. Consider

an application that requires the user to enter two separate 4-digit personal identifica-

tion numbers (PIN) that are verified independently to provide access. An adversary

attempting to break such a system would require at most 104 attempts to guess each

PIN. Since the PINs are verified independently, the maximum number of attempts

needed to circumvent the system is only 2 × 104. On the other hand, if the applica-

tion employs a single 8-digit PIN, the attacker would now need a maximum of 108

attempts to circumvent the system, which would require more effort than cracking

two 4-digit PINs. Protecting the individual templates separately is equivalent to hav-

ing a scheme requiring multiple smaller PINs, which is less secure than a scheme that

stores the multiple templates as a single entity (analogous to single large PIN).

In this chapter, we propose a unified scheme to secure multiple templates of a

user in a multibiometric system by (i) transforming features from different biometric

sources (e.g., fingerprint minutiae and iriscodes) into a common representation, (ii)

performing feature-level fusion to derive a single multibiometric template, and (iii)
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securing the multibiometric template using a single fuzzy vault construct [102]. We

show that the proposed multibiometric template protection scheme has higher secu-

rity and better recognition performance compared to the case where the individual

templates are secured separately. We have developed a fully automatic implemen-

tation of a multibiometric fuzzy vault that can handle the following scenarios (i)

multiple samples (e.g., two impressions from the same finger), (ii) multiple instances

(e.g., left and right index fingers) and (iii) multiple traits (e.g., fingerprint and iris).

5.1 Review of Template Protection Schemes

Almost all the commercial biometric systems secure the stored templates by encrypt-

ing them using standard cryptographic techniques. Either a public key cryptosystem

like RSA [115] or a symmetric key cipher like AES [1] is commonly used for template

encryption. Since the above cryptosystems are generic, they can be directly applied

to any biometric template and the encrypted templates are secure as long as the

decryption key is secure. However, encryption is not a good solution for biometric

template protection due to two main reasons. Firstly, encryption is not a smooth

function and a small difference in the values of the feature sets extracted from the

raw biometric data would lead to a very large difference in the resulting encrypted

features. Recall that multiple acquisitions of the same biometric trait do not result in

the same feature set (see Figure 1.3). Due to this reason, one cannot store a biometric

template in an encrypted form and then perform matching in the encrypted domain.

Hence, for every authentication attempt, (i) the template is decrypted, (ii) matching
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is performed between the query and decrypted template and (iii) the decrypted tem-

plate is then removed from memory. Thus, the template gets exposed during every

authentication attempt. Secondly, the security of the encryption scheme depends on

the decryption key. Hence, the decryption key needs to be securely stored in the

system and if the key is compromised, the template is no longer secure. Because of

these two reasons, standard encryption algorithms alone are not adequate for securing

biometric templates and techniques that are designed to specifically account for the

intra-user variability in the biometric data are needed.

The template protection schemes proposed in the literature can be broadly clas-

sified into two categories (see Figure 5.1), namely, feature transformation approach

and biometric cryptosystem.

Template
Protection

Feature
Transformation

Biometric Cryptosystem
(Helper Data Methods)

Salting
(e.g., Biohashing)

Non-invertible
Transform

(e.g., Robust Hashing)

Key Binding
(e.g., Fuzzy Vault,

Fuzzy Commitment)

Key Generation
(e.g., Secure Sketch-

Fuzzy Extractor)

Figure 5.1: Categorization of template protection schemes.

5.1.1 Feature Transformation

In the feature transform approach, a transformation function (F) is applied to the

biometric template (T ) and only the transformed template (F(T ; K)) is stored in
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the database (see Figure 5.2). The parameters of the transformation function are

typically derived from a random key (K) or a password. The same transformation

function is applied to query features (Q) and the transformed query (F(Q; K)) is

directly matched against the transformed template (F(T ; K)). Depending on the

characteristics of the transformation function F , the feature transform schemes can be

further categorized as salting or non-invertible transforms. In salting, F is invertible,

i.e., if an adversary gains access to the key and the transformed template, she can

recover the original biometric template (or a close approximation of it). Hence, the

security of the salting scheme is based on the secrecy of the key or password. On the

other hand, non-invertible transformation schemes typically apply a one-way function

on the template and it is computationally hard to invert a transformed template even

if the key is known.

Key (K)Transformed
Template

F(T,K)

Biometric
Query (Q)

Match/
Non-match

Transform
F

Matching

Key (K)
Biometric

Template (T)

Transform
F

Enrollment Authentication

F(Q,K)

Figure 5.2: Authentication mechanism when the biometric template is protected using
a feature transformation approach.

An example of salting approach is the random multi-space quantization technique

proposed by Teoh et al. [187]. In this technique, the authors first extract the most dis-
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criminative projections of the face template using the Fisher discriminant analysis [5]

and then project the obtained vectors on a randomly selected set of orthogonal direc-

tions. This random projection defines the salting mechanism for the scheme. Similar

biohashing schemes have been proposed for iris [38] and palmprint [43] modalities. An-

other example of salting is the cancelable face filter approach proposed in [174] where

user-specific random kernels are convolved with the face images during enrollment

and authentication. Non-invertible transformation functions have been proposed for

fingerprint [158] and face [188] modalities in the literature.

5.1.2 Biometric Cryptosystems

Biometric cryptosystems [22,198] were originally developed for the purpose of either

securing a cryptographic key using biometric features or directly generating a cryp-

tographic key from biometric features. However, they can also be used as a template

protection mechanism. In a biometric cryptosystem, some public information about

the biometric template is stored. This public information is usually referred to as

helper data and hence, biometric cryptosystems are also known as helper data-based

methods [199]. While the helper data does not (is not supposed to) reveal any signifi-

cant information about the original biometric template, it is needed during matching

to extract a cryptographic key from the query biometric features. Matching is per-

formed indirectly by verifying the validity of the extracted key (see Figure 5.3). Error

correction coding techniques are typically used to handle intra-user variations.

Biometric cryptosystems can be further classified as key binding or key generation
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systems depending on how the helper data is obtained. When the helper data is

obtained by binding a key (that is independent of the biometric features) with the

biometric template, we refer to it as a key-binding biometric cryptosystem. Note that

given only the helper data, it is computationally hard to recover either the key or the

original template. Matching in a key binding system involves recovery of the key from

the helper data using the query biometric features. If the helper data is derived only

from the biometric template and the cryptographic key is directly generated from the

helper data and the query biometric features, it leads to a key generation biometric

cryptosystem.

Biometric
Template (T)

Helper Data
Extraction

Helper Data
H = F (T)

Biometric
Query (Q)

Recovery

Extracted
Key (K)

Validity
Check

Match/
Non-match

Enrollment Authentication 

Figure 5.3: Authentication mechanism when the biometric template is secured using
a key generation biometric cryptosystem. Authentication in a key-binding biometric
cryptosystem is similar except that the helper data is a function of both the template
and the key K, i.e., H = F(T ; K).

A number of template protection techniques like fuzzy commitment [103], fuzzy

vault [102], shielding functions [194] and distributed source coding [56] can be consid-

ered as key binding biometric cryptosystems. Other schemes for securing biometric
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templates such as the ones proposed in [51, 76, 105, 137, 138] also fall under this cat-

egory. The fuzzy vault scheme proposed by Juels and Sudan [102] has become one

of the most popular approaches for biometric template protection and its implemen-

tations for fingerprint [41, 42, 141, 196, 209], face [62], iris [117] and signature [68]

modalities have been proposed. Recently, multibiometric fuzzy vaults based on mul-

tiple fingers [210] and fingerprint and voice [19] have also been proposed.

Direct cryptographic key generation from biometrics is an attractive proposition,

but it is a difficult problem because of the intra-user variability. Early biometric key

generation schemes such as those by Chang et al. [28] and Veilhauer et al. [200] em-

ployed user-specific quantization schemes. Information on quantization boundaries

is stored as helper data, which is used during authentication to account for intra-

user variations. Dodis et al. [55] introduced the concepts of secure sketch and fuzzy

extractor in the context of key generation from biometrics. The secure sketch can

be considered as helper data that leaks only limited information about the template

(measured in terms of entropy loss), but facilitates exact reconstruction of the tem-

plate when presented with a query that is close to the template. The fuzzy extractor

is a cryptographic primitive that generates a cryptographic key from the biometric

features.

Dodis et al. [55] proposed secure sketches for three different distance metrics,

namely, Hamming distance, set difference and edit distance. Li and Chang [120]

introduced a two-level quantization based approach for obtaining secure sketches.

Sutcu et al. [185] discussed the practical issues in secure sketch construction and

proposed a secure sketch based on quantization for face biometric. The problem of
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generating fuzzy extractors from continuous distributions was addressed by Buhan et

al. in [16]. Secure sketch construction for other modalities such as fingerprints [4,23],

3D face [214] and multimodal systems (face and fingerprint) [186] have also been

proposed. Protocols for secure authentication in remote applications [14, 17] have

also been proposed based on the fuzzy extractor scheme.

Some template protection techniques make use of more than one basic approach

(e.g., salting followed by key-binding). We refer to such techniques as hybrid schemes.

Template protection schemes proposed in [13, 145, 183, 184] are examples of the hy-

brid approach. A brief summary of the various template protection approaches is

presented in Table 5.1. Apart from salting, none of the other template protection

schemes require any secret information (such as a key) that must be securely stored

or presented during matching.

The template protection schemes described in Table 5.1 have their own advantages

and limitations in terms of template security, computational cost, storage require-

ments, applicability to different kinds of biometric representations and ability to han-

dle intra-class variations in biometric data [198]. In this thesis, we focus on a specific

biometric cryptosystem known as fuzzy vault and present (i) a fully automatic im-

plementation of a minutiae-based fingerprint fuzzy vault where high curvature points

derived from the orientation field are used to align the template and query minutiae,

(ii) an iris cryptosystem based on the fuzzy vault framework to secure iriscode tem-

plates, and (iii) a multibiometric vault framework to secure multiple templates of a

user in a multibiometric system as a single entity.
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Table 5.1: Summary of different template protection schemes. Here, T represents
the biometric template, Q represents the query and K is the key used to protect the
template. In salting and non-invertible feature transform, F represents the trans-
formation function and M represents the matcher that operates in the transformed
domain. In biometric cryptosystems, F is the helper data extraction scheme and M
is the error correction scheme that allows reconstruction of the key K.

Approach What imparts se-
curity to the tem-
plate?

What entities are
stored?

How are intra-user
variations handled?

Salting Secrecy of key K Public domain:
Transformed tem-
plate F(T ; K)
Secret: Key K

Quantization and
matching in trans-
formed domain
M(F(T ; K),F(Q; K))

Non-
invertible
transform

Non-invertibility of
the transformation
function F

Public domain:
Transformed tem-
plate F(T ; K), key
K

Matching in trans-
formed domain
M(F(T ; K),F(Q; K))

Key-binding
biometric
cryptosystem

Level of security
depends on the
amount of infor-
mation revealed by
the helper data H

Public domain:
Helper Data
H = F(T ; K)

Error correction and
user specific quantiza-
tion
K = M(F(T ; K), Q)

Key-
generating
biometric
cryptosystem

Level of security
depends on the
amount of infor-
mation revealed by
the helper data H

Public domain:
Helper Data
H = F(T )

Error correction and
user specific quantiza-
tion
K = M(F(T ), Q)
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5.2 Fuzzy Vault

Fuzzy vault is a cryptographic construct that is designed to work with biometric

features represented as an unordered set (e.g., minutiae in fingerprints). The security

of the fuzzy vault scheme is based on the infeasibility of the polynomial reconstruction

problem, which is a special case of the Reed-Solomon list decoding problem [11]. The

fuzzy vault scheme works as follows (see Figure 5.4). Suppose that a user wishes to

protect his biometric template, which is represented as an unordered set X, using

a secret K (e.g., a cryptographic key). Here, unordered set implies that all the

elements in the set are unique and the order in which the elements of the set are

listed is irrelevant. Note that this is true for minutiae representation of fingerprints.

The user selects a polynomial P that encodes the secret K in some way and evaluates

the polynomial on all the elements in X. The user then chooses a large number of

random chaff points that do not lie on the polynomial P. The entire collection of

points consisting of both points lying on P and those that do not lie on P constitute

the vault V . The purpose of adding the chaff points is to conceal the points lying

on P from an attacker. Since the points lying on P encode the complete information

about the template X and the secret K, concealing these points secures both the

template and the secret simultaneously.

The user authentication based on the vault V proceeds as follows. Let the query

be represented as another unordered set X
′
. If X

′
overlaps substantially with X, then

the user can identify many points in V that lie on the polynomial P . If a sufficient

number of points on P can be identified, an error correction scheme can be applied to
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exactly reconstruct P and thereby decode the secret K. If a valid secret is decoded,

the authentication is deemed to be successful. If X
′

does not overlap substantially

with X, then it is infeasible to reconstruct P and the authentication is unsuccessful.

Since the authentication can be successful even when X and X
′

are not exactly the

same, this scheme is referred to as a fuzzy vault.

The steps involved in creating the vault from the user’s biometric template and

the secret (vault encoding) are presented in Algorithm B.1 (see Appendix). All op-

erations in this algorithm are carried out over a field F . The algorithm has three

parameters, namely, n, r and s. Here, r depends on the number of features that

can be extracted from a user’s biometric template (e.g., number of minutia points in

the user’s fingerprint). The parameter s represents the number of chaff points that

are added to the vault and this parameter influences the security of the fuzzy vault

construction. If no chaff points are added, the vault leaks the information about the

template and the secret. As more chaff points are added, the security of the vault

increases. The degree of the polynomial, n, controls the tolerance of the system to

errors in the biometric data during decoding. For example, n determines the mini-

mum number of matching minutiae required for successful vault decoding. A larger

n requires more number of minutiae matches. The function ENCODESECRET(K)

constructs a polynomial P of degree n in variable x such that P encodes the secret K

uniquely, i.e., given P , we should be able to get back the secret K. A simple method

to construct such a polynomial is to embed the secret in the coefficients of P . The

function PERMUTE(V
′
) randomly reorders the elements in V

′
to obtain the vault

V .
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Figure 5.4: Schematic diagram of the fuzzy vault scheme proposed by Juels and
Sudan [102] based on fingerprint minutiae. (a) Vault encoding and (b) vault decoding.
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Algorithm B.3 (see Appendix) presents the steps involved in retrieving the secret

from the vault based on the user’s biometric query (vault decoding). The output of

this algorithm is either the secret K or a value null indicating that the authentication

is unsuccessful. The function RSDECODE(L
′
) is a (r, n) Reed-Solomon decoding

algorithm [7], which searches for a polynomial P of degree n such that P
(
a
′
i

)
= b

′
i

for more than r+n
2 values of

(
a
′
i, b

′
i

)
∈ L

′
. The RSDECODE function either outputs

a polynomial P that satisfies the above conditions or a value null indicating that

no such polynomial exists. The function DECODESECRET(p) is the inverse of the

ENCODESECRET function and it reconstructs the secret K from the polynomial

P . The vault decoding algorithm successfully retrieves the secret K if the number of

errors (e.g., non-matching minutiae) in the biometric data
(
|X − X

′ |
)
1 is less than(

r−n
2

)
. This ability to deal with intra-class variations in the biometric data, along

with its ability to work with unordered sets, makes the fuzzy vault scheme a promising

solution for biometric cryptosystems, particularly for fingerprints.

5.2.1 Fuzzy Vault Implementation

Since the introduction of the fuzzy vault scheme by Juels and Sudan, several re-

searchers have attempted to implement it in practice for securing biometric tem-

plates. Clancy et al. [42] proposed a fuzzy vault scheme based on the location of

minutia points (row and column indices in the image) in a fingerprint. They assumed

that the template and query minutiae sets are pre-aligned, which is not a realistic

1The notation |A| denotes the number of elements in a set A.
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assumption in practical fingerprint authentication systems. Further, multiple (four)

fingerprint impressions of a user were used during enrollment for identifying the reli-

able minutia points. The error correction step was simulated without being actually

implemented. The False Reject Rate of their system was approximately 20-30% and

they claimed that retrieving the secret was 269 times more difficult for an attacker

than for a genuine user.

The fingerprint-based fuzzy vault proposed by Yang et al. [209] also used only the

location information about the minutia points. Four impressions were used during

enrollment to identify a reference minutia, and the relative position of the remaining

minutia points with respect to the reference minutia was represented in the polar

coordinate system. This scheme was evaluated on a small database of 10 fingers and

a FRR of 17% was reported. Chung et al. [41] proposed a geometric hashing technique

to perform alignment in a minutiae-based fingerprint fuzzy vault. A modified fuzzy

vault scheme was used for designing an asymmetric cryptosystem in [141]. Fuzzy

vault implementations based on other biometric modalities such as face [62] and

handwritten signature [68] have also been proposed.

Uludag et al. [197] introduced a modification to the fuzzy vault scheme, which

eliminated the need for error correction coding. Uludag and Jain [196] also proposed

the use of high curvature points derived from the fingerprint orientation field to

automatically align the template and query minutiae sets. Our fingerprint-based

fuzzy vault implementation [144] extends the ideas presented in [197] and [196] in

order to achieve better performance on public-domain fingerprint databases.
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5.3 Proposed Fingerprint-based Fuzzy Vault

We first propose a fuzzy vault implementation based on fingerprint minutiae. We

use both the location and orientation attributes of a minutia point in our fuzzy

vault implementation. These attributes are represented as a 3-tuple (u, v, θ), where

u indicates the row index in the image (1 ≤ u ≤ U), v indicates the column index

(1 ≤ v ≤ V ) and θ represents the orientation of the minutia with respect to the

horizontal axis (1 ≤ θ ≤ 360). The algorithm presented in [87] is used for minutiae

extraction.

We have implemented a modified version of the fuzzy vault construction that

was proposed by Uludag et al. [197]. This modified fuzzy vault scheme does not

require error correction coding. Instead, several candidate sets of size (n + 1) (where

n is the degree of the polynomial which encodes the secret) are generated from the

unlocking set L
′

and polynomials are reconstructed using Lagrange interpolation.

This method gives rise to several candidate secrets and Cyclic Redundancy Check

(CRC) based error detection technique is used to identify the correct polynomial and

hence decode the correct secret. The main advantage of this scheme is its increased

tolerance to errors. Since only (n + 1) points are required to uniquely determine a

polynomial of degree n, this scheme can retrieve the secret K when the number of

errors
(
|X − X

′ | = |L − L
′ |
)

is less than (r−n), i.e., it can tolerate twice the number

of errors as the original fuzzy vault scheme. However, this method has a higher

computational cost because it requires a large number of polynomial interpolations.

Our fingerprint-based fuzzy vault implementation differs from the implementation
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in [197] and [196] in the following aspects.

1. In our implementation, we apply a minutiae matcher [87] during decoding to

account for non-linear distortion in fingerprints whereas in [196], the minutia

location information is coarsely quantized to compensate for distortion. Since

deformation of the fingerprint ridges increases as we move away from the center

of the fingerprint area towards the periphery, uniform quantization alone, as

used in [196], is not sufficient to handle distortion. The minutiae matcher used

in our implementation [87] employs an adaptive bounding box that accounts

for distortion more effectively. This is one of the main reasons the proposed

approach leads to a significant improvement in the genuine accept rate (GAR).

2. Only the location of minutia points was used for vault encoding in [196]. We use

both minutia location and orientation attributes, which increases the number of

chaff points that can be added because we can now add a chaff point whose

location is close to a true minutia but with a different direction. Chang et

al. [24] have shown that the number of possible chaff points affects the security

of the vault. Hence, using both minutia location and orientation makes it more

difficult for an attacker to decode the vault. At the same time, when a genuine

user attempts to decode the vault, it is easier to filter out chaff points from

the vault because it is less probable that a chaff point will match with a query

minutia in both location and direction. This reduces the decoding complexity

by eliminating most of the chaff points from the unlocking set.

3. We use local image quality index estimated from the fingerprint in order to select
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the most reliable minutiae for vault encoding and decoding. In [197], minutiae

selection was based on the value that is assigned to the minutiae in the field

F , which does not have any relation to the minutiae reliability. Our minutiae

selection method is also more efficient than the one used in [42] where multi-

ple fingerprint impressions were needed to determine reliable minutiae during

encoding.

4. Although our alignment technique is similar to the one proposed in [196], we

have made significant changes to the curvature estimation and alignment steps

compared to [196], which results in a more accurate alignment between the

template and query.

5.3.1 Vault Encoding

Figure 5.5 shows the block diagram of the proposed JS fuzzy vault encoding scheme.

The field used for constructing the vault is F = GF (216). We use the Galois field,

F = GF (216), for constructing the vault. The specific field GF (216) was chosen

because it offers a sufficiently large universe (number of elements in the field) to ensure

vault security [55] and is computationally convenient for the fuzzy vault application.

The vault encoding process consists of the following eight steps.

1. Given the template fingerprint image T , we first obtain the template minutiae

set MT = {mT
i }NT

i=1, where NT is the number of minutiae in T . The local

quality index proposed in [32] is used to estimate the quality of each minutia

in T . Let q
(
mT

i

)
be the quality of the ith minutia and qT = {q

(
mT

i

)
}NT

i=1
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Figure 5.5: Proposed implementation of vault encoding.

be the quality set corresponding to minutiae set MT . We also extract the high

curvature points HT from the template image to be used for alignment during

decoding. The details of extraction of high curvature points are presented in

Section 5.3.3.

2. Since only r genuine minutiae points are required to construct the vault, we

apply a minutiae selection algorithm to the template minutiae set MT . This

selection algorithm first sorts the minutiae based on their quality and then se-

quentially selects the minutiae starting with the highest quality minutia. More-

over, the algorithm selects only well-separated minutiae, i.e., the minimum dis-

tance between any two selected minutia points is greater than a threshold δ1.

The distance, DM , between two minutia points mi and mj is defined as

DM (mi,mj) =
√

(ui − uj)
2 + (vi − vj)

2 + βMΔ(θi, θj), (5.1)
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where Δ(θi, θj) = min
(
|θi − θj |, 360 − |θi − θj |

)
and βM is the weight as-

signed to the orientation attribute (set to 0.2 in our experiments2). Selection

of well-separated minutiae ensures that they are assigned unique values when

they are encoded into the field F . Let SMT = {mT
j }rj=1 denote the selected

minutiae set. Note that if the number of minutia points in T is less than r, or

if the selection algorithm fails to find r well-separated minutiae, we consider it

as a failure to capture (FTC) error and no further processing takes place.

3. The chaff point set CM = {mC
k }sk=1 is generated iteratively as follows. A

chaff point m = (u, v, θ) is randomly chosen such that u ∈ {1, 2, · · · , U}, v ∈

{1, 2, · · · , V } and θ ∈ {1, 2, · · · , 360}. The new chaff point is added to CM if

its minimum distance (as defined in equation (5.1)) to all the points in the set

SMT ∪ CM is greater than δ1.

4. The minutia attributes u, v, and θ are quantized and represented as bit strings of

length Bu, Bv and Bθ, respectively. If Bu, Bv and Bθ are chosen such that they

add up to 16, we can obtain a 16-bit number by concatenating the bit strings

corresponding to u, v, and θ. Using this method, minutia points are encoded as

elements in the field F = GF (216). Let X = {xj}rj=1 and Y = {yk}sk=1 be

the encoded values of selected template minutiae and chaff points, respectively,

in the field F .

2Since the variation in the orientation attribute of a minutia point is usually much larger compared
to the variation in its location attribute, the orientation difference is assigned a smaller weight
than the Euclidean distance between the minutiae locations. The specific value of 0.2 for βM was
determined empirically as a tradeoff between eliminating as many chaff points as possible from the
unlocking set while retaining as many genuine points as possible. The above tradeoff also determines
the value of the threshold δ2 used in decoding.
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5. Our scheme is designed to work with a secret key K of length 16n bits, where

n is the degree of the encoding polynomial. We append a 16-bit CRC code to

secret K to obtain a new secret K
′

containing 16(n + 1) bits. The generator

polynomial G(w) = w16 + w15 + w2 + 1, which is commonly known as IBM

CRC-16, is used for generating the CRC bits.

6. The secret K
′
is encoded into a polynomial P of degree n in F by partitioning

it into (n + 1) 16-bit values c0, c1, · · · , cn and considering them as coefficients

of P , i.e., P(x) = cnxn + · · · + c0.

7. The polynomial P is evaluated at all the points in the selected minutiae set X

to obtain the set P(X) = {P(xj)}rj=1. The corresponding elements of the sets

X and P(X) form the locking set L = {
(
xj ,P(xj)

)
}rj=1. A set Z = {zk}sk=1

is obtained by randomly selecting values zk ∈ F such that the points (yk, zk)

do not lie on the polynomial P , i.e, zk �= P(yk), ∀ , k = 1, 2, · · · , s. The chaff

set is defined as C = {(yk, zk)}sk=1. The union of locking and chaff sets is

denoted as V
′
.

8. The elements of V
′

are randomly reordered to obtain the vault V , which is

represented as V = {(ai, bi)}ti=1, where t = r + s. Only the vault V and the

high curvature points HT are stored in the system.

5.3.2 Vault Decoding

The process of decoding the vault consists of the following steps (see Figure 5.6).
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Figure 5.6: Proposed implementation of vault decoding. (a) Block diagram of the
complete decoding process and (b) details of the filter used to eliminate the chaff
points.
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1. Given the query fingerprint image Q, we obtain the query minutiae set MQ =

{mQ
i }NQ

i=1 and the high curvature points HQ. The quality of each minutia in

Q is estimated and the quality set qQ = {q
(
m

Q
i

)
}NQ

i=1 corresponding to MQ

is obtained.

2. The alignment algorithm described in Section 5.3.3 is applied and the aligned

query minutiae set MAQ = {mAQ
i }NQ

i=1 is obtained.

3. A minutiae selection algorithm is applied to select r minutiae from the set

MAQ based on their quality. The selected minutiae SMQ = {mQ
j }rj=1 are

well-separated in the sense that the minimum distance (as defined in equation

(5.1)) between any two selected minutiae is greater than δ1. If NQ < r or if

the number of well-separated query minutiae is less than r, it is considered as

failure to capture (FTC) and no further processing takes place.

4. The selected query minutiae are used to filter the chaff points in the vault

as follows (see Figure 5.6(b)). The abscissa values of the points in the vault,

i.e., A = {ai}ti=1, are first represented as 16-bit strings. The 16-bit strings

are partitioned into three strings of lengths Bu, Bv and Bθ which are then

converted into quantized minutia attribute values u, v and θ. Thus, we obtain

the set MV = {mV
i = (ui, vi, θi)}si=1.

5. The ith element of the set MV is marked as a chaff point if the minimum

distance between the point mV
i ∈ MV and all the selected minutiae in the query

m
Q
j ∈ SMQ is greater than a threshold δ2. We refer to this process as a coarse
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filter and it filters out a significant proportion of the chaff points (approximately

80%). Let SMV = {mV
k }NV

k=1 be a subset of MV containing only those elements

that are not marked as chaff. Here, NV is the number of points in MV that

are not marked as chaff and NV � s. At this stage, a minutiae matcher

[87] is applied to determine the corresponding pairs of minutiae in the sets

SMV and SMQ. Let V |Q denote the set of correspondences and let r
′
be the

number of correspondences. Since the size of the selected query minutiae set

is r, we have 0 ≤ r
′ ≤ r because each query minutiae can have no more than

one corresponding minutia in SMV . Note that it is also possible to directly

apply the minutiae matcher to find correspondences between MV and SMQ

without any coarse filtering. However, such a method is not effective because

the presence of a large number of chaff points in the vault leads to a number

of false correspondences. Hence, the coarse filter step is essential before the

minutiae matcher is applied.

6. Only those elements of V that are contained in SMV and which have a corre-

sponding minutia in SMQ are added to the unlocking set L
′
. The unlocking

set is represented as L
′
= {
(
a
′
i, b

′
i

)
}r

′
i=1, where

(
a
′
i, b

′
i

)
=
(
aj , bj

)
if aj has a

corresponding minutia in SMQ.

7. To find the coefficients of a polynomial of degree n, (n + 1) unique projections

are necessary. If r
′

< (n + 1), it results in authentication failure. Otherwise,

we consider all possible subsets L
′′

of size (n + 1) of the unlocking set L
′

and,

for each subset, we construct a polynomial P∗ by Lagrange interpolation. If
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L
′′

= {
(
a
′
i, b

′
i

)
}n+1
i=1 is a specific candidate set, P∗(x) is obtained as

P∗(x) =
(x − a

′
2)(x − a

′
3) · · · (x − a

′
n+1)

(a
′
1 − a

′
2)(a

′
1 − a

′
3) · · · (a′1 − a

′
n+1)

b
′
1 + · · ·

+
(x − a

′
1)(x − a

′
2) · · · (x − a

′
n)

(a
′
n+1 − a

′
1)(a

′
n+1 − a

′
2) · · · (a′n+1 − a

′
n)

b
′
n+1 (5.2)

The above operations result in a polynomial P∗(x) = c∗nxn + c∗n−1xn−1 + · · ·+

c∗0.

8. The coefficients c∗0, c∗1, · · · , c∗n of the polynomial P∗ are 16-bit values which are

concatenated to obtain a 16(n + 1)-bit string K∗ and CRC error detection is

applied to K∗. If an error is detected, it indicates that an incorrect secret has

been decoded and we repeat the same procedure for the next candidate set L
′′
.

If no error is detected, it indicates that K∗ = K
′

with very high probability.

In this case, the 16-bit CRC code is removed from K∗ and the system outputs

the secret K, which indicates a successful match.

5.3.3 Alignment based on High Curvature Points

The first step in matching two fingerprint images is to apply an alignment (regis-

tration) algorithm that can remove translation, rotation and possibly any non-linear

distortion between the two images and determine the area of overlap. Although align-

ing two fingerprints is a difficult problem in any fingerprint authentication system,

it is particularly more difficult in a biometric cryptosystem like fuzzy vault. This is

148



because the original fingerprint template is not available during authentication and

only a transformed version of template is available in the vault.

Previous implementations of fingerprint-based fuzzy vault either assumed that

the template and query fingerprint images are pre-aligned [42] or used a reference

point (e.g., core point [161] or a reference minutia point [209]) for alignment. Though

alignment based on a reference point is simple and computationally efficient, it is

difficult to determine the reference point reliably. Even a small error in locating the

reference point could lead to a false reject. To avoid this problem, Uludag and Jain

[196] proposed the use of additional information derived from the fingerprint image to

assist in alignment. While this additional data should carry sufficient information to

accurately align the template and query images, it should not reveal any information

about the template minutiae used for constructing the vault because any such leakage

would compromise the security of the vault. Uludag and Jain derived the alignment

data from the fingerprint orientation field. In particular, points of high curvature were

used as the alignment data in [196] and an Iterative Closest Point (ICP) algorithm

was used to determine the alignment between the template and the query based on

this alignment data. Our proposed alignment scheme is similar to the one presented

in [196] with some modifications.

Extraction of High Curvature Points

An orientation field flow curve [47] is a set of piecewise linear segments whose tan-

gent direction at each point is parallel to the orientation field direction at that point.

Although flow curves are similar to fingerprint ridges, extraction of flow curves is
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not affected by breaks and discontinuities, which are commonly encountered in ridge

extraction. Points of maximum curvature in the flow curves along with their cor-

responding curvature values constitute the alignment data in our implementation.

Therefore, the algorithm for extraction of high curvature points (see Figure 5.7) con-

sists of four steps: (i) orientation field estimation, (ii) extraction of flow curves, (iii)

determination of maximum curvature points and (iv) clustering of high curvature

points.

Let I be a fingerprint image with U rows and V columns. A robust estimate of

the orientation field for the given fingerprint image is obtained using the algorithm

described in [46]. Let � = (λ, μ) be a point in I, where 1 ≤ λ ≤ U and 1 ≤ μ ≤ V .

Let φ� be the orientation of the ridge flow with respect to the horizontal axis in the

neighborhood of �. Let O� = (cos φ�, sin φ�) be the unit orientation vector at �. A

flow curve with starting point �0 ∈ I can be defined iteratively as

�j = �j−1 + ρ · γ · O�j−1
, (5.3)

for j = 1, 2, · · · , J . Here, ρ = {−1, +1} defines the flow direction from �j−1 to �j , γ

is the length of the line segment from �j−1 to �j and O�j−1
is the unit orientation

vector at the point �j−1. The process of tracing a flow curve is terminated when

(i) the boundaries of the image are reached or (ii) J exceeds a certain pre-defined

threshold Jmax. The parameter γ determines the sampling interval of the flow curve

and is set to 5 pixels in our experiments. Each starting point �0 generates two curve

segments
{

�+j

}J+

j=1
and

{
�−j
}J−

j=1
in opposite directions corresponding to ρ = +1
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Figure 5.7: Algorithm for extraction of high curvature points.

and ρ = −1, respectively. The maximum number of samples in each curve segment,

Jmax, is set to 150. The two curve segments are then merged to get the complete

flow curve, which is represented as a set of points
{

�j

}J
′

j=1
, where J

′
= J+ + J−.

By repeating this procedure with different starting points �0 ∈ I, we obtain a set

of flow curves. Midpoints of the ridges in the thinned fingerprint image and points

in whose neighborhood the orientation field changes significantly are chosen as the

starting points.

The curvature (ω) of a point �j in a flow curve is defined as ω�j
= 1 − cos α�j

,

where α�j
is the angle between the vectors that are tangent to the flow curve at the

points �j−τ and �j+τ , for all τ ≤ j ≤ J
′ − τ . The parameter τ is related to the

sampling interval of the flow curve (γ) and is set to 5. The value of cos α�j
can be

easily computed from the orientation field as cos α�j
= (ρj−τO�j−τ

) ∗ (ρj+τO�j+τ
),

where ρj−τ is the flow direction from �j−τ to �j , ρj+τ is the flow direction from
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�j to �j+τ and ∗ indicates dot product. The value of ω�j
is minimum (zero) when

there is no change in direction as we go from �j−τ to �j+τ through �j and it attains

its maximum value of 2 when the change in direction is π. For each flow curve, the

curvature values for the points in the curve are estimated and local maxima in the

curvature are detected. If the value of the local maximum is greater than a threshold

σ (set to 0.3), then the point is marked as a high curvature point and the 3-tuple

h = (λ, μ, ω), where (λ, μ) is the location and ω is the curvature value, is added to

the alignment data set H. Figure 5.8 shows the procedure for curvature estimation

at a point and a trace of the curvature values for a sample flow curve. The process

of determining the maximum curvature points is repeated for all the flow curves, and

the final alignment data set for the image I is obtained as HI = {hi}R
I

i=1, where RI

is the number of high curvature points in I. High curvature points usually tend to

occur near the singular points (core and delta) in a fingerprint image. If the image has

more than one singular point, the points in the alignment data set may have many

clusters. Hence, a single-link clustering algorithm is applied to cluster the elements

of the alignment data set based on the location of the points.

The proposed alignment data extraction scheme differs from the one proposed

in [196] mainly in the definitions of curvature and local maxima in the curvature.

The proposed definition of curvature leads to a smooth estimate of curvature with

distinct local maxima. Further, unlike [196] where a single point having the maximum

curvature is selected as the high curvature point, we apply a robust local maxima

detection algorithm and utilize all the locally maximum points. This leads to better

alignment data extraction for some types of fingerprint images such as whorls because
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Figure 5.8: Determination of maximum curvature points. (a) Curvature estimation
at point �j and (b) trace of curvature for a sample flow curve along with the local
maximum.
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the flow curves near the core region of whorls generally tend to have more than one

high curvature point (one above the core and one below the core).

Alignment using ICP

Let T and Q be the template and query fingerprint images, respectively. Let HT =

{hT
i }RT

i=1 and HQ = {hQ
j }RQ

j=1 be the alignment data sets obtained from T and Q,

respectively. Let MQ = {mQ
j }NQ

j=1 be the query minutiae set, where NQ is the

number of minutia points in Q. The goal of the alignment scheme is to find a rigid

transformation F that closely aligns MQ with the template minutiae set MT based

on the alignment data sets HT and HQ. Note that the template minutiae set MT is

not available during alignment and only HT is known. We use the Iterative Closest

Point (ICP) algorithm proposed by Besl and McKay [8] to align HT and HQ and

estimate the rigid transformation F .

The ICP algorithm to align the template and query alignment data sets

is shown in the appendix as Algorithm B.1. In this algorithm, the function

INITTRANS
(
HT , HQ

)
estimates an initial transformation between HT and HQ

by aligning the center of mass of the points in HT and HQ. The weighted distance,

DH , between two high curvature points hi and hj is defined as

DH (hi, hj) =
√

(λi − λj)
2 + (μi − μj)

2 + βH |ωi − ωj |, (5.4)

where βH weights the relative contribution of the Euclidean distance between the

points (first term) and the difference in curvature (second term). The parameter
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βH is set to 100 in our experiments. The function TRANS
(
HT |Q, HQ

)
computes

the transformation F
′
that minimizes the mean squared Euclidean distance between

the locations of the corresponding points in HT |Q and HQ. Algorithm B.1 is run

until convergence or until a maximum number of iterations (kmax) is reached. The

algorithm is said to converge if the change in the mean weighted distance (MWD)

between the paired points is less than a threshold (Dstop). The values of kmax and

Dstop are set to 200 and 0.01, respectively.

When the template and query images overlap only partially, it is possible that the

overlap between the template and query alignment data sets is also partial. In such

cases, all the high curvature points in the query may not have a corresponding point

in the template. Algorithm B.1 strictly assigns a correspondence between every high

curvature point in the query and the template, and this may lead to alignment errors

when the overlap between the two sets is partial. To overcome this problem, we use

the trimmed ICP algorithm [35], which basically ignores a proportion of the points

in the query alignment data set whose distance to the corresponding points in the

template alignment data set is large, i.e., we ignore the query points with large values

of DH

(
h
T |Q
j , h

Q
j

)
. The proportion of points to be ignored is found by minimizing

an objective function (see [35] for details). The trimmed ICP algorithm is also robust

to outliers in the alignment data sets.

Based on the rigid transformation F output by the ICP algorithm, we align the

query minutiae set MQ with the template. Let MAQ = F
(
MQ

)
= {mAQ

j }NQ

j=1

represent the query minutiae set after alignment. Figure 5.9 shows an example of
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successful minutiae alignment based on high curvature points and trimmed ICP al-

gorithm. In Algorithm B.1, it is assumed that both the alignment data sets HT

and HQ have only a single cluster. If the number of clusters in HT and/or HQ is

more than one, then the algorithm is repeated for all possible cluster pairs. In this

scenario, there will be multiple aligned query minutiae sets. We select the aligned

query minutiae set that gives the largest unlocking set L
′
.

5.4 Proposed Iris Cryptosystem

The most common representation scheme used for matching iris images is the iriscode

representation developed by Daugman [50]. The iriscode features are obtained by

demodulating the iris pattern using quadrature 2D Gabor wavelets. In order to

account for the variations in the pupil dilation, iris size and rotation, the rubber

sheet model [50] is used to normalize the Gabor responses. The phase information

in the resulting Gabor responses is then quantized into one of the four quadrants

to produce a two-bit code for each local region. When the iris pattern is sampled

at R different radii and S different angles, a N -bit iriscode sequence is generated,

where N = (2×R× S). We use the algorithms described in [177] for pre-processing,

segmentation and extraction of iriscodes from the iris images.

We now propose an iris cryptosystem to secure iriscode templates. Since the

iriscode is a fixed length binary vector in which the relative order information between

the bits is essential for matching, we cannot secure the iriscode directly using the fuzzy

vault framework. To overcome this problem, we construct the iris cryptosystem in
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(a) (b)

(c) (d)

Figure 5.9: An example of successful minutiae alignment based on high curvature
points and ICP algorithm. (a) Template image with minutiae and high curvature
points, (b) query image with minutiae and high curvature points (c) template and
overlaid query minutiae prior to alignment and (d) template and overlaid query minu-
tiae after alignment. In this figure, the template minutiae are represented as squares
(tails indicate the minutia direction) and the query minutiae are represented as cir-
cles. The template and query high curvature points are represented as asterisks and
diamonds, respectively.
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two steps (see Figure 5.10). In the first step, we apply a salting (invertible) transform

to the iriscode template based on a randomly generated transformation key. Since the

transformation is invertible, the security of the transformed iriscode template relies

on the security of the transformation key. Hence, in the second step, we represent the

transformation key as an unordered set and secure it using the fuzzy vault construct.

Both the transformed iriscode template and the vault that embeds the transformation

key constitute the helper data in this iris cryptosystem.

The proposed iris cryptosystem has two main advantages. Firstly, the salting step

can be considered as a feature transformation function that converts a fixed length

binary vector into an unordered set. This enables us to secure diverse biometric tem-

plates such as fingerprint minutiae and iriscode as a single multibiometric fuzzy vault.

Moreover, both the salting and fuzzy vault steps can account for intra-user variations

in the iriscode template. Due to the presence of two layers of error correction, the

proposed iris cryptosystem allows larger intra-user variations in the iriscode template

and hence, provides a high genuine accept rate.

5.4.1 Helper Data Extraction

The schematic diagram of helper data extraction scheme in the proposed iris cryp-

tosystem is shown in Figure 5.10(a). The salting transform consists of two operations,

namely, BCH encoding [122] and an exclusive-or operation. Let H be a (MI , MK)

BCH encoding function, which takes a message K of length MK (MK < MI) and

appends (MI − MK) error correcting symbols to it in order to generate a codeword
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(a)

(b)

Figure 5.10: Schematic diagram of the iris cryptosystem based on iriscode features.
(a) Enrollment or helper data extraction and (b) authentication or key recovery.
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I = H(K) of length MI . In particular, we employ a primitive binary BCH encoding

scheme, where MI is chosen to be (2m− 1) and m is an integer greater than or equal

to 3. The values of MI and MK determine the number of errors that can be corrected

by the BCH coding scheme.

Let IT be a iriscode template of length NI bits that is to be secured using the

fuzzy vault framework. First, we partition the template IT into r non-overlapping

components
[
I1
T , I2

T , · · · , Ir
T

]
such that each component I

j
T (j = 1, 2, · · · , r) contains

exactly MI bits. Here, r is selected such that rMI ≥ NI . When NI < rMI ,

appropriate number (i.e., (rMI − NI)) of zero bits are appended to the iriscode

template IT to obtain the components
[
I1
T , I2

T , · · · , Ir
T

]
. Next, we randomly generate

r binary vectors K1, K2, · · · , Kr each of length MK bits. These r random binary

vectors together constitute the transformation key K1 of length rMK bits, i.e., K1 =[
K1, K2, · · · , Kr

]
. The BCH encoder H is applied individually to the binary vectors

K1, K2, · · · , Kr to obtain the codewords H(K1), H(K2), · · · , H(Kr). Note that

H(Kj), j = 1, 2, · · · , r is a binary vector of length MI . Finally, an exclusive-or

operation is performed between the r codewords generated by the BCH encoder and

the corresponding components of the iriscode template to obtain the components of

the transformed iriscode. The transformed iriscode template I∗ can be represented

as
[
I1∗ , I2∗ , · · · , Ir∗

]
, where the jth component I

j∗ is given by I
j∗ = I

j
T ⊕ H(Kj) , ⊕

denotes the exclusive-or operation and j = 1, 2, · · · , r. Hence, the complete salting

transformation can be represented as a function F1 that takes the iriscode template

IT and the transformation key K1 as inputs and generates the transformed iriscode

I∗ such that I∗ = F1(IT , K1).
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The transformation key K1 is secured using the fuzzy vault construct as follows.

Since the value of MK is set to 16 in our implementation, we can directly represent

the r components of the transformation key as elements in the Galois field GF (216).

Our authentication (or key recovery) scheme has been designed in such a way that

it does not require the relative order information between the components of key

K1. Hence, the components of the transformation key K1 can be directly repre-

sented as an unordered set X = {xj}rj=1, where xj is the representation of the

component Kj in GF (216). Let Y = {yk}sk=1 be the set of chaff points such that

yk ∈ GF (216), yk �= xj ,∀ j = 1, 2, · · · , r and k = 1, 2, · · · , s. Based on these two sets

X and Y and a different key K2 (referred to as the vault key with size 16n bits), we

can construct a fuzzy vault V = {(ai, bi)}ti=1, t = r + s by following steps 5 through

8 in the vault encoding algorithm presented in section 5.3.1. As pointed out earlier,

the transformed iriscode I∗ and the vault V together constitute the helper data in

the iris cryptosystem.

5.4.2 Authentication

The steps involved in authentication based on the proposed iris cryptosystem are

shown in Figure 5.10(b). Authentication or key recovery consists of two main stages.

First, the inverse salting transform is applied to the transformed iris code template

I∗ using the query iriscode IQ. This facilitates the recovery of the transformation key

used in vault encoding. Since the template and query iriscodes will not be identical

due to intra-user variations, the recovered transformation key K
′
1 may have some
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errors. In the second step, the transformation key K
′
1 is used to decode the vault V .

If the template and query iriscodes are sufficiently similar, the recovered key K
′
1 will

be sufficiently similar to K1 and hence, the vault can be successfully decoded.

The inverse salting transform again consists of two operations, an exclusive-or

followed by BCH decoding. Let IQ be the query iriscode of length NI bits. Similar

to the encoding stage, we partition the query IQ into r non-overlapping components[
I1
Q, I2

Q, · · · , Ir
Q

]
such that each component I

j
Q (j = 1, 2, · · · , r) contains exactly MI

bits. An exclusive-or operation is performed between the r components of the query

iriscode and the corresponding components of the transformed iriscode to obtain the

corrupted codewords. The jth corrupted codeword, H
′
(Kj), is given by H

′
(Kj) =

I
j∗ ⊕ I

j
Q = I

j
Q ⊕ I

j
T ⊕ H(Kj) = ej ⊕ H(Kj), where ej is error vector indicating the

differences between I
j
Q and I

j
T for j = 1, 2, · · · , r. Let H−1 be a (MI ,MK) primitive

binary BCH decoding function that takes a corrupted codeword H
′
(K) of length MI

and decodes it into a message K
′

of length MK . If the Hamming distance between

the corrupted codeword H
′
(K) and the original codeword H(K) is less than the error

correcting capability of the BCH coding scheme, then the decoded message K
′
would

be the same as the original message K.

The corrupted codewords H
′
(Kj), j = 1, 2, · · · , r are decoded using the BCH

decoder to recover the components of the transformation key K
′j . If there are lim-

ited number of bit differences between the template and query iriscode components,

the BCH decoder can account for those variations and the corresponding compo-

nents of the transformation key can be recovered without any errors. However, due
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to problems such as occlusion, there may be large differences between some of the

template and query iriscode components and the corresponding components of the

transformation key cannot be recovered correctly. The components of the recovered

transformation key are represented as an unordered set X
′

= {x′j}rj=1, where x
′
j is

the representation of the component K
′j in GF (216). The unlocking set L

′
can be ob-

tained as L
′
= {(ai, bi)}r

′
i=1, where (ai, bi) ∈ V and ai = x

′
j , for some j ∈ 1, 2, · · · , r

and r
′ ≤ r. Steps 7 and 8 of the vault decoding algorithm presented in section 5.3.2

are applied to recover the vault key K2. Successful recovery of the vault key indicates

a match between the template and query iriscodes.

5.5 Multibiometric Fuzzy Vault

In a multibiometric system, there are multiple templates for each user corresponding

to the different biometric sources. We propose a feature-level fusion to derive a single

multibiometric template from the individual templates and secure the multibiomet-

ric template using a single fuzzy vault construct. In particular, we show how the

multibiometric template can be derived in the following three scenarios, (i) multi-

ple impressions of the same finger, (ii) multiple instances (e.g., left and right index

fingers) and (iii) multiple traits (e.g., fingerprint and iris).

When multiple fingerprint impressions of the same finger are available for vault

encoding, we can apply a mosaicing technique [170] to combine the minutiae and

high curvature points from the individual images into a single mosaiced template and

alignment data set. When multiple impressions are available for decoding, we use
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them sequentially to unlock the vault. The decoding is successful if at least one of

the two queries succeeds in unlocking the vault.

When multiple instances of the same biometric trait are available for a user, we

can obtain the multibiometric template by concatenating the different feature sets.

For example, if MT
F1

and MT
F2

are the template minutiae sets derived from the right

and left index fingers of a user, respectively, the combined minutiae set MT
F can be

obtained as the union of the sets MT
F1

and MT
F2

. The fuzzy vault for the combined

minutiae set MT
F can be constructed using the same procedure described in section

5.3.1. The high curvature points from both the fingers are stored separately along

with the single multibiometric vault. During authentication, the query and template

minutiae sets of the two fingers are aligned independently. The aligned query minutiae

sets of the right and left index fingers are used to filter the chaff points from the

vault to generate two unlocking sets L
′
F1

and L
′
F2

. Either the union or the largest

unlocking set can be considered as the final unlocking set that is used for polynomial

reconstruction.

Figure 5.11 shows the encoding phase of a multimodal fuzzy vault with fingerprint

and iris modalities. In this scenario, a feature transformation function is applied to the

iriscode template to convert it into an unordered set with the help of a transformation

key. The salting transform described in section 5.4.1 can be used for this purpose.

Let XF and XI be the set of feature points generated by the fingerprint and iris

modalities, respectively. Note that all elements of the sets XF and XI are in Galois

Field GF (216). The union, X, of the two sets XF and XI is formed such that

the Hamming distance between any two elements in the union is greater than or
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Figure 5.11: Schematic diagram of a multimodal (fingerprint and iris) fuzzy vault.
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equal to 2. Here, the Hamming distance between any two elements in GF (216) is

defined as the number of bit differences in the 16-bit binary representation of the

elements. Steps 5 through 8 of the vault encoding algorithm presented in section

5.3.1 are then used for constructing the multimodal fuzzy vault. The high curvature

points from the fingerprint and the transformed iriscode template are stored along

with the vault as helper data. During authentication, the query iriscode is used to

recover the transformation key from the transformed iriscode template. The aligned

query minutiae set and the recovered iris transformation key are used to filter the

chaff points from the vault and two unlocking sets L
′
F and L

′
I are generated. The

union of the two unlocking sets is considered as the final unlocking set that is used

for polynomial reconstruction.

5.6 Experimental Results

5.6.1 Fingerprint-based Vault

The performance of the proposed fingerprint-based fuzzy vault implementation has

been evaluated on FVC2002-DB2 [128] and MSU-DBI [94] fingerprint databases (see

Appendix A.2). We consider the following three scenarios for vault implementation.

1. One impression is used for encoding and one impression is used for decoding.

2. Two impressions are used for encoding and one impression is used for decoding.

3. Two impressions are used for encoding and two impressions are used for decod-

ing.
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The parameters used in our implementation for the two databases are listed in

Table 5.2. The choice of polynomial degree (n) is related to the size of the secret

to be secured. For example, if n = 8, we can secure a key of size 128-bits. Since

the vault decoding is successful if (n + 1) query minutiae match with the template

minutiae, the parameter n also affects the error rates. Since the number of minutiae

varies for different users, using a fixed value of r (the number of genuine minutiae

points in the vault) across all users leads to a large failure to capture (FTC) rate. To

overcome this problem, we fix the range of r and determine its value individually for

each user. The number of chaff points in the vault (s) is chosen to be approximately

10 times the number of genuine points in the vault, which is a reasonable tradeoff

between the complexity of a brute force attack and storage requirements of the vault.

The number of bits used for encoding the minutia attributes u, v and θ into the field

F = GF (216) are Bu = 6, Bv = 5 and Bθ = 5, respectively. The allocation of bits

determines the quantization step size for u, v and θ and it depends on the image size.

For the databases used here, the above parameter values for Bu, Bv and Bθ did not

change the distribution of number of matching minutiae after quantization.

Table 5.2: Parameters used for fuzzy vault implementation.
Parameter FVC2002-DB2 MSU-DBI

No. of genuine points in the vault, r 18-24 24-36
Degree of encoding polynomial, n 7-10 10-12
Total no. of points in the vault, t 224 336
No. of chaff points in the vault, s 200-206 300-312

Minimum distance between selected minutiae, δ1 25 25
Maximum distance between a query minutia and

30 40
points selected by the coarse filter, δ2
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An example of successful vault operation for a user from FVC2002-DB2 when

n = 8 is shown in Figure 5.12. Figure 5.12(f) shows that the ICP algorithm leads

to correct alignment of query minutiae with the template minutiae concealed in the

vault. The coarse filter and minutiae matcher eliminate most of the chaff points

from the vault. The unlocking set mainly consists of genuine points from the vault.

For example, in Figure 5.12(g) we observe that there is only one chaff point in the

unlocking set. Since the number of genuine points in the unlocking set is more than

9, the decoding is successful in this example.

The criteria used for evaluating the performance of the vault are failure to cap-

ture rate (FTCR), genuine accept rate (GAR) and false accept rate (FAR). When the

number of well-separated minutiae in the template and/or query fingerprint is less

than r, it results in failure to capture. The genuine accept rate is defined as the per-

centage of attempts made by genuine users that resulted in successful authentication.

Since a vault is constructed for each finger, the number of genuine attempts is 100

and 160 for the FVC and MSU databases, respectively. The false accept rate is the

percentage of attempts made by impostors that resulted in successful decoding of a

vault corresponding to a legitimate user. Impostor attempts were simulated by trying

to decode a user’s vault using impressions from all the other users. The number of

impostor attempts is 9, 900 and 25, 440 for the FVC and MSU databases, respectively.

The first row of Table 5.3 shows the performance of the proposed vault implemen-

tation on the FVC2002-DB2 database for different key sizes when a single impression

is used for encoding and decoding (impression 1 is used for encoding and impression 2

for decoding). For example, when the key size is 128 bits (n = 8), 91 out of 100 gen-
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(a) (b) (c)

(d) (e) (f) (g)

Figure 5.12: An example of successful operation of the fuzzy vault. (a) Template
fingerprint image with minutiae, (b) selected template minutiae and high curvature
points, (c) vault in which the selected template minutiae are hidden among chaff
points (for clarity, minutiae directions are not shown), (d) query fingerprint image
with minutiae, (e) selected query minutiae and high curvature points, (f) ICP align-
ment of template and query high curvature points and coarse filtering of chaff points,
and (g) unlocking set obtained by applying a minutiae matcher that eliminates almost
all the chaff points. The two points shown in filled squares in (g) are the only chaff
points that remain in the unlocking set. Here, figures (a)-(c) represent vault encoding
and (d)-(g) represent vault decoding.
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uine attempts were successful. Among the 9 failed attempts, 2 were due to the lack of

a sufficient number of minutiae in the template (FTC error). So, only 7 false rejects

were actually encountered. For the same experiment, the fuzzy vault implemented

in [196] was successful only in 61 out of 100 attempts with a FTCR of 16%. The

high FTCR in [196] is due to errors in the extraction of high curvature points. If the

alignment stage in the implementation of [196] is replaced with the one proposed in

this thesis, the FTCR reduces to 2% and the GAR improves to 74%. This shows that

the proposed alignment data extraction and alignment algorithms are more robust

compared to those presented in [196]. The selection of reliable minutiae based on

image quality and use of a minutiae matcher to account for non-linear distortion con-

tribute to further improvement in the GAR from 74% to 91%. The net improvement

in the GAR achieved by the proposed implementation over [196] is 30%.

In the case of MSU-DBI database, using single impressions for encoding and de-

coding results in a FTCR of 5.6% and a GAR of 82.5% for n = 11 (see the first

row of Table 5.4). This decrease in performance compared to FVC2002-DB2 is due

to the lower quality of images in the MSU database. However, the average number

of matching minutiae in the MSU database is higher than in FVC2002-DB2, which

allows us to accommodate a larger key size.

The proposed alignment technique based on high curvature points also performs

better than registration based on core point. Since it is difficult to determine the core
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Table 5.3: Performance of the proposed fingerprint-based fuzzy vault implementation
on FVC2002-DB2 database. Here, n denotes the degree of the encoding polynomial.
The maximum key size that can be secured is 16n bits. The Failure to Capture Rate
(FTCR), Genuine Accept Rate (GAR) and False Accept Rate (FAR) are expressed
as percentages.

Scenario FTCR
n = 7 n = 8 n = 10

GAR FAR GAR FAR GAR FAR
1 Template, 1

Query
2 91 0.13 91 0.01 86 0

Mosaiced
Template, 1

Query

1 95 0.12 94 0.02 88 0

Mosaiced
Template, 2

Queries

1 97 0.24 96 0.04 90 0

Table 5.4: Performance of the proposed fingerprint-based fuzzy vault implementation
on MSU-DBI database. The Failure to Capture Rate (FTCR), Genuine Accept Rate
(GAR) and False Accept Rate (FAR) are expressed as percentages.

Scenario FTCR
n = 10 n = 11 n = 12

GAR FAR GAR FAR GAR FAR
1 Template, 1

Query
5.6 85 0.08 82.5 0.02 78.8 0

Mosaiced
Template, 1

Query

2.5 88.1 0.09 83.1 0.02 81.2 0

Mosaiced
Template, 2

Queries

0 96.9 0.16 92.5 0.03 87.5 0
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point reliably, alignment based on core points leads to larger false rejects and failure to

capture errors. For example, when core point based alignment3 was used (instead of

high curvature points) in the vault implementation, the FTCR increased from 2% to

6% in the FVC database and from 5.6% to 15.6% in the MSU database. The reasons

for increase in FTCR are (i) no core point is present in some of the images (e.g., arch

fingerprints) and (ii) the algorithm fails to find the core point in some images (e.g.,

images where the loops are not very prominent). These are well-known problems in

core point detection. Furthermore, errors in finding the exact location and direction

of the core point lead to a reduction in the GAR. The GAR decreases from 91% to

81% (n = 8) and from 82.5% to 77.5% (n = 11) for the FVC and MSU databases,

respectively. These results clearly demonstrate the merits of using alignment based

on high curvature points compared to core-based alignment.

One way to improve the performance of the vault is to use multiple impressions

(templates) from the same finger during enrollment. However, we cannot create a

vault for each enrolled image because an attacker can compare the multiple vaults

and identify the chaff points. Therefore, we obtain a single mosaiced template from

two impressions and use the mosaiced minutiae to construct the vault. From row 2

of Table 5.3 we observe that mosaicing reduces the FTCR from 2% to 1% and also

increases the GAR of the system for all values of n. The performance can be further

improved by using multiple queries during authentication. In case of 128-bit key size

(n = 8) for FVC2002-DB2 database, mosaiced template leads to a GAR of 94% and

3The core point was detected using the commercial Neurotechnologija Verifinger software, which
was downloaded from http://www.neurotechnologija.com.
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using two queries instead of one query increases the GAR to 96%. The use of multiple

impressions also leads to a significant reduction in FTCR and increase in GAR for

the MSU-DBI database (see rows 2 and 3 of Table 5.4).

The false rejects in our experiments were either due to errors in alignment data

extraction or due to insufficient number of matching minutiae in the overlapping

region between the template and query. Figure 5.13 shows an example where the

false reject is due to incorrect alignment data extraction. In this case, the high

curvature points for template fingerprint are inaccurate because the region of high

curvature (core region) is close to the image boundary (see Figure 5.13(a)). An

example of failure due to insufficient number of overlapping minutiae is presented in

Figure 5.14. While the alignment between the template and query images in Figure

5.14 is accurate, there are only 5 matching minutiae. This leads to a false reject

because at least 9 genuine minutiae must be identified in the vault for successful

decoding.

The FAR of the proposed fuzzy vault implementation is non-zero for smaller values

of n. In the single impression scenario for FVC2002-DB2, when n = 8, we observed

one false accept in 9, 900 impostor attempts. The template and query fingerprint pair

that gives rise to a false accept is shown in Figure 5.15. Analysis of this false accept

example indicates that there is indeed a set of 9 minutiae in the query that matches

with the template minutiae in both location and direction (see Figure 5.15(c)). Since

the vault decoding is successful if (n + 1) points in the query minutiae set (of size

r) match with the template minutiae, the genuine accept and false accept rates vary

with n when r is fixed. Reducing n increases both GAR and FAR and increasing n
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(a) (b) (c)

Figure 5.13: Failure due to incorrect extraction of high curvature points. (a) Template
fingerprint image with minutiae and high curvature points, (b) query fingerprint image
with minutiae and high curvature points, and (c) ICP alignment of template and
query high curvature points along with aligned template and query minutiae. High
curvature points were incorrectly detected in the template because the high curvature
region is near the boundary.

174



(a) (b) (c)

Figure 5.14: Failure due to partial overlap. (a) Template fingerprint image with
minutiae and high curvature points, (b) query fingerprint image with minutiae and
high curvature points, and (c) ICP alignment of template and query high curvature
points along with aligned template and query minutiae. Though the alignment is
accurate, there are only few matching minutiae in these two images.
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lowers both GAR and FAR. As observed from Table 5.3, FAR is high when n = 7

and is zero when n = 10. We also observe a marginal decrease in the GAR when n

is increased from 7 to 10. The FAR for the MSU-DBI database also shows a similar

behavior.

As pointed out earlier, a drawback of the modified fuzzy vault scheme in [197] com-

pared to the original scheme in [102] is the need to verify multiple candidate secrets.

In [197] it was reported that an average of 201 candidate secrets were evaluated cor-

responding to 52 seconds of computation in Matlab with a 3.4 GHz processor system.

In our implementation, the use of minutiae orientation in addition to the minutiae

location eliminates almost all the chaff points from the unlocking set. Therefore, the

median number of candidate secrets that need to be evaluated is only 2 (mean is 33)

and the median decoding time is 3 seconds (mean is 8 seconds) on a similar processor.

5.6.2 Iris Cryptosystem

The performance of the proposed iris cryptosystem has been evaluated on the CASIA

iris database (see Appendix for details). In our implementation, the Gabor phase

responses are sampled at R(= 48) different radii and S(= 360) angles to generate a

(48×360×2)-bit iriscode. Further, we partition the iriscode into r(= 48) components

with each partition containing MI(= 1023) bits. We use a (1023, 16) BCH coding

scheme, which can correct up to 247 errors in a 1023-bit codeword. Thus, the BCH

codes are capable of correcting approximately 25% of the errors in the query iriscode.

The size of the transformation key K1 used to secure the iriscode template is (48×16)
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(a) (b) (c)

Figure 5.15: An example of false accept when n = 8. (a) Template fingerprint
image with minutiae and high curvature points, (b) query fingerprint image with
minutiae and high curvature points, and (c) ICP alignment of template and query
high curvature points along with aligned template and query minutiae. In (c), we
observe that there are 9 matching minutiae between the query and the template
(represented as dotted ellipses).
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bits. The transformation key itself is secured using the fuzzy vault framework by using

a vault key K2 of size 16n bits, where n is the degree of the polynomial used in vault

encoding. We evaluate the performance of the iris cryptosystem at two different

values of n (10 and 11), which provide a false accept rate of less than 0.02%. The

number of chaff points (s) used in the vault is set to 500.

Ideally, the bits in a query iriscode should directly correspond to the bits at the

same location in the iriscode template. However, due to relative rotation of the iris

pattern in the template and query iris images, the bits in a query iriscode may be

shifted by a few locations with respect to the template iriscode. To account for this

rotation offset, we cyclically shift the bits in the query iriscode by up to 3 locations

both to the left and the right and repeat the authentication steps for each shifted

query iriscode. A non-match decision is output only when none of the seven query

iriscode patterns (one original and six shifted versions) are unable to recover the vault

key.

The performance of the iris cryptosystem is shown in the first row of Table 5.6.

The genuine accept rate of the iris cryptosystem is 88% at a false accept rate of less

than 0.02%. The GAR of the Hamming distance-based iris matcher [50] that uses the

original template and query iriscodes is approximately 94% at a FAR of 0.02%. Thus,

there is a slight degradation in the GAR of the iris modality due to the application

of the proposed template protection scheme. The reason for this degradation is that

the BCH coding scheme has a strict threshold on the number of errors that can

be corrected. When the number of bit differences between the template and query

iriscode components is greater than 247, then the corresponding components of the
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transformation key cannot be recovered. In some cases, features could not be reliably

extracted from a relatively large region in the iris pattern due to factors like occlusion.

The Hamming distance-based iris matcher accounts for this problem by determining

the occluded regions (also known as the mask information) and ignoring the iriscode

bits in those regions when computing the Hamming distance. However, the proposed

cryptosystem cannot effectively handle this problem which leads to more false rejects.

5.6.3 Multibiometric Vault

The MSU-DBI fingerprint database [94] is used to evaluate the performance of the

multifinger vault because it contains impressions from four different fingers (index and

middle fingers) acquired from the same user. We use only the right and left index

fingers in our experiments. The same parameters presented in the third column of

Table 5.2 are used for constructing the vaults for the individual fingers. In the case

of the multifinger vault, 48 to 72 genuine points are used in the vault and the total

number of points in the vault (t) is set to 672. Thus, the number of chaff points

in the vault is between 600 and 624. The performance of the multifinger vault is

summarized in Table 5.5. When the largest of the two unlocking sets L
′
F1

and L
′
F2

is selected as the final unlocking set L
′
F , the GAR improves significantly to 90% at a

FAR of 0.02% compared to the single finger case. However, in this scenario there is

no change in the size of the vault key (K2) that determines the security of the vault.

On the other hand, using the union of the two unlocking sets leads to a significant

improvement in the security but leads to only a marginal improvement in the GAR.
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Table 5.5: Performance of the multifinger (right and left index fingers) fuzzy vault on
the MSU-DBI fingerprint database. The Failure to Capture Rate (FTCR), Genuine
Accept Rate (GAR) and False Accept Rate (FAR) are expressed as percentages and
the key size is expressed in bits.

Scenario FTCR
FAR = 0.02 FAR = 0

GAR Vault Key
Size

GAR Vault Key
Size

Right Index Finger 5.6 82.5 176 78.8 192
Left Index Finger 8.8 75.6 176 69.4 192

Both Fingers
(Largest of the two

unlocking sets)

0 90 176 87.5 192

Both Fingers (Union
of the two unlocking

sets)

0 84.4 304 78.8 336

Finally, a virtual multimodal database derived from the MSU-DBI fingerprint

and CASIA iris databases is used to evaluate the performance of a multimodal fuzzy

vault that simultaneously secures the minutiae template from the right index finger

and the iriscode template. The multimodal (right index finger and iris) database

consists of 108 users obtained by randomly pairing the first 108 users in the MSU-

DBI database with the users in the CASIA database. The number of genuine points in

the multimodal vault is between 72 and 84 and the total number of points in the vault

after adding the chaff points is 884. The third row in Table 5.6 shows the performance

of the multimodal vault. The multimodal vault offers a significant improvement in

the GAR compared to the individual modalities and also leads to higher security due

to the larger key size.
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Table 5.6: Performance of the multimodal (right index finger and iris) fuzzy vault on
the virtual multimodal database derived from the MSU-DBI fingerprint and CASIA
iris databases. The Failure to Capture Rate (FTCR), Genuine Accept Rate (GAR)
and False Accept Rate (FAR) are expressed as percentage and the key size is expressed
in bits.

Scenario FTCR
FAR = 0.02 FAR = 0

GAR Vault Key
Size

GAR Vault Key
Size

Iris 0 88 160 88 176
Right Index Finger 5.6 82.5 176 78.8 192
Right Index Finger
+ Iris (Union of the
two unlocking sets)

0 98.2 208 98.2 224

5.7 Security Analysis

Dodis et al. [55] defined the security of biometric cryptosystems in terms of the min-

entropy of the helper data. Min-entropy of a random variable A is defined as

H∞(A) = − log (maxaP (A = a)). (5.5)

Note that all the logarithms in this section are of base 2. Suppose the security of a

system relies on the difficulty in guessing A. The best strategy for an adversary to

circumvent this system is to start with the most likely value of A and the min-entropy

measures the security of the system in this scenario. Now consider a pair of random

variables A and B. Dodis et al. [55] defined the min-entropy of A given B as,

H∞(A|B) = − log (maxaP (A = a|B = b)) (5.6)

and the average min-entropy of A given B as
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H̃∞(A|B) = − log (Eb←B [maxaP (A = a|B = b)]) = − log
(
Eb←B

[
2−H∞(A|B)

])
.

(5.7)

We can analyze the security of the fuzzy vault framework by measuring the average

min-entropy of the biometric template given the vault V .

5.7.1 Fingerprint-based Vault

Recall that the fingerprint-based vault V = {(ai, bi)}ti=1 is an unordered set of t

points consisting of r points that lie on a polynomial P defined by the vault key K

and s chaff points that do not lie on P. Alternatively, if X and Y are the sets of

genuine and chaff points, respectively, then ai ∈ X or Y, ∀i = 1, 2, · · · , t. The vault

can be decoded only if we can find a candidate set L
′′

= {(aj , bj)}n+1
j=1 , which is a

subset of V such that aj ∈ X, ∀(aj , bj) ∈ L
′′
, where n is the degree of the polynomial

P . If no other additional information is available, an adversary would have to decode

the polynomial by randomly selecting subsets of (n + 1) points from V and we refer

to this case a brute-force attack.

Suppose that the adversary has knowledge of the fingerprint minutiae distri-

bution model [215] and selects the candidate set L
′′

based on this model. Let

L∗ = {(aj , bj)}n+1
j=1 be the candidate set that is most likely to be selected based

on the minutiae distribution model. Let pi be defined as the probability that ai cor-

responds to a genuine minutiae point, i.e., pi = P (ai ∈ X), for i = 1, 2, · · · , t and

∑t
i=1 pi = 1. If we know the distribution of location and orientation of minutiae in
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a fingerprint, we can estimate pi for all the points in a given fingerprint-based vault

V . Let us re-order the points in V such that pi ≥ pi+1, ∀i = 1, 2, · · · , t− 1. If we se-

quentially select points from V to form the candidate set based on the estimated pi’s,

then the probability of selecting the most likely genuine point is p1, the probability

of selecting the second most likely genuine point is
p2

(1−p1) and so on. Therefore, the

probability that L
′′

takes the value L∗ is given by

P
(
L
′′

= L∗) ≤ (n + 1)!
∏n+1

i=1 pi∏n
i=1

(
1 −∑i

k=1 pk

) . (5.8)

Here, the factorial term is included because the candidate sets are unordered and

the (n + 1) most likely elements from V can be arranged in (n + 1)! ways to obtain

L∗. Let P∗ be the polynomial obtained by Lagrange interpolation of points in L∗.

Since there are
( r
n+1
)

combinations of candidate sets L
′′

derived from V that can

decode the vault, the probability that P∗ is the correct polynomial P is given by

P
(P∗ = P) ≤

( r
n+1
)
(n + 1)!

∏n+1
i=1 pi∏n

i=1

(
1 −∑i

k=1 pk

) . (5.9)

When P∗ is equal to P , the vault is decoded and the minutiae template MT is

revealed. Therefore, the min-entropy of MT given V can be computed as

H∞(MT |V ) ≥ −log

⎛
⎝( r

n+1
)
(n + 1)!

∏n+1
i=1 pi∏n

i=1

(
1 −∑i

k=1 pk

)
⎞
⎠. (5.10)

If both the minutiae location and minutiae orientation are uniformly distributed,

pi = 1/t, ∀i = 1, 2, · · · , t. In this case, the min-entropy of MT given V can be
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simplified as

H∞(MT |V ) = −log

⎛
⎝( r

n+1
)
(n + 1)!

∏n+1
i=1

1
t∏n

i=1

(
1 −∑i

k=1
1
t

)
⎞
⎠

= −log

⎛
⎝
( r
n+1
)
(n + 1)! 1

tn+1∏n
i=1

(
t−i
t

)
⎞
⎠

= −log

(( r
n+1
)
(n + 1)!

t
∏n

i=1 (t − i)

)

= −log

(( r
n+1
)
(n + 1)!(t − n − 1)!

t!

)

= −log

(( r
n+1
)

( t
n+1
)
)

. (5.11)

For example, if the size of the vault key is 160 bits (which corresponds to n = 10 in our

implementation) and the number of genuine and chaff points in the vault are 30 and

300, respectively, under the assumption of uniform distribution of minutiae, the min-

entropy of the fingerprint-based fuzzy vault is approximately 40 bits. Here, 40 bits of

security implies that the expected number of candidate sets that need to be evaluated

is 240 ≈ 2×1012. This roughly corresponds to the same level of difficulty in guessing

a 24-character ASCII password [18]. While a security of 40 bits may be considered

as inadequate from the cryptographic point of view (where the key sizes are typically

greater than 128 bits), it must be noted that the fuzzy vault framework eliminates

the key management problem, which is a major issue in practical cryptosystems.

The min-entropy under the uniform assumption also corresponds to the complexity

of the brute force attack. Clancy et al. [42] proposed a fingerprint-based fuzzy vault
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implementation where the complexity of brute force attack was estimated to be 69

bits. The complexity of brute force attack in our implementation is significantly

lower compared to that of Clancy et al. [42] due to the two main reasons. Firstly,

recall that we employ CRC-based error detection instead of Reed-Solomon polynomial

reconstruction used in [42]. While CRC-based error detection improves the genuine

accept rate significantly, only (n+1) genuine points need to be identified for successful

decoding. On the other hand, more than
(r+n)

2 genuine points need to be identified for

successfully decoding the vault in [42], which makes it more difficult for an adversary

to decode the vault by a brute force attack. Secondly, in the implementation proposed

by Clancy et al. [42], chaff points are continuously added until it becomes impossible

to add any more chaff points without violating the minimum distance constraint.

In our implementation, we restrict the number of chaff points to approximately 10

times the number of genuine points. While adding more chaff points may increase

the security of the system, it also increases the memory required to store the vault.

Moreover, Chang et al. [24] show that as the number of chaff points is increased,

the amount of free area available for adding new chaff points decreases because of

the minimum distance constraint. As a result, it may be easier for an adversary to

identify some of the chaff points in the vault [24], thereby limiting the security.

Given a database of fingerprints, one can also compute the average min-entropy

of the proposed vault implementation as follows. We estimate the distribution of

minutiae location and minutiae orientation using the mixture models proposed by

Zhu et al. [215]. Based on these estimated distributions, we can compute the min-

entropy for each vault and thereby the average min-entropy for that database using

185



equations (5.10) and (5.7), respectively. For the MSU-DBI database, the average

min-entropy when r is between 24 and 36, n = 10 and t = 336 is approximately 27

bits. This large entropy loss (from ≈ 40 bits in the brute force case to ≈ 27 bits)

is mainly because in our implementation, we assume that the spatial distribution of

minutiae in a fingerprint image is uniform and use this property in the generation

of chaff points. Due to this assumption, the chaff points in our implementation

do not follow the true minutiae distribution, which was shown by Zhu et al. [215]

to follow a mixture model. For instance, the minutiae tend to mostly fall around

the center of the fingerprint image. However, the chaff points can fall anywhere in

the fingerprint image including regions close to the image boundaries (see Figure

5.12(c)). Thus, it is easier to separate the chaff points from the genuine points in

our implementation. One way to improve the security of our vault implementation is

to estimate the statistical distribution of minutiae during vault encoding and use the

estimated minutiae distribution for the generation of chaff points.

Our automatic fingerprint vault implementation is based on the assumption that

high curvature points do not reveal any information about the minutiae and it is

not possible to estimate the orientation field using only the high curvature points.

However, suppose a smart attacker is able to extract the orientation field from the high

curvature points and uses it to identify the chaff points. We can still defend against

such an attack by introducing some additional chaff points that are consistent with

the orientation field (i.e., the location of such a chaff point is random, but its direction

is determined by the orientation field) to the set of completely random chaff points.
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5.7.2 Iris Cryptosystem

In the proposed iris cryptosystem, the helper data consists of two components, namely,

the transformed iriscode template I∗ and the vault V that secures the transformation

key K1 used to obtain I∗. Since the transformation key K1 is independent of the

template iriscode, it can be generated from a uniform distribution. Therefore, the

min-entropy of K1 given V (H∞(K1|V )) can be computed using equation (5.11). In

our implementation of the vault for the iris modality, r = 48, n = 10 and t = 548.

Hence, H∞(K1|V ) is approximately 40 bits.

Since we use a single exclusive-OR operation to obtain I∗, the min-entropy of

template iriscode IT given I∗ (H∞(IT |I∗)) depends only on the redundancy added

to the key K1 by the BCH encoder. Hao et al. [76] have estimated that in the worst

case of an adversary having perfect knowledge of the correlation between the iriscode

bits, the inherent uncertainty in a iriscode template is approximately 249 bits. They

also showed that if a coding scheme can correct up to w bits in the iriscode template,

the entropy of the iriscode template given the transformed template is approximately

log
(
2249/

(249
w

))
bits. In our implementation, the BCH coding scheme can correct

up to 25% of the errors, which corresponds to approximately w = 62 bits (out of 249).

Therefore, entropy of the IT given I∗ (H∞(IT |I∗)) is approximately 52 bits. The

overall security of the iris cryptosystem is given by min (H∞(K1|V ), H∞(IT |I∗)) ≈

min(40, 52) ≈ 40 bits.

It must be emphasized that while the inherent entropy of an iriscode template is

approximately 249 bits, a system that stores the iriscode template in plaintext form
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is secure only when the adversary does not know the template. Once the template

is gleaned by the adversary, the system effectively offers no security. However, even

when the helper data extracted from the iriscode template is known to the adversary,

the proposed iris cryptosystem provides a security of approximately 40 bits. The

security of a comparable key-binding cryptosystem proposed by Hao et al. [76] is

approximately 44 bits.

5.7.3 Multimodal Vault

In the case of the multimodal vault, both the minutiae template MT and the transfor-

mation key K1 used in the iris cryptosystem are secured using a single vault V . There-

fore, decoding the vault reveals both the MT and K1 (and consequently IT ). Hence,

the overall security of the system is given by min
(
H∞(MT , K1|V ), H∞(IT |I∗)

)
. In

the multimodal vault, t = 884, n = 13, and the number of genuine points, r, is 84 (36

from the fingerprint modality and 48 from the iris modality). If we assume that the

minutiae are uniformly distributed, H∞(MT , K1|V ) is approximately 49 bits. Hence,

the overall security of the multimodal vault is approximately min(49, 52) = 49 bits.

On the other hand, suppose that we construct two separate vaults VF and VI for

the fingerprint and iris modalities, respectively. In this scenario, the overall security

of the system is given by min

(
log

(
2H∞(MT ,|VF ) + 2H∞(K1,|VI )

)
, H∞(IT |I∗)

)
,

which is approximately 41 bits for the same number of chaff points (300 for fingerprint

and 500 for iris). Thus, the multimodal vault provides a significantly higher security

compared to storing the individual templates using separate vaults.
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Table 5.7: Security of the proposed fuzzy vault implementations. Here, the security
is measured in terms of H∞(T |V ), which represents the average min-entropy of the
biometric template T given the vault V . The parameters t, r and n represent the
total number of points in the vault (genuine and chaff), number of genuine points in
the vault and the degree of the polynomial used in the vault, respectively.

Modality Assumptions Parameters Security
(bits)

t r n

Fingerprint
Uniform distribution of

minutiae
330 30 10 40

Distribution of minutiae
follows mixture model [215]

336 24-26 10 27

Iris Iriscode has inherent
entropy of 249 bits [76];
BCH code corrects up to

25% of the errors

548 48 10 40

Fingerprint +
Iris

Uniform distribution of
minutiae; iriscode has

inherent entropy of 249
bits [76]; BCH code corrects

up to 25% of the errors

884 84 13 49
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The security of the proposed vault implementations is summarized in Table 5.7.

Apart from the attacks that depend on separating the genuine and chaff points in the

vault, there are other specific attacks that can be staged against a fuzzy vault, e.g.,

attacks via record multiplicity, stolen key inversion attack and blended substitution

attack [175]. If an adversary has access to two different vaults (say from two different

applications) obtained from the same biometric data, he can easily identify the gen-

uine points in the two vaults and decode the vault [106]. Thus, the fuzzy vault scheme

does not provide revocability. An advantage of the fuzzy vault (key binding) scheme

is that instead of providing a “Match/Non-match” decision, the vault decoding out-

puts a key that is embedded in the vault. This key can be used in a variety of ways to

authenticate a person (e.g., digital signature, document encryption/decryption etc.).

In a stolen key inversion attack, if an adversary somehow recovers the key embed-

ded in the vault, he can decode the vault to obtain the biometric template. Since

the vault contains a large number of chaff points, it is possible for an adversary to

substitute a few points in the vault using his own biometric features. This allows

both the genuine user and the adversary to be successfully authenticated using the

same identity, and such an attack is known as blended substitution. To counter these

attacks, Nandakumar et al. [145] proposed a hybrid approach where (i) biometric

features are first “salted” based on a user password, (ii) the vault is constructed us-

ing the salted template and (iii) the vault is encrypted using a key derived from the

password. While salting prevents attacks via record multiplicity and provides revo-
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cability, encryption provides resistance against blended substitution and stolen key

inversion attacks. Moreover, the distribution of biometric features after salting can

be expected to be more similar to the uniform distribution than the original feature

distribution, which improves the security of the vault.

5.8 Summary

Biometric systems are being widely used to achieve reliable user authentication and

these systems will proliferate into the core information infrastructure of the (near) fu-

ture. When this happens, it is crucial to ensure that biometric authentication will be

secure. Fuzzy vault is one of the most comprehensive mechanisms for secure biometric

authentication. We have implemented a fully automatic and practical multibiometric

fuzzy vault system that can easily secure multiple biometric templates of a user such

as fingerprint minutiae and iriscodes as a single entity. The main challenge in the im-

plementation of a fingerprint-based fuzzy vault is the alignment of the query with the

transformed template stored in the vault. We use high curvature points derived from

the orientation field to align the template and query minutiae sets without leaking

any information about the minutiae. We have also developed an iris cryptosystem

that uses both salting and fuzzy vault frameworks to secure the iriscode template.

Finally, we have demonstrated that templates from multiple biometric sources such

as two impressions from the same finger, left and right index fingers and different

modalities like fingerprint and iris can be secured using a multibiometric vault. Our

experimental evaluation indicates that a multibiometric vault provides both higher
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genuine accept rate and higher security.
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Chapter 6

Conclusions and Future Research

6.1 Conclusions

The design of a multibiometric system is a challenging task due to heterogeneity of the

biometric sources in terms of their type of information, the magnitude of information

content, correlation among the different sources and conflicting performance require-

ments of the practical applications. In this thesis, we have developed a comprehensive

statistical framework for score fusion in multibiometric systems and a framework for

multibiometric template security.

First, we developed a principled approach for score level fusion in a multibiomet-

ric verification system that employs the likelihood ratio test. The likelihood ratio

based approach provides optimal fusion performance when the match score densi-

ties are estimated accurately. We investigated two different techniques for density

estimation, namely, a non-parametric approach based on kernel density estimation

(KDE) and a semi-parametric approach based on finite Gaussian mixture models
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(GMM). Both these techniques are quite effective in modeling the genuine and im-

postor score densities and achieve consistently high recognition rates across three

different multibiometric databases without the need for any parameter tuning. But,

we believe that the GMM-based approach is simpler to implement than KDE. We

also observed that modeling the correlation between the matchers did not lead to

any significant improvement in the recognition performance. Therefore, assuming

independence between matchers and estimating the joint density as a product of the

marginal densities may be appropriate in scenarios where the individual matchers are

quite accurate (less than 5% equal error rate) and the difference between genuine and

impostor correlations is low.

Further, we have demonstrated that the likelihood ratio based fusion scheme can

easily take into account ancillary information such as biometric image quality to im-

prove the recognition performance. Pairwise quality indices that estimate the quality

of the template and the query images as a single value were developed for the finger-

print and iris modalities. We have also shown that the marginal likelihood ratios of

the individual matchers can be used as inputs to a binary decision tree classifier to

design a sequential multibiometric system.

When the match scores of individual users are assumed to be independent and

identically distributed, the genuine and impostor densities estimated in the verifica-

tion scenario can also be used for likelihood ratio based fusion in the multibiometric

identification scenario. Moreover, we have shown that the likelihood ratios computed

based on the match scores can be combined with the rank-based posterior proba-

bilities and the hybrid rank and score level fusion scheme achieves high recognition
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performance in multibiometric identification systems.

To address the problem of template security in a multibiometric system, we have

developed a framework for securing multiple biometric templates of a user in the

multibiometric system as a single entity. This is achieved by generating a single

multibiometric template from different biometric sources using feature level fusion

and securing the multibiometric template using the fuzzy vault construct. We have

also implemented the fuzzy vault system for securing the fingerprint minutiae and

iriscode templates individually. The problem of alignment in the fingerprint-based

fuzzy vault is handled by storing high curvature points extracted from the orientation

field as additional helper data. A salting transformation based on a transformation

key was used to indirectly convert the fixed-length binary vector representation of

iriscode into an unordered set representation that can be secured using the fuzzy

vault. Finally, we have shown that the multibiometric vault can secure templates from

different biometric sources such as multiple fingerprint impressions, multiple fingers

and multiple modalities such as fingerprint and iris. We have also demonstrated

that the multibiometric vault provides better recognition performance and security

compared to the individual vaults.

6.2 Future Research Directions

While we have made significant progress in the development of fusion strategies and

template protection schemes that facilitate the design of reliable and secure multibio-

metric systems, we believe that the techniques proposed in this thesis can be further
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expanded and refined in the following ways.

• The fusion strategies proposed in this thesis can be considered as global tech-

niques in the sense that no user-specific information is used in developing these

schemes. This is implicitly based on the assumption that the discriminatory

information provided by the individual biometric sources is identical across

all users. However, it is well-known that there are inherent differences in

the “recognizability” of the different users [54] and user-specific fusion tech-

niques can further improve the recognition performance of the multibiometric

system [63, 96, 190]. User-specific fusion can be achieved within the likelihood

ratio framework by learning user-specific match score densities when sufficient

training data is available for each user.

• Our experimental results indicate that modeling the correlation between the

match scores of the different matchers does not result in any significant im-

provement in the fusion performance. A theoretical model that establishes the

effect of match score correlation on fusion performance is needed to validate

this observation.

• The density estimation techniques used in this thesis operate in the batch mode

where the genuine and impostor score densities are estimated only once during

the system design phase based on the complete training data. When there

is a significant change in the matcher characteristics, the density estimation

process needs to be repeated again starting from scratch with new training

data. Moreover, in practical multibiometric systems, additional training data
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may become available during the operation of the system. Therefore, it may

be beneficial to use incremental GMM learning algorithms [216] or Bayesian

adaptation [163] schemes that can update the score densities when additional

training data becomes available without the need for re-training.

• Apart from the location and orientation attributes of a minutia point, many

minutiae-based fingerprint matchers use additional attributes like minutia type,

ridge counts, ridge curvature, ridge density and local texture features [61] to

achieve high recognition rates. These attributes could also be incorporated into

the fingerprint-based fuzzy vault framework. Addition of new attributes will

not only increase the number of possible chaff points that can be added to the

vault but also decrease the decoding complexity for genuine users and reduce the

false accept rate. The integration of other common biometric modalities such

as face and voice in the multibiometric vault framework also requires further

investigation.

• A well-known limitation of the fuzzy vault framework is its dependence on chaff

points to achieve security. Therefore, other biometric cryptosystems that do not

involve chaff points could be considered for securing the biometric templates.

• Finally, a formal model for cost-benefit analysis of a multibiometric system

based on parameters such as performance gain (reduction in FRR/FAR),

throughput, physical cost of the system and security needs to be developed in

order to enable biometric system developers to rapidly design a multibiometric

system that is most appropriate for the application on hand.
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A Databases

A.1 Multibiometric Databases

We use two public-domain match score databases, namely, NIST-BSSR1 and

XM2VTS-Benchmark databases to benchmark the various fusion strategies consid-

ered in this thesis. The performance of the quality-based product fusion rule was

evaluated only on the WVU-Multimodal database since the other databases do not

contain raw fingerprint and iris images to enable us to estimate the biometric sample

quality. The performance of the proposed fusion rules was also evaluated on the in-

house MSU-Multimodal database and the results of the evaluation on this database

has been reported in [48]. Table 1 presents a summary of the multibiometric databases

used in this thesis.

NIST-BSSR1

The NIST Biometric Scores Set - Release I (NIST-BSSR1) [151] has three partitions.

The first partition is the NIST-Multimodal database, which consists of 517 users with

two fingerprint and two face scores. One fingerprint score was obtained by comparing

a pair of impressions of the left index finger, and the second score was obtained by

comparing impressions of the right index finger. Two different face matchers were

applied to compute the similarity between frontal face images. The NIST-Multimodal

database is a “true” multimodal database in the sense that the fingerprint and face

images used for computing the genuine match scores were derived from the same

individual. The second partition of NIST-BSSR1 is the NIST-Fingerprint database,
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which is an example of multi-instance(finger) biometric system. This partition con-

sists of scores from left and right index fingerprint matches of 6, 000 individuals. The

third partition is the NIST-Face database, which consists of scores from two face

matchers applied on three frontal face images from 3, 000 individuals.

XM2VTS-Benchmark

The XM2VTS-Benchmark database [154] consists of five face matchers and three

speech matchers and was partitioned into training, fusion development and fusion

evaluation sets according to the Lausanne Protocol-1 (see [154] for details).

WVU-Multimodal

The West Virginia University multimodal database (WVU-Multimodal) consists of

320 virtual subjects (subjects created by randomly pairing a user from one unimodal

database (e.g., iris) with a user from another database (e.g., fingerprint)) with five

samples each of fingerprint and iris modalities. Minutiae-based fingerprint matcher

[93] and Iriscode [50] based iris matcher were used for computing the match scores.

MSU-Multimodal

The MSU-Multimodal database [90] consists of 100 virtual subjects, each providing

five samples of face, fingerprint (left-index) and hand-geometry modalities. Face im-

ages were represented as eigenfaces [193] and the Euclidean distance between the

eigen-coefficients of the template-query pair was used as the distance metric. Minutia

points were extracted from fingerprint images and the elastic string matching tech-
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nique [86] was used for computing the similarity between two minutia point patterns.

Fourteen features describing the geometry of the hand shape [98] were extracted from

the hand images and Euclidean distance was computed for each template-query pair.

A.2 Fingerprint Databases

The performance of the fingerprint-based fuzzy vault implementation has been eval-

uated on FVC2002-DB2 [128] and MSU-DBI [94] fingerprint databases, which are

summarized in Table 2.

MSU-DBI

The MSU-DBI database contains two pairs of impressions for each of the 160 users

and these two pairs were collected six weeks apart. Further, images from four different

fingers (two index and two middle fingers) are available for each user. Hence, this

database is suitable to study the multiple finger and multiple impression scenarios

in the fuzzy vault implementation. We use only the impressions from right and left

index fingers in our experiments.

FVC2002-DB2

FVC2002-DB2 was one of the benchmark databases used in the Fingerprint Veri-

fication Competition 2002 [128]. The FVC2002-DB2 consists of 100 fingers with 8

impressions per finger obtained using an optical fingerprint sensor. This database

was selected because it is a public-domain database and the images are of relatively

good quality. Among the 8 impressions available for each finger in FVC2002-DB2,
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Table 1: Summary of multibiometric databases. Note that the NIST-Multimodal,
NIST-Fingerprint and NIST-Face databases are different partitions of the NIST Bio-
metric Score Set Release-1.

Database Biometric Traits No. of No. of
matchers users

NIST-Multimodal
Fingerprint (Two fingers)

4 517
Face (Two matchers)

NIST-Fingerprint Fingerprint (Two fingers) 2 6,000
NIST-Face Face (Two matchers) 2 3,000

XM2VTS-Benchmark
Face (Five matchers)

8 295
Speech (Three matchers)

WVU-Multimodal Fingerprint, Iris 2 320

MSU-Multimodal
Fingerprint, Face

3 100
and Hand-geometry

we use only four impressions (impressions 1, 2, 7 and 8) in our experiments due to

the following reason. It is quite reasonable to assume that users in a biometric cryp-

tosystem are co-operative and they are willing to provide good quality biometric data

in order to retrieve their cryptographic keys. Impressions 3, 4, 5 and 6 in FVC2002

databases were obtained by requesting the users to provide fingerprints with exagger-

ated displacement and rotation. Hence, these impressions are not representative for

the application under consideration. This explains our choice of impressions 1, 2, 7

and 8.

A.3 CASIA Iris Database

The performance of the iris cryptosystem has been evaluated on the CASIA iris image

database ver 1.0 [39, 126]. This database consists of images from 108 different eyes
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Table 2: Summary of fingerprint databases used in the evaluation of fuzzy vault.
FVC2002-DB2 MSU-DBI

No. of users 100 160 (4 fingers per user)
No. of

impressions/finger
8 4

Sensor Biometrika FX2000
(Optical)

Digital Biometrics, Inc.
(Optical)

Image size 560 × 296 at 569 dpi
resolution

640 × 480 at 500 dpi
resolution

Image quality Good Medium

with 7 images per eye. These 7 samples were collected over two different sessions

with 4 samples in one session and 3 in the other. We use one image from each session

to evaluate the iris cryptosystem. Recently, Phillips et al. [152] pointed out that the

pupil regions in the iris images of this database have been manually edited, which

makes it easier to segment the iris region. Hence, they discouraged the use of this

database in iris recognition studies. However, we still use the CASIA v1 database in

our experiments because our goal is not to develop reliable segmentation or feature

extraction algorithms. Rather, the main focus of our work is to develop techniques

for securing the given iriscode templates in best possible manner.

B Algorithms

B.1 Determining Discrete Components in a Score Distribu-

tion

Inputs: S - Set of match scores, α - Level of significance of chi-squared test, B -

Number of bins, M - Number of folds for cross-validation.
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Output: T - Threshold to determine discrete components.

1. Initialize T ← 1.

2. Determine the collection C of continuous components as follows:

C ≡ { s0 :
N(s0)

N
< T}, (1)

where N(s0) is the number of observations in S that equals s0 and N is the

total number of observations in S. The set C is further divided into M equal

and non-overlapping subsets among which one subset is labeled as CV while the

remaining M − 1 subsets are combined to form the set CT . The set CT is used

for density estimation and CV is used for validating the estimated density.

3. Based on the data in set CT , obtain the kernel density estimate of fC(s), f̂C(s),

using equation (3.4). The corresponding distribution function F̂C(s) is obtained

as follows.

F̂C(s) =

∫ s

−∞
f̂C(u)du. (2)

4. Use the chi-squared goodness-of-fit test to test the following hypothesis. The

null hypothesis is H0: F̂C(s) is the true distribution of data in CV and the al-

ternative hypothesis is Ha: F̂C(s) is not the true distribution. The test statistic

is given by

χ2 =
B∑

b=1

(Ob − Eb)
2

Eb
, (3)
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where Ob is the observed frequency for bin b and Eb is the expected frequency

for bin b. The bth bin edge is chosen to be
[
F̂−1

C

(
b−1
B

)
, F̂−1

C

(
b
B

))
. Due to

this particular choice of bin edges, it follows that Eb = NV /B, where NV is

the number of observations in CV .

5. Repeat steps 3 and 4 M times; each time a different subset of C is chosen as

CV while the remaining subsets form CT . The average test statistic χ2
avg is

computed.

6. Let χ2
(α,B−d−1) be the value such that a fraction α of the area under the χ2

distribution with B − d− 1 degrees of freedom lies to the right of χ2
(α,B−d−1),

where d is the number of estimated parameters. Since we estimate only the

bandwidth of the kernel from the data, we set the value of d to 1. If χ2
avg >

χ2
(α,B−d−1), we reject the null hypothesis, set T ← argmaxs0∈CN(s0)/N and

return to step 2. Else, we output the value of T .
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B.2 Juels-Sudan Vault Encoding

Public Parameters: A field F
Input: Parameters n, r and s such that 0 < n < r � s; a secret K; a set

X = {xi}ri=1 representing the user’s biometric template such that
xi ∈ F and xi �= xj ∀ i �= j, i, j = 1, 2, · · · , r

Output: A vault V =
{(

aj , bj

)}t

j=1
, where t = r + s

P ← ENCODESECRET(K)
L,C, Y ← φ
for j = 1 to r do(

aj , bj

)
←
(
xj ,P(xj)

)
L ← L ∪ (aj , bj)

end for
for j = r + 1 to t do

yj ∈ F − (X ∪ Y )
Y ← Y ∪ yj
zj ∈ F − {P(yj)}(
aj , bj

)
←
(
yj , zj

)
C ← C ∪ (aj , bj)

end for
V
′ ← L ∪ C

V ← PERMUTE(V
′
)

Return V
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B.3 Juels-Sudan Vault Decoding

Public Parameters: A field F
Input: Parameters n, r and s such that 0 < n < r � s; a set X

′
= {x′i}ri=1

representing the user’s biometric query such that x
′
i ∈ F and

x
′
i �= x

′
j ∀ i �= j, i, j = 1, 2, · · · , r; a vault V =

{(
aj , bj

)}t

j=1
Output: A secret K or null

L
′ ← φ

for i = 1 to r do(
a
′
i, b

′
i

)
← null

for j = 1 to t do

if (x
′
i = aj) then(

a
′
i, b

′
i

)
←
(
aj , bj

)
break

end if
end for
L
′ ← L

′ ∪ (a
′
i, b

′
i)

end for
P ← RSDECODE(L

′
)

if (P = null) then
Return null

else
K ← DECODESECRET(P)
Return K

end if
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B.4 Alignment using ICP

Input: Parameters kmax and Dstop ; Template helper data HT = {hT
i }RT

i=1;

Query helper data set HQ = {hQ
j }RQ

j=1
Output: A transformation F that best aligns HQ with HT

k ← 0
H

Q
0 ← HQ

MWDold ← 106

while (k < kmax) do
k ← k + 1
if (k = 1) then

F
′ ←INITTRANS

(
HT , HQ

)
else

F
′ ←TRANS

(
HT |Q, HQ

)
end if
HQ ← F

′ (
HQ
)

HT |Q ← φ
for j = 1 to RQ do

i = argmin
i
′ DH

(
hT
i
′ , h

Q
j

)
h
T |Q
j = hT

i

HT |Q ← HT |Q ∪ h
T |Q
j

end for

MWDnew ← 1
RQ

∑RQ

j=1 DH

(
h
T |Q
j , h

Q
j

)
if
(
(MWDold − MWDnew) < Dstop

)
then

break
else

MWDold ← MWDnew
end if

end while
F ←TRANS

(
HT |Q, H

Q
0

)
Return F
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