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ABSTRACT

CONTRIBUTIONS TO COMPUTER-AIDED DIAGNOSIS OF PROSTATE CANCER
IN HISTOPATHOLOGY

By

Kien Nguyen

Prostate cancer is one of the most common and dreadful type of cancer in men. Due to the

unclear symptoms of the disease, the diagnosis of prostate cancer is difficult, and requires

multiple procedures. Among these procedures, the most important one is the examination of

the prostate tissue biopsy to detect the presence of cancer regions in the tissue, and assign a

Gleason score to the tissue (which determines the severity of the cancer). The detection and

grading processes are based on the glandular structures as well as the cytological properties

of the tissue. In a traditional examination, pathologists have to look at the tissue biopsy

under a microscope. With the developments in digital pathology, especially in virtual mi-

croscopy, glass tissue slides can be digitized to generate tissue images. These images can be

displayed on a monitor, annotated by software tools, and forwarded to experts for examina-

tion and diagnosis. However, the large volume of tissue images that are generated poses a

challenge for pathologists to efficiently and accurately perform the diagnosis. Hence, there is

a need to develop tools for automatic processing of prostate tissue images, which can assist

pathologists in decision making and improve the throughput. This thesis deals with design

and development of automatic tools for processing and analyzing prostate tissue images.

In tissue examination, the grading of tissue slides is a standard procedure to determine

the severity of cancer. The most popular grading method is the Gleason grading, which relies

on the gland structures in the tissue to assign a Gleason score ranging from 2 to 10 to the

tissue image. We utilize the Gleason grading method in automated systems by segmenting

glands from the tissue image and extracting features to discriminate them. By thorough

analyses and evaluations, we demonstrate that the proposed methods lead to better gland



classification accuracies than published methods in the literature.

We utilize the proposed gland segmentation and gland feature extraction methods to solve

the tissue image classification problem, which receives the most attraction in the literature.

By comparing with popular texture-based methods, we show that using the proposed gland

features is a better solution for this problem. To further improve the Gleason grade 3 vs

Gleason grade 4 classification result, we propose a different approach for gland segmentation

and study the properties of the nuclei arrangement in the segmented glands.

When a medical laboratory technician or a medical student who is not very experienced

with Gleason grading wants to gain additional experience in the grading process, it will be

useful if there was an image retrieval engine that could search for tissue regions similar to

the region of interest (ROI) in the tissue slides that were annotated by experienced pathol-

ogists. The technician (or student) can use the retrieved regions (whose Gleason grades are

known) as the references to grade the ROI. To create such an image retrieval search engine,

we develop a gland-based method to compute the similarity between two tissue regions.

Besides gland structure information, cytological features of the prostate tissue (which

are not used in Gleason grading) also provide useful information for pathologists to detect

cancer. Cytological features refer to size, shape, quantity, and arrangement of the basic ele-

ments of the tissue such as cell, cytoplasm, nuclei, and nucleoli. One of the most important

cytological features is that in cancer glands, nuclei usually contain nucleoli, while nuclei in

normal glands do not. To utilize this information, we present a novel method to identify the

nuclei with prominent nucleoli (NwN) in the tissue. By applying the result of NwN identifi-

cation in a prostate cancer detection problem, we see that the use of cytological feature, i.e.,

the presence of NwN in this case, helps to boost the cancer detection accuracy.

With the proposed solutions for different problems in automated prostate cancer grading

presented in this thesis, we believe that we are able to provide pathologists with useful tools

to assist them with the prostate cancer diagnosis task.
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Chapter 1

INTRODUCTION

Cancer1 has become a severe threat to human lives due to its prevalence. According to the

American Cancer Society [1], the estimated number of new cases, for all types of cancer in

the U.S. for the year 2013 is 1,660,290, and the estimated number of deaths from cancer is

580,350. In men, prostate cancer is the most prevalent cancer type (other prevalent cancers

are lung, colorectum, and bronchus). The estimated new cases of prostate cancer is 238,590

(Table 1.1), which is the highest number among all types of cancer in men (accounting for

28% of all the new cancer cases). Furthermore, the estimated number of deaths from this

type of cancer is 29,720 (Table 1.2), which is the second highest (after lung and bronchus).

The distribution of prostate cancer incidences around the world is illustrated in Figure

1.1. According to this map, we can see that prostate cancer is concentrated in North Amer-

ica, Australia, and Northern Europe. Detailed information about the prostate and prostate

cancer can be found in [15] and [16]. In this chapter, we summarize information about

prostate cancer extracted from these studies.

Prostate is a gland in the male body. As can be seen in Figure 1.2, the prostate is located

next to the bladder. The function of the prostate is to create the fluid to protect the sperm

cells. A commonly occurring problem in the prostate is “Benign Prostatic Hyperplasia”, in

which the size of the prostate increases as men get older. The enlarged prostate obstructs

the urethra, which makes it difficult for passing urine. Despite having similar symptoms with

prostate cancer, “Benign Prostatic Hyperplasia” is not considered a cancer [15]. Prostate

cancer occurs mostly in the gland cells (although there are many other cell types present in

1Cancer, tumor, and carcinoma refer to the tissues which are detected to have malignant
properties of a cancer (cells grow aggressively, invade the surrounding tissues and spread to
the non-adjacent tissues). Normal, benign and nontumor refer to the tissues which are not
cancerous.
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Figure 1.1: World map of prostate cancer incidence for the year 2008 [5]. For interpretation
of the references to color in this and all other figures, the reader is referred to the electronic
version of this dissertation.

Cancer type Number of estimated new cases Percent

Prostate 238,590 28%
Lung & bronchus 118,080 14%

Colorectum 73,680 9%
Urinary bladder 54,610 6%

Melanoma of the skin 45,060 5%
Kidney & renal pelvis 40,430 5%

Non-Hodgkin lymphoma 37,600 4%
Oral cavity & pharynx 29,620 3%

Leukemia 27,880 3%
Pancreas 22,740 3%
All types 854,790 100%

Table 1.1: Estimated new cases of cancer in men in the U.S. for the year 2013 [1].
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Cancer type Number of deaths Percent

Lung & bronchus 87,260 29%
Prostate 29,720 9%

Colon & rectum 26,300 9%
Pancreas 19,480 6%

Liver & intrahepatic bile duct 14,890 5%
Leukemia 13,660 4%
Esophagus 12,220 4%

Urinary bladder 10,820 3%
Non-Hodgkin lymphoma 10,590 3%

Kidney & renal pelvis 8,780 3%
All types 306,920 100%

Table 1.2: Estimated deaths due to cancer in men in the U.S. for the year 2013 [1].

Figure 1.2: Prostate in the male body [6].

the prostate, cancer rarely occurs in those cells), thus, we call it prostate adenocarcinoma

(adenocarcinoma refers to the cancer developing in gland cells). In this thesis, we only focus

on prostate adenocarcinoma.

In most cases, prostate cancer grows rather slowly (e.g. many older men who have

prostate cancer die due to other diseases even before prostate cancer afflicts them). Patients

suffering from prostate cancer may not have any obvious symptoms or may have very few

symptoms such as frequent urination, blood in the urine or painful urination. Prostate cancer

can invade (metastasize) to different organs of the body such as rectum, lymph nodes, bones
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Figure 1.3: Prostate cancer incidence and death rate for men, as a function of age, in the
U.S. during 2005-2009 [7].

and bladder. If cancer spreads to other organs, additional symptoms appear such as bone

pain [15]. Although the cause of prostate cancer is not completely known, prostate cancer

is believed to be related to family history and age. It is uncommon for prostate cancer to

occur in men before the age of 45 but is more frequent for men over 50 (Figure 1.3). The

risk for prostate cancer increases by two times for men whose father or brother had prostate

cancer compared to men without a family history [17]. High blood pressure also increases

the risk for prostate cancer [18]. Moreover, there is some tentative evidence for a correlation

between dietary habits and prostate cancer [19]. Another study [20] found that consumption

of processed meat and red meat may increase the incidence of prostate cancer. Some of the

advice given to prevent prostate cancer includes: regular physical activity, eating vegetables

(cabbage, cauliflower, broccoli, tomato, soy, beans) and fish, Vitamin E and mineral supple-

ments [15].

The treatment methods prescribed for prostate cancer include: surgery, radiation therapy,

active surveillance, cryosurgery, vaccine treatment, hormone therapy, and chemotherapy [15].

4



These treatments are usually undertaken individually. However, in some situations, these dif-

ferent treatments can be combined together. The diagnosis of prostate cancer involves rectal

examination, blood test, biopsy tissue examination, and imaging test (more details about the

diagnostic process will be discussed in the next section). Due to the availability of different

imaging technologies and devices such as computed tomography (CT), magnetic resonance

imaging (MRI), virtual microscopy (tissue scanner) (Figure 1.4), the amount of image data

being generated increase significantly. This has lead to the development of computer-aided

diagnosis (CAD) systems, which utilize image processing, pattern recognition, and machine

learning algorithms to assist physicians in cancer diagnosis. In this thesis, we concentrate on

the CAD systems which analyze histopathological images of the prostate, i.e. the digitized

prostate tissue slides obtained from the biopsy. Specifically, we aim at developing automatic

tools to assist pathologists in detecting cancer regions in the prostate tissue as well as in

grading the tissue. These types of images are generated by a tissue slide scanner and capture

cellular information in the prostate tissue. Before scanning, the tissue must be stained by

some pigments to reveal the individual tissue components. Figure 1.5 shows an example of

the histopathological image of the prostate tissue, which is stained by the well-known H&E

method (explained in the subsequent sections).

The remainder of this chapter is organized as follows. In section 1.1, we summarize the

prostate cancer diagnosis process performed by physicians, urologists, and pathologists. In

section 1.2, we provide details of the cancer grading procedure performed by pathologists us-

ing images of prostate histopathology. Section 1.3 addresses the challenges in the automatic

cancer grading systems. Section 1.4 briefly reports the prior work reported in the literature.

Section 1.5 summarizes the contributions of the thesis. Section 1.6 describes the databases

used in our experiments and section 1.7 describes the organization of the thesis.
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(a) A computed tomography (CT) machine [21]

(b) A magnetic resonance imaging (MRI) machine [22]

(c) A tissue slide scanner [23]

Figure 1.4: Different imaging devices used in prostate cancer diagnosis.
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Figure 1.5: A prostate histopathological image. The tissue is stained by the H&E staining
method. The pink areas denote stroma regions. The blue and purple areas denote the
epithelial cell regions, including epithelial nuclei (blue) and epithelial cytoplasm (purple).
The image size is 330 × 500 pixels, corresponding to a 0.66 × 1 mm2 tissue region digitized
at 5× magnification.

1.1 Prostate Cancer Diagnosis

The diagnostic process of prostate cancer [15] is delineated in Figure 1.6. The physician first

asks the patient about his medical history and symptoms. Next, a prostate cancer screening

is conducted. There are two options for the screening: a physical exam called digital rectal

exam (DRE) and a prostate-specific antigen (PSA) blood test. In the DRE exam, the doctor

directly inserts his finger into the patient’s rectum to find hard areas in the prostate, which

may be cancer areas. Besides the DRE, a PSA blood test [24] can also be conducted, mainly

when the patient has no symptoms. This test aims to measure the PSA level in the blood

of the patient (PSA is a substance produced by prostate gland cells, by both cancer and

normal cells). In healthy men, the PSA level in blood is mostly below 4 ng/mL (nanograms

per milliliter). The high PSA level indicates the possibility of prostate cancer. If the results
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of the DRE and/or PSA test suggest that the patient may have prostate cancer, a prostate

biopsy is conducted. In this biopsy procedure, a urologist uses a needle to remove prostate

tissue samples from the patient. Usually 12 tissue samples are removed. The tissue samples

are examined under a microscope by a pathologist2 to find cancer regions, and assign a grade

to the cancer (which determines the malignancy level of the cancer). We refer to this process

as histopathological grading process, which will be discussed in greater details in the next

section. By combining the results of the DRE, PSA test and histopathological grading, the

spread of the cancer is determined. If the cancer has spread beyond the prostate, additional

imaging tests such as transrectal ultrasound (TRUS), bone scan, computed tomography

(CT), magnetic resonance imaging (MRI) are conducted to find cancer in other organs of

the body.

1.2 Tissue Preparation and Grading

The main focus of the thesis is the histopathological grading step in the prostate cancer

diagnosis, i.e. the process of examining the tissue biopsy to detect cancer regions and grade

the tissue (Figure 1.10). Before being graded, the tissue biopsy must undergo a preparation

procedure.

1.2.1 Tissue Preparation and Digitization

After being removed from the patient’s prostate, the tissue biopsy is processed with fixative

to prevent it from becoming decayed. The tissue is then sectioned into slices by using

a microtome (a machine which can create very thin slices), and are arranged on the glass

slides before being stained. The staining procedure uses certain pigments to reveal the tissue

components. Among the staining methods, H&E (Hematoxylin and Eosin combination)

stain is the most widely used (the images we use in this thesis are images taken from the

2Pathologists are doctors who work with tissue samples to diagnose the disease.
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H&E stained tissues). Nuclei are stained blue by Hematoxylin, while cytoplasm and the

tissue connective structures are stained pink. The pathologist then interprets the stained

tissue. In the conventional method, tissue slides are examined using a microscope. However,

recent developments in digital pathology, especially the development of virtual microscopy

technique, allow us to create a digital image of the tissue slide (Figure 1.8) by using a

digital tissue scanner (Figure 1.4c) shows the iScan Coreo Au slide scanner, manufactured

by Ventana Medical Systems, Inc. [23]). Most of the available tissue slide scanners can

digitize the tissue slides at 20× or 40× magnification [23, 25–27]. Only a few scanners can

digitize tissue slides at a higher magnification, e.g. 100× magnification [28, 29]. With the

digital tissue image, pathologists can examine and manipulate the tissue image on a monitor.

These digital slides can also be shared between pathologists to facilitate collaboration in

grading difficult slides. Further, the online digital slides allow pathologists to work virtually

anywhere. Figure 1.7 summarizes the tissue preparation and digitization process.

The volume of histopathological image data related to prostate tissue being produced is

huge, which raises a challenge for pathologists. For example, an image representing a tissue

area of 20×25 mm2 at 20× magnification contains 40,000 × 50,000 pixels, resulting in 6 GB

of data. Moreover, multiple tissue sections are obtained for a single patient [30]. As a result,

it is both time-consuming and tedious for pathologists to investigate the tissue structures and

detect cancer regions from these large images. Moreover, there are problems with inter and

intra-reader variability in reading the tissue slides [31–34], e.g. different pathologists may

end up with different grading results for the tissue slide. Thus, there is a need to design and

develop computer-aided systems to assist pathologists in detecting and grading the cancer

in prostate tissue images.

1.2.2 Histopathological Grading

The goal of histopathological grading is to determine the severity of the cancer development

in the tissue. Figure 1.10 summarizes the grading process performed by a pathologist. The
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Figure 1.8: A digital image generated by a tissue slide scanner. The image size is 5,000 ×
4,500 pixels, corresponding to a 10 × 9 mm2 tissue slide digitized at 5× magnification.
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Figure 1.9: Gleason grading of prostate cancer, from least aggressive (grade 1 or normal) to
most aggressive (grade 5) [14].

process includes three steps: (i) detecting cancer regions in the tissue, (ii) assigning a Gleason

grade to each region and (iii) assigning a Gleason sum to the entire tissue. These steps are

described as follows.

• To detect cancer regions in the tissue in step (i), the pathologist examines the tissue

image at different magnifications. He usually starts with a low magnification (1× or

2×) to localize the regions of interest (regions with small glands or abnormal tissue

structures) in the image. Next, he examines the image at 5× or 10× magnification to
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Figure 1.10: Histopathological grading process, using Gleason grading method, performed
by a pathologist. The gray boxes indicate the modules designed and developed in the
thesis, which can assist pathologists in this grading process.
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analyze the gland structures and the distribution of glands in the tissue. For regions

where gland structures do not provide sufficient evidence, the pathologist needs to

magnify the image to 20× or 40× to examine the cytological information in the tissue,

e.g. nuclei shape and size, the amount of cytoplasm, the presence of nucleoli inside the

nuclei, etc.

• In step (ii), using the Gleason grading method described in [14, 35], the pathologist

assigns a Gleason grade to each detected region obtained from step (i) based on the

histological tissue pattern present in the region. This Gleason grading method defines

five Gleason grades (from 1 to 5) corresponding to five different Gleason patterns

(Figure 1.9). The Gleason grade 1 pattern is the least aggressive and the Gleason grade

5 pattern is the most aggressive. A low grade pattern (grade 1 or 2) is very similar to

the normal pattern while a high grade pattern (grade 4 or 5) is very different from the

normal pattern. Glands in grade 1 and grade 2 patterns have well-defined structures

and are closely packed. Recent studies have recommended that Gleason grades 1 and

2 should rarely be used due to their uncommonness in the tissue [36, 37]. The grade

3 pattern, which is the most common pattern, usually has small glands infiltrating

(invading) to the muscle (stroma). Glands in grade 3 pattern still form individual

units and stay separated from each other. However, in grade 4 pattern, glands tend to

fuse with nearby glands, so that the gland structures become ill-defined. As a result,

individual gland units are not easy to identify in this pattern. Finally, grade 5 pattern

is characterized by the total loss of gland structures, so that only sheets of cells are

visible in this tissue pattern.

• Since a tissue may contain different Gleason patterns, the pathologist reports a Gleason

sum3 for the whole tissue (step (iii)). The Gleason sum is the sum of the grades of the

most and the second most dominant Gleason patterns in the tissue. As a result, the

3The Gleason sum is also known as the Gleason score in some of the studies.
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Gleason sum ranges from 2 (1 + 1) to 10 (5 + 5). However, a Gleason sum of 7 = 4 +

3 is worse than a situation where the same Gleason sum is obtained as 7 = 3 + 4. It

is, thus, better to specify the breakdown of the Gleason sum into two numbers rather

than simply reporting the total.

Although the biopsy only represents a portion of the prostate, the Gleason sum of the biopsy

is still one of the strongest factors for prognosis. The Gleason sum can help physicians to

determine the appropriate treatment. It is recommended that a biopsy be examined by more

than one pathologist [15].

In this thesis, similar to other studies in computer-aided diagnosis of prostate cancer,

we aim at providing tools to assist pathologists in performing the first two steps mentioned

above, i.e. finding cancer regions and assigning Gleason grades to these regions (Figure 1.10),

which are the fundamental tasks in the Gleason grading method. By using these tools, the

pathologist can determine the Gleason sum of the tissue. More specifically, we consider the

three most common types of regions in the tissue: normal regions (non-malignant glandular

regions), Gleason grade 3 and Gleason grade 4 regions4.

1.3 Challenges in Processing Prostate Tissue Slide Images

We summarize the major challenges in processing and interpreting prostate tissue slide im-

ages:

1. The first challenge relates to the large image size, as discussed above. We address this

problem by processing the images at a lower magnification. Our methods for gland

segmentation, gland classification, and tissue image classification obtain good results

for images at 5× magnification, which are comparable to results for images at 20×

magnification.

4Pathologists do not consider grade 1 and grade 2 when annotating the tissue images
in our database. Moreover, grade 5 regions are only observed in a few tissue areas in the
database. Hence, our primary interest here is in normal, grade 3 and grade 4 regions.
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2. The second challenge is the large variations, both in shape and appearance, in the

glandular structures, which makes model-based approaches such as Active Shape Model

[38] or Active Appearance Model [39] inapplicable. Our proposed gland segmentation

method is a model-free approach which is able to capture important structures of the

glands regardless of their variations in size and shape.

3. The third challenge is the large color variations in the tissue structures in the image.

This can be due to several reasons such as: (i) differences in staining (tissue is ei-

ther overstained or understained), (ii) long term storage which makes the stain fade

overtime, (iii) different types of tissue scanners. We address these variations as follows:

a) We use the Lab color space to represent the image pixels. Lab color space, which

separates the luminance and chrominance of the color, is suitable to describe the

color information of the tissue components. For example, due to the blue color,

nuclei appear most salient in the b channel of the Lab space (chapter 5). Moreover,

each color channel L, a, b is normalized to [0,1] to account for the difference in

color intensity among images.

b) We apply an adaptive binarization method (chapter 5) to segment nuclei. The

threshold used to binarize the grayscale image is adaptively chosen for each image,

instead of being set to a fixed value.

1.4 Related Work

The literature on prostate histopathological grading can be divided into two main categories,

namely tissue image classification and cancer region detection. However, most of the studies

address the tissue image classification problem. In this problem, the aim is to classify a

tissue image into one of the two classes: normal and cancer, or into one of the multiple

classes: normal, grade 3, 4 and 5 [40–44]. Only a few author have addressed the cancer

detection problem, i.e., given a tissue image which includes both cancer regions and normal
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Figure 1.11: Annotation of cancer regions (green contours) by a pathologist. The
annotation is a subjective process because the pathologist may circumscribe a large region
(on the right) containing several cancer glands or several small regions (the remaining
regions), each containing only a few glands. The image size is 600 × 1,200 pixels,
corresponding to a 1.2 × 2.4 mm2 tissue region digitized at 5× magnification.

regions, automatically detect the cancer regions (regions of interest) in the image [3,45,46].

A major challenge in the cancer detection problem is that the ground truth data, namely

the annotated cancer regions marked by pathologists, is not sufficient to accurately evaluate

an automated cancer detection method (this was previously mentioned in [45]). The ground

truth, created as a hand drawn contour by pathologists not only contains cancer glands

but also contains stroma (which is really the background area). Furthermore, there are no

standardized rules for the contour drawing, e.g., it may contain multiple glands or just a few

glands, which is a subjective choice of the pathologist, as shown in Figure 1.11.

To address the two problems mentioned above, the published studies have either used

a segmentation-based approach (gland segmentation followed by gland feature extraction)

or used a segmentation-free approach (directly extracting texture features from the image
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itself). We will discuss these methods in more detail in the subsequent chapters.

1.5 Contributions

This thesis makes the following contributions to CAD systems for histopathological grading

of prostate cancer (Figure 1.10):

1. A lumen-based gland segmentation method, termed nuclei-lumen-association (NLA),

that considers lumen as the central component of the gland, and find nuclei associated

with the lumen. The NLA method leads to better gland classification results than

the level set method, and comparable gland classification results to the manual gland

segmentation method.

2. The gland features that capture rich information about the gland, including structural

and contextual information. We show that these proposed gland features are (i) better

than gland features used in the published studies in solving the gland classification

problem and (ii) better than texture features used in the published studies in solving

the tissue image classification problem.

3. A nuclei-based gland segmentation method that models the relationship between nuclei

and lumina in the image by a nuclei-lumina-graph. The edges in the graph correspond

to the links between nuclei and nuclei and between nuclei and lumina. The recursive

normalized cut method is applied to partition the graph into different components,

each of which corresponds to a gland. The nuclei-based method overcomes the major

limitation of the conventional lumen-based methods: it is able to detect glands without

lumen and glands with multiple lumina.

4. A method to compute the gland-score of a segmented region that measures how sim-

ilar the segmented region is to a gland unit. The gland-scores are combined with the
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structural-contextual features to improve the grade 3 vs grade 4 tissue image classifi-

cation result.

5. Both the lumen-based and nuclei-based methods are evaluated on both low magni-

fication (5×) and high magnification images (20×) to evaluate the effect of image

magnification on the performance of these methods.

6. A gland-based method to compute the similarity between two tissue regions. This

method can be used to search for regions similar to a region of interest (ROI) in the

annotated tissue slides. The retrieved regions can serve as the references that a medical

student or a technician can rely upon when grading the ROI.

7. A method to extract an important cytological feature in the prostate tissue images,

i.e. the presence of nuclei with prominent nucleoli. To our knowledge, this cytological

feature has not yet been exploited in any CAD system. We also demonstrate the

usefulness of this cytological feature by applying it in a prostate cancer detection

framework.

1.6 Database Used in the Thesis

The prostate tissue image database used in our empirical studies contains 39 tissue slides

taken from 29 patients. The database was provided by Ventana Medical Systems, Inc. [23].

The tissue slides, with an average size of 5.6 × 9.2 mm2, were stained using the H&E method.

These slides were digitized at 20× magnification, yielding images of approximately 11,150 ×

18,300 pixels (the image resolution is approximately 0.5µm per pixel). In each tissue slide

image, a pathologist annotates the Gleason grade 3 and Gleason grade 4 areas (if they are

present). An example of a tissue slide image in the database with pathologist’s annotations is

shown in Figure 1.12. From the tissue slide images in this database, which we refer to as the

main database, we obtain a sub-database for each of the research problems that we address

in the subsequent chapters. See Table 1.3. The magnification of the tissue slide images (or
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tissue image regions) in each sub-database can be 20× or 5×, which is chosen by taking

into account the computational cost, the goal, and the requirement of the corresponding

problem. For the gland segmentation and classification problems (chapter 2), we use tissue

image regions at 5× magnification because using images at this magnification is sufficient

to separate the three classes of interest: artifact, normal, and cancer glands (as mentioned

in chapter 2, section 2.5.2). For the tissue image region classification problem (chapter 3),

we use tissue image regions at both 20× and 5× magnification since we want to analyze the

effect of image magnification on the classification accuracy. Due to the very large size of the

entire tissue slide images at 20× (11,150 × 18,300 pixels), performing tissue image region

retrieval (chapter 4) on these entire images at this magnification will be very computationally

expensive. Moreover, we observe from the tissue image region classification results that the

gland features computed from 5× images have almost the same discriminative information

as those computed from 20× images. Hence, we only use 5× images when addressing the

tissue image region retrieval problem. Finally, to compute the cytological features (chapter

5), we need to use images at 20× magnification because the cytological information in the

tissue can only be discerned in high magnification images.

1.7 Thesis Organization

In chapter 2 we present the methods for gland segmentation (lumen-based method) and gland

classification. In chapter 3 we discuss how to utilize these methods to solve the tissue image

classification problem. We also introduce a new gland segmentation method (nuclei-based

method), and introduce a method to compute the gland-scores of the segmented regions

to improve the performance of Gleason grade 3 vs grade 4 tissue image classification. In

chapter 4, we address the tissue region retrieval problem. In chapter 5, we present a method

to exploit the cytological feature of the prostate tissue. Finally, chapter 6 summarizes the

thesis and identifies some problems for future work.

21



Problem Chapter Sub-database

Gland segmenta-
tion and classifi-
cation

2 48 tissue image regions at 5×magnification (average size
is 900 × 1,500 pixels). These image regions are sampled
from the tissue slide images of the main database in such
a way that they contain glands with large structural
variations. We select 525 artifacts, 931 normal glands,
and 1,375 cancer glands from these image regions

Tissue image
region classifica-
tion

3 317 tissue image regions at both 20× and 5× magnifica-
tion (average size at 20× magnification is 1,400 × 1,380
pixels). These image regions are sampled from the tis-
sue slide images of the main database in such a way that
each region corresponds to one Gleason grade. Among
them, there are 113 normal, 134 Gleason grade 3, and
70 Gleason grade 4 regions

Tissue image re-
gion retrieval

4 All 39 tissue slide images in the main database at 5×
magnification (average size is 2,800 × 4,500 pixels)

Cytological fea-
ture extraction

5 17 (out of 39) tissue slide images at 20× magnification
(average size is 3,400 × 10,000 pixels), in which the cy-
tological features are salient

Table 1.3: The sub-databases extracted from the main database that are used in different
research problems in the thesis.

Figure 1.12: A tissue slide image in the main database. In this image, the pathologist
annotates the Gleason grade 3 areas by the green contours and annotates the Gleason
grade 4 areas by the blue contours. The size of the image is 1,160 × 3,100 pixels,
corresponding to a 2.3 × 6.2 mm2 tissue slide digitized at 5× magnification.

22



Chapter 2

GLAND SEGMENTATION AND CLASSIFICATION

2.1 Introduction

According to the Gleason grading process mentioned in chapter 1, Figure 1.10, the patholo-

gist needs to first find cancer regions in the tissue slide (Figure 2.1). In order to perform this

task, the pathologist relies on: (i) structural information; glands in a cancer region (which

we call cancer glands) appear to have structural properties (such as nuclei abundance, lu-

men size) different from glands in a normal region (which we call normal glands) and (ii)

contextual information; cancer glands typically cluster together to form a group and are of

similar shape and size1, while the shape and size of normal glands vary widely. These two

sources of information can be observed in Figure 2.1. Consequently, a reasonable approach

to develop an automatic system to assist a pathologist in finding cancer regions is to first

detect individual cancer glands. This can be accomplished by segmenting glands, examining

their structural and contextual properties and finally classifying them as cancer glands or

normal glands. Since artifacts, which are created by broken tissue areas (Figure 2.2), are

commonly present in the tissue images, we need to distinguish them from the true glands.

As a result, we address a three-class classification problem: artifacts, normal glands, and

cancer glands.

Challenges in Gland Segmentation and Gland Classification

The challenges of the problem are the following (Figure 2.3):

• Glands have large variations in shape and size, i.e. the shape can be circular, ellipsoid,

or can be very complex, while the size can range from small (2,500 pixels) to large

(2,900,000 pixels).

1It was also mentioned in [47] that cancer glands tend to appear close to other cancer
glands, which is a domain knowledge supporting this contextual information
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Figure 2.1: A tissue image showing the cancer glands in a cancer region annotated by a
pathologist (green contour); normal glands are present in the region outside the green
contour. The image size is 370 × 900 pixels, corresponding to a 0.74 × 1.8 mm2 tissue
region digitized at 5× magnification.

Figure 2.2: A gland with basic components (nuclei, cytoplasm and lumen) and an artifact.
Stroma can be considered the tissue background. In this H&E stained image, nucleus
mostly appears blue, cytoplasm mostly appears purple, lumen and artifact mostly appear
white and stroma mostly appears pink. The image size is 230 × 330 pixels, corresponding
to a 0.12 × 0.16 mm2 tissue region digitized at 20× magnification.
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• The color intensity of different components in the tissue may change remarkably from

slide to slide. This is caused by the variations in the staining procedure, the thickness

of the tissue, the amount of stain used, or the duration of tissue storage.

We address the color variation problem by using an unsupervised method (k-means cluster-

ing) to identify the tissue components, rather than applying a supervised method like in [2],

which relied on a fixed training set of pixels for each tissue component. Moreover, we use the

Lab color space, which separates the chrominance and luminance of the color, to represent

the image pixels. Given the large variation in gland size and shape, model-based methods

such as Active Shape Model [38] or Active Appearance Model [39] are not applicable. So,

we developed a model-free method, which is based on the structures of the glands, for gland

segmentation.

Figure 2.3: Challenges in gland segmentation and classification. (a)-(b) Variations in gland
structure; a large gland with irregular shape (a) and small glands with circular shape (b).
(c)-(d) Variations in color intensity; in (c) the cytoplasm color is very different from stroma
but in (d) the cytoplasm color is similar to stroma (d). Images in (a) and (c) are obtained
from normal tissue regions while images in (b) and (d) are obtained from cancer tissue
regions. The average size of the images is 200 × 180 pixels, corresponding to a 0.4 × 0.36
mm2 tissue region digitized at 5× magnification.
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2.2 Related Work

2.2.1 Gland Segmentation

The gland segmentation problem has been studied in the literature. Two popular methods

for gland segmentation are level set [2, 48, 49] and region growing [3, 50]. In the level set

method, basically, a closed curve is evolved and subjected to some constraints in such a way

that it can detect an object of interest in the image. For example, one can initialize the

curve inside the object of interest and evolve the curve toward the object boundary. For a

formal definition [51], a level set function is defined as φ(t, x, y), where t denotes the time

and x, y denote the 2D coordinates of the image pixels. Next, the zero level curve is defined

as C = {(x, y)|φ(t, x, y) = 0}, and is used to detect the object of interest in the image. The

zero level curve C is implicitly evolved by using the level set equation:

∂φ

∂t
+ F |∇φ| = 0 (2.1)

where F is the speed function which depends on the image. For example, F can be defined

based on the gradient of the image so that the curve moves toward the object boundary. In

practice, the level set evolution is usually solved by a variational method, i.e. minimizing

an energy functional which is defined on the level set function. In general, the total energy

function of a level set includes two terms:

E(φ) = µP(φ) + Eext(φ). (2.2)

The first term P(φ) denotes the internal energy (which maintains the stability of the curve),

while the second term Eext(φ) denotes the external energy (which drives the curve to the

region of interest (ROI) in the image). By simultaneously minimizing both the internal

and external energy, the zero level curve is evolved to the ROI while still maintaining its

stable form. Figure 2.4 illustrates the use of the level set method for gland segmentation as

presented in [2]. In this case, the ROIs are the nuclei on the gland boundary.

For the region growing method, we can analyze the algorithm used in [3] as an example.
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Figure 2.4: Use of the level set method for gland segmentation as presented in [2]. The
blue contour denotes the boundary of the lumen where the level set curve is initialized,
while the cyan contour denotes the level set curve after the evolution.

In this algorithm, the seed points, which are considered centers of glands, are first selected

as the high intensity pixels in the luminance channel of the image. The region growing

algorithm is performed in an iterative manner at every seed. Basically, at every step, (i)

the pixel with the highest intensity in the current boundary of the growing region is used

to expand the region and (ii) the boundary strength of the growing region at this step is

computed using the current boundary. The optimal region is selected as the region with the

largest boundary strength during the expansion. Figure 2.5 illustrates the use of the region

growing method for gland segmentation as presented in [3].

2.2.2 Gland Feature Extraction and Classification

In order to detect cancer regions in a tissue image, Monaco et al. [3] first used gland size to

classify glands in the image into normal or cancer glands before applying the probabilistic

pairwise Markov model (PPMM) to update the gland labels. Adjacent cancer glands were

then grouped together to form cancer regions.

The PPMM, which is a variation of the Markov Random Field (MRF) model, was used to

capture contextual information about the glands. This model is briefly described as follows.

Given an image with n glands, let x = {x1, x2, ..., xn} denote the gland labels, and y =
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(a) (b)

Figure 2.5: Use of the region growing method for gland segmentation as presented in [3].
The red contours in (a) and (b) denote the lumen boundary. The black square in (a)
denotes the point with highest intensity being chosen as the seed, while the gray squares in
(a) denote the boundary of the seed. The non-white region in (b) denotes the region
growing from the seed in (a), where the green rectangle denotes the point with the highest
intensity on the current boundary.

{y1, y2, ..., yn} denote the gland features. The gland labeling (gland classification) procedure

is equivalent to a maximum a posteriori (MAP) estimation procedure, i.e., choosing the

gland labels x in such a way that P (x|y) is maximized:

P (x|y) = P (xg|x−g,y)P (x−g|y) = P (xg|xηg , yg)P (x−g|y), (2.3)

where xg is the label of the gland g, and xηg denotes the labels of neighboring glands of

g (the neighboring glands of g were defined as glands within a distance R = 0.9 mm from

g). This maximization problem can be solved by the iterated conditional modes (ICM)

technique [52]: each gland g is iteratively visited and a label xg is chosen to maximize

P (xg|xηg , yg). Moreover, P (xg|xηg , yg) ∼ p(yg|xg)P (xg|xηg), where the density p(yg|xg)

and the probability P(xg|xηg) can be learned from a training set of labeled glands. In

general, the PPMM method is used to iteratively update gland labels after the initial gland

labeling is performed using the gland features alone.

Unlike Monaco et al. [3], Peng et al. [50] and Naik et al. [2] used gland features to classify

the tissue image rather than explicitly classifying the individual glands. While Peng et al. [50]

only used gland size to classify the tissue images into normal and cancer images, Naik et

al. [2] used size and shape of both gland and lumen to classify a tissue image into normal,
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Figure 2.6: Proposed method for gland segmentation and classification.

Gleason grade 3 or Gleason grade 4. By denoting the area, perimeter and boundary contour

of the lumen as A,P , and B, respectively, they computed the following shape features for

the lumen:

1. Area overlap ratio feature: Ratio of A to the smallest circular area that encloses B.

2. Distance features: Given the set of distances d from the center of B to the points on

B, these features include maximum(d)/mean(d), and the variance of d.

3. Perimeter feature: P ′/P , where P ′ denotes the estimated perimeter of the lumen or

gland (obtained by interpolating points equally sampled on B).

4. Compactness feature: P 2/A.

5. Smoothness feature: For every point pi in B, compute Spi = |d(pi, pg)(d(pi−1, pg) +

d(pi+1, pg))/2|, where pg is the centroid of the lumen or gland. The smoothness feature

is defined as
∑
i Spi .

The same shape features described above are also computed for the gland. A summary of

these studies, along with the proposed method, is given in Table 2.1.
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Study Segmentation
algorithm

Gland fea-
tures

Use of con-
text

Objective Limitation

Monaco
et al. [3]

Region
growing

Gland size PPMM
method

Detect cancer
regions

Only one fea-
ture, gland area,
was used

Peng et
al. [50]

Region
growing

Gland size No Classify tissue
images into
normal and
cancer images

Only gland area
was used; con-
textual informa-
tion was not con-
sidered

Naik et
al. [2]

Level set Shape
features of
lumen and
gland

No Classify tissue
images into
normal, Glea-
son grade 3
and grade 4
images

No features
about nuclei;
contextual infor-
mation was not
considered

Proposed
method

Nuclei-
lumen-
association
(NLA)

Structural
features

Contextual
features

Classify
glands into
artifacts,
normal and
cancer glands

The NLA
method may
not obtain good
segmentation re-
sults for glands
with weak nuclei
on the boundary

Table 2.1: Gland segmentation and gland feature extraction methods for prostate tissue
images reported in the literature. Note that each study used a different database since
there is no public domain database available.

2.3 Proposed Gland Segmentation Method

2.3.1 Lab Color Space

Similar to [3], we use the Lab color space for image pixel representation. The Lab color space

separates chrominance and luminance of the color, thus, making it suitable to describe the

color information of the tissue components. The Lab (also known as L*a*b* or CIELAB)

color space [53,54] is specified by the CIE (International Commission on Illumination) to sep-

arate the lightness of the color (L component) from the spectral properties of color (negative

values of a component indicate green and positive values of a indicate red, while negative

values of b component indicate blue and positive values of b indicate yellow). To convert
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from RGB space to Lab space, we first convert RGB to XYZ space by:
X

Y

Z

 =


0.4900 0.3100 0.2000

0.1769 0.8124 0.0107

0.0000 0.0099 0.9901

×

R

G

B

 (2.4)

The elements of the transformation matrix were derived in [55]. Next, the XYZ space is

converted to Lab space by:

L = 116f(Y/Yn)− 16 (2.5)

a = 500[f(X/Xn)− f(Y/Yn)] (2.6)

b = 200[f(Y/Yn)− f(Z/Zn)] (2.7)

where:

f(t) =

 t1/3 if t > ( 6
29)3

1
3(29

6 )2t+ 4
29 otherwise

(2.8)

and Xn, Yn, Zn are the white point tristimulus values in XYZ [54].

2.3.2 Gland Structure

A gland consists of epithelial nuclei, epithelial cytoplasm and lumen (Figure 2.2, [2], [56]). In

between the glands is the stroma which can be considered as the background. Artifacts ap-

pear as non-lumen white regions in the tissue. We perform gland segmentation by employing

the following two steps.

2.3.3 Tissue Component Identification

To facilitate segmentation, we first identify the basic components in the tissue by using

a color-based clustering procedure. By utilizing the differences in color of the four tissue

components in an H&E image [57] (stroma (S) color is mostly pink, lumen (Lu) is mostly

white, nucleus (N) is mostly blue and cytoplasm (C) is mostly purple), we perform clustering
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in the Lab color space by using the k-means algorithm (k = 4). For computational efficiency,

in each image, we run the k-means algorithm on 10,000 randomly selected pixels to find

4 clusters. By using the L and a values of the cluster centers, denoted by L0 and a0,

respectively, we are able to match the four clusters with the four tissue components (nuclei,

stroma, cytoplasm, and lumen) by the two following rules (see Figure 2.8b for an illustration):

1. L0
N < L0

S , L
0
C < L0

Lu: Nuclei cluster has the lowest L value (since nuclei have the dark-

est color), while lumen cluster has the highest L value (since lumen has the brightest

color).

2. a0
S > a0

C : Stroma cluster has a higher a value than cytoplasm cluster since the color

of stroma is more red than cytoplasm.

Next, each pixel in the image is assigned to the tissue component corresponding to the nearest

cluster center (Figure 2.8c). We apply a connected component algorithm [58] on nuclei pixels

and lumen pixels to generate nuclei objects and lumen objects, respectively, which are later

used for segmentation. Although the list of lumen objects also contains artifacts, we cannot

discard them easily by a simple size thresholding operation because these artifacts can be as

large as the lumen.

2.3.4 Nuclei-Lumen Association

The gland segmentation algorithm starts with lumen as the first component of a gland and

then searches for the nuclei for that gland. The proposed algorithm (Figure 2.7), which is

referred to as nuclei-lumen association (NLA) algorithm, associates appropriate nuclei with

each lumen to create a gland segment. Nuclei are searched along a direction normal to the

lumen boundary contour. The algorithm consists of three steps:

1. Given n points on the lumen boundary, we sample n/3 points uniformly at equal

interval, called lumen points. The number of points is selected by considering the
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trade-off between a sparse (for computational efficiency) and dense set (for adequate

search coverage).

2. A search region (ΩS) of a conical shape, centered at each lumen point, is expanded to

find nuclei on the gland boundary. When nuclei pixels are found within ΩS , we use

a circular mask to select the nuclei region to join the gland boundary. This step is

repeated for all lumen points to find the complete gland boundary.

3. A pruning procedure, based on the median absolute deviation (MAD), is applied to

remove outlier nuclei and generate a smoother segmentation boundary2.

Besides gland segments, the proposed algorithm also produces a set of points located at the

detected nuclei, referred to as the nuclei point set. The nuclei point set and lumen point

set are used for gland feature extraction. A detailed description of the algorithm is given in

Algorithm 2.1.

Since artifacts are included in the list of lumen objects, some non-gland segments created

by artifacts are also present in the segmentation result (Figure 2.9a). However, instead of

detecting them at this step, we identify them in the classification procedure, which is more

reliable since it uses a larger number of features.

2.4 Gland Feature Extraction

Given that artifacts are also present at the output of the segmentation stage, we classify

a gland segment into an artifact, a normal gland or a cancer gland. The main differences

in structures of the three classes of glands (artifact, normal gland and cancer gland) are as

follows:

2We define MAD = mediani(|di - medianj(dj)|), where di and dj are the distances between
a lumen point and a nuclei point. A nuclei point k with dk > [3σ + mean(di)], where
σ = 1.48MAD, is considered an outlier and discarded.
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Algorithm 2.1 Nuclei-lumen association (NLA) algorithm

Input: Lumen object Lu, m nuclei objects {Ni}mi=1. Image intensify function f . Parameters
α0, η, rC , rm

Output: Gland segment GS, lumen point set {Lp}, nuclei point set {Np}
GS ← Lu (gland is initialized as lumen)

2: Select {Lp} by sampling at equal intervals from the boundary points of Lu
{Lp} = {pj}nj=1; {Np} ← {qj = (0, 0)}nj=1

4: for j = 1 to n do

r ← 0 ((r, α0) determines the area of the search region at point j, Ω
j
S)

6: Let pj = (pjx, pjy). Compute ∇fj =

(
δf
δpjx

, δf
δpjy

)
flag ← FALSE

8: while flag = FALSE do

r ← r + η (expand Ω
j
S)

10: Ω
j
S = {(x, y)|‖(x− pjx, y − pjy)‖2 < r and ‖∠(x− xj , y − yj)− ∠(∇fj)‖ < α0}

Let ΛN = {Ni, i = 1, . . . ,m such that Ni ∩ Ω
j
S 6= ∅ } (the nuclei objects being

found)
12: if ΛN 6= ∅ then

Let x0 = mean(x), y0 = mean(y), where (x, y) ∈ Ω
j
S ∩ ΛN

14: ΩC = {(x, y)|‖(x− x0, y − y0)‖2 ≤ rC} (circular mask)
GS ← GS ∪ (ΩC ∩ ΛN ) (take nuclei region as part of gland boundary)

16: qj ← (x0, y0) (a nuclei point is found)
flag ← TRUE

18: end if
If Ωj intersects any lumen object or exceeds a maximum size rm, flag ← TRUE

20: end while
end for

22: Gland segment pruning:
Remove pj , qj from {Lp}, {Np} where qj = (0, 0)

24: Let dj = ‖(pjx − qjx, pjy − qjy)‖2 ∀pj ∈ {Lp} and qj ∈ {Np}
MAD = mediani(‖di - medianj(dj)‖)

26: σ ∼ 1.48MAD
dm ∼ 3σ + mean(d)

28: ∀dj such that dj > dm (outliers), discard pj , qj

34



Figure 2.7: Nuclei-lumen association. The final segmentation result is depicted by a convex
hull enclosing the detected nuclei.

• An artifact (Figure 2.9a) does not have cytoplasm surrounding the lumen and has very

few associated nuclei.

• Nuclei on the boundary of a normal gland (Figure 2.9b) are more abundant and have

darker blue color than a cancer gland (Figure 2.9c).

• Lumina of cancer glands commonly appear more circular and smaller in size than

normal glands (Figure 2.1), while lumina of normal glands are more branchy and have

large variation in shape.

Based on these differences, we extract the following sets of structural features, for a total of

19 features, for each gland:

1. Set 1 (8 nuclei features): For each nuclei point (Np), we compute the mean (µ) and

standard deviation (σ) of the L, a, b color bands in the neighborhood of Np (we denote

this neighborhood by ΩNp). This color information describes the darkness of the blue
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Figure 2.8: Proposed gland segmentation process. (a) Input tissue image of 390 × 270
pixels, corresponding to a 0.78× 0.54 mm2 tissue region digitized at 5× magnification. (b)
Clustering of the image pixels in the Lab color space. (c) Tissue component identification
result where red denotes stroma, pink denotes cytoplasm, blue denotes nuclei, and white
denotes lumen. (d) Nuclei-lumen association result (final gland segmentation result), where
blue regions denote nuclei, black contours denote lumen, cyan regions denote nuclei
associated with the lumen in the center, and yellow contours denote the segmented gland
regions.
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Figure 2.9: Segmentation results for three classes of interest: (a) Artifact, (b) normal gland
and (c) cancer gland. Green and yellow circles in (a) and (b) denote the neighborhood of a
lumen point and a nuclei point, respectively. The average size of the images is 180 × 160
pixels, corresponding to a 0.09 × 0.08 mm2 tissue region digitized at 20× magnification.

color in the nuclei. In addition, we compute µ and σ of the percentage of ΩNp that

contains nuclei pixels, i.e. nuclei abundance on the gland boundary and its variation.

ΩNp is a circular region centered at Np (yellow circles in Figures 2.9a and 2.9b), and

has a radius rNp . Since cancer glands usually have one nuclei layer on the boundary,

while normal glands have more than one nuclei layer (mostly 2 nuclei layers), we choose

rNp = 10 pixels, which corresponds to the 2-nuclei-layer thickness (the diameter of a

nucleus is approximately 5 pixels in 5× images). Hence, ΩNp is sufficient to capture

most of the nuclei of a gland, while excluding nuclei of neighboring glands.

2. Set 2 (6 cytoplasm features): For each lumen point (Lp), we compute mean and

standard deviation of the L, a, b color bands in the neighborhood of Lp (we denote

this neighborhood by ΩLp). ΩLp is a circular region (green circles in Figures 2.9a

and 2.9b), which is centered at Lp and excludes lumen area. The radius of ΩLp is

the distance between Lp and the corresponding Np, which means ΩLp captures the

region in between lumen and nuclei. This region mostly contains epithelial cytoplasm

in a true gland segment (since cytoplasm is located between lumen and nuclei), and

mostly contains stroma in an artifact segment (since artifacts are not glands, thus, are
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not surrounded by epithelial cytoplasm). As a result, the color information in ΩLp is

different for true glands and artifacts.

3. Set 3 (3 lumen shape features): Area, solidity (ratio of the lumen area to its convex

hull area) and circularity ((4πarea)/perimeter2) of the lumen. For lumen that is more

circular and compact (less branchy), the circularity and solidity are high.

4. Set 4 (2 morphological features): Mean and standard deviation of the distance

between a Lp and a Np (yellow arrow in Figure 2.7). This distance is large for the

artifact segments because artifacts are not surrounded by epithelial nuclei like the true

glands.

As discussed at the beginning of the chapter, cancer glands tend to be located close to

each other as a group while normal glands are distributed randomly. This motivates us

to utilize contextual information in the classification. To explore contextual information,

we first assign gland segments into groups (Figure 2.10) by using the connected component

algorithm. Let {Lui}ni=1 denote the n lumen objects used to represent n gland segments,

and let (Luixo , Lu
i
yo) denote the centroid of Lui. A graph is built, where each node is a

gland. If ‖(Luixo − Lu
j
xo , Lu

i
yo − Lu

j
yo)‖ < td, there is an edge connecting Lui and Luj .

Each connected component is considered a group of glands. Once groups are formed, we

compute the following 3 contextual features for each gland segment Lui (which belongs to

group O):

1. Neighborhood crowdedness: |O| or the number of elements in O.

2. Shape similarity: 1
|O|
∑|O|
j=1 ‖LVi−LVj‖, where LV denotes the 3-dimensional lumen

shape feature vector described above.

3. Size similarity: 1
|O|
∑|O|
j=1

min(|Lui|,|Luj |)
max(|Lui|,|Luj |)

, where |Lu| denotes the lumen size.

Finally, each gland segment is represented by a feature vector of dimensionality 22 (19 +

3). Table 2.2 summarizes the 22 gland features described in this section. We use an SVM
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Figure 2.10: Glands are clustered into a group (dotted contour) to compute contextual
features. The image size is 340 × 420 pixels, corresponding to a 0.68 × 0.82 mm2 tissue
region digitized at 5× magnification.

Feature set (No. of
features)

Feature description

Cytoplasm features
(6)

Mean and standard deviation of L, a, b color bands in
the neighborhood of a lumen point (ΩLp)

Nuclei features (8) Mean (µ) and standard deviation (σ) of L, a, b color
bands in the neighborhood of a nuclei point (ΩNp). µ
and σ of the percentage of ΩNp that contains nuclei pix-
els.

Lumen shape features
(3)

Area, solidity (the ratio of the lumen area to its convex
hull area) and circularity ((4πarea) / perimeter2).

Morphological fea-
tures (2)

Mean and standard deviation of the distance between a
lumen point and a nuclei point

Contextual features
(3)

Neighborhood crowdedness, shape similarity, and size
similarity

Table 2.2: Features extracted for each gland segment.

classifier (RBF kernel) with this feature vector to classify the gland segment into an artifact,

a normal gland or a cancer gland3. In the current work, all distances are measured in pixels.

However, pixel distances can be converted to physical distances if the image magnification

3In the experiments (section 2.5.2), we compare the classification results of four different
classifiers (SVM, Adaboost, k-nearest neighbor (k = 9), and neural network). The results
obtained by SVM are better than those obtained by the other three classifiers.
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is known.

2.5 Performance Evaluation

2.5.1 Gland Database

As mentioned in chapter 1, the database used in this experiment includes 48 tissue image

regions at 5× magnification4 (average size is 900 × 1,500 pixels). Given the pathologist’s

annotation for each tissue image region, we manually labeled 525 artifacts, 931 normal

glands and 1,375 cancer glands to form the labeled (ground truth) gland database. We also

implemented the state-of-the-art methods in [2] and [3] to compare their performance with

the proposed segmentation (NLA) and classification methods. The segmentation process for

all the three methods starts with the lumen objects identified in each image by the k-means

clustering procedure discussed in section 2.3. Since the same set of lumen objects and the

same ground truth information (which is not affected by lumen objects) are used for all the

three methods, the comparison among the three methods is fair.

2.5.2 Gland Classification Evaluation

We perform a 10-fold cross validation on the gland database, and report the average classifi-

cation accuracy and the associated standard deviation. Since we need to extract contextual

information for each gland by using the neighboring glands in the same image, we perform an

image-based cross validation, i.e., we impose a constraint that glands from the same image

are not included in both the training and test sets at the same time. Since artifacts can be

considered noisy regions, we first solve two 2-class classification problems, i.e., (i) artifacts

vs glands and (ii) normal glands vs cancer glands. Next, we perform the 3-class classification

by combining the previous two 2-class classification problems in a hierarchical fashion.

4Images in some of the figures in this chapter are shown at 20× for visualization purposes.
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2.5.2.1 Classifier Selection

We compare the classification results of four popular classifiers: SVM [2, 41, 56], k-nearest

neighbor [56, 59], Adaboost [45], and feedforward neural network. For each classifier, we

evaluate different parameter values and report the best results in Table 2.3. From this table,

we can see that SVM outperforms the other three classifiers. Henceforth, we use SVM as

the classifier in our method.

Classification
problem

Adaboost (with
decision stump
as weak classi-
fier)

K-nearest
neighbor (k=9)

Feedforward
neural net-
work (1 hidden
layer)

SVM
(RBF
kernel)

Artifact vs
gland

0.91 (0.03) 0.91 (0.05) 0.93 (0.03) 0.94 (0.04)

Normal vs can-
cer

0.75 (0.08) 0.76 (0.08) 0.76 (0.07) 0.79 (0.08)

All three
classes

0.72 (0.06) 0.73 (0.07) 0.75 (0.06) 0.77 (0.07)

Table 2.3: Gland classification accuracies and standard deviations (using 10-fold cross
validation) obtained by different classifiers. The bold entry in each row indicates the
highest accuracy for the corresponding classification problem.

2.5.2.2 Comparisons with Published Studies

In Table 2.4, besides the methods in [2], [3] and the proposed method (denoted by SVM-SCF,

i.e. applying SVM classifier on the structural-contextual features (SCF)), we also report the

results of the SVM-SF method (applying SVM classifier on the structural features (SF)),

the results of the PPMM-SF method (applying the PPMM (section 2.2.2) on the SF), and

the results of the PPMM-SCF method (applying the PPMM on the SCF). Since artifacts

were addressed in [2] but not addressed in [3], we only report normal vs cancer result for the

method in [3]. From Table 2.4, we can see that:

1. The proposed SVM-SCF method obtains the highest accuracy in all the classification

problems.
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(a)

(b)

(c)

Figure 2.11: Comparison between the proposed SVM-SCF method and Monaco et al.’s
method [3] for the two-class gland classification. (a) Ground truth. (b) Output of [3]. (c)
Output of SVM-SCF. Cyan contours denote segmentation results, and color of the lumen
corresponds to gland label (black, red, yellow and blue denote non-labeled glands, artifacts,
normal glands and cancer glands, respectively). The image size is 300 × 500 pixels,
corresponding to a 0.6 × 1 mm2 tissue region digitized at 5× magnification.
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(a)

(b)

(c)

Figure 2.12: Comparison between the proposed SVM-SCF method and Naik et al.’s
method [2] for the three-class gland classification. (a) Ground truth. (b) Output of [2]. (c)
Output of SVM-SCF. Cyan contours denote segmentation results, and color of the lumen
corresponds to gland label (black, red, yellow and blue denote non-labeled glands, artifacts,
normal glands and cancer glands, respectively). The image size is 250 × 300 pixels,
corresponding to a 0.5 × 0.6 mm2 tissue region digitized at 5× magnification.

43



2. The superior performance of PPMM-SF over [3] shows that the structural features

(SF) are useful.

3. A drawback of the PPMM is that it requires a density estimation p(y|x) (y is the feature

vector, and x is the class label), which is difficult when y is a high dimensional vector

like the 19-dimensional SF vector or the 22-dimensional SCF vector. Here, we address

this “curse of dimensionality” problem (which was not discussed in [3]) by testing

three different methods to estimate p(y|x), i.e., (i) Parzen window density estimator

(PWDS), Naive Bayes model under the assumption that each feature is independent

and follows a (ii) Gaussian distribution, and (iii) Gamma distribution (as used in [3]).

The best results among these methods are obtained by PWDS, which are reported in

Table 2.4 (columns 5 and 6).

4. By including artifacts in the classification procedure, we can identify them more ac-

curately than [2], in which artifacts were identified in the pre-processing step5, since a

rich set of features are used.

5. The normal vs cancer gland classification, as expected, is more challenging than the

artifact vs gland classification, i.e., there are several normal glands whose features are

similar to cancer glands and vise versa. Figure 2.13 shows examples of these situations.

In Figure 2.13a, a normal gland is misclassified as a cancer gland because there are

weak nuclei (one layer of nuclei) on the gland boundary. In Figure 2.13b, a normal

gland is misclassified as a cancer gland because the detected lumen is small. On the

other hand, the cancer gland in Figure 2.13c is misclassified as normal because the

gland has a large lumen.

Examples of classification outputs for the three methods (proposed method, method in [2],

and method in [3]) are shown in Figures 2.11 and 2.12. In these figures, we compare the

5In [2], artifacts were discarded from true lumina by computing the lumen likelihood,
cytoplasm likelihood and size likelihood of the candidate lumina. Gland segmentation was
then initiated from true lumina.
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(a) (b)

(c)

Figure 2.13: Examples of gland misclassification by the proposed method. (a) and (b)
Normal glands are misclassified as cancer glands. (c) A cancer gland is misclassified as a
normal gland. Yellow curve denotes normal glands and green curve denotes cancer glands.

Classification Method Method SVM-SF PPMM- PPMM- SVM-
problem in [2] in [3] SF SCF SCF

Artifact vs 0.78 - 0.93 0.93 0.93 0.94
true gland (0.09) (0.03) (0.06) (0.04) (0.04)
Normal vs 0.67 0.68 0.75 0.73 0.75 0.79

cancer (0.13) (0.13) (0.07) (0.11) (0.11) (0.08)
All three 0.54 - 0.74 0.75 0.73 0.77
classes (0.12) (0.06) (0.10) (0.08) (0.07)

Table 2.4: Gland classification accuracies and standard deviations for methods in [2], [3],
SVM-SF, PPMM-SF, PPMM-SCF, and SVM-SCF by 10-fold cross validation. The bold
entry in each row indicates the highest accuracy for the corresponding classification
problem.

performance of the proposed method for three-class classification result with [2] and the

normal vs cancer classification result with [3].
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Figure 2.14: Plot of the normal glands, cancer glands and artifacts in the space of the two
best features. 100 randomly selected samples from each class are plotted here.

2.5.2.3 Relaxation Labeling

Relaxation labeling [60,61] is a well-known method in computer vision to utilize the contex-

tual information. To compare the proposed SVM-SCF method with relaxation labeling, we

implement the procedure described in [60], where objects are individual glands and the local

measurements (object features) comprise the structural features. In this relaxation labeling

method, which is an iterative process, every gland is assigned a confidence score, indicating

how likely it is that the gland is a cancer gland. The confidence score is computed based on

the local measurements of the glands, and also based on the confidence score of its neighbors

6. However, we obtain lower accuracies for the relaxation labeling method compared to the

proposed SVM-SCF method. The reason is that, when classifying a gland g, the relaxation

labeling method does not take into account the number of glands in the neighborhood of

g, which is an important feature to discriminate normal vs cancer glands, as the SVM-SCF

method.

6To find neighbors of the glands in this method, we use the same distance threshold that
is used to group glands when computing the proposed contextual features.
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2.5.2.4 Feature Weights

We apply linear SVM to compute feature weights, and find the two best features: (i) nuclei

abundance (on the gland boundary) and (ii) lumen-nuclei distance (Table 2.2). A plot of

samples of the three classes in this 2-dimentional feature space (Figure 2.14) shows that

the nuclei abundance of glands is higher than artifacts, and the nuclei abundance of normal

glands is higher than cancer glands, which demonstrates the distinctiveness of the nuclei

features.

Finally, we test the proposed method on the same 48 images but at 20× magnification.

Similar classification accuracies as 5× magnification are obtained, showing that the proposed

method does not require images at a very high resolution.

2.5.3 Model-free vs Model-based Gland Segmentation

By assuming that lumen is the central component of the gland, the goal of the gland segmen-

tation procedure is to find nuclei associated with the lumen (nuclei belonging to the glands).

This is feasible because lumen and nuclei can be detected from the k-means clustering algo-

rithm mentioned in section 2.3. The gland segmentation is an important step that leads to

the computation of the structural features of the glands (Table 2.2), which are then used for

gland classification.

We analyze two types of gland segmentation methods in performing this task, the

model-free method and the model-based method. The proposed NLA method, a model-free

method, and the level set [62], a model-based method, are taken as examples (Figure 2.15).

We give a brief review of the two methods as follows.

For the NLA method, we search for the nuclei surrounding the lumen. There are two

important parameters in this method, namely the number of lumen-points sampled on the

lumen boundary, nlp, and the angle α0 of the search region (see Figure 2.7). These two

parameters determine the coverage and the fineness of the search space as well as the com-

putation cost of the method. For all the experiments in the thesis, we empirically select
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(a) (b) (c)

Figure 2.15: Model-based and model-free methods for gland segmentation. (a) Input gland
(image size is 150 × 140 pixels, corresponding to a 0.07 × 0.07 mm2 tissue region digitized
at 20× magnification). (b) Segmentation obtained by the level set method (a model-based
method). (c) Segmentation obtained by the NLA method (a model-free method). The blue
regions denote all nuclei detected in the image, while the cyan regions denote the nuclei
belonging to the gland found by the segmentation methods. The black contour denotes the
lumen boundary, where the level set curve is initialized. The yellow contour in (b) denotes
the level set curve after the evolution, while the yellow contour in (c) denotes the
segmented region obtained by the NLA method.

nlp = n/3 (n is the total number of points on the lumen boundary) and the angle α0 = π/6,

which makes the search space relatively fine and cover the complete area around the lumen.

The search process at every lumen-point stops when nuclei are found for the lumen-point or

when a maximum search radius is met.

For the level set method, a level set curve is initialized at the lumen boundary and itera-

tively evolved by minimizing an energy functional until the predefined stopping criteria are

met. As described in [62], the energy formulation of the level set includes three terms:

E(φ) = µR(φ) + λLg(φ) + αAg(φ) (2.9)

where R(φ) denotes the regularization term, L(φ) denotes the energy functional term that

drives the curve to the nuclei regions (the external energy), and A(φ) denotes the energy

functional term that speeds up the evolution process. As mentioned in [62] and by empirical

experiments, the two most important parameters are α (the coefficient of the term Ag(φ))

and C0 (the initial value of the level set function). To choose the stopping criteria, we follow

the suggestion in [62]: the curve is evolved until (i) it does not change for T1 consecutive

iterations or (ii) the number of iterations exceeds a threshold T2. We use T1 = 5 (as suggested
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Proposed NLA method Level set method [62]

1. The two most important parameters
are: the number of lumen-points and
the angle of the search region (see Fig-
ure 2.7)

1. The two most important parameters
are: α (see Equation 2.9) and C0 (the
initial value of the level set function).

2. Stops when nuclei are found; uses
the MAD measure to discard outliers

2. Stop after T2 iterations or stop when
the curve does not change for T1 con-
secutive iterations
3. The initial level set curve can be split
into multiple curves during the evolu-
tion (Figure 2.16)

Table 2.5: Comparison of the proposed NLA and the level set methods for gland
segmentation.

in [62]) and T2 = 600, which is a very large number (the values of T2 used in [62] are less

than 300). By using a large value of T2, we expect the curve to capture the glands with

complex shapes despite its large computation time. Table 2.5 summarizes the differences

between the two methods.

To obtain nuclei belonging to the gland in the level set method, we first sample a set of

points on the level set curve (after the evolution) and consider these points as nuclei points

(which are similar to the nuclei points mentioned in the NLA method (Algorithm 2.1)). The

nuclei belonging to the glands are the nuclei falling within the neighborhood of these nuclei

points (the cyan blobs in Figure 2.15b). The size of the neighborhood is chosen to be the

same as the NLA method.
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Figure 2.16: The level set curve (yellow) is split into multiple curves during the evolution,
which is an unexpected behaviour.

We now demonstrate segmentation examples of the two methods. Figure 2.17a is an

example of a cancer region in which glands have very few nuclei on the boundary. In this

case, the proposed NLA method does not provide a good segmentation result because the

search region covers the distant nuclei (Figure 2.17b). On the other hand, in Figures 2.17d

and 2.18a where glands contain a large number of nuclei on the boundary, the NLA method

provides good segmentation results because the search region only captures these nuclei

(Figures 2.17e and 2.18b).

For the level set method, depending on the choice of parameters, there are two types of

behaviour of the curve evolution:

1. The curve evolution is conservative, i.e., low freedom of curve evolution. We refer to

the parameter values corresponding to this type of behaviour as parameter choice 1.

2. The curve evolution is progressive, i.e., high freedom of curve evolution. We refer to

the parameter values corresponding to this type of behaviour as parameter choice 2.

When parameter choice 1 is used, the level set curve tends to maintain a compact shape,

making it suitable to segment small glands with compact, circular shape, and containing

only a few nuclei on the boundary (these glands mostly appear in cancer tissue regions).

This can be illustrated in Figure 2.17c. However, this parameter choice prevents the curve

from capturing the glands with complex, irregular shapes and with a large variation in size
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(b) (c)(a)

(d) (e) (f)

Figure 2.17: Examples of gland segmentation results, in which the level set curve has low
freedom of evolution (parameter choice 1). (a) A cancer tissue image in which glands have
only a few nuclei on the boundary (image size is 230 × 250 pixels, corresponding to a 0.46
× 0.5 mm2 tissue region digitized at 5× magnification). (b) and (c) Segmentation results of
the NLA method and the level set method for the image in (a). (d) A normal tissue image
in which glands have abundant nuclei on the boundary (image size is 180 × 150 pixels,
corresponding to a 0.36 × 0.3 mm2 tissue region digitized at 5× magnification). (e) and (f)
Segmentation results of the NLA method and the level set method for the image in (d).
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(a) (b) (c)

Figure 2.18: Examples of gland segmentation results, in which the level set curve has low
freedom of evolution (parameter choice 1). (a) A cancer tissue image in which glands have
abundant nuclei on the boundary (image size is 150 × 170 pixels, corresponding to a 0.3 ×
0.34 mm2 tissue region digitized at 5× magnification). (b) and (c) Segmentation results of
the NLA method and level set method for the image in (a).

(Figure 2.17f)7, which are very typical in normal tissue regions. Moreover, the parameter

choice 1 also makes the curve evolve very slowly (Figure 2.18c shows the result of the curve

evolution after 300 iterations).

On the other hand, when parameter choice 2 is used, the level set curve is able to capture

the complex shape of the glands (Figure 2.19c). However, this freedom in evolution may make

the curve fail to converge to the nuclei surrounding the glands when the glands have only a

few nuclei on the boundary (Figure 2.19f)8.

Since the final goal is to classify glands, we are interested in comparing the gland

classification results derived by the segmentation results of the level set method and of the

NLA method (the gland classification results derived by the NLA method were reported

in the last column of Table 2.4). To evaluate the gland classification results derived by

the level set method, we compute the same 22 features described in Table 2.2 for the gland

segments obtained by the level set method, and use the same experimental setup described in

7We also tried a larger threshold value T2 = 900 iterations, however, the level set curve
still cannot capture the complete gland region as the NLA method.

8We also tried a smaller threshold value T2 = 300 iterations, however, the curve still does
not converge to the nuclei surrounding the gland.
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(c)

(d) (e) (f)

(a) (b)

Figure 2.19: Examples of the gland segmentation results, in which the level set curve has
high freedom of evolution (parameter choice 2). (a) A normal tissue image in which glands
have abundant nuclei on the boundary (image size is 180 × 150 pixels, corresponding to a
0.36 × 0.3 mm2 tissue region digitized at 5× magnification). (b) and (c) Segmentation
results of the NLA method and level set method for the image in (a). (d) A cancer tissue
image in which glands have only a few nuclei on the boundary (image size is 200 × 220
pixels, corresponding to a 0.4 × 0.44 mm2 tissue region digitized at 5× magnification). (e)
and (f) Segmentation results of the NLA method and level set method for the image in (d).
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Classification problem Level set method NLA method

Artifact vs gland 0.93 (0.09) 0.94 (0.09)
Normal gland 0.75 (0.06) 0.79 (0.08)

vs cancer gland
All three classes 0.74 (0.07) 0.77 (0.07)

Table 2.6: Gland classification accuracies (standard deviations) derived by the gland
segmentation results of the level set and of the proposed NLA methods. The bold entry in
each row indicates the highest accuracy for the corresponding classification problem.

section 2.5.2. By evaluating different parameter values of the level set method, we obtain the

best gland classification results derived by this method in Table 2.6 (the gland classification

results derived by the NLA method are also listed here). This table shows that the NLA

method leads to better gland classification results than the level set method (with different

parameter values evaluated).
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2.5.4 Manual vs Automatic Gland Segmentation

We further evaluate the proposed NLA method by comparing it with the manual gland

segmentation method in this section. Since our final goal is to classify glands, we compare

the gland classification results derived by the gland segmentation results of the NLA method

and of the manual segmentation method, instead of directly comparing the segmentation

results. To achieve this goal, we manually segment 247 glands (including 90 normal and 157

cancer glands) from 22 different tissue images9. These images and glands are selected from

the database of 48 images used in this chapter (section 2.5.1) in such a way that they cover

most of the variations in color, size, shape, and structure of glands in this database.

In the manual gland segmentation method, we manually find the nuclei associated with

the lumen objects that represent the glands. Figure 2.20 shows examples of the manual gland

segmentation results, and the corresponding automatic gland segmentation results obtained

by the NLA method. Given the manual gland segments, we extract the 22 features described

in Table 2.2 from these segments. Next, we classify the segments into normal and cancer

glands, using SVM classifier (RBF kernel) and the 10-fold cross validation technique. The

same procedure is applied for the NLA method on the same 247 glands. The classification

accuracies obtained by the two methods are almost the same, 0.80 (standard deviation is

0.08), illustrating that the gland segmentation result of the NLA method is comparable to

the manual segmentation for classification purposes.

2.6 Summary and Contributions

In this chapter, we have addressed the gland segmentation and classification problem. The

first contribution here is the gland segmentation method, termed nuclei-lumen-association

(NLA), that leads to better gland classification results than the level set method and com-

parable gland classification results to the manual gland segmentation method.

9The manual segmentation is conducted by the author of this thesis.
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(a)

(b) (c)

Figure 2.20: Manual vs automatic gland segmentation. (a) A tissue image of 240 × 235
pixels, corresponding to a 0.48 × 0.47 mm2 tissue region digitized at 5× magnification. (b)
Manual segmentation results of the glands in (a) (green curves). (c) Automatic
segmentation results by the NLA method of the glands in (a) (cyan curves).
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The second contribution is a salient representation (feature vector) for the gland in the

prostate tissue image. The proposed feature vector captures all the relevant information

about the gland, including both structural information (information about lumen, cyto-

plasm and nuclei), as well as contextual information, i.e., the relation of the gland with

other glands in the neighborhood area. Comparisons with several published methods were

conducted to show the robustness of the extracted features.

Finally, we evaluate the gland classification performance by using a gland dataset contain-

ing three classes: artifacts, normal and cancer glands. Such a study has not been reported in

the literature. This procedure allows us to precisely analyze the discriminative power of var-

ious gland features. Moreover, by including artifacts in the classification procedure instead

of the preprocessing step, we identify artifacts with a higher accuracy than the published

method in the literature.
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Chapter 3

TISSUE IMAGE CLASSIFICATION

3.1 Introduction

In Gleason grading, the pathologist needs to assign grades to different regions in the tissue

slide image. Due to the large size of the tissue slide image (as discussed in chapter 1) and the

importance of the discrimination between tissue structures of different Gleason grades, an

automatic tool to classify a tissue region into one of the Gleason grades would be very useful.

This explains why the tissue image classification problem has received the most attention in

the literature (chapter 1).

In this chapter we address the tissue image classification problem by classifying a tissue

image region into one of the three classes: normal, Gleason grade 3 and Gleason grade 4,

which are the three most common cases in the Gleason grading of prostate cancer. Examples

of images from these three classes are shown in Figure 3.1. A description of gland structures

in different Gleason grades was given in chapter 1. Here, we briefly review the properties of

these classes. Glands in normal images typically have large size, large lumen, complex shape,

and abundant nuclei on the boundary. In a Gleason grade 3 image, glands are generally

smaller with regular shape and size, and contain less abundant nuclei on the boundary.

Finally, in grade 4 images, glands usually fuse together instead of staying separated as in

grade 3 images. In chapter 2, we introduced the methods to segment glands from the tissue

images and extract features of the glands. We utilize these methods to solve the tissue image

classification problem in this chapter.
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(a)

(b)

(c)

Figure 3.1: Three classes of interest: (a) Normal image, (b) Gleason grade 3 image and (c)
Gleason grade 4 image. The average image size is 300 × 370 pixels, corresponding to a 0.6
× 0.74 mm2 tissue region digitized at 5× magnification.
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3.2 Related Work

Most studies reported in the literature have used textural features to perform the tissue

image classification. Diamond et al. [63] used co-occurrence features [4] to classify each

100×100 sub-region in a tissue image into either stroma or prostatic carcinoma. In addition,

lumen area was used to discriminate benign tissues from the other two classes. An accu-

racy of 79.3% was reported on sub-regions of 8 tissue images (40× magnification). In [41],

fractal dimension features were calculated for the tissue image to discriminate the textural

discrepancy between low grade and high grade carcinoma. By using an SVM classifier with

leave-one-out technique, the method achieved 86.3% accuracy for the classification of 1,000

prostatic biopsy images into normal, Gleason grade 3, 4 and 5 classes. A multiwavelet trans-

form was used as the main texture analysis tool in [59]. The features used for classification

included entropy and energy derived from the multiwavelet coefficients of the image. Ten

different types of multiwavelets were evaluated on a dataset of 100 prostate sample images

(100× magnification) of Gleason grades 2, 3, 4, and 5. By using the leave-one-out cross val-

idation technique for this 4-class classification problem, the authors obtained the best result

of 97% for “correct classification percentage”. In another study, Tabesh et al. [56] employed

both global features of the entire image and local features of every segmented object in the

image. Global features included color histogram, fractal features, texture and morphometry

of the image. Local features were computed for histological objects such as nuclei, stroma

and lumen, which were extracted by the MAGIC system [64]. They achieved 96.7% accu-

racy for tumor vs nontumor classification (five-fold cross validation with 367 images) and

81% accuracy for low grade vs high grade classification (five-fold cross validation with 268

images). All images used in their experiments were at 20× magnification. In [40], Khurd

et al. used a bag of words model for the classification of tissue images into Gleason grade

3 and Gleason grade 4 classes. They applied a bank of invariant filters [65] on the image

to obtain the filter responses at each pixel. A clustering procedure was applied on the filter

responses to obtain C = 16 clusters (textons). For each image, each pixel was assigned one
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of the C textons and a histogram was computed, indicating the number of pixels in each

texton. The algorithm was tested on a dataset of 25 Gleason grade 3 images and 50 Gleason

grade 4 images (10× magnification), to obtain a 94% classification accuracy. A summary of

these studies is reported in Table 3.1. Note that the accuracies reported for these methods

cannot be directly compared because (i) different studies have used different databases, and

(ii) results are for different classification problems. Further, the databases are proprietary

and so they cannot be shared.

The reason that different studies used different image magnifications is primarily because

(i) there is no public domain database available (as mentioned above), and (ii) the tissue slides

used in different studies were digitized by different tissue slide scanners. As mentioned in

chapter 1, while most tissue slide scanners can create images at 40×magnification [23,25–27],

only a few slide scanners can generate 100× magnification images [28, 29]. The relationship

between image magnification and the classification accuracy will be analyzed later.

3.3 Proposed Method

Since images belonging to the three classes of interest differ in gland structures, it is reason-

able to use glandular features, which are described in Table 2.2 in chapter 2 (22 structural-

contextual features), to classify the images. The flowchart of the proposed tissue image

classification method is illustrated in Figure 3.2. In this method, we first perform gland

segmentation to identify glands in the tissue images (note that artifacts may be present in

those glands). The features of these glands are also extracted, and used to identify artifacts

in the images (note that these artifacts are considered as noisy regions). In order to identify

artifacts, we obtain an independent gland dataset, each of which is associated with a label

(artifact or true gland)1. An SVM classifier is trained on this gland dataset, and is used

to classify all segmented glands into artifacts and true glands; artifacts are then discarded.

The glandular features of the image are computed by averaging the features (Table 2.2) of

1We obtain 200 artifacts and 230 glands for this dataset.

61



Input image

Gland 
segmentation 
and feature 
extraction

Identify and 
discard artifacts
(black contours)

Glandular feature set

Training set of glands 
(each of which is labeled 

artifact or true gland)

SVM classifier to classify 
artifacts and true glands

Normal 
image
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Figure 3.2: Flowchart of the proposed tissue image classification method.
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Authors Features used Dataset size
(magnification)

Classes Accuracy

Diamond
et al. [63]

Features computed
from the graylevel
co-occurrence matrix
and lumen area

100×100 sub-
regions of 8
tissue images
(40×)

Stroma, benign
tissue and pro-
static carcinoma

79.3%

Khurd et
al. [40]

Texton histogram
(BoW model)

75 images (10×) Gleason grades 3
and 4

94%

Khouzani
et al. [59]

Entropy and energy of
the multiwavelet coef-
ficients

100 images
(100×)

Gleason grades
2, 3, 4 and 5

97%

Tabesh
et al.
[56]

Global features of
the image and local
features of
histological objects

268 images
(20×)

Low grade vs
High grade;

81%

367 images
(20×)

Tumor vs Non-
tumor

96.7%

Tai et al.
[41]

Fractal dimension fea-
tures

1,000 images Normal, Gleason
grades 3, 4 and 5

86.3%

Proposed
method

Glandular features 317 images
(20×)

Normal, Gleason
grades 3 and 4

83.3%

Table 3.1: Summary of prostatic tissue image classification studies related to prostate
cancer. Different terminologies which have the same meaning were used in the related
work. Cancer (with different Gleason grades), tumor and carcinoma refer to the tissues
which are detected to have malignant properties of a cancer (cells grow aggressively, invade
the surrounding tissues and spread to the non-adjacent tissues). Normal, benign and
nontumor refer to the tissues which are not cancerous.

the true glands in the image, which are then used to classify the image into normal, Gleason

grade 3 and Gleason grade 4. For the grade 3 vs grade 4 classification, we do not use the

contextual features because glands in both grade 3 and grade 4 images are cancer glands,

thus, they have similar contextual properties (in close proximity of each other and forming

groups). Similar to the experiments mentioned in section 2.5.2, we also use an SVM classifier

(with RBF kernel) to perform this classification.

63



3.4 Evaluation

3.4.1 Database

As mentioned in chapter 1, the database we use in this experiment includes 317 images

(including 113 normal, 134 grade 3 and 70 grade 4)2 at both 20× and 5× magnification

(average image size at 20× is 1,400 × 1,380 pixels), each of which represents one tissue

pattern corresponding to one of the three classes of interest. The grade of each image was

determined by a pathologist. We perform 10-fold cross-validation and compute the average

classification accuracy to evaluate the proposed method. Examples of these images are shown

in Figure 3.1.

3.4.2 Classification Results

To show the robustness of the proposed method, we compare it with four different texture-

based methods (i) GLCM: features computed from the gray-level co-occurrence matrix [4],

(ii) BoW-filter: bag of words model and the maximum response filters [40], (iii) BoW-SIFT:

bag of words model and the scale-invariant feature transform (SIFT) algorithm [66], and

(iv) the spatial pyramid matching method [67]3. The GLCM method (i) is a very popular

method for texture analysis in histological images [68–72], while the BoW-filter method (ii)

was proposed in [40] as an application of the popular BoW model in prostate tissue image

analysis. Finally, the methods (iii) and (iv) are popular methods in computer vision.

Besides the three-class classification problem, we also report results of the following

three two-class classification problems: normal vs grade 3; normal vs grade 4; and grade 3

vs grade 4. To investigate the relationship between image magnification and classification

performance, we evaluate the five methods (GLCM, BoW-filter, BoW-SIFT, spatial pyramid

matching, and the proposed method) using the same 317 images in the database at both

2Each image corresponds to a tissue image region in the main database mentioned in
chapter 1.

3The spatial pyramid matching method also uses SIFT to compute the features.
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Method
All three
classes

Normal vs
Grade 3

Normal vs
Grade 4

Grade 3 vs
Grade 4

5× 20× 5× 20× 5× 20× 5× 20×
Proposed method 87.1

(5.7)
87.0
(4.9)

97.2
(3.8)

96.7
(4.1)

98.9
(2.3)

98.3
(2.7)

84.0
(6.2)

83.3
(7.1)

GLCM 79.9
(7.6)

79.2
(8.1)

92.1
(4.7)

93.1
(6.5)

95.1
(3.1)

94.5
(3.3)

76.6
(11.0)

79.9
(9.4)

BoW-filter 80.2
(8.0)

79.8
(8.4)

96.0
(3.3)

95.4
(6.4)

97.4
(3.6)

97.0
(6.1)

75.8
(10.7)

77.3
(8.2)

BoW-SIFT 78.6
(8.7)

79.2
(5.7)

92.2
(4.4)

91.8
(5.8)

95.8
(5.3)

97.7
(3.2)

76.2
(11.1)

80.0
(9.1)

Spatial pyramid
matching

77.6
(7.9)

77.6
(7.7)

93.5
(5.0)

92.9
(5.2)

94.6
(5.7)

94.2
(5.2)

75.0
(10.9)

78.1
(9.0)

Table 3.2: Average 10-fold cross validation accuracy (%) and standard deviation obtained
by the proposed method, the GLCM, BoW-filter, BoW-SIFT, spatial pyramid matching
methods for various tissue image classification problems on both 5× and 20× magnification
images. The bold entry in each column indicates the highest accuracy for the
corresponding classification problem.

5× and 20× magnification (see Table 3.2). Based on these results, we make the following

observations.

• The proposed method obtains the best results for both 5× and 20× images.

• For normal vs cancer (grade 3 and grade 4) classification, for all the methods, using

high magnification images (20×) does not help to improve the accuracy compared

to using low magnification images (5×). Since the gland structures in normal and

cancer images are very different from each other, the feature vectors extracted from

low magnification images provide sufficient discrimination.

• For grade 3 vs grade 4 classification, the differences between these two grades are more

subtle than the differences between normal and cancer. For all the four texture-based

methods, using 20× images leads to a better accuracy than using 5× images since the

texture information is richer at higher magnification images. In contrast, the proposed

method obtains comparable accuracies for grade 3 vs grade 4 classification on both

5× and 20× images. The reason is that the structural features used by the proposed
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method mostly rely on the information extracted from the nuclei and lumen (size and

shape of the lumen, color and density of nuclei, distance between lumen and nuclei).

By using the color-based pixel clustering procedure to detect lumen and nuclei, which

have distinctive colors (nuclei are blue and lumina are white), their detection results

are not significantly affected by the image magnification. In Figure 3.3, we do not see

any significant difference between the nuclei and lumen detection results in 20× and

5× images.

• The performance of the spatial pyramid matching method is generally lower than that

of the BoW-SIFT method (both methods use the same SIFT features).

The above empirical analysis suggests using the proposed method on 5× magnification im-

ages, which requires low computational cost, for the tissue image classification problem.

Examples of correct classifications and misclassifications by the proposed method are

shown in Figure 3.4 and Figure 3.5, respectively. The normal image in Figure 3.5a is mis-

classified as Gleason grade 3 because of the presence of (i) some small glands resembling

cancer glands, and (ii) few nuclei on the gland boundary. Further, the color information is

not sufficiently discriminative (cytoplasm and stroma have very similar color). The Gleason

grade 3 image in Figure 3.5b is misclassified as normal image because (i) there are some

normal glands present in the image (yellow rectangles), (ii) most glands have large area

comparable to normal gland area and (iii) the color information is not discriminative. Fi-

nally, the Gleason grade 4 image in Figure 3.5c is misclassified as Gleason grade 3 because

the cancer glands in this image are in the intermediate stage of evolving from grade 3 to

grade 4, with some glands still well separated from neighboring glands.
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(a) (b) (c)

Figure 3.3: The lumen and nuclei detection results for an image at both 20× and 5×
magnification. (a) A grade 3 tissue image of 790 × 390 pixels, corresponding to a 0.4 × 0.2
mm2 tissue region digitized at 20× magnification. The lumen and nuclei detected for the
(b) 20× image and (c) 5× image, where red indicates lumen and blue indicates nuclei.

3.4.3 Feature Averaging vs Per-Gland Classification

In chapter 2, we have performed the individual gland classification problem. Hence, in this

section, we are interested in reusing the individual gland classification scheme in classifying

the tissue image, leading to a method called per-gland classification. Instead of using the

averages of the feature values of the glands to classify the image, the per-gland classification

method performs the following steps.

1. Classifies every gland in the test image into normal, grade 3 or grade 4. For this

classification, we obtain the training glands from the training images, and assign these

glands the same labels as the training images they belong to.

2. Uses a majority voting scheme to determine the label of the test image, i.e., the pre-

dicted label of the test image is the dominant gland label in the image.
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(a)

(b)

(a)

Figure 3.4: Examples of correct classification. Normal image (a), Gleason grade 3 image
(b), and Gleason grade 4 image (c) that are correctly classified by the proposed method.
The average image size is 250 × 270 pixels, corresponding to a 0.5 × 0.54 mm2 tissue
region digitized at 5× magnification.
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(a)

(b)

(c)

Figure 3.5: Examples of images that have been misclassified. (a) A normal image being
misclassified as Gleason grade 3, (b) a Gleason grade 3 image being misclassified as normal,
and (c) a Gleason grade 4 image being misclassified as Gleason grade 3. The average image
size is 350 × 400 pixels, corresponding to a 0.7 × 0.8 mm2 tissue region digitized at 5×
magnification.

69



The classification results obtained by this per-gland classification method are lower than

those of the method based on averaging of gland features. The reasons for this can be

explained as follows.

1. An image may contain glands that have different grades from the image (e.g., a grade

4 image may contain normal glands or grade 3 glands), which can be considered as

noisy glands. Hence, we have more confidence in the grade of the entire image than

the grades of individual glands. As a result, the training data that include (feature

vector of the image - average of gland features in the image, image label) are more

reliable than the training data that include (feature vector of the gland, gland label).

Moreover, by computing the averages of the gland features in the image, the features of

the glands that actually represent the image dominate the features of the noisy glands

(since these noisy glands appear less common in the image).

2. For the per-gland classification method, to predict the label of the image, we have

to predict the label of each individual gland in the image. Since each gland label

prediction has an associated error rate, the combination of these per-gland prediction

results will accumulate the error rates.

As a result, using the average of glandular features is a better choice for the tissue image

classification problem.

Although the proposed method obtains very good results for normal vs cancer (grade 3

and grade 4) classification, the result for grade 3 vs grade 4 classification is not as good. In

the next section, we introduce a new gland segmentation method, termed nuclei-based gland

segmentation, and a method to compute the gland-score of a segment to indicate how similar

the segment is to the gland. Next, we describe how to use these methods to improve the

grade 3 vs grade 4 classification result.
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Method Description

Level set [2] Initialize the level set curve at the lumen boundary and evolve
the curve to the nuclei area

Region growing
[3]

Select a seed in the lumen region and grow the gland region
from the seed

Proposed NLA Sample the lumen-points on the lumen boundary and find
nuclei associated with the lumen

Table 3.3: Summary of state-of-the-art gland segmentation methods, which are considered
as lumen-based methods.

3.5 Nuclei-based Gland Segmentation

Limitation of the Lumen-based Gland Segmentation Methods:

State-of-the-art gland segmentation methods (including the proposed NLA method), men-

tioned in chapter 2, Table 2.1, rely mainly on lumen: they consider the lumen as the center

of the gland region and evolve the gland region from the lumen. Hence, we refer to these

methods as lumen-based methods (see Table 3.3). As a result, these methods suffer from

the following limitations.

1. The tissue image is obtained from a 2D tissue slice sectioned from the prostate biopsy.

Depending on the position in the biopsy that the tissue slice is sectioned, the lumen

can be occluded or it may appear as multiple lumina in the 2D gland structure in

the tissue image. Hence, segmenting a gland based on a particular lumen may create

unexpected results, i.e., no detection of glands without lumen or multiple segments

detected for one gland. Figure 3.6 illustrates these segmentation issues.

2. For tissue image classification purposes, not being able to detect glands without lumen

can affect the Gleason grade 3 vs Gleason grade 4 classification result. In many grade

4 images and some of the grade 3 images, lumina are commonly occluded, leading

to fewer glands being detected from the entire images. Hence, a certain amount of

information (from the non-detected gland regions) is not utilized when computing

features to represent these images (see Figure 3.7).
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(a) (b)

Figure 3.6: The gland segmentation result of the NLA method (a lumen-based method) on
a grade 3 tissue image. (a) A grade 3 image of 1, 100× 750 pixels (corresponding to a
0.55× 0.37 mm2 tissue region digitized at 20× magnification). (b) The segmentation result
of the NLA method, in which (i) multiple gland segments are detected for a single gland
since multiple lumina are detected within the gland (indicated by black arrows), and (ii)
glands without lumen are not detected (indicated by green arrows). Detected lumina are
shown as blue contours.

In this section, we look at the gland segmentation problem from a different perspective

(see Figure 3.8 for the illustration):

1. Each gland is considered as a group of epithelial nuclei (green rectangle)4 that are

close to each other, which may or may not contain lumen in the center (green and

black arrows). Nuclei usually form a closed chain structure, or an ellipse on the gland

boundary.

2. Stroma rarely appears inside the gland area but mostly in between different glands

4Epithelial nuclei are nuclei lying in the gland regions, as opposed to stromal nuclei that
are nuclei scattered in the stroma region.
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(a) (b)

Figure 3.7: The gland segmentation result of the NLA method on a grade 4 tissue image.
(a) A grade 4 image of 650× 550 pixels (corresponding to a 0.32× 0.27 mm2 tissue region
digitized at 20× magnification). (b) The segmentation result of the NLA method, where
only a few glands are detected from the entire image. The green arrows indicate examples
of gland regions whose information is not used when computing features for classifying the
image.

(the yellow contour). However, glands are not perfectly separated by stroma, i.e., we

may see non-stroma area in between neighboring glands, or glands can be connected

together (blue arrows).

Based on the perspective discussed above, we propose the following hypothesis. By mainly

relying on nuclei when performing the segmentation (lumina are also used if available),

we can come up with a gland segmentation method that overcomes the limitations of the

lumen-based gland segmentation methods. Moreover, by using information about the nuclei

arrangement in the segmented regions, we can improve the result of the grade 3 vs grade

4 tissue image classification. To prove this hypothesis, we develop a “nuclei-based” gland

segmentation method and compute the “gland-scores” (described in the subsequent sections)
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Figure 3.8: A different perspective for gland segmentation. A tissue image of 540 × 400
pixels (corresponding to a 0.27 × 0.2 mm2 tissue region digitized at 20× magnification),
where the green rectangle denotes epithelial nuclei, the yellow rectangle denotes a stromal
nucleus, the black arrows denote glands without lumen, the green arrow denotes a gland
with lumen, the yellow contour denotes the stroma region between glands, and the blue
arrows denote the areas where glands are connected (no intervening stroma).

of the segmented regions, which are then used to improve the grade 3 vs grade 4 tissue image

classification result.

In the nuclei-based gland segmentation method, we aim at seeking a strategy to group the

nuclei and lumina (if lumina are available) belonging to the same gland together. We achieve

this goal by using graph theory techniques: we model the relationship between nuclei and

lumina in the image by a nuclei-lumina-graph G, where each nucleus or lumen is considered

as a vertex in G. Each edge in G is created as a “link” between a nucleus and a nucleus

or between a nucleus and a lumen. The links indicate which nuclei and lumina are likely

to belong to the same gland together. Finally, the normalized cut method [73] is applied

on this graph to find and remove the weakest sets of links (the links with high potential

to connect different glands) to partition them into different connected components, each of
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Figure 3.9: Flowchart of the nuclei-based gland segmentation method.

which corresponds to a gland (represented by a group of nuclei only or a group of both nuclei

and lumina). A flowchart of the method is illustrated in Figure 3.9.

3.5.1 Nuclei Detection by Radial Symmetry

As mentioned in Figure 3.9, the first step of the method is to detect nuclei in the image.

Since most nuclei have circular shapes and are of similar size, we use the radial-symmetry-

based method [74] to detect the nuclei. This method is described in Algorithm 3.1 and

Figure 3.10. The goal of the method is to detect the centers of the circular regions by

using a voting scheme. To perform the voting, pixels with strong gradient magnitude in the

image are selected (referred to as voting pixels) to cast the votes for its neighborhood region

(voting region). Pixels with strong gradient magnitude (gradient magnitude is greater than

a threshold τm) are chosen because they are likely to be the pixels on the nuclei boundary,

which can effectively vote for the nuclei centers. The voting region, Ωv, of a voting pixel pv is

a conical region with radius rv, angle θv, and direction specified by the gradient vector at pv

(Figure 3.10d). The votes from all the voting pixels are accumulated to form a voting matrix

V . Since the gradient vectors of pixels on the nuclei boundary point toward the nuclei center
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(Figure 3.10c), the pixels in the nuclei centers receive the largest number of votes. Figure

3.10e shows the voting matrix (more reddish color indicates larger votes). Besides this voting

matrix, we also estimate the nuclei radius in the matrix R using the voting distance. Next,

we select the local maxima in this voting matrix (using the estimated nuclei radius) to use as

the nuclei detection results. The advantage of this method is that it can detect the clumped

nuclei (see the yellow arrow in Figure 3.10a). We choose the radius of the conical region as

rv = 20 pixels (the estimated maximum nuclei diameter) and the angle as θv = π/4, so that

this region is guaranteed to cover the nuclei center (Figure 3.10d).

Algorithm 3.1 Nuclei detection by radial symmetry

Input: Matrix of the gradient vectors in the image ∇I (N × M), where ∇I(x, y) is the
gradient vector at (x, y). Parameters τm, rv, θv.

Output: Nuclei centers {ni}
1: V ← 0N,M (voting matrix)
2: R← 0N,M (nuclei radius)
3: C ← 0N,M (voting count)
4: for each pv = (xv, yv), where ‖∇I(xv, yv)‖2 > τm do
5: Ωv ← {(x, y)|‖(x− xv, y − yv)‖2 < rv and |∠(x− xv, y − yv)− ∠∇I(xv, yv)| ≤ θv/2}
6: for each (x, y) ∈ Ωv do
7: d← ‖(x− xv, y − yv)‖2
8: V (x, y)← V (x, y) +

1

d
9: R(x, y)← R(x, y) + d

10: C(x, y)← C(x, y) + 1
11: end for
12: end for
13: ∀x ∈ [1 . . . N ], y ∈ [1 . . .M ], R(x, y)← R(x, y)/C(x, y)
14: Using the maximum filter and the estimated radius in R to find the local maxima in V ,

i.e., nuclei centers {ni}

3.5.2 Epithelial Nuclei Identification

As mentioned earlier, there are two types of nuclei in the image, namely epithelial nuclei

(e-nuclei) and stromal nuclei (s-nuclei). E-nuclei are nuclei belonging to glands and are

surrounded by cytoplasm, while s-nuclei are nuclei scattered in the stroma regions. In this

step, we classify the detected nuclei into s-nuclei and e-nuclei. To perform the classification,
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: Nuclei detection by radial symmetry. (a) A tissue image of 58× 74 pixels
(corresponding to a 0.03× 0.04 mm2 tissue region digitized at 20× magnification), where
the yellow arrow indicates the two clumped nuclei. (b) The grayscale version of the image
in (a). (c) The gradient vectors of the pixels on the nuclei boundary. (d) The voting region
(denoted by green) of a voting pixel (denoted by red). (e) The voting matrix in which more
reddish color indicates higher votes. The black dots indicate the selected local maxima in
the matrix. (f) The final nuclei detection results (green dots) overlaid on the input image.

we compute textural features (Table 3.4) in the neighborhood of size S × S pixels (we use S

= 40) of the nuclei centers detected from the previous step. These textural features capture

the information about the neighborhood of the nuclei, which can be stroma regions (for

s-nuclei) or cytoplasm regions (for e-nuclei). Hence, they can be used in discriminating the

two nuclei types. A training set of e-nuclei and s-nuclei is obtained and a SVM classifier

(RBF kernel) is trained for this classification task. Figure 3.11 shows an example of the

classification result. The e-nuclei detected from the image are used for future processing

(while the s-nuclei are discarded). For simplicity, we will use the term “nuclei” to indicate

e-nuclei for the remainder of this section.
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(a) (b)

Figure 3.11: Nuclei classification result. (a) A tissue image of 320× 320 pixels
(corresponding to a 0.16× 0.16 mm2 tissue region digitized at 20× magnification). (b)
Nuclei classification result where yellow dots denote s-nuclei and green dots denote e-nuclei.

Feature type Feature description

First-order statistics (14
features)

10-bin histogram, mean, standard deviation, me-
dian, and gradient magnitude of pixel intensity

Second-order statistics,
i.e., features computed
from the gray-level co-
occurrence matrix (GLCM)
(13 features)

Energy, correlation, inertia, entropy, inverse differ-
ence moment, sum average, sum variance, sum en-
tropy, difference average, difference variance, dif-
ference entropy, and two information measures of
correlation

Table 3.4: Textural features used for nuclei classification [4]. All the features are computed
for all three channels of the Lab color space, resulting in 81 features in total.

3.5.3 Nuclei-Lumina-Graph Construction

To construct the nuclei-lumina-graph for the image as described in Figure 3.9, besides the

nuclei, we need to also detect stroma and lumina from the image. Stroma and lumina are

detected using the color-based clustering procedure described in section 2.3.3. The nuclei-

lumina-graph demonstrates the relationship between nuclei and nuclei and between lumina

and nuclei in the image, i.e., which nuclei and lumina should belong to the same gland to-

gether. We formalize the problem as following.
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Let G = (V , E) denote the nuclei-lumina-graph to be constructed, where V denotes

the vertex set and E denotes the edge set of the graph. Let N = {n1, n2, . . . , nN} and

L = {l1, l2, . . . , lL} denote the sets of nuclei and lumina detected from the image, respectively.

We construct V as V = N∪L. V can also be described as V = {vn1 , v
n
2 , . . . , v

n
N , v

l
1, v

l
2, . . . , v

l
L},

where {vn1 , v
n
2 , . . . , v

n
N} are the N vertices corresponding to the nuclei setN , and {vl1, v

l
2, . . . , v

l
L}

are the L vertices corresponding to the lumina set L. Our goal now is to construct the edge

set E (E ← ∅ at the beginning) to describe the relationship between the nuclei and lumina in

the image. More precisely, if ∃vivj ∈ E , the two vertices vi, vj (vi, vj can be either a nucleus

or a lumen) have potential to belong to the same gland.5 To construct the edge set E , we

first develop two procedures, nucleus-nucleus-link creation and nucleus-lumen-link creation.

Next, we discuss how to use these procedures in constructing E .

3.5.3.1 Nucleus-Nucleus-Link Creation

We define a link between two nuclei ni, nj if they are likely to belong to the same gland.

As mentioned earlier, our prior knowledge about nuclei and stroma in the image is that

(i) nuclei of the same gland stay close together and form a closed chain, and (ii) stroma is

more likely present between nuclei of different glands rather than between nuclei of the same

gland. Based on this prior knowledge, we design an algorithm (Algorithm 3.2) to find all

the nuclei that link to a nucleus of interest ni. The algorithm is further illustrated in Figure

3.12. The algorithm can be briefly described as follows. Given a nucleus of interest ni,

we consider the circular neighborhood Ω (with radius rn) of ni (the yellow circle in Figure

3.12b). Next, Ω is partitioned into k conical regions {Ωj} (the conical regions separated by

yellow lines in Figure 3.12b), each with an angle θn. At every Ωj , we

1. Find the nucleus n∗ ∈ Ωj that is closest to ni (the green stars in Figure 3.12c).

5We use the term “potential” since the final decision that the two vertices belong to the
same gland or not will be decided by the normalized cut procedure applied on the graph
(section 3.5.4).
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(a) (b)

(c) (d)

(e)

Figure 3.12: The nucleus-nucleus-link creation procedure. (a) A tissue image of 520× 600
pixels (corresponding to a 0.26× 0.3 mm2 tissue region digitized at 20× magnification),
where the nucleus of interest ni is indicated in red and the remaining nuclei are indicated
in green. (b) The conical regions, shown in yellow. (c) The closest nucleus to ni in each
conical region, shown as a green star. (d) The detected stroma regions, shown in cyan and
the lines connecting ni to the closest nuclei, shown in red. The lines intersecting stroma are
indicated by black arrows. (e) The final nuclei that link to ni after discarding the nuclei
with lines intersecting stroma, shown as green stars.
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Algorithm 3.2 Nucleus-Nucleus-Link Creation

Input: Nuclei set N = {n1, n2, . . . , nN}, with corresponding coordinates
{(xn1 , y

n
1 ), (xn2 , y

n
2 ), . . . , (xnN , y

n
N )}. Nucleus of interest ni = (xni , y

n
i ). Stroma mask S.

Parameters rn, θn.
Output: The set of nuclei that link to ni, denoted by Γni

1: Γni ← ∅
2: Θ← [0, θn, 2θn, . . . , 2π] (the list of angles with interval θn)
3: Generate |Θ| − 1 conical regions:
4: ∀j ∈ [1, |Θ| − 1],Ωj = {(x, y)|‖(x− xni , y − y

n
i )‖2 < rn and ∠(x− xni , y − y

n
i ) > Θj and

∠(x− xni , y − y
n
i ) < Θj+1}

5: for each Ωj do
6: Find n∗ = (xn∗, yn∗) ∈ Ωj ∩ N such that ‖(xn∗ − xni , y

n∗ − yni )‖2 ≤ ‖(xn − xni , y
n −

yni )‖2, ∀n = (xn, yn) ∈ Ωj ∩N
7: Let l(n∗, ni) denote the line connecting n∗ and ni
8: if l(n∗, ni) ∩ S = ∅ then
9: Γni ← Γni ∪ {n

∗}
10: end if
11: end for

2. Examine the line l(n∗, ni) connecting n∗ to ni (the red lines in Figure 3.12d). If the line

does not intersect the detected stroma area S (the cyan-highlighted regions in Figure

3.12d), we consider that n∗ links to ni (the green stars in Figure 3.12e).

Since the target of the nucleus-nucleus-links is to find glands without lumen, which are mostly

small-sized and average-sized glands, we choose the radius rn = 100 pixels, which corresponds

to the size of an average-sized gland. For the conical angle θn, we select θn = π/12 by

estimating the density of nuclei on the boundary of the glands.

The reason for choosing the closest nucleus in each conical region is that this nucleus is

most likely to belong to the same gland as ni, as we can see there are some nuclei in Figure

3.12c that fall within the conical regions, yet do not belong to the same gland as ni (e.g.,

the nuclei indicated by red arrows).

Although there are bad links (links between ni and the nuclei not belonging to the same

gland as ni) created (e.g., the links indicated by black arrows in Figure 3.12e), these links

are generally outnumbered by the good links (links between ni and the nuclei belonging

to the same gland as ni), due to the assumption about stroma. In other words, the links
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between nuclei within the same glands are denser than those between nuclei of different

glands. Hence, by applying a global method like normalized cut (section 3.5.4), the bad

links are likely to be removed to create the groups of nuclei that belong to the same gland.

3.5.3.2 Nucleus-Lumen-Link Creation

As has been mentioned earlier, the goal of the nucleus-nucleus-links is to deal with small-

sized and average-sized glands without lumen. For glands with large size, lumen is commonly

present. Hence, we utilize lumen to enhance the connection (the density of links) between

nuclei within the gland. Given a lumen of interest li, we apply Algorithm 3.3 to find the nuclei

that link to li. In this algorithm, we sample a number of points on the lumen boundary called

lumen-points (similar to the NLA algorithm) and denoted as {plj}. We apply Algorithm 3.2

on each point plj to find the nuclei that link to plj (i.e., we treat plj as a nucleus of interest

in Algorithm 3.2). The nuclei found are linked to the lumen li itself. By repeating the

procedure for all the points in {plj}, we obtain the nuclei set that link to li, denoted by Γli.

The radius rl of the neighborhood region used at the lumen-point plj is chosen as 50

pixels (the yellow circle in Figure 3.13b), which is the estimated maximum distance between

lumen and nuclei on the gland boundary. The interval to sample the lumen-points on the

lumen boundary is also chosen as rl so that we can efficiently cover the region surrounding

the lumen when finding nuclei.

Unlike the NLA algorithm that forms a gland by combining a lumen and the surrounding

nuclei, in this algorithm, we only create the links between the lumen and the nuclei, but do

not make the decision of forming the gland. Instead, we leave this decision to the normalized

cut method discussed subsequently, which is able to make a global decision based on all the

links in the image.
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(a)

(b)

(c)

Figure 3.13: The nucleus-lumen-link creation procedure. (a) A tissue image of 520× 790
pixels (corresponding to a 0.26× 0.39 mm2 tissue region digitized at 20× magnification),
where the cyan region denotes the lumen of interest, the red dots denote the lumen-points
sampled on the lumen boundary, and the green dots denote the detected nuclei. (b) A
selected lumen-point (blue dot) and nuclei that link to this lumen-point (green stars). (c)
All the nuclei found (green stars) that link to the lumen.

83



Algorithm 3.3 Nucleus-Lumen-Link Creation

Input: Nuclei set N = {n1, n2, . . . , nN}. Stroma mask S. Lumen of interest li. Parameters
rl, θl.

Output: The set of nuclei that link to li, denoted by Γli
1: Γli ← ∅
2: Select {plj} by sampling at interval rl from the boundary of li

3: for each plj do

4: Apply Algorithm 3.2 on plj , with parameters (rl, θl) to find the set of nuclei that link

to plj , denoted by Γp

5: Γli ← Γli ∪ Γp
6: end for

3.5.3.3 Constructing the Edge Set of the Nuclei-Lumina-Graph

By applying the two procedures, nucleus-nucleus-link creation and nucleus-lumen-link cre-

ation, on all the nuclei and lumina in the image, we are able to create all the links in the

image. Note that, if two nuclei ni and nj have links to a lumen li, we also create a link for ni

and nj , which is to strengthen the connection between nuclei in the same gland. We create

an edge in the graph corresponding to each link in the image. Algorithm 3.4 demonstrates

the procedure for constructing the edge set of the nuclei-lumina-graph.

Algorithm 3.4 Constructing the edge set E of the nuclei-lumina-graph G
Input: Vertex set V = {vn1 , v

n
2 , . . . , v

n
N , v

l
1, v

l
2, . . . , v

l
L}. Nuclei set N = {n1, n2, . . . , nN}.

Lumina set L = {l1, l2, . . . , lL}. Stroma mask S. Parameters rn, rl, θn, θl.
Output: The edge set E

1: E ← ∅
2: for each ni ∈ N do
3: Apply Algorithm 3.2 on ni, with parameters (rn, θn) to find nuclei that link to ni.

Denote the vertices in V corresponding to these nuclei as Vn
4: E ← E ∪ vni v, ∀v ∈ Vn
5: end for
6: for each li ∈ L do
7: Apply Algorithm 3.3 on li, with parameters (rl, θl) to find nuclei that link to li. Denote

the vertices in V corresponding to these nuclei as Vl
8: E ← E ∪ vliv, ∀v ∈ Vl
9: E ← E ∪ vivj , ∀vi, vj ∈ Vl

10: end for
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3.5.4 Normalized Cut for Gland Segmentation

Remember that the nucleus-nucleus-links and nucleus-lumen-links created are based on the

local information at the nuclei and lumina, without considering the global structure of the

glands in the image. As a result, besides the good links, we may also obtain some bad

links that connect nuclei of different glands together (when non-stroma regions are present

in between the glands). Therefore, the nuclei-lumina-graph created for an image are likely

to contain different connected components, each of which corresponds to a group of glands

(the group may contain a single gland or multiple glands connected together, depending

on the links created between the nuclei and lumina). Figure 3.14 shows an example of the

nuclei-lumina-graph constructed for an image. To segment the glands, we need to find a

way to partition each connected component in the graph into different smaller components

such that each of them corresponds to a gland. The normalized cut method [73] is a suitable

solution for this task. Normalized cut is a global method, which takes into account all the

links in the image and finds the weakest set of links for the partitioning. Intuitively, the

weakest set of links mostly contains the bad links since the bad links are less dense than the

good ones, which makes the gland segmentation results appropriate.

In this method [73], given a graph G = (V,E), the aim is to seek a minimum cut to

partition the graph into two components, A and B. A cut is defined as the total weight of

the edges to be removed to disconnect G, i.e.,

cut(A,B) =
∑

u∈A,v∈B
w(u, v), (3.1)

where w(u, v) denotes the weight of the edge uv. The normalized cut is defined as [73]

Ncut(A,B) =
cut(A,B)

assoc(A, V )
+

cut(B,A)

assoc(B, V )
. (3.2)

In this equation, assoc(A,V) =
∑

u∈A,v∈V
w(u, v) denotes the total connection from the vertices

in A to all the vertices in G. A similar definition is used for assoc(B,V).

To find the minimum cut, we first denote the binary assignment of the vertices into A
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(a)

(b)

Figure 3.14: The nuclei-lumina-graph constructed for an image. (a) A tissue image of
750× 560 pixels (corresponding to a 0.37× 0.28 mm2 tissue region digitized at 20×
magnification). (b) The nuclei-lumina-graph in which nuclei are denoted by red dots,
lumina are denoted by blue dots, and the edges (links) are denoted by green lines.
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and B as the binary vector x = {x1, x2, . . . , xM} (M = |V |), where xi = 1 if the vertex vi

belongs to A and xi = −1 if vi belongs to B. Next, we denote di =
∑
j w(i, j) as the total

weight of the edges connecting the vertex vi to all the other vertices in the graph. Using

these notations, the Ncut formula in (3.2) can be rewritten as (we also denote w(i, j) as wij):

Ncut(A,B) =

∑
(xi>0,xj<0)−wijxixj∑

xi>0 di
+

∑
(xi<0,xj>0)−wijxixj∑

xi<0 di
. (3.3)

The goal now is to estimate x so that the Ncut value in (3.3) is minimized. By further

defining an M ×M diagonal matrix D, with D(i, i) = di, an M ×M weight matrix W with

W(i, j) = wij , k =

∑
xi>0 di∑
i di

, b =
k

1− k
, y = 1 + x − b(1 − x), and performing further

derivation as described in [73], the solution to x can be written as the following optimization

problem

minxNcut(x) = miny
yT (D−W)y

yTDy
. (3.4)

Instead of solving for x, we now solve for y. A possible solution to minimize (3.4) is to relax

y to have real values and solve the eigenvalue system,

(D−W)y = λDy. (3.5)

It was shown in [73] that the second smallest eigenvector of (3.5) is the solution for this

normalized cut problem.

To apply the normalized cut method in our segmentation problem, we assign all edges in

the nuclei-lumina-graph the same weight. More precisely, ∀(vi, vj) ∈ V , wij = 1 if vivj ∈ E ,

otherwise wij = 0. Moreover, we perform the normalized cut in a recursive manner, i.e., we

partition each connected component in our graph into two sub-components, and recursively

partition the sub-components. One possible criterion that can be used to stop the recursive

process is to examine the Ncut value and stop the cut if this value is higher than a predefined

threshold δc (this means the connection within the graph is sufficiently solid). More precisely,

when applying a cut on a component C, if Ncut < δc, the cut is valid and the recursion

continues. Otherwise, the cut is invalid and C is considered as one of the final segmentation
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results.

An example of the recursive normalized cut procedure is shown in Figure 3.15. In this

example, we demonstrate the recursive cut process applied on a graph (Figure 3.15b) created

by a set of nuclei (green dots) and a lumen (the green dot enclosed in a black square) in

Figure 3.15a. These nuclei and lumen belong to two glands in the image (Figure 3.15a).

Applying normalized cut on the graph, we obtain two components denoted by the green and

yellow dots in Figure 3.15c. The Ncut value for this cut is 0.15. Next, the two components

in Figure 3.15c are further partitioned to obtain the results in Figures 3.15d and 3.15e, with

Ncut = 0.68 and 0.72, respectively. By choosing the cut threshold δc = 0.5, the cuts in

Figures 3.15d and 3.15e are considered invalid, which means the two components in Figure

3.15c are the final segmentation results. In Figure 3.15f, we show the convex hull of these

segments.

Since the local information (the nuclei distribution and the presence of stroma) at every

gland is different, the densities of the good links and bad links in each connected component

vary. Moreover, we do not have any information to estimate these densities, which means we

do not know how to choose a suitable cut threshold δc to determine the final segmentation

results. To address this issue, instead of finding a threshold δc, we aim to find a method

to select the best components obtained during the recursive cut process to use as the final

segmentation results. We define the best components as the components that are most

similar to the gland. Intuitively, the arrangement of nuclei in a gland is similar to a closed

chain structure, or in some cases, also similar to an ellipse. Figure 3.15c illustrates this

intuition. Hence, we aim to develop different measures to estimate the similarity between

the components (nuclei-groups)6 to these structures. Using these measures, we come up with

a single number, which we called gland-score, to estimate how similar the arrangement of

the nuclei-group is to the arrangement of nuclei in a gland.

6Each component is a group of nuclei, which may also include lumina. Since we use only
nuclei in the group for the subsequent computations, we also refer to these components as
nuclei-groups in the remainder of the section.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: The recursive normalized cut process. (a) A tissue image of 330× 440 pixels
(corresponding to a 0.16× 0.22 mm2 tissue region digitized at 20×), in which the selected
nuclei are denoted by green dots and the selected lumen is denoted by the green dot
enclosed in a black square. (b) The nuclei-lumina-graph, whose edges are shown as green
lines. (c) The result of the normalized cut applied on the graph in (b), where green and
yellow denote the two components created (Ncut = 0.15). (d), (e) Results of the
normalized cut applied on the two components in (c), with Ncut = 0.68 (d) and Ncut =
0.72 (e). (f) The final result showing two gland segments, when δc = 0.5 is used.
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For generalization purposes, given a set of points {pi}, we are interested in developing

different measures to estimate how similar the arrangement of {pi} is to (i) a closed chain

structure and (ii) an ellipse.

3.5.4.1 Closed Chain Structure Measures

To compute the closed chain structure measures for a point set {pi = (xi, yi)}, we first

construct a graph G = {V,E}, where V = {pi} and E = {e = vivj} ∀vi, vj ∈ V . The

weight (or length) of the edge is computed as wij = ‖(xi − xj , yi − yj)‖2. We are interested

in analyzing the structure of the minimum spanning tree (MST) of G [75, 76]. First, we

denote the path between two vertices vi, vj in the MST as Pij = (vi − vj), where |Pij |l

denotes the length of the path (total length of the edges in the path), and |Pij |v denotes

the number of vertices in the path. We find the path with the largest number of vertices,

P ∗, i.e., |P ∗|v ≥ |P |v, ∀P ∈ MST7, and refer to this path as the MST backbone. In Figure

3.16, we show the MSTs computed for the components obtained during the recursive cut

of the graph mentioned in Figure 3.15. The MST backbones and the branches (the edges

not belonging to the backbone) are shown as green lines and black lines, respectively, in this

figure. We compute the following measures to estimate how similar the MST is to a closed

chain structure (see Figure 3.16 for the intuition).

1. Mean degree (md): the average degree of non-leaf vertices (vertices with degree greater

than 1) in the tree. So, md ≥ 2, and a smaller md value indicates that the MST has

fewer branches, which means it is more similar to the chain structure.

2. The ratio of the number of vertices in P ∗ to the total number of vertices, rv =
|P ∗|v
|V |

.

A larger value of rv indicates that the MST has fewer branches or smaller branches,

which means it is more similar to the chain structure.

7There may be several such paths but we select only one of them randomly.
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Figure 3.16: The MSTs and the MST backbones computed for the components obtained by
the recursive cut process in Figure 3.15. The MST is shown as the green and black lines
connecting the vertices (red dots). The green path is the MST backbone, while the black
edges denote the branches in the MST.
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3. The ratio of the length of P ∗ to the total length of all the edges in the MST, rl =

|P ∗|l∑
e∈MST |e|

. Similarly, a larger value of rl indicates that the MST is more similar to

the chain structure.

4. The closeness index, ci, which determines the closeness of P ∗ (see Figure 3.17). To

compute this measure, we first compute the center of P ∗, C0 = (x0, y0), with x0 =

mean(xj) and y0 = mean(yj), where vj = (xj , yj) ∈ P ∗. Next, we partition the region

surrounding C0 into b angular bins, {Ωi}bi=1, each with an angle of π/12 (which means

b = 24). In Figure 3.17, the angular bins are separated by the black and yellow lines.

We compute ci as the ratio of the number of bins that contain vertices in P ∗ to the

total number of bins, i.e.,

ci =
|{Ωi|∃v ∈ P ∗ ∩ Ωi}|

b
(3.6)

For example, in Figure 3.17, the bins not containing vertices in P ∗ are indicated by

the black lines, while the bins containing vertices in P ∗ are indicated by the yellow

lines on the left border (clockwise order) of the bins. A larger value of ci indicates that

P ∗ is more similar to the closed path, e.g., the ci value of the path in Figure 3.17a is

larger than that of the path in Figure 3.17b.

Non–densely-distributed points: In a closed chain structure, the points scatter on the

chain, yet are not densely distributed. To describe this property, we create the Delaunay

triangulation on {pi} and compute the mean µt and variance σ2
t of the length of the edges

in the triangulation. If the points are densely distributed, µt is small. If the points are

uniformly distributed, σ2
t is small. If the points scatter on the chain structure, both µt and

σ2
t are large. In Figure 3.18, we give examples of two point sets (nuclei-groups) with similar

number of points, one with points forming a chain structure (Figure 3.18a), and one with

points densely distributed (Figure 3.18b). It is clear that the triangulation in Figure 3.18a

contains longer edges than the one in Figure 3.18b.
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(a) (b)

Figure 3.17: Computing the closeness index of a path. A path with a large value of
closeness index (a) and a path with a small value of closeness index (b). The path is shown
by the green line, whose vertices are shown as red dots. The center of the vertices is shown
as the blue dot. The dotted lines separate the angular bins, where yellow lines denote the
presence of vertices in the bin on its right (clockwise order), while the black lines denote
the absence of vertices in the bin on its right (clockwise order).

(a) (b)

Figure 3.18: The Delaunay triangulation computed for the two components obtained from
the recursive cut process in Figure 3.15. The nuclei in the component in (a) form a chain
structure, while the nuclei in the component in (b) are more densely distributed.
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3.5.4.2 Ellipse Measures

To estimate how similar the arrangement of a point set {pi} is to an ellipse, we first fit an

ellipse to {pi}. The conic equation of an ellipse is

E = ax2 + bxy + cy2 + dx+ ey + f = 0. (3.7)

We use the least square method to fit this ellipse model [77], i.e., estimate the parameters

a, b, c, d, e using {pi}. To make the fitting more robust to noise, the random sample consensus

(RANSAC) algorithm [78] is employed. This RANSAC procedure assumes that the data

contain both inliers (points that can be fitted to the model) and outliers (points that cannot

be fitted to the model). RANSAC performs the following steps repeatedly for a predefined

number of times T :

1. A sample subset is randomly selected from the original data and is used as the set of

initial hypothetical inliers. A model Mi is fitted to this subset.

2. The entire data are tested againMi. All the data points that can be fitted toMi (the

fitting errors are smaller than a predefined threshold) are now considered hypothetical

inliers. If a sufficient amount of hypothetical inliers are found at this step, the model

is considered as a good model, and we go to the next step. Otherwise, we restart from

step 1, i.e., no suitable model is found at this iteration.

3. Mi is now re-fitted using all of the hypothetical inliers found in step 2.

4. The total fitting error for Mi is estimated and Mi is considered the model found at

this iteration.

The model with the smallest fitting error found within the T iterations is selected as the final

fitting result M∗. Figure 3.19 shows the ellipse fitting results to the components obtained

from the recursive normalized cut process mentioned in Figure 3.15.

According to the RANSAC algorithm, when applying the ellipse fitting procedure on
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Figure 3.19: The ellipse fitting results for the components obtained by the recursive
normalized cut process in Figure 3.15. An ellipse is not found in the original component.
In the remaining components, the fitted ellipses are shown in green, while the fractions not
covered by {pi} are shown in black. Inlier points are shown as red dots while outlier points
are shown as yellow stars.
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{pi}, we may or may not find an ellipse. If an ellipseM∗ is found, we compute the following

measures8.

1. The average fitting error. To compute this measure, we sample m points on the ellipse

M∗ = {q1, q2, . . . , qm}. The fitting error for a point pi is computed as εi = minqj‖pi−

qj‖2, ∀qj ∈ M∗. We average the errors for all the points in {pi}. A smaller value of

this measure indicates that {pi} is arranged more similarly to an ellipse.

2. The percentage of inliers, i.e., ratio of the number of inliers to the total number of

points. A point pi ∈ {pi} is considered an inlier if ∃q∗ ∈M∗ such that ‖pi− q∗‖ < δe.

We use δe = 13 pixels (which is based on the estimated deviation of nuclei from the

nuclei chain in the gland boundary). A larger value of this measure indicates that pi

is arranged more similarly to an ellipse.

3. The coverage index, i.e., the fraction of the ellipse that is covered by {pi}. A point

qi ∈ M∗ is considered covered by {pi} if ∃p∗ ∈ {pi} so that ‖p∗ − qi‖2 < δe. We

compute the coverage index as the ratio of the number of points in M∗ that are

covered to the total number of points inM∗. In Figure 3.19, the fraction of the ellipse

that is not covered by {pi} is shown in black. A larger value of this measure indicates

that pi is arranged more similarly to an ellipse.

3.5.4.3 Computing the Gland-Score for a Nuclei-Group

We aim at computing all the closed chain structure measures and ellipse measures (which

are summarized in Table 3.5) for a nuclei-group9, and using them to derive a single num-

ber, called gland-score, to estimate how similar the arrangement of the nuclei-group is to

the arrangement of nuclei in a gland. For convenience, we define the gland-measure vector

8If an ellipse is not found, we assign zero values to all these measures.
9The point set {pi} is the nuclei-group in this case. Recall that the components obtained

from the normalized cut procedure can be considered nuclei-groups.
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Type of measure Measure description Expected value when
computed for a nuclei-
group with high
gland-score

Closed chain
structure (need
to build the
MST and MST
backbone)

Average degree of non-leaf vertices in
the MST

low

Ratio of the number of vertices on the
MST backbone to the total number of
vertices

high

Ratio of the length of the MST back-
bone to the total length of all the edges
in the MST

high

Closeness index of the MST backbone high
Mean and variance of the length of the
edges in the Delaunay triangulation

high

Ellipse (need to
fit an ellipse)

Average fitting error low
Percentage of inliers high
Coverage index high

Table 3.5: Summary of the gland-measures computed for a nuclei-group. There are nine
measures in total.

of a nuclei-group C, denoted by g(C), as the nine-dimensional vector constructed by con-

catenating all measures in Table 3.5. In this table, we also mention the expected values of

these measures when computed for a nuclei-group with a high gland-score. To compute the

gland-score s of a nuclei-group C with gland-measure g(C), we need a function ψ(g(C)) = s.

We build this function using a learning framework: (i) obtain a training set of gland nuclei-

groups (nuclei-groups corresponding to the complete glands) and non-gland nuclei-groups

(nuclei-groups corresponding to parts of the gland, or nuclei-groups with random nuclei ar-

rangement), (ii) compute the gland-measure vectors from them, and (iii) learn a classifier to

separate the two groups, which is also served as the function ψ.

One possible way to obtain the training set is first performing the recursive normalized

cut on the nuclei-lumina-graphs of the training images by using a certain value of the cut

threshold δc as the stopping criterion. The resulting segments (nuclei-groups) are manually

labeled as gland and non-gland segments to be used as the training data. For the training

data, we use 130 non-gland segments and 100 gland segments, which contain a large variation
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in shape and size, obtained from 30 different training images. The procedure is formalized in

Algorithm 3.5. In this algorithm, we use SVM (RBF kernel) classifier, with probability out-

put (the output of SVM is the probability that a nuclei-group is a gland) as the gland-score

function ψ10, which means ψ ∈ [0, 1]. The cut threshold δc is chosen as 0.5 for this training

procedure (this value of δc produces the most appropriate gland segmentation results on the

training images). Examples of the training data are shown in Figure 3.20.

Algorithm 3.5 Learning the gland-score function

Input: Training image set I. Cut threshold δc.
Output: Gland-score function ψ, where ψ(x) ∈ [0, 1]

1: ∆← ∅ (training nuclei-groups)
2: for each I ∈ I do
3: Segment I using the recursive normalized cut procedure with δc as the stopping crite-

rion, obtain segments (nuclei-groups) {Ci}
4: ∆← ∆ ∪ {Ci}
5: end for
6: for each Ci ∈ ∆ do
7: Manually assign a label yi (gland or non-gland)
8: Compute gland-measures, g(Ci)
9: end for

10: Using {g(Ci), yi} as the training data to learn a binary classifier ψ for gland vs non-gland
classification, which produces probability output. ψ is used as the gland-score function

3.5.4.4 Using Gland-Score for Segmentation

We now discuss how to apply the gland-score function ψ in the recursive normalized cut

process for gland segmentation. Basically, we compute the gland-score for each of the com-

ponents created in this process and select the components with the highest scores. The

algorithm is detailed in Algorithm 3.6. In this algorithm, we use δc = 1, which is a very

high value, so that we obtain a large number of segments during the process. As a result,

we increase the chance of finding good segments.

To explain Algorithm 3.6, we give an example in Figure 3.2111, which re-uses the image

10We have also tried to use the kernel logistic regression method to estimate the probability
output of the classification. However, the performance of this method is not as good as that
of the SVM classifier. Hence, we use the SVM classifier for this task.
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(a) (b)

Figure 3.20: Examples of the training data used for learning the gland-score function. (a)
A tissue image of 1, 500× 940 pixels (corresponding to a 0.75× 0.47 mm2 tissue region
digitized at 20×). (b) A tissue image of 940× 930 pixels (corresponding to a 0.47× 0.47
mm2 tissue region digitized at 20×). The segments indicated by green arrows are used as
gland segments, while the remaining segments are used as non-gland segments in the
training data. The cut threshold δc = 0.5 is used for the recursive normalized cut
segmentation in both the images.

in Figure 3.15a. In this example, we first perform the recursive normalized cut procedure

(lines 3-10) to obtain the set of components Λ2 = {C0, C1, C2, C11, C12, C21, C22} (note that

these components are not mutually exclusive), and compute the gland-scores for these com-

ponents (see Figure 3.21). Next, we sort the components based on the gland-scores (from

high to low), which results in the order C2, C1, C21, C11, C12, C0, C22 (the corresponding

gland-scores are 0.96, 0.87, 0.77, 0.55, 0.17, 0.04, and 0.01, respectively). We iteratively

choose the component with the highest score in Λ2 (line 14) to include it into the final result

Λ∗, such that it does not overlap the current components in Λ∗ (line 16-17). As a result,

11When denoting the gland-score value s of a component C, instead of writing ψ(g(C)) = s,
we can simply write ψ = s.

99



(a) Original component (C0), ψ = 0.04 (b) Green component (C1): ψ = 0.87,
Yellow component(C2): ψ = 0.96

(c) Green component (C11): ψ = 0.55,
yellow component (C12): ψ = 0.17

(d) Green component (C21): ψ = 0.77,
yellow component (C22): ψ = 0.01

Figure 3.21: Computing gland-scores ψ for the components obtained by the recursive
normalized cut process.

the components to be chosen are first C2 and then C1. We cannot choose other components

because they all overlap C2 or C1. In general, by using this procedure, we obtain the final

result Λ∗ = {C1, C2, . . . , Ck} such that Ci ∩C2 ∩ · · · ∩Ck = ∅ and C1 ∪C2 ∪ · · · ∪Ck = C0,

where C0 denotes the original component.
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Algorithm 3.6 Normalized cut gland segmentation using gland-score

Input: Nuclei-lumina-graph G. Gland-score function ψ. Cut threshold δc.
Output: The set of components with the highest gland-scores, Λ∗

1: Λ1 ← G
2: Λ2 ← ∅
3: while Λ1 6= ∅ do
4: Select an arbitrary element C ∈ Λ1
5: Λ1 ← Λ1\{C}
6: Λ2 ← Λ2 ∪ {C}
7: Perform normalized cut on C to obtain C1, C2, and Ncut value
8: if Ncut < δc then
9: Λ1 ← Λ1 ∪ {C1, C2}

10: end if
11: end while
12: Λ∗ ← ∅
13: while Λ2 6= ∅ do
14: Select C∗ = argmaxC∈Λ2

ψ(g(C))

15: Λ2 ← Λ2\{C∗}
16: if ∀C ∈ Λ∗, C∗ ∩ C = ∅ then
17: Λ∗ ← Λ∗ ∪ {C∗}
18: end if
19: end while

3.5.5 Qualitative Evaluation

We qualitatively compare the results of the nuclei-based gland segmentation method and

the lumen-based gland segmentation method (the NLA method) in Figure 3.22. For the

two images in this figure, the nuclei-based method is able to find glands without detected

lumen, and not generate multiple segments for glands with multiple detected lumina as the

lumen-based method.

3.5.6 Application to Grade 3 vs Grade 4 Tissue Image Classification

As reported in Table 3.2, we obtained a very good result for the normal vs cancer (grade 3 and

grade 4) tissue image classification problem when using the lumen-based gland segmentation

method and the structural-contextual features of the segmented regions. However, the result

for grade 3 vs grade 4 classification is not as good. Hence, we are interested in using the
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(a) (b)

(c) (d)

(e) (f)

Figure 3.22: Comparison between the nuclei-based and the lumen-based gland
segmentation methods. (a) A tissue image of 1, 100× 770 pixels (corresponding to a
0.55× 0.38 mm2 tissue region digitized at 20×). (b) A tissue image of 400× 840 pixels
(corresponding to a 0.2× 0.42 mm2 tissue region digitized at 20×). (c-d) The segmentation
results of the lumen-based method, where detected lumina are shown as blue contours.
(e-f) The segmentation results of the nuclei-based method. The black arrows in (c) and (e)
indicate glands with multiple lumina, while the green arrows in (c), (e), and (f) indicate
glands with no detected lumen. The nuclei-based method segments these glands
successfully while the lumen-based method does not.
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nuclei-based gland segmentation method and the gland-score function to improve the result

of the grade 3 vs grade 4 tissue image classification problem.

3.5.6.1 Database

The database used in the following experiments includes all the Gleason grade 3 and grade

4 images mentioned in section 3.4. Recall that there are 134 grade 3 and 70 grade 4 images

at 20× magnification (average image size is 1,200 × 900 pixels).

3.5.6.2 Computing Gland-Scores for the Segments in Grade 3 and Grade 4
Images

As mentioned in the Gleason grading method, in grade 4 images, gland structures degrade

dramatically, i.e., we rarely see individual gland units, well-separated from each other, with

nuclei arranging as closed chain structure or ellipse on the gland boundary. Instead, nuclei

are likely to distribute randomly in the gland regions. As a result, when applying the nuclei-

based gland segmentation method on grade 4 images, we are more likely to obtain non-gland

segments, and less likely to obtain gland segments compared to grade 3 images. Figure 3.23

shows the comparison between the gland segmentation results of a grade 3 image and a grade

4 image.

Based on the observation mentioned above, we analyze the gland-measures and gland-

scores of the segments in the two image types. In Figure 3.24, we show the MSTs and

the fitted ellipses for the segments of the two images. In the grade 3 image, since there are

several gland segments, the MSTs have fewer branches, the MST backbones are more similar

to the closed chain structure, and the ellipses are better fitted to the segments than those

in the grade 4 image, which contains mostly non-gland segments. We further compute the

gland-scores for the segments in the two images, shown in Figure 3.25. It is reasonable that

the gland-scores for the segments in the grade 3 image are much higher than those in the

grade 4 image.
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(a) (b)

(c) (d)

Figure 3.23: The nuclei-based gland segmentation results for a grade 3 and a grade 4
image. (a) A grade 3 image of 1, 050× 940 pixels (corresponding to a 0.52× 0.47 mm2

tissue region digitized at 20×). (b) A grade 4 image of 640× 540 pixels (corresponding to a
0.32× 0.27 mm2 tissue region digitized at 20×). (c), (d) The segmentation results of the
image in (a) and (b), respectively.
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(a) (b)

(c) (d)

Figure 3.24: The MSTs and the fitted ellipses for the segments in the grade 3 and grade 4
images used in Figure 3.23. The nuclei are denoted by red dots. The MSTs are shown in
(a) and (b), where the MST backbones are denoted by green lines and the branches are
denoted by blue lines. The fitted ellipses are shown in green in (c) and (d), where the
fractions of the ellipses not covered by nuclei are shown in black. The outlier nuclei are
denoted by cyan stars.
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(a)

(b)

Figure 3.25: Gland-scores for some of the segments in the grade 3 and grade 4 images used
in Figure 3.23. The selected segments are indicated by red dots (nuclei in the segments),
with gland-scores showing in cyan boxes. The blue arrows in (a) indicate examples of the
non-gland segments (noises) that will not be used in computing the image-gland-score. The
gland-scores for the segments in the grade 3 image are higher than those in the grade 4
image.
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3.5.6.3 Image-gland-score

To derive a single gland-score value to represent the image, referred to as image-gland-score

and denoted as ψI , we compute the average gland-score of the segments in the image. Due

to noises in the segmentation results (e.g., the non-gland segments indicated by blue arrows

in Figure 3.25a), we use only the segments with the highest gland-scores to compute ψI .

More formally, let ψ1, ψ2, . . . , ψn be the sorted gland-scores of n segments in the image, i.e.,

ψ1 > ψ2 > · · · > ψn. We compute ψI as

ψI =

∑k
i=1 ψi
k

,where k = dβne(β ∈ [0, 1]). (3.8)

So ψI ∈ [0, 1] and β is the percentage of the number of segments that are used to compute

ψI . Using this definition, we can compute ψI for all grade 3 images, and the mean of

these values, denoted by µ(ψIg3). Similarly, we compute ψI for all grade 4 images, and

the mean of these values, denoted by µ(ψIg4). As mentioned before, the gland-scores of the

segments in grade 3 images are usually higher than those in grade 4 images, thus, we also

have µ(ψIg3) > µ(ψIg4). The difference between these two mean values, dµ = µ(ψIg3)−µ(ψIg4),

indicates the discrepancy of the ψI values of the grade 3 and grade 4 images. Since the value

of dµ depends on the percentage β, we plot the values of dµ with respect to the values of β

in Figure 3.26. The value β = 0.2 (i.e., only 20% of the segments with the highest ψ values

in the image are used to compute ψI) results in the maximum value of dµ, which is 0.24. At

this value of β, we obtain µ(ψIg3) = 0.72 and µ(ψIg4) = 0.48.

By using β = 0.2, we plot the histogram of the ψI values for all grade 3 and grade 4

images in Figure 3.27. Although there is a certain overlap between the two distributions of

the ψI values of the grade 3 and grade 4 images, we can still see the discrepancy between

the two distributions. Hence, the ψI values could be helpful for the grade 3 vs grade 4 tissue

image classification problem, as discussed in the next section.

In Figure 3.28, we show an example of a grade 4 image, which receives a very high ψI

value (ψI = 0.94). In this image, the cancer is in the intermediate growth stage from grade
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Figure 3.26: The plot showing the relationship between the percentage β and the mean
difference dµ = (µ(ψIg3)− µ(ψIg4)).

Figure 3.27: The distribution of the ψI values of grade 3 and grade 4 images computed
using β = 0.2.
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(a)

(b)

Figure 3.28: A grade 4 image with high ψI value. (a) A grade 4 image of 1, 200× 1, 300
pixels (corresponding to a 0.6× 0.65 mm2 tissue region digitized at 20×). (b) The gland
segmentation result of the image in (a), in which the segments with ψ values in the top
20% are indicated by red dots (nuclei in the segments). The ψ values of these segments are
shown in cyan boxes, yielding ψI = 0.94.
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(a) (b)

(c) (d)

Figure 3.29: A grade 3 image with low ψI value. (a) A grade 3 image of 1, 100× 940 pixels
(corresponding to a 0.55× 0.47 mm2 tissue region digitized at 20×). (b) The detected
stroma regions in the image, shown in red. Rich stroma is mis-detected within the gland
regions (indicated by black arrows). (c) The links created (denoted as green lines) showing
the weak connection between nuclei within the same glands. (d) The gland segmentation
result, in which the segments with ψ values in the top 20% are indicated by red dots
(nuclei in the segments). The ψ values of these segments are shown in cyan boxes, yielding
ψI = 0.12.
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3 to grade 4. Hence, besides the fused glands, there are individual glands whose nuclei form

closed chain structure. These individual glands are successfully segmented and obtain high

ψ values, which explains the high ψI value of the image. In another example, a grade 3

image with a low ψI value is shown in Figure 3.29. This figure also shows the limitation

of the nuclei-based segmentation method, the dependence on the detection of stroma in the

image. Due to the false detection of rich stroma within the gland regions in the image (Figure

3.29b), the connection between nuclei of the same glands is weak (Figure 3.29c). Hence, the

segments obtained do not capture the complete gland area but only some nuclei in the gland,

thus, they receive low ψ values (Figure 3.29d).

3.5.6.4 A Fusion Method for Grade 3 vs Grade 4 Tissue Image Classification

As has been mentioned, a limitation of the nuclei-based gland segmentation method is that

it can be affected by a poor stroma detection result. One possible solution to overcome this

limitation when addressing the grade 3 vs grade 4 tissue image classification problem is to

combine it with the NLA method. The NLA method does not rely on stroma to perform

the gland segmentation (section 2.3), thus, it is not affected by the stroma detection results.

Hence, we propose a fusion method to address this classification problem. In this fusion

method, we use the following two methods to compute image features:

• Nuclei-based method: We segment glands using the nuclei-based gland segmentation

method, compute the gland-scores of the segments, compute the image-gland-score ψI

of the image, and use ψI as the image feature.

• Lumen-based method (the method used in the tissue image classification problem pre-

sented in section 3.3): We segment glands using the NLA method, compute 19 struc-

tural features of the gland segments (section 2.4)12, and use the average of the features

12The contextual features are not computed because they are not useful to discriminate
grade 3 and grade 4 tissue images.
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Figure 3.30: The fusion method for grade 3 vs grade 4 tissue image classification.

of the glands as the 19 image features, denoted as F19
13.

Finally, we create a 20-dimensional feature vector F20 = {F19, ψ
I} to represent the image and

use it for the grade 3 vs grade 4 tissue image classification problem. Figure 3.30 demonstrates

the fusion method. We perform 10-fold cross validation (using SVM classifier with RBF

kernel) on the grade 3 and grade 4 image database to evaluate this fusion method. The

average classification accuracy obtained is 88.5% (with a standard deviation of 6.7%), which

is an improvement over the result of the lumen-based method alone, 83.3% (7.1%) (Table

3.2). We further show the confusion matrices obtained by the lumen-based and the fusion

13We also identify and discard artifacts before computing the average features as done in
section 3.3.
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(a) (b)

(c) (d)

Figure 3.31: The usefulness of the nuclei-based method in grade 3 vs grade 4 tissue image
classification. (a) A grade 3 image of 1, 340× 1, 030 pixels (corresponding to a 0.67× 0.51
mm2 tissue region digitized at 20×). (b) The gland segmentation result of the lumen-based
method (cyan contours), where detected lumina are shown as blue contours and detected
artifacts are shown as black contours. (c) The gland segmentation result of the
nuclei-based method, in which the segments with ψ values in the top 20% are indicated by
red dots (nuclei in the segments), yielding ψI = 0.9. (d) The MSTs (green) and fitted
ellipses (blue) computed for the segments in (c).

113



methods in Tables 3.6 and 3.7, respectively. The observations from these confusion matrices

are the following:

1. For both the methods, the number of grade 4 images being misclassified is higher than

the number of grade 3 images being misclassified. The reason is that in many grade 4

images, the cancer is still evolving from grade 3 to grade 4 patterns. Many glands in

these images do not completely lose the gland structures, i.e., they still have a nuclei-

forming closed chain structure on the boundary. Figure 3.32 shows examples of this

problem. In the grade 4 images in this figure, although there are evidences of glands

being fused with each other (indicated by green arrows), we can still see glands in which

nuclei arrange as closed chain structures similar to glands in grade 3 images, instead

of being randomly distributed (as in Figure 3.25b). Hence, these glands are segmented

out by the nuclei-based method and obtain high ψ values (segments indicated by red

dots). This means: (i) the nuclei-based gland segmentation method works properly

and (ii) the misclassification is caused by the confusion in the gland structures, rather

than by the segmentation results.

2. The main improvement of the fusion method over the lumen-based method is the iden-

tification of grade 3 images (there are only five grade 3 images being misclassified by the

fusion method). This means that the nuclei-based method is able to efficiently detect

the closed chain structure of the glands in grade 3 images, including the glands with-

out detected lumen. An example showing this usefulness of the nuclei-based method is

presented in Figure 3.31. In this figure, we show a grade 3 image that is misclassified

as grade 4 when only the lumen-based method is used. The reason is that glands are

not well-detected by the lumen-based method since only a few lumina are detected

(Figure 3.31b). Moreover, the lumina in this image are very small, which is a similar

feature to grade 4 images. However, when using the fusion method, we obtain the cor-

rect classification result because the nuclei-based method is able to detect the glands
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without lumen, and obtain high ψI value for this image (Figure 3.31c).

True label
Grade 3 Grade 4 Total

Predicted label
Grade 3 121 21 142
Grade 4 13 49 62

Total 134 70 204

Table 3.6: The confusion matrix obtained by the lumen-based method.

True label
Grade 3 Grade 4 Total

Predicted label
Grade 3 129 18 147
Grade 4 5 52 57

Total 134 70 204

Table 3.7: The confusion matrix obtained by the fusion method.

3.5.6.5 Feature Weight

To estimate the importance of the features in the 20-dimensional feature vector used by the

fusion method, we train a linear SVM classifier on the database used in this section and

examine the weights of the features. Among all the features, the weight of the image-gland-

score is the highest, which is two times higher than the weight of the second highest weight

feature. This result shows the importance of the image-gland-score feature in the grade 3 vs

grade 4 tissue image classification problem.

3.5.6.6 Low Magnification Images

We further conduct the same experiments discussed in this section (section 3.5.6) on 5×

magnification images, and obtain the distribution of ψI values for grade 3 and grade 4

images in Figure 3.33. This distribution corresponds to β = 0.1, at which the maximum

mean difference d5×
µ = 0.16 is obtained. So d5×

µ < d20×
µ (d20×

µ = 0.24 as mentioned earlier).

Moreover, from Figures 3.27 and 3.33, we also observe a slightly larger discrimination between
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(a) (b)

(c) (d)

Figure 3.32: Examples of grade 4 images being misclassified as grade 3. (a) A grade 4
image of 1, 500× 1, 260 pixels (corresponding to a 0.75× 0.63 mm2 tissue region digitized
at 20×). (b) A grade 4 image of 1, 760× 1, 200 pixels (corresponding to a 0.88× 0.6 mm2

tissue region digitized at 20×). (c) and (d) Gland segmentation results of the images in (a)
and (b), respectively, in which the segments with ψ values in the top 20% are indicated by
red dots (nuclei in the segments). The ψ values of these segments are shown in cyan boxes,
yielding ψI = 0.8 for the image in (a) and ψI = 0.77 for the image in (b).
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Figure 3.33: The distribution of ψI values computed for grade 3 and grade 4 images at 5×
magnification (obtained using β = 0.1).

the ψI values of grade 3 and grade 4 images at 20× than at 5×. Finally, we also perform

the grade 3 vs grade 4 tissue image classification problem using the fusion method on 5×

images, and obtain an accuracy of 86.3%, which is slightly lower than that for 20× images

(which is 88.5% as reported earlier).

The reason for the decreased performance of the nuclei-based method on 5× images

compared to 20× images can be explained as follows. Recall that the nuclei-based method

relies mostly on the detection of nuclei (using the radial-symmetry-based method), and the

detection of lumen and stroma (using k-means algorithm). We observe that the detection

results of nuclei and lumen at 5× and 20× images are comparable, since nuclei and lumen

have salient color (this has been mentioned in section 3.4, Figure 3.3). However, the detection

of stroma is more difficult because stroma color can be easily confused with cytoplasm color

(this was previously mentioned in Figure 2.3). As a result, at low magnification images,

which contain less information than high magnification images, the stroma detection results

degrade. Moreover, the nuclei-based gland segmentation method is sensitive to the stroma
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detection result because stroma directly affects the creation of links between the nuclei,

which determine the nuclei-lumina-graph. In Figure 3.34, we show an example comparing

the nuclei-based gland segmentation results for an image at 5× and 20× magnification14.

Due to the misdetection of stroma at 5× compared to 20× (cyan circles in Figures 3.34b

and 3.34e), some bad links that connect two different glands are created at 5×, but are not

created at 20× (cyan circles in Figures 3.34c and 3.34d). As a result, these two glands are

grouped together in the segmentation result at 5× but are separated in the segmentation

result at 20× (cyan circles in Figures 3.34d and 3.34g).

3.6 Summary and Contributions

In this chapter, we have addressed the tissue image classification problem. As the first at-

tempt, we applied a lumen-based method: performing gland segmentation using the NLA

method (a lumen-based gland segmentation method) and using the average of the structural-

contextual features extracted from the gland segments to perform the classification. The

classification results obtained are higher than those of the popular texture-based methods

used in the literature, for both low magnification (5×) and high magnification (20×) images.

To further improve the grade 3 vs grade 4 classification result, which is a difficult problem, we

have proposed the nuclei-based gland segmentation method and computed an image-gland-

score to represent the image. The image-gland-score is combined with the features obtained

from the lumen-based method to improve the result of the grade 3 vs grade 4 classification.

Unlike state-of-the-art methods (lumen-based methods), the nuclei-based gland segmen-

tation method looks at the gland segmentation problem from a different perspective: it

considers the glands as the groups of nuclei (or groups of nuclei and lumina), partially sep-

arated by stroma. As a result, it is able to detect glands without lumen, or glands with

multiple lumina, which are the limitations of the lumen-based methods. In the nuclei-based

gland segmentation method, we are able to utilize both the local information at the nuclei

14The 5× image is created by downsampling the original 20× image by four times

118



(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.34: Comparison of nuclei-based gland segmentation results for an image at 5×
and 20× magnification. (a) A tissue image of 360 × 370 pixels, corresponding to a 0.18 ×
0.18 mm2 tissue region digitized at 20×. Stroma detection result (white regions) at 5× (b)
and 20× (e). Links created (green lines) for the image at 5× (c) and 20× (f).
Segmentation result for the image at 5× (d) and 20× (g). The cyan circles in (b) and (e)
denote the area where stroma is not detected at 5× but being detected at 20×. This leads
to (c) bad links being created and (d) two different glands being grouped into one segment.
Such problems are not present at 20× ((f) and (g)).
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and lumina (to construct the nuclei-lumina-graph), and the global information in the im-

age (to find the weakest set of links in the entire graph using the normalized cut method).

Moreover, we have proposed the closed chain structure measures and ellipse measures, which

are used to estimate how similar the arrangement of a set of points is to the closed chain

structure and the ellipse. These measures are combined in a learning framework to create a

single gland-score, which describes how similar the arrangement of a nuclei-group is to the

arrangement of nuclei in a gland. Next, an image-gland-score is derived and is shown to be

a useful feature for the grade 3 vs grade 4 tissue image classification problem.

Finally, both the lumen-based and nuclei-based methods have been tested on both low

magnification (5×) and high magnification (20×) images to evaluate the effect of image

magnification on the performance of the methods.
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Chapter 4

CONTENT-BASED PROSTATE TISSUE REGION RETRIEVAL

4.1 Introduction

4.1.1 Content-based Image Retrieval

Content-based image retrieval (CBIR) systems refer to the systems that are able to match

a query image with images in a database by computing a similarity measure between the

features (color, texture, shape, or a combination of them) of the images [79]. Due to the

rapid development of digital cameras, storage devices, network capacity, etc, the amount

of images being produced substantially increases, which makes it cumbersome to manually

provide text description for all the images. Hence, CBIR systems become very useful, with

a wide range of applications: a regular user searches for images of interest in the internet,

the police search for images of criminals from a face image database or a fingerprint image

database, a doctor searches for MRI images or CT images of similar cases, etc. Some of

the first CBIR systems being developed include: the Kato system [80] supporting color and

shape features, the IBM’s QBIC system [81] supporting color, shape and texture features,

and the Virage system [82] supporting color, color layout, texture and shape features.

The major challenges in developing a CBIR system are: (i) the high dimensionality in the

feature space [83], (ii) the problem of automatic indexing of the images in the database [84],

and (iii) the semantic gap between the low level features extracted from the images and

the high level human interpretation of the images. For example, two images with similar

color and texture can appear as dissimilar to the users. Inversely, two images with a large

difference in the feature space can be interpreted as similar images by the users. Although

developing a general CBIR system is very difficult (due to the semantic gap mentioned

above), successful applications are available in special domains, e.g., Tattoo-ID [85] for tattoo
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image recognition, VeggieVision system [86] for vegetable image recognition. In the medical

domain, numerous CBIR studies have been presented to assist doctors and physicians in the

diagnosis process.

4.1.2 CBIR in Medical Domain

A summary of the studies on medical image retrieval is given in Table 4.1. A more detailed

survey on this topic can be found in [87]. While most of the medical image retrieval studies

have performed query and retrieval on independent images, there is a large variation in the

image databases that they used, i.e. the databases contain images taken from various types

of imaging modalities (CT, MRI, tissue scanner, etc.), and taken from different organs in

the body (brain, lung, breast, skin, etc.). Examples of these databases include: 15 positron

emission tomography (PET) images at 128 × 128 pixels in [88], 57 breast cancer biopsy

images at 640 × 480 pixel in [89], 196 axial brain images at 256 × 256 pixels in [90], 312

CT lung images (image sizes were not specified) in [69], 1,502 skin histology images at 1,280

× 1,024 pixels in [91], 11,000 radiographic images of different regions in the body (image

size was not specified) in [70], 782 ultrasound images taken from abdominal organs (average

image size is 640 × 480 pixels) in [68]. To evaluate the image retrieval system, images in the

database were typically assigned to different categories. A retrieved image was considered to

be relevant to the query if it belonged to the same category as the query image. For example,

in [68], the authors divided the abdominal ultrasound images into 28 categories based on

visually similar characteristics. Since the database was very large and heterogeneous in [70],

the authors defined 116 categories corresponding to different body orientations, imaging

modalities, body regions, and biological systems that the images belong to. In [91], the

authors defined 18 categories corresponding to 18 biological structures appearing in their

histology images.

The similarity between two images can be computed using the Euclidean distance between

the corresponding feature vectors. Besides Euclidean distance, other distance measures such
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as L1 distance, Mahalanobis distance, city block distance, and histogram intersection have

also been utilized (see [87] and Table 4.1).

4.1.3 Content-based Region Retrieval in Prostate Tissue Images

When a medical laboratory technician or a medical student who is not very experienced in

Gleason grading wants to grade a region of interest (ROI) in a tissue slide image, it will be

useful if automatic tools are available to assist him in this task. In chapter 3, we introduced

an automatic tissue image classification module, which can automatically classify a ROI into

different Gleason grades (normal, Gleason grade 3 and Gleason grade 4). In this chapter, we

introduce a method that aims at searching for tissue regions that are similar to the ROI in a

database of tissue slide images. Given this capability, the student (or technician) can search

for tissue regions similar to the ROI that were annotated by experienced pathologists, and

then use the Gleason grades of these tissue regions as references to grade the ROI. This is

indeed feasible because regions that belong to the same Gleason pattern usually look similar

(in terms of tissue texture, gland structures, etc.) to each other (Figure 4.1).

The objective of this chapter is to address the tissue region retrieval problem, which

is illustrated in Figure 4.4. In this problem, given a query region, we need to search for

tissue regions similar to the query region in a database of tissue slide images. Examples of

a tissue slide image and a query region are delineated in Figures 4.2 and 4.3. We scan a

window of the same size as the query region across the tissue slide images in the database

and compare the image content of the window (test region) with the query region. Based

on the similarity, we can rank the test regions from the most similar to the least similar and

return the n most similar test regions to the user. For computational efficiency, we do not

shift the window pixel by pixel in the database images but instead we choose a step size

δ = 100 pixels to shift the window in both row and column. This step size corresponds to

the diameter of an average-sized gland in the tissue. This way we do not lose a significant

amount of information while shifting the window.
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Studies Features used Distance
measure

Database Accuracy

Beretti
et
al. [71]

Features extracted
from the gray level
co-occurrence matrix
(GLCM)

Squared
Euclidean
distance

300 images
representing
a cellular
body

An average
precision of 0.77
and an average
recall of 0.81

Caicedo
et
al. [91]

Color and gray level his-
tograms, local binary pat-
terns, bag of SIFT fea-
tures, Sobel histogram

Tanimoto
dis-
tance [92]

1,502 skin his-
tology images

A precision of
0.68 at rank 1 re-
trieval

Huang
et
al. [93]

Color layout descriptor,
Tamura features [94], edge
histogram descriptor

Euclidean
distance
and L1
distance

9,000 radio
graphs

A precision of
0.81 at a recall of
0.1

Kwak et
al. [68]

Gray level histogram,
histogram moment, fea-
tures extracted from the
GLCM, wavelet transform

L1 dis-
tance

782 ultra-
sound images
taken from
abdominal
organs

A precision of
0.48 at the top
10% retrieved
images

Rahman
et
al. [70]

Edge histogram descrip-
tor, color layout descrip-
tor, average gray value,
features extracted from
the GLCM

Cosine
distance

11,000 ra-
diographic
images of dif-
ferent regions
in the body

A precision of
0.75 at a recall of
0.1

Song et
al. [95]

Bag of words model using
Gabor filters

Weighted
L1 dis-
tance

1,134 PET-
CT slice
pairs

A precision of
0.83 at rank 3 re-
trieval

Sparks
et
al. [96]

Shape descriptor Euclidean
distance

91 DCE-MRI
breast images

A value of 0.55
for the “area un-
der the precision
recall curve”
measure

Wang et
al. [97]

Wavelet transform IRM met-
rics [98]

70,000
pathology
image frag-
ments

A precision of
0.9 at rank 50 re-
trieval

Table 4.1: Summary of studies on medical image retrieval.
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(a) (b)

(c) (d)

Figure 4.1: Correspondence between visual similarity of the tissue regions and their
corresponding Gleason grades. Tissue regions that belong to normal patterns (a) and (b)
are visually similar to each other (both contain large-sized glands). Tissue regions that
belong to grade 3 patterns (c) and (d) are visually similar to each other (both contain
small-sized glands). The average image size is 240 × 360 pixels, corresponding to a 0.5 ×
0.72 mm2 tissue region digitized at 5× magnification.

In our region retrieval problem, we first need to compute the similarity between two tissue

regions. To compute this similarity, we propose a gland-based method that utilizes glandular

information in the region, including gland density, gland area, and gland structures.

4.2 Gland-based Region Similarity

The proposed method to compute the gland-based region similarity is illustrated in Figure

4.5. To implement this region similarity method, we use the NLA method discussed in

chapter 2 to segment glands from the image and compute the gland feature vector f , including
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Figure 4.2: A tissue slide image and a subimage identified as a query region (black
rectangle). The image size is 5,000 × 4,500 pixels, corresponding to a 10 × 9 mm2 tissue
slide digitized at 5× magnification.
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Figure 4.3: Close-up of the query region in Figure 4.2. The size of the region is 350 × 350
pixels, corresponding to a 0.7 × 0.7 mm2 tissue region digitized at 5× magnification.

Find regions similar to the query region  
in a database of annotated tissue slide images 

New tissue slide image 

Tissue Slide Image A Tissue Slide Image B Tissue Slide Image C 
Query  
region 

Ranked list of similar regions based on their 
similarity to the query region (high to low) 

….. 

A window is scanned across the images to find regions similar to the query 

Annotation 

Retrieval results 

Compute  
similarity 

   1        2              3 

Figure 4.4: The tissue region retrieval problem. A user can search for regions similar to a
query region in the tissue slide image database that has been annotated with Gleason
grades. The Gleason grades of the retrieved regions can serve as the reference to grade the
query region.
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22 structural and contextual features (described in Table 2.2). We do not use the nuclei-based

gland segmentation method (presented in chapter 3) for this task because:

1. When applying the nuclei-based gland segmentation method on grade 4 tissue regions,

the segments we obtain are more likely to contain randomly distributed nuclei and

random structures than contain individual gland units with well-defined structures.

Hence, we are unable to compute the similarity between these segments.

2. The nuclei-based gland segmentation method is computationally more expensive than

the NLA method since it requires several steps: nuclei detection, graph construction,

recursive normalized cuts and gland-score computation. This method was shown to be

useful in the tissue image classification problem since we only processed small tissue

images (average size is 350 × 345 pixels at 5× magnification) in that problem. The

tissue images used in this retrieval problem, in contrast, are very large (average image

size is 2,800 × 4,500 pixels at 5×), which significantly increases the computation time

of the method.

3. Using the NLA method and the gland feature vector f mentioned above, we obtained

a very high accuracy for the normal vs cancer, and a relatively good accuracy for the

grade 3 vs grade 4 tissue image classification problems (Table 3.2). Hence, this is the

suitable solution for this region retrieval problem.

There are three types of glandular similarities that can be computed between two regions:

(i) similarity with respect to gland density Sn, (ii) similarity with respect to gland area Sa,

and (iii) similarity with respect to gland structures Ss. The computation of Sn, Sa and

Ss is described in Figure 4.5. Additional details of computing Ss is provided in Algorithm

4.1. To perform Algorithm 4.1, we need to compute a similarity score for a pair of glands.

This similarity score should be able to describe the similarity between the two glands with

respect to their structural properties. As mentioned in chapter 2, the gland feature vector

f (a 22-dimensional vector) describes all the structural information of the gland, including
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information about the cytoplasm, nuclei, lumen, gland morphology, and also describes con-

textual information. Hence, we can compute the similarity score for the two glands (g, g′)

as:

s(g, g′) =
1

‖f − f ′‖2
. (4.1)

Since the ranges of different gland features are different, e.g. the nuclei density feature is in

the range [0,1] while the gland area feature can be in a much larger range (e.g. [30, 240,000]

pixels), we normalize all gland features so that they all have zero mean and unit variance

before computing the Euclidean distance. In Algorithm 4.1, we first compute the similarity

scores for all pairs of glands between the query region Q and the test region T. Next, we

sort the gland pairs based on the similarity scores. For each gland gi in the query region

Q, we associate a weight wi to gi. The weights of all glands in Q, w = {w1, w2, . . . , wnQ},

are computed based on their areas. Our purpose in using these weights is that a large gland

should contribute more to the structural similarity between the two regions than a small

gland. Moreover, we have more confidence in using larger area glands since they are less

likely to be noisy regions. By letting {a1, a2, . . . , anQ} denote the areas of all the glands in

Q, we first compute the minimum area, am = min{ai}
nQ
i=1, followed by the weights:

wi = log

(
ai
am

)
+ 1,∀i ∈ [1, nQ]. (4.2)

The weights satisfy the following properties:

• The weight of the smallest gland is 1 and the weights of all the other glands are greater

than 1, wm = 1, and wi > 1, ∀i 6= m.

• If ai > aj , we also have wi > wj .

The log transformation is used because we do not want a linear relationship between the

weights and the gland areas. More precisely, we do not want the differences in weights to be

as large as the differences in gland areas (note that gland area has a large variance). The

final similarity score is computed as Sg = Sn × Sa × Ss.
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Ss = mean(scorek) 

Goal: Compute the region similarity Sg  between  a query region and a test region 
using glandular information 

Query region Q Test region T 

score1 

score2 

score3 

score4 

q = {qi}, t = {tj}  
(qi, tj : glands in Q, T) 
k = 1 
While (q ≠ ∅ and t ≠ ∅) 
   1. (qm, tn) = argmaxi,j s(qi,tj) 
 (∀qi ∈ q, tj  ∈ t) 
      (s(qi, tj): See Equation 3.1) 
   2. scorek = wms(qm, tn)  
 (wm:  See Equation 3.2) 
   3. k = k + 1 
   4. q = q \{qm}, t = t \{tn} 
 end 

Region similarity w.r.t.  
gland density 

(nQ, nT: number of  
glands in Q, T) 

Region similarity w.r.t.  
gland area 

(aQ, aT: total gland area in Q, T)  

Region similarity w.r.t.  
gland structures 

Sg = Sn x Sa x Ss 

Sn =  
min(nQ, nT) 

max(nQ, nT) 
Sa =  

min(aQ, aT) 

max(aQ, aT) 

Figure 4.5: The gland-based method for computing the similarity Sg between a query
region Q and a test region T.

4.3 Database of Tissue Slide Images

As mentioned in chapter 1, the database used in this problem includes 39 tissue slide images

at 5×magnification (average image size is 2,800× 4,500 pixels). In each tissue slide image, we

manually circumscribe different areas, each of which corresponds to one of the three Gleason

grades (normal, grade 3, and grade 4). This markup is done based on the annotations

provided by the pathologist. An example of a tissue slide image with this markup is shown

in Figure 4.6. Based on these circumscribed areas, we can assign labels to both query regions
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Algorithm 4.1 Computing region similarity based on structural information

Input: Query region Q = {q1, q2, . . . , qnQ} and test region T = {t1, t2, . . . , tnT } (qi, ti
denote the glands in the query and test regions, respectively). Weights of glands in Q,
w = {w1, w2, . . . , wnQ}. Gland similarity scores s(qi, tj) ∀qi ∈ Q, tj ∈ T (s(qi, tj) is

computed by Equation 4.1)
Output: Similarity between Q and T with respect to gland structures, denoted by Ss

1: n∗ ← min(nQ, nT )
2: for k = 1 to n∗ do
3: Select the pair (qm, tn), where qm ∈ Q and tn ∈ T such that s(qm, tn) > s(qi, tj)

∀qi ∈ Q, tj ∈ T and qi 6= qm, tj 6= tn. We consider qm and tn as the matching glands
at this iteration

4: sk ← wms(qm, tn)
5: Q← Q\qm, T ← T\tn (qm and tn will not be considered again)
6: end for
7: Ss ← mean(sk) ∀k ∈ [1, n]

and test regions as follows. Let p1, p2 and p3 denote the percentages of the region that contain

normal, grade 3, and grade 4 areas, respectively. We assign a label m to the region where

m = argmaxipi, i ∈ [1, 2, 3] and pm ≥ 0.25. On the other hand, if pi < 0.25,∀i ∈ [1, 2, 3],

we assign a label 0 (background) to the region. This means that we assign a Gleason grade

to the region only if more than 25% of the region area contains the corresponding Gleason

grade. In general, a region can be assigned a label in the set {0, 1, 2, 3}, which correspond

to background, normal, grade 3, and grade 4 regions, respectively. In Figure 4.6, we also

give two examples of region labeling: the region inside the black rectangle is labeled as

background and the region inside the red rectangle is labeled as grade 3.

Similar to the tissue image classification problem, in this retrieval problem, we also

need to perform the preprocessing step to remove artifacts from the tissue slide images. In

order to achieve this, we select nine images (out of 39 images in the database) that contain

artifacts, normal and cancer glands and contain large variations in color information to use

as training images. From these training images, we select 190 artifacts and 220 glands (100

normal and 120 cancer glands), and learn an SVM classifier to separate artifact vs gland.

The remaining 30 images are used for query and retrieval, which is denoted as the query-

retrieval set. The trained SVM classifier that separates artifacts vs glands is applied on the
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Figure 4.6: A part of a tissue slide image with circumscribed areas of different Gleason
grades. Yellow denotes normal areas, green denotes grade 3 areas, and blue denotes grade 4
areas. The black rectangle on the left denotes a region that is assigned a label 0
(background) because only a small part of the region contains normal and grade 3 areas.
On the other hand, the red rectangle on the right denotes a region that is assigned a label
2 (grade 3) because a substantial part of the region (more than 25%) contains grade 3 area.
The image size is 420 × 680 pixels, corresponding to a 0.84 × 1.36 mm2 tissue region
digitized at 5× magnification.

images in the query-retrieval set to remove artifacts from these images before performing

the gland-based region retrieval method. The selection of training images does not affect

the performance of the proposed method as long as these training images contain normal,

cancer glands and artifacts (we can find artifacts in almost any image), and contain large

variations in color. This is because the artifact vs gland classification is an easy problem (we

obtained a high accuracy for this problem as mentioned in chapter 2).

4.4 Region Retrieval Methods

We compare the performance of six different region retrieval methods: texture-based, bag of

words (BoW) based, category-based, gland-based, and two fusion methods. The first fusion

method is the combination of the BoW-based and the gland-based methods (which is referred
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Method Strategy to compute the similarity between a query region Q
and a test region T

Texture-based St =
1

‖FQ − FT ‖2
, where FQ and FT denote the normalized

textural feature vectors of Q and T (the features are normal-
ized so that they all have zero mean and unit variance)

BoW-based Sb =
∑
k

min(h
Q
k , h

T
k ), where h

Q
k and hTk denote the frequen-

cies at the kth bin of the texton histograms of Q and T, re-
spectively

Category-based Sc =
1

DKL(PQ‖PT )
, where PQ and PT denote the category

confidence vectors of Q and T; DKL denotes the KL diver-
gence

Gland-based The computation of the gland-based similarity Sg is described
in section 4.2

BoW-gland fusion Sbg = Sb × Sg
Category-gland fusion Scg = Sc × Sg

Table 4.2: The six methods to compute region similarity, which we use for comparison.

to as the BoW-gland fusion method), while the second fusion method is the combination of

the category-based and the gland-based methods (which is referred to as the category-gland

fusion method).

In the texture-based method, to compute the similarity between two regions, we use

the reciprocal of the Euclidean distance between the textural feature vectors extracted from

the two regions. The textural features that we use include three types of features: first

order statistics of pixel intensity, features extracted from the GLCM [4] (which was used

in [68–71]), and Gabor filter features [99] (which was used in [100–103]), yielding a 111-

dimensional feature vector.

In the category-based method (which was used in [91] and [70]), we first train an SVM

classifier to separate four different categories of regions (background, normal, grade 3, and

grade 4). This is done using an independent set of training regions, which include 1,397 back-

ground, 1,778 normal, 164 grade 3, and 191 grade 4 regions (these regions are extracted from

the nine training images described earlier). The trained SVM classifier is used to compute
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Evaluation
measure

Texture-
based

BoW-
based

Category-
based

Gland-
based

BoW-
gland
fusion

Category-
gland
fusion

AUPRC 0.39 0.43 0.44 0.47 0.48 0.49
Relevant10 5.39 6.15 5.43 6.77 6.87 6.01

Table 4.3: The values of AUPRC and Relevant10 measures for the six retrieval methods in
Table 4.2.

the category confidence (probability) vector P = {P (ω1|F), P (ω2|F), P (ω3|F), P (ω4|F)} of

the query and test regions, where F denotes the textural feature vector (we use the same

111 textural features used in the texture-based method in this case) and ω1, ω2, ω3, and

ω4 denote the background, normal, grade 3, and grade 4 categories, respectively. The P

vector describes the probability that the region belongs to each of the four categories. In

this method, to compute the similarity between two regions, we use the Kullback-Leibler

(KL) divergence, which is a common measure for probability-distance (used in [104], [105],

and [106]).

For the BoW method, we use the procedure described in [40] (which has been mentioned

in chapter 3, section 3.2) to implement the method. In this method, a texton histogram [40]

is computed for each region. Hence, we estimate the similarity between two regions by

computing the histogram intersection between two histograms of the two regions. Table 4.2

summarizes the six region retrieval methods.

4.5 Experimental Results

4.5.1 Evaluation Method

From the query-retrieval set (including 30 tissue slide images), we select 430 query regions

(193 normal, 170 grade 3, and 67 grade 4 regions) in such a way that these regions cover

most of the variations in the glandular structures in all the tissue slide images and do not

overlap each other. The size of the query region and of all the test regions is 350 × 350
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Figure 4.7: The precision-recall curves of the six region retrieval methods in Table 4.2.

pixels. This size is chosen because such a region can completely contain a very large gland

with a diameter of approximately 300 pixels. For each of the six methods mentioned in Table

4.2, we use the following evaluation protocol.

For a query region Q that belongs to tissue slide image k, we compute the similarity

scores between Q and the test regions in all the 29 tissue slide images other than the tissue

slide image k. Let nQ denote the total number of test regions in this case. The average value

of nQ for all the query regions is 33,630, which includes 17,767 background, 12,014 normal,

3,022 grade 3, and 826 grade 4 regions. Based on the region similarity scores computed, we

sort the nQ test regions from the highest similarity to the lowest similarity. Based on the

resulting ranking, we compute the precision and recall for the top t regions among the nQ

regions as follows:

• Precision: pt =
Relevantt

t
, where Relevantt denotes the number of relevant regions
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Evaluation
measure

Texture-
based

BoW-
based

Category-
based

Gland-
based

BoW-
gland
fusion

Category-
gland
fusion

AUPRC 0.44 0.50 0.52 0.54 0.55 0.57
Relevant10 6.75 7.53 6.86 7.88 7.98 7.37

Table 4.4: The values of AUPRC and Relevant10 measures for the six region retrieval
methods for normal vs cancer regions.

among the top t retrieved regions (a test region is considered relevant if it has the same

label as the query region). Intuitively, the precision indicates the retrieval accuracy.

• Recall: rt =
Relevantt
Relevantn

, where Relevantn denotes the total number of relevant regions

among all the nQ test regions. Intuitively, the recall measures the percentage of all the

relevant regions in the database that are retrieved.

By varying the value of t from 1 to nQ, we obtain nQ pairs of (recall, precision) values.

The average precision and recall values obtained for all the query regions is plotted as a

the precision-recall curve. The area under the precision-recall curve (AUPRC) is reported.

A larger AUPRC value corresponds to a better retrieval performance. For a more intuitive

measure of retrieval performance, we also report the average number of relevant regions

among the top 10 retrieved regions (we refer to this measure as Relevant10).

4.5.2 Overall Retrieval Results

The retrieval results of the six methods described in Table 4.2 are shown in Table 4.3 and

Figure 4.7. These results show that the BoW-gland fusion method has the best accuracy for

the top 10 retrieved regions, while the category-gland fusion method has the best performance

for the precision vs recall measures.
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Figure 4.8: The precision-recall curves of the six region retrieval methods for normal vs
cancer region retrieval.

4.5.3 Normal vs Cancer Retrieval Results

Due to the continuous growth of cancer in the tissue, it is often difficult to discriminate

between grade 3 and grade 4 regions. Hence, in this experiment, we consider the normal vs

cancer region retrieval results; where all grade 3 and grade 4 regions are labeled as cancer

regions. The results of the six retrieval methods for normal vs cancer region retrieval are

shown in Figure 4.8 and Table 4.4. Compared to the previous experiment (which considers

grade 3 and grade 4 as different labels), the performance of all the methods improve. The

BoW-gland fusion method still obtains the best result for the Relevant10 measure, and the

category-gland fusion method still obtains the best result for the precision vs recall measures.
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Figure 4.9: The values of the Relevant10 measure obtained by the six region retrieval
methods for specific query region types and for all query regions taken together.

4.5.4 Performance for Different Query Region Types

In this experiment, we analyze the performance of the six region retrieval methods for dif-

ferent types of query regions. As mentioned earlier, there are three types of query regions

considered: normal, grade 3, and grade 4. Figure 4.9 shows the values of the Relevant10

measure obtained by the six region retrieval methods for each query type, and for all query

regions taken together. For all methods, the performance for the normal query region is the

highest, followed by the performance for the grade 3 query region. The performance for the

grade 4 query region is the worst. Furthermore, the BoW-gland fusion method performs the

best for the normal and grade 3 query regions, while the category-based method performs

the best for the grade 4 query regions.
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4.5.5 Reject Option

As shown in Figure 4.9, the retrieval results for grade 4 regions are the lowest. The rea-

son is that, in grade 4 regions, glands are poorly-defined, or even occluded, so the gland

segmentation and gland feature extraction procedures become less reliable. Hence, we are

interested in analyzing the retrieval results of the retrieval methods with respect to the total

gland area detected in the tissue region. In Figure 4.10, we plot the Relevant10 values of

the gland-based method, and the two fusion methods (which obtain the best performance

in the previous experiments) for query regions of different ranges of total gland area, e.g.,

the Relevant10 value for the range [0, 3,000] pixels in this figure is the average Relevant10

values for the query regions whose total gland area falls within this range. It is obvious from

the figure that the larger the total gland area in the query region is, the more confidence

we have with the retrieval results. Therefore, we can apply a rejection rule on the input

query region, i.e., if the total gland area in the query region is less than a threshold Rt, we

reject this region, otherwise, we perform the retrieval. In Figure 4.11, we plot the Relevant10

values of the gland-based and the BoW-gland fusion methods (which obtain best results in

Figure 4.10) with respect to different values of the rejection threshold Rt.
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Figure 4.10: Plot of the Relevant10 values obtained by the gland-based and the two fusion
methods for different ranges [Al, Au] of total gland area of the query regions.

4.5.6 Retrieval Examples

Retrieval examples of the gland-based method are shown in Figures 4.12, 4.13, and 4.14.

In these examples, we show three different types of query regions and the top five non-

overlapping retrieved regions (recall that the retrieved regions can overlap due to the shifting

of the window in the tissue slide images) with highest similarity to the query region. The

normalized similarity score (which is in the range [0,1]) is also shown for each of the five

retrieved regions. We compute the normalized score as follows. Let S1, S2, . . . , S5 denote the

original similarity scores between the query and the five retrieved regions computed by the

gland-based method (S1 > S2 > · · · > S5); the normalized similarity scores SN1 , SN2 , . . . , SN5

are computed as: (i) SN1 = 1, (ii) SNi = SNi /S
N
1 , ∀i ∈ [2, 5]. As shown in Figures 4.12, 4.13,

and 4.14, in general, the normalized similarity scores obtained for the normal query region

are the highest, followed by the scores obtained for the grade 3 query region, and the scores
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Figure 4.11: Plot of the Relevant10 values obtained by the gland-based and the BoW-gland
fusion methods for different values of the rejection threshold Rt.

for the grade 4 query region being the lowest. This means that we have the most confidence

with the retrieval results of a normal query region and the least confidence with the retrieval

results of a grade 4 query region.

For the normal query region in Figure 4.12, all five retrieved regions are relevant, i.e.,

labeled as normal. For the grade 3 query region in Figure 4.13, the rank 1 and rank 3

retrieved regions are normal regions, but they contain many small glands similar to the

query region. Hence, they have high similarity scores to the query region. For the grade

4 query region in Figure 4.14, all the five retrieved regions have many small glands, which

are similar to the query region. However, only the rank 1 retrieved region has glands that

are fused together, while the remaining 4 retrieved regions do not have that property. As

a result, only the rank 1 retrieved region is considered as a grade 4 region like the query

region.
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Query region Rank 1 (1) Rank 2 (0.99)

Rank 3 (0.98) Rank 4 (0.97) Rank 5 (0.97)

Figure 4.12: A retrieval example, in which the query region is a normal region. The five
non-overlapping test regions that have the highest similarity to the query region are shown
here. The yellow boundary indicates that the region is labeled as normal. The normalized
similarity score to the query region is shown for each retrieved region. In this example, all
top five retrieved regions are relevant. The size of all the images is 350 × 350 pixels,
corresponding to a 0.7 × 0.7 mm2 tissue region at 5× magnification.

4.6 Summary and Contributions

We have introduced the content-based region retrieval problem in prostate tissue slide images

and proposed a gland-based method to address this problem. The gland-based method

computes the similarity between two tissue regions based on three attributes: (i) gland

density similarity, (ii) gland area similarity, and (iii) gland structure similarity. To compute

the gland structure similarity between the two regions, we match the most similar pairs of

glands between the two regions, where the similarity between a pair of glands is computed by

the reciprocal of the Euclidean distance between the normalized gland features. To evaluate
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Query region Rank 1 (1) Rank 2 (0.96)

Rank 3 (0.96) Rank 4 (0.96) Rank 5 (0.94)

Figure 4.13: A retrieval example, in which the query region is a grade 3 region. The five
non-overlapping test regions that have the highest similarity to the query region are shown
here. The yellow and green boundaries indicate that the regions are labeled as normal and
grade 3, respectively. The normalized similarity score to the query region is shown for each
retrieved region. In this example, there are three relevant retrieved regions in the top-5
retrievals. The size of all the images is 350 × 350 pixels, corresponding to a 0.7 × 0.7 mm2

tissue region at 5× magnification.

the proposed method, we compare it with three popular methods in the literature, texture-

based, BoW-based and category-based methods. The evaluation metrics include the overall

precision-recall relationship and the average number of relevant regions among the top 10

retrieved regions. The experimental results show that the gland-based method performs

better than the other three methods for both the metrics. Moreover, we also present a

combination of the gland-based and the BoW-based methods and a combination of the

gland-based and the category-based methods, which obtain better performance than each of

the three methods (BoW-based, category-based, and gland-based) alone.
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Query region Rank 1 (1) Rank 2 (0.87)

Rank 3 (0.84) Rank 4 (0.81) Rank 5 (0.79)

Figure 4.14: A retrieval example, in which the query region is a grade 4 region. The five
non-overlapping test regions that have the highest similarity to the query region are shown
here. The green and blue boundaries indicate that the regions are labeled as grade 3 and
grade 4, respectively. The normalized similarity score to the query region is shown for each
retrieved region. In this example, there is only one relevant retrieved region in the top-5
retrievals. The size of all the images is 350 × 350 pixels, corresponding to a 0.7 × 0.7 mm2

tissue region at 5× magnification.
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Chapter 5

CYTOLOGICAL FEATURES IN PROSTATE HISTOPATHOLOGY

5.1 Introduction

As mentioned in [107], the Gleason grading method utilizes only structural features of the

glands and does not consider cytological features of the tissue. Cytological features include

shape, quantity, and arrangement of the basic components of the tissue such as cells, cyto-

plasm, nuclei, and nucleoli [108,109]. In contrast to structural features, which do not require

high magnification images (in chapter 2, we were able to use 5× images for gland segmen-

tation and classification), cytological features can only be extracted in high magnification

images where the details of tissue components can be easily discerned.

The literature contains pathological studies that have used cytological features to im-

prove the diagnostic results [107, 109, 110]. Moreover, we can also see the importance of

the cytological features by observing how a pathologist identifies cancer regions in a tissue

image. Specifically, the pathologist pays careful attention to nuclei that have prominent

nucleoli. Nuclei in cancer regions usually appear light blue and contain nucleoli that appear

as small dark spots [111, 112]. In contrast, nuclei in normal tissue regions usually appear

uniformly dark or uniformly light over the entire area, with no nucleoli. Figure 5.1 illustrates

the difference. This suggests that nuclei with nucleoli provide a significant evidence for the

presence of cancer regions in the prostate tissue.

In this chapter, we propose a method to detect the presence of nuclei with nucleoli

(NwN), which is one of the most important cytological features for prostate cancer detec-

tion. To the best of our knowledge, no study on automatic detection of the NwN for prostate

cancer detection and grading has been published. The process of detecting NwN involves

segmenting nuclei from the tissue image, and then identifying nucleoli within the nuclei. We
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propose three modules to accomplish this task: (i) maximum object likelihood binarization

(MOLB) to segment nuclei, (ii) maximum boundary magnitude binarization (MBMB) and

(iii) feature-based object identification (FOI) to identify nucleoli in the nuclei. The flowchart

of the proposed NwN detection method is shown in Figure 5.2. The remainder of this chapter

is organized as follows. Section 5.2 describes the MOLB algorithm and section 5.3 presents

the MBMB and the FOI algorithms. Section 5.4 evaluates the NwN detection result by using

a prostate cancer detection framework. Finally, section 5.5 presents the conclusions of this

chapter.

Nuclei with 
prominent 

nucleoli 

Cancer region Normal region 

Nuclei 
without 
nucleoli 

Figure 5.1: Nuclei with prominent nucleoli and nuclei without nucleoli. Nucleoli appear as
dark spots inside the nucleus regions (yellow arrows). Nuclei with prominent nucleoli
commonly appear in cancer regions. The average image size is 300 × 280 pixels,
corresponding to a 0.15 × 0.14 mm2 tissue region digitized at 20× magnification.

146



Input RGB image 

For each 
segmented 

nucleus 

The MBMB algorithm is 
used to segment the dark 
spots inside the nucleus 
(denoted by the blank 

areas inside the nucleus) 

The FOI algorithm  is used 
to identify a nucleolus 
among all dark spots 

Non-nucleolus 

Nucleolus 

The MOLB algorithm 
is used to segment 
all nuclei from the 

image 

RGB image of the nucleus 

Figure 5.2: Flowchart of the proposed method for detecting nuclei with nucleoli (NwN).
The method includes three modules: MOLB (to segment nuclei), MBMB (to segment the
dark spots inside the nuclei), and FOI (to identify nucleoli).

5.2 Nucleus Segmentation

5.2.1 Maximum Object Likelihood Binarization (MOLB)

In this problem, we do not use the radial symmetry method mentioned in chapter 3 to

segment nuclei because the goal of the radial symmetry method is to detect the nuclei

centers but not to segment the entire nucleus region. Hence, to segment nuclei in the tissue

image, we propose a maximum object likelihood binarization (MOLB) algorithm. In general,
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the goal of this algorithm is to segment an object of interest O with the feature vector f(O)

in a grayscale image I1. We first assume that f(O) follows a density g with the parameter

vector θ. An estimate θ̂ is obtained from a training set of objects. A threshold t0 to binarize

the grayscale image I is obtained such that the average object likelihood of the foreground

blobs is maximized. Formally, let Bti , i = 1, . . . , nt, denote the nt foreground blobs generated

by binarizing I with a threshold t ∈ [tmin, tmax] (note that Bti and nt depend on t). We

choose t0 such that:

t0 = argmaxt
1

nt

nt∑
i=1

g(f(Bti)|θ̂) (5.1)

where f(Bti) is the feature vector of blob Bti and g(f(Bti)|θ̂) is the object likelihood of blob

Bti since it estimates the similarity of the features for Bti and the object of interest O (which

have the density g with the parameter θ̂).

In this procedure, after binarizing I using a threshold t ∈ [tmin, tmax], we apply a 4-

connectivity connected component algorithm to group the foreground pixels (pixels whose

intensities are greater than t) into blobs Bti , i = 1, . . . , nt. Next, the blob features, f(Bti),

and their average object likelihood,
1

nt

nt∑
i=1

g(f(Bti)|θ̂) are computed. The optimal threshold

t0, computed in Equation 5.1, is the threshold resulting in the maximum average object

likelihood. The blobs obtained by binarizing I with t0 are the outputs of the algorithm. The

MOLB algorithm is illustrated in Figure 5.3.

5.2.2 Using the MOLB Algorithm to Segment Nuclei

In order to use the MOLB algorithm to segment nuclei in the prostate tissue image, we first

need to obtain a grayscale version of the original RGB tissue image. Since nuclei appear as

blue, we transform the RGB color space to the Lab color space, and choose the grayscale

image as the b channel of this Lab color space (we denote this channel as bLab). As mentioned

1In the grayscale images shown in this chapter, the darker pixels indicate higher gray
values.
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Thresholding by t 

Threshold Foreground blobs Avg. object likelihood (Lt) 

Grayscale image with 
gray values in [0,1] 

Darker pixels have higher  
gray values 

Binary image 

t ϵ [tmin, tmax] 
tmin = 0.4 
tmax = 0.8 
Step  size = 0.05 

Input image 

Thresholding 
by t0, post 
processing 

Output nuclei 
segments  

Figure 5.3: The maximum object likelihood binarization (MOLB) algorithm.
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(a) (b)

Figure 5.4: Training images for nucleus features used in the MOLB algorithm. The training
images are obtained from both normal tissue regions (a) and cancer tissue regions (b), to
account for variations in nucleus shape and size between these regions. Manually segmented
nuclei are denoted by green contours in these images. The average image size is 600 × 550
pixels, corresponding to a 0.3 × 0.27 mm2 tissue region digitized at 20× magnification.

in chapter 2, the Lab color space separates the luminance and chrominance of the colors,

so that the bLab channel represents the blue color. We then normalize the intensity values

in the bLab channel to the range [0,1] to account for color variations among the different

tissue slides (some tissue slides may have a darker blue color than others). In Figure 5.5,

we qualitatively compare the grayscale images generated by (i) the bLab channel and (ii)

the function rgb2gray included in the MATLAB image processing toolbox [113] (we refer to

the grayscale image generated by this function as the Matlab-gray image)2. As can be seen

in Figure 5.5, the bLab channel shows a stronger contrast between nucleus regions and the

background.

The objects O to be segmented by the MOLB algorithm are the nuclei. The feature

2The grayscale image generated by the function rgb2gray only includes luminance infor-
mation extracted from the RGB image (hue and saturation are discarded). The luminance
is extracted by applying the formula Matlab-gray = 0.2989×R + 0.5870×G + 0.1140×B,
where R, G, and B denote the 3 channels of the RGB color space. This method is commonly
used to generate a grayscale image from an RGB image.
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(a)

(b) (c)

Figure 5.5: The choice of the grayscale image to be used in the MOLB algorithm. (a)
Input RGB image. The grayscale images are (b) the Matlab-gray image and (c) the bLab
channel image. The bLab channel image shows a stronger contrast between nucleus regions
and the background. The image size is 400 × 330 pixels, corresponding to a 0.2 × 0.16
mm2 tissue region digitized at 20× magnification.
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(a) (b)

Figure 5.6: Nucleus segmentation result. (a) Input image. (b) Result of nucleus
segmentation using the MOLB algorithm. The image size is 400 × 330 pixels,
corresponding to a 0.2 × 0.16 mm2 tissue region digitized at 20× magnification.

vector for a nucleus is defined as f(O) = (a, c), where a and c denote the nucleus’s area and

circularity, respectively. The circularity is defined as c = (4πa)/p2, where p is the perimeter

of the nucleus. For this problem, we assume that the feature density is bivariate Gaussian

f(O) ∼ N (µ̂, Σ̂), where µ̂ and Σ̂ are estimated from a training set of manually segmented

nuclei (Figure 5.4). Following the binarization procedure, we perform post-processing op-

erations to (i) remove noise and (ii) split connected nuclei by applying the watershed algo-

rithm [114]. An example of the segmentation result is depicted in Figure 5.6.

5.3 Nucleolus Identification

Since nucleoli appear as small dark spots inside the nucleus region (Figure 5.1), we first

segment the dark spots from each nucleus. Next, the features of these spots are examined

to determine whether a nucleolus is indeed present among the spots. These two operations

are performed as follows.
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5.3.1 Maximum Boundary Magnitude Binarization (MBMB)

Based on the observation that the boundaries of the dark spots within the nucleus regions

are typically salient (i.e. they have a strong gradient magnitude), we propose an algorithm,

termed the maximum boundary magnitude binarization (MBMB) to segment the dark spots

within each nucleus. The MBMB algorithm aims at segmenting the objects with salient

boundaries, which are the nucleoli in our case, from a region of interest (ROI), which is the

nucleus region in our case.

To perform the segmentation, we need to find a threshold t0 to binarize the ROI (in a

grayscale image) such that a foreground object that has the maximum gradient magnitude

on the boundary is generated. Formally, let Oti , for i = 1, . . . , nt, denote the nt foreground

objects obtained in the ROI, R, when R is binarized with a threshold t ∈ [tmin, tmax] (note

that Oti and nt depend on t). We choose t0 such that:

t0 = argmaxt( max
i∈[1,nt]

mag(Oti)), (5.2)

where mag(Oti) denotes the average gradient magnitude of the pixels on the boundary of Oti .

Similar to the MOLB algorithm, after applying a threshold t ∈ [tmin, tmax] to binarize

R, we create the foreground objects Oti , i = 1, . . . , nt in R using the connected component

procedure. Given the objects Oi, we compute the average gradient magnitude on the ob-

ject boundary and find the maximum of the average magnitudes ( max
i∈[1,nt]

mag(Oti)). The

best threshold t0, computed using Equation 5.2, is the threshold that maximizes the object

boundary gradient magnitude. This is a local binarization method since in each ROI, we

find a different threshold t0 to binarize and detect the local objects in that ROI.

Unlike nuclei, which are more salient in the bLab image (as mentioned earlier), the nucle-

oli are more salient in the Matlab-gray image (Figure 5.8). This is because the bLab image

is better to discriminate between blue pixels (nucleus pixels) and non-blue pixels (back-

ground pixels). In contrast, the Matlab-gray image, which contains luminance information,

is better to discriminate between dark color pixels (nucleolus pixels) and light color pixels
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Figure 5.7: The maximum boundary magnitude binarization (MBMB) algorithm.

(the remaining areas in the nucleus regions). Therefore, we apply the MBMB algorithm to

the Matlab-gray image to segment the nucleoli. However, this may result in several dark

spots within each nucleus because noisy dark regions resulting from a poor tissue staining

procedure may also generate spots. Figure 5.7 depicts the MBMB algorithm.
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(a) (b) (c)

Figure 5.8: The choice of grayscale image to be used in the MBMB algorithm. The nucleoli
(the dark spot enclosed by the red circle in (b)) in the RGB image (a) appears more salient
in the Matlab-gray image (b) than in the bLab channel image (c). The image size is 80 × 90
pixels, corresponding to a 0.04 × 0.045 mm2 tissue region digitized at 20× magnification.

5.3.2 Feature-based Object Identification (FOI)

We need to identify an object of interest O∗ (nucleolus) among a pool of objects {Oi}ni=1

(dark spots)3. Similar to the formulation of the MOLB algorithm in section 5.2, we associate

the object of interest O∗ with a feature vector f(O∗). We also assume that f(O∗) follows a

density g with the parameter vector θ. An estimate θ̂ is also obtained from a training set of

manually segmented nucleoli (Figure 5.9).

For each object Oi, we compute its feature vector f(Oi). Next, we choose the object

Om which has the maximum likelihood: Om = argmaxig(f(Oi)|θ̂) (this is the most similar

object to O∗ among all the objects). The object Om is considered the object of interest if

fminj < fj(Om) < fmaxj ∀j, where the constraints for each feature, i.e. fminj and fmaxj are

estimated from the training set. We again use area and circularity as the features to identify

the nucleoli. By using this algorithm, the nuclei in which nucleoli are found are considered

NwN. Figure 5.10 shows an example of the NwN detection result.

3Although there may be more than one nucleolus in a nucleus, we only need to identify
one of them.
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Figure 5.9: Manually segmented nucleoli (highlighted in yellow), whose features are used in
the FOI algorithm. The image size is 560 × 530 pixels, corresponding to a 0.28 × 0.26
mm2 tissue region digitized at 20× magnification.

5.4 Evaluation of NwN Detection Result

Determining whether nucleoli are contained in a nucleus is a laborious and time-consuming

task for pathologists. This explains the lack of ground truth for the NwN in the images.

Therefore, we evaluate the NwN detection results via (i) the prostate cancer detection results

and (ii) the tissue image classification results.
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(a)

(b)

Figure 5.10: NwN detection result. (a) Input image. (b) NwN detection result. Cyan
regions denote NwN and blue regions are nuclei without nucleoli. The blank areas inside
each nucleus region are the segmented dark spots obtained by the MBMB algorithm. In
the cyan regions, these spots are round and small in size and are considered to be nucleoli.
In the blue regions, these spots are either elongated or much larger in size and are not
considered to be nucleoli. The image size is 400 × 330 pixels, corresponding to a 0.2 × 0.16
mm2 tissue region digitized at 20× magnification.
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5.4.1 Evaluation by Prostate Cancer Detection Results

In this evaluation method, we utilize the pathologist’s annotations for cancer regions in each

image (Figure 5.11) as the ground truth for quantitatively evaluating the proposed NwN de-

tection method. In other words, we use the NwN detection result to identify cancer regions

in the prostate tissue, and then we compare these regions with the ground truth. By doing

this, the cancer detection results reflect the performance of the proposed NwN detection

method. Moreover, by using information about the NwN (a cytological feature), we also

show that cytological features are useful for the automated systems that perform prostate

cancer detection. For generality, we will refer to the NwN information as the cytological

feature in the remainder of this section.

For the prostate cancer detection problem, we employ the patch-based detection ap-

proach, which was previously mentioned in [45]4. We divide the image into a grid of patches

and classify each patch as a normal patch or a cancer patch, based on the features extracted

for that patch. To demonstrate the robustness of the cytological feature (and the NwN de-

tection method), we also use textural features for cancer detection and compare them with

the cytological feature. The textural features and the prostate cancer detection algorithm

are described in the following subsections.

5.4.1.1 Textural Features

Similar to [45], the textural features computed for an image patch include the first-order

statistics, second-order statistics, and Gabor filter features. There are four first-order statis-

tic features comprising mean, standard deviation, median, and gradient magnitude of pixel

intensity in the patch. For the second-order statistic features, we form the gray level co-

occurrence matrix for all the pixels in the patch and compute 13 features from this matrix [4]

which include energy, correlation, inertia, entropy, inverse difference moment, sum average,

4Doyle et al. [45] showed that the patch-based approach was more robust than the pixel-
based approach that they employed.
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Figure 5.11: Cancer annotation performed by a pathologist, which is used as the ground
truth for evaluating the NwN detection method. The region inside the blue contour is
annotated as a cancer region. Regions outside the contour are considered normal regions.
The image size is 1,300 × 2,600 pixels, corresponding to a 0.65 × 1.3 mm2 tissue region
digitized at 20× magnification.

sum variance, sum entropy, difference average, difference variance, difference entropy, and

two information measures of correlation. For the Gabor filter based texture features [99], we

create a bank of 10 filters by using two different scales and five different orientations. The

mean and variance of the filter response are used as features. Thus, a total of 20 features

are extracted by using Gabor filters. We obtain 37 features using these three feature types

(4 first-order statistics features, 13 second-order statistics features and 20 Gabor features).

By considering texture in each of the three normalized channels of the Lab color space of the

image separately, we have a total of 3× 37 = 111 textural features for each patch.

5.4.1.2 Cancer Detection Algorithm

A grid of patches, each consisting of S×S pixels, is superimposed on the image. In general,

we assume that n feature sets are extracted from each image patch. Let {xi}ni=1 denote the

n feature sets associated with a patch P . Each set xi may contain one or more features. We
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train n classifiers {fi}ni=1, one for each feature set, using a training set of patches and their

labels (normal patch or cancer patch). A patch P is classified as a cancer patch if:

n∏
i

P (fi(xi) = 1) >
n∏
i

P (fi(xi) = 0), (5.3)

where P (fi(xi) = 0) and P (fi(xi) = 1) denote the probabilities that the classifier fi classifies

the patch (using the feature set xi) as a normal patch or a cancer patch, respectively.

Otherwise, P is considered a normal patch.

Since we have two feature sets associated with each patch, the cytological feature set

(which includes a single feature, namely, the number of pixels in the patch belonging to NwN )

and the textural feature set (which includes 111 textural features, as described above), we

can define three different cancer detection methods:

1. A texture-based method, in which we only use the textural feature set to classify the

patch (i.e. the number of feature sets used in Equation 5.3 is 1, n = 1),

2. A cytological-feature-based method, in which we only use the cytological feature set

to classify the patch (n = 1), and

3. A feature fusion method, in which we use both the cytological feature set and the

textural feature set to classify the patch (n = 2).

All the classifiers fi used in these three methods are support vector machines (SVM) with

a radial basis function (RBF) kernel, each with a different feature set. By comparing the

performance of these three cancer detection methods, we can demonstrate the usefulness of

the cytological feature, as well as the robustness of the NwN detection method.

The grid size and placement are chosen based on [45], where the authors superimposed

the image with a uniform grid that divides the image into 30×30 regions. Similarly, we

divide the image into 40×40 patches (that is, S = 40) and perform patch classification.

Once cancer patches have been identified, we create contiguous cancer regions by grouping

together neighboring cancer patches, where each group O is a set of cancer patches {Pi}mi=1
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such that ∀Pi ∈ O, ∃Pj ∈ O with d(Pi, Pj) ≤ td. For each group, we create one contiguous

cancer region by generating a convex hull of all the patches; all the pixels inside this convex

hull are labeled as cancer pixels. Malignant tumors are characterized by uncontrolled growth,

which makes the spread and shape of the tumors extremely difficult to model. We, therefore,

make a reasonable simplification, which is to compute the convex hull that includes all the

cancer regions that may correspond to a single tumor. The grouping process mimics the

pathologist’s annotation strategy. We can observe in the ground truth that the pathologist

prefers to annotate large cancer regions that include several neighboring cancer glands, rather

than individual glands.

Figure 5.12: A subimage of a training image in which all cancer glands are highlighted in
blue and selected normal regions are highlighted in yellow. The image size is 700 × 770
pixels, corresponding to a 0.35 × 0.38 mm2 tissue region digitized at 20× magnification.
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Figure 5.13: ROC curves, which plot the average FPR against the average TPR over all
test images, for the feature fusion method, the texture-based method, and the
cytological-feature-based method, obtained by varying the threshold td from 0 pixels to 500
pixels.

5.4.1.3 Cancer Detection Results

As mentioned in chapter 1, the database used in this experiment includes 17 tissue slide

images at 20×magnification. This database contains independent training and test sets. The

training set includes 6 images (approximate size is 3,100×3,700 pixels at 20× magnification).

In each training image, all the cancer glands were marked by a pathologist. In the remaining

non-cancer area, we manually selected a number of normal regions which contain various

benign structures of the tissue (stroma, normal glands with different sizes, nuclei). Figure

5.12 shows a portion of a training image. The independent test set consists of 11 tissue

images at 20× magnification (approximate size is 3,600×13,600 pixels). The difference in

size of the training and testing images is not an important issue because what we need for
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(a)

(b)

(c)

Figure 5.14: Cancer detection results for a test image. The blue contours depict the cancer
region annotated by the pathologist, and the green contours depict the results of the
algorithm. (a) Result of the texture-based method; (b) result of the
cytological-feature-based method and (c) result of the feature fusion method. The
threshold td = 90 pixels was used for all three methods. The image size is 4,000 × 18,000
pixels, corresponding to a 2 × 9 mm2 tissue slide digitized at 20× magnification.

training is the local information about the patches but not the global information about the

entire image. The ground truth for the test images (all cancer regions) were also manually

labeled by a pathologist. All the non-labeled regions are considered normal. While in the

ground truth of the test set, the pathologist annotated the entire cancer region (including
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(a) (b) (c)

Figure 5.15: Detection results for texture-based method (a), cytological-feature-based
method (b), the feature fusion method (c) for a close-up region sampled from the image in
Figure 5.14. The image size is 690 × 1,150 pixels, corresponding to a 0.34 × 0.57 mm2

tissue region digitized at 20× magnification.

neighboring cancer glands and the intervening normal structures such as stroma), only pixels

belonging to the cancer glands are annotated as cancer in the training set. In other words,

the training data are more reliable.

To evaluate the detection results of the three methods, i.e. cytological-feature-based,

texture-based and feature fusion, we compute the true positive rate TPR = TP/(TP + FN)

and the false positive rate FPR = FP/(TN + FP), where TP, FP, TN, and FN denote the

true positive, false positive, true negative, and false negative, respectively, for a test image.

The TPR and FPR are then averaged over all test images. The value of the threshold td

has a significant influence on both TPR and FPR. When td increases, both TPR and FPR

increase, i.e. there are more true cancer regions being detected while at the same time, more

normal regions get incorrectly classified as cancer regions. Hence, to analyze the relationship

between TPR and FPR, we compute these two measures for a wide range of td values, [0,

500] pixels, and plot the receiver operating characteristic (ROC) curve in Figure 5.13. In

this figure, for the same FPR, the feature fusion method obtains the highest TPR, followed
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by the cytological-feature-based method, while the texture-based method obtains the lowest

TPR.

Figure 5.14 shows the detection results of the three methods on a tissue image when td =

90 pixels and Figure 5.15 shows a close-up region of the same image for better details. For

this image, all the three methods can find most of the cancer regions. However, the feature

fusion method leads to the least number of false detections, followed by the cytological-

feature-based method, while the texture-based method has the most false detections. From

these results, we can see that the cytological feature boosts the cancer detection accuracy,

which suggests that the NwN are well-detected by the proposed method.

5.4.2 Evaluation by Tissue Image Classification Results

In this evaluation method, we reconsider the tissue image classification problem discussed in

chapter 3, i.e., classifying a prostate tissue image into normal, Gleason grade 3 and Gleason

grade 4. The same database used in chapter 3, including 317 tissue images (113 normal, 134

grade 3, and 70 grade 4), is used here. For each image, we detect the NwN and compute

the ratio of the number of NwN to the total number of nuclei in the image, denoted by rN .

Hence, rN can be considered as the cytological feature of the image.

Once rN is computed for all the images in the database, we obtain the average values

of rN for normal, grade 3 and grade 4 images as 0.14, 0.21, and 0.20, respectively, which

means there are more NwN detected in cancer images (grade 3 and grade 4) compared to

normal images. This result demonstrates the effectiveness of the proposed NwN detection

method. We further combine this cytological feature with the glandular features (which

contain 22 features as discussed in chapter 2) to form a 23-dimensional feature vector to

perform the tissue image classification task. We conduct an experiment similar to the tissue

image classification experiment in chapter 3 (using the 10-fold cross validation technique

and an SVM classifier with RBF kernel) and obtain the following accuracies (with standard

deviations) for the normal vs grade 3, normal vs grade 4 and grade 3 vs grade 4 classification
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problems: 97.4% (4.5), 99.1% (2.2) and 83.0% (6.5), respectively (the corresponding accu-

racies obtained using the glandular features alone are 96.7% (4.1), 98.3% (2.3), and 83.3%

(7.1), respectively). It can be seen that the classification accuracies for normal vs grade

3 and normal vs grade 4 are slightly improved while the classification accuracy for grade

3 vs grade 4 is not. Since both grade 3 and grade 4 images are cancer images, the NwN

information cannot be used to discriminate them. For normal vs cancer (grade 3 or grade 4)

classification, since the glandular features are very distinctive and are the dominant features

(glands appear very clearly in normal images and are very different from glands in cancer

images), using the cytological feature does not improve the classification result dramatically.

In summary, although the ground truth for NwN in the images is not available, we are

still able to evaluate the proposed NwN detection method by conducting experiments on the

two important problems in prostate cancer diagnosis, namely prostate cancer detection and

tissue image classification.

5.5 Summary and Contributions

Although the Gleason grading method is widely used to grade prostate cancer, it only focuses

on structural information about the glands and does not utilize the cytological features of

the tissue, such as information about the nuclei. However, these cytological features also

provide helpful information for detecting cancer in the prostate tissue, and so it is useful to

explore cytological features in computer-aided diagnosis systems. In this chapter, we have

explored one of the most important cytological features for prostate cancer detection, namely

the presence of NwN. This feature has not previously been exploited in any computer aided

system for prostate cancer diagnosis.

We have developed a method to detect NwN in the tissue image. The NwN detection

procedure includes segmenting nuclei, segmenting the dark spots inside each nucleus, and

identifying a nucleolus among these spots. Since we do not have the ground truth for NwN

in the images, we evaluate the proposed NwN detection method by performing the prostate
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cancer detection problem and the tissue image classification problem. In the tissue image

classification problem, we show that NwN appear more commonly in cancer images (Gleason

grade 3 and grade 4) than in normal images. In the prostate cancer detection problem, to

show the robustness of the NwN detection method, we compare the cancer detection result

using the detected NwN with that of a texture-based method. Moreover, the detection

result of the proposed feature fusion method is also presented. Through these evaluations,

we have shown that the proposed method for NwN detection is robust, and we have also

demonstrated that the use of cytological features, in this case the presence of NwN, is helpful

in computer-aided diagnosis systems.
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Chapter 6

SUMMARY AND FUTURE WORK

6.1 Summary and Contributions

Prostate cancer is a severe threat to men’s health and lives. Among the various procedures

used in prostate cancer diagnosis, the Gleason grading of the tissue slide taken from the

prostate biopsy is the most important procedure. Due to the large volume of the prostate

tissue image data being generated, the inconsistency among the pathologists in grading

the tissue, the high cost and the low throughput of the grading process, there is a need for

computer-aided diagnosis (CAD) systems that can assist pathologists in the Gleason grading

task. In this thesis, we have made the following contributions to the development of such a

CAD system.

1. A lumen-based gland segmentation method, termed nuclei-lumen-association (NLA),

that considers lumen as the central component of the gland, and find nuclei associated

with the lumen. The NLA method leads to better gland classification results than

the level set method, and comparable gland classification results to the manual gland

segmentation method.

2. The gland features that capture rich information about the gland, including structural

and contextual information. We show that these proposed gland features are (i) better

than gland features used in the published studies in solving the gland classification

problem and (ii) better than texture features used in the published studies in solving

the tissue image classification problem.

3. A nuclei-based gland segmentation method that models the relationship between nuclei

and lumina in the image by a nuclei-lumina-graph. The edges in the graph correspond
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to the links between nuclei and nuclei and between nuclei and lumina. The recursive

normalized cut method is applied to partition the graph into different components,

each of which corresponds to a gland. The nuclei-based method overcomes the major

limitation of the conventional lumen-based methods: it is able to detect glands without

lumen and glands with multiple lumina.

4. A method to compute the gland-score of a segmented region that measures how sim-

ilar the segmented region is to a gland unit. The gland-scores are combined with the

structural-contextual features to improve the grade 3 vs grade 4 tissue image classifi-

cation result.

5. Both the lumen-based and nuclei-based methods are evaluated on both low magni-

fication (5×) and high magnification images (20×) to evaluate the effect of image

magnification on the performance of the methods.

6. A gland-based method to compute the similarity between two tissue regions. This

method can be used to search for regions similar to a region of interest (ROI) in the

annotated tissue slides. The retrieved regions can serve as the references that a medical

student or a technician can rely upon when grading the ROI.

7. A method to extract an important cytological feature in the prostate tissue images,

i.e. the presence of nuclei with prominent nucleoli. To our knowledge, this cytological

feature has not yet been exploited in any CAD system. We also demonstrate the

usefulness of this cytological feature by applying it in a prostate cancer detection

framework.

6.2 Future Work

We notice a large variation in the color of various tissue components in histopathological

prostate tissue images. Hence, it would be useful to develop a color normalization method
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for the tissue images. This normalization procedure can help to improve the identification

of the tissue components, which relies on the color information.

To improve the nuclei-based gland segmentation method, we need to improve the stroma

detection result. Besides color information, other types of information such as texture may

be also considered.

Additional work needs to be done in the identification of Gleason grade 4 images since

these images commonly contain glands with nuclei-forming closed chain structure similar to

glands in grade 3 images.

A combination of the NwN information and the gland information (including gland fea-

tures and gland-score) in performing automatic cancer region detection in the prostate tissue

image would be of great interest.

A method to generate a confidence score when performing automatic grading of a tissue

image would be very useful. By considering these scores, the pathologist only needs to man-

ually grade the difficult images that are difficult to grade by the automatic system.

In performing cancer detection and grading, when the information contained in the H&E

tissue image is not sufficiently clear, the pathologist usually obtains an additional tissue slide

(from the same biopsy), stains it using the Immunohistochemistry (IHC) method (which col-

ors the tissue components in a different way from the H&E stain), and analyzes this IHC

stained tissue image. Although the two tissue images capture the same area in the biopsy

(thus having similar tissue content), they may not be properly aligned with each other.

Hence, an image registration method to align the H&E and IHC stained images is desired.

Using this functionality, the pathologist can view the same tissue region on both H&E and

IHC images to gain better information for the grading. The CAD system can also bene-

fit from this functionality by combining the features extracted from two differently stained

tissue images to improve the performance of the automatic cancer detection and grading

methods.

It would be desirable to develop generalized segmentation methods to segment tissue
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components (lumen, nuclei, stroma), and segment glands from the prostate tissue images

of different stains. Similarly, generalized features that can be applied on images of differ-

ent stains will also be useful (although specific features for each stain, e.g., the color-based

features, are still necessary).
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