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Abstract

Face Recognition: Role of Aging and
Quality Covariates

By

Lacey Best-Rowden

A technology once seen only in television dramas, automatic face recognition systems are

now deployed in many important applications. Recognition of individuals from facial images

is used for de-duplication of identification cards (e.g., driver’s licenses and passports), verifi-

cation of prisoner identities, and tag suggestions for personal photo collections. Face images

acquired in such applications are conducive to the current capabilities of face recognition

algorithms; state-of-the-art systems are able to recognize constrained face images with close

to 99% accuracy. However, the performance of automatic face recognition degrades when

processing unconstrained face images (i.e., image acquisition is uncontrolled and subjects

may be uncooperative). In such scenarios, a face image may simultaneously contain multiple

confounding factors, or covariates, such as variations in facial pose, illumination, expression,

occlusion, resolution, and facial aging.

The first contribution of this dissertation is a framework for matching a collection of

unconstrained face media (images, videos, 3D model, demographics, facial sketch) when

multiple instances of a subject’s face are available. This is particularly relevant to forensic

investigations where the goal is to identify a “person of interest” based on low quality face im-

ages and videos (e.g., captured by surveillance cameras or mobile phones of bystanders) and

other information compiled during the investigation (e.g., gender, race, age, facial sketch).

While traditional face matching methods generally take a single media (i.e., a still face im-

age, video track, or face sketch) as input, this work considers using the entire gamut of

media as a probe to generate a single candidate list for the person of interest. We show that

the proposed approach boosts the likelihood of correctly identifying the person of interest

through the use of different fusion schemes, 3D face models, and incorporation of quality



measures for fusion and video frame selection.

Secondly, this dissertation proposes an automatic measure of the quality of an uncon-

strained face image, where quality is defined as a measure of the utility of a face image to

automatic face recognition. A large database of unconstrained face images is first annotated

with target quality labels using two methods: (i) human assessments of face image quality,

and (ii) quality values computed from similarity scores. A support vector regression model

trained on image features automatically extracted using a deep convolutional neural network

is then used to predict the quality of an unseen face image. Results demonstrate that tar-

get quality values from human assessments and similarity scores are not highly correlated

with each other, but both are useful for applications of face image quality, such as to reject

low-quality face images prior to matching and to rank a collection of face images based on

quality.

Finally, this dissertation addresses the important problem of facial aging, which is a chal-

lenge for both constrained and unconstrained applications. The two underlying premises of

automatic face recognition are uniqueness and permanence. We investigate the permanence

property by addressing the following: Does face recognition ability of state-of-the-art sys-

tems degrade with elapsed time between enrolled and query face images? If so, what is the

rate of decline with respect to the elapsed time? While previous studies have reported degra-

dations in accuracy, no formal statistical analysis of large-scale longitudinal data has been

conducted. We conduct such an analysis on two mugshot databases, which are the largest

facial aging databases studied to date in terms of number of subjects, images per subject, and

elapsed times. Longitudinal analysis shows that despite decreasing genuine scores, 99% of

subjects can still be recognized at 0.01% FAR up to approximately 6 years elapsed time, and

that age, sex, and race only marginally influence these trends. The methodology presented

in this dissertation should be periodically repeated to determine age-invariant properties of

face recognition as state-of-the-art evolves to better address facial aging.
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Chapter 1

Introduction

Automatic face recognition systems are currently deployed in many important applications.

Face recognition plays a key role in identity card de-duplication to prevent a person from

obtaining multiple ID cards, such as driver’s licenses and passports, under different names.

Face recognition is used by the United States Department of Defense (DoD) to assist sol-

diers in determining friend or foe at security checkpoints and village assessments, and law

enforcement officers in the field are able to capture face images with mobile devices, submit

them to face recognition system on central servers, and quickly identify people who refuse

to give their name, provide false information, or are injured and unresponsive. Face recogni-

tion systems are additionally utilized for surveillance purposes and access control to secure

locations. Commercial applications of automatic face recognition are also now abundant,

including “tag” suggestions on Facebook, organization of personal photo collections, and

mobile phone unlock.

Face image acquisition conditions for many of these applications are conducive to the cur-

rent capabilities of face recognition systems (i.e., relatively controlled environments and/or

cooperative subjects). Face images for identification documents require a neutral expres-

sion and no facial accessories, a uniform background, and controlled lighting. For example,

de-duplication entails frontal-to-frontal face matching of controlled images. In these types
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Figure 1.1 (a) Rank-1 miss rates of six vendors for closed-set identification of (b) mugshot
and (c) webcam face images against a gallery of mugshot photos 1.6 million individuals, as
reported by the NIST FRVT 2013 evaluation [55].

of scenarios, state-of-the-art commercial off-the-shelf (COTS) face recognition systems are

highly accurate and have proven to be extremely useful. As of 2013, at least 37 states1 are

using face recognition technology to assist in the detection of fraudulent identification docu-

ments; the state of New York alone attributes more than 2,500 arrests in three years to the

use of face recognition technology.2 In terms of accuracy, a large-scale evaluation conducted

by the National Institute of Standards and Technology (NIST) [55] demonstrated that error

rates of the top performing COTS face recognition systems were lower than 10% for iden-

tifying mugshot face images at rank-1 against a gallery database of 1.6 million individuals

(see Fig. 1.1).

As the demand for automatic recognition of individuals continues to increase, face offers

1www.washingtonpost.com/business/technology/state-photo-id-databases-become-troves-for-
police/2013/06/16/6f014bd4-ced5-11e2-8845-d970ccb04497 story.html

2http://www.governor.ny.gov/news/governor-cuomo-announces-13000-identity-fraud-cases-
investigated-dmv-using-facial-recognition

2

www.washingtonpost.com/business/technology/state-photo-id-databases-become-troves-for-police/2013/06/16/6f014bd4-ced5-11e2-8845-d970ccb04497_story.html
www.washingtonpost.com/business/technology/state-photo-id-databases-become-troves-for-police/2013/06/16/6f014bd4-ced5-11e2-8845-d970ccb04497_story.html
http://www.governor.ny.gov/news/governor-cuomo-announces-13000-identity-fraud-cases-investigated-dmv-using-facial-recognition 
http://www.governor.ny.gov/news/governor-cuomo-announces-13000-identity-fraud-cases-investigated-dmv-using-facial-recognition 


a number of advantages over other biometric traits (e.g., fingerprint and iris): (i) Recog-

nition by faces is how humans naturally interact with each other, so face images do not

contain any information that people do not also disclose to the public on a daily basis. Face

recognition tends to be more publicly accepted (compared to fingerprints, for example, which

are commonly associated with criminal accusations). (ii) Large legacy face image databases

already exist that can be searched against (e.g., passport and driver’s license). (iii) The face

reveals other attributes (gender, race, age) that can be used as side information. (iv) Face

can be captured unobtrusively, at a distance, and in a covert manner, if necessary. (v) No

specialized sensors are required; digital cameras are readily available (i.e., in mobile phones)

and/or relatively inexpensive.

The above advantages of face biometric lend themselves to new emerging applications of

face recognition, which are largely due to the increasing ubiquity of surveillance cameras and

mobile imaging devices. According to a 2013 survey, there is one surveillance camera for every

11 people in the UK,3 and a study conducted in 2014 estimates that the video surveillance

market will reach $42 billion by the year 2019.4 With recent tragic and controversial police-

civilian incidents, such as the deaths of Michael Brown in Ferguson, Missouri, and Eric

Garner in New York City, many police agencies are now equipping patrol officers with body

cameras, and national debates are ensuing about whether police should be required to wear

them at all times.5,6 Personal collections of photos have also skyrocketed, as front-facing

cameras on mobile phones sparked the “selfie” boom (i.e., taking a picture of yourself) and

an era of constant documentation of personal lives on social media.

Recent tragic events have made use of this increase in available imagery for solving high

profile crimes. For example, the 2011 London riots, which resulted in one fatality, had

3http://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-
Britain-says-CCTV-survey.html

4http://www.securitysales.com/article/report video surveillance market to reach 42b by 2019
5http://www.npr.org/2015/04/10/398704487/eyewitness-video-a-controversial-tool-for-holding-police-

accountable
6http://www.msnbc.com/msnbc/missouri-lawmaker-police-body-camera-footage

3

http://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
http://www.telegraph.co.uk/technology/10172298/One-surveillance-camera-for-every-11-people-in-Britain-says-CCTV-survey.html
http://www.securitysales.com/article/report_video_surveillance_market_to_reach_42b_by_2019
http://www.npr.org/2015/04/10/398704487/eyewitness-video-a-controversial-tool-for-holding-police-accountable
http://www.npr.org/2015/04/10/398704487/eyewitness-video-a-controversial-tool-for-holding-police-accountable
http://www.msnbc.com/msnbc/missouri-lawmaker-police-body-camera-footage


over 100,000 hours of surveillance footage for law enforcement officials to utilize.7 The 2013

Boston marathon bombings resulted in four fatalities and more than 250 injured; again, law

enforcement acquired a daunting amount of surveillance footage to sift through, as well as

images and videos from the mobile phones of bystanders and marathon runners.8 In both of

these cases, large amounts of manual resources were immediately devoted to searching for

investigative leads from the acquired media, and face images of suspects were released to the

public for identification.

Made evident by these recent tragic events, in addition to countless other routine crimes

(e.g., robbery, kidnapping, assault), government and law enforcement officials could greatly

benefit from automated (or semi-automated) face recognition to assist with identification of

persons of interest. A face recognition system designed for the 2012 Olympics was available

for use in the London riots but did not play a major role in identifying the rioters,9 and

there have been no reports that automatic face recognition was attempted for the Boston

bombings. Although, a recent case study demonstrated that a state-of-the-art commercial

face recognition system had the potential to identify one of the suspects, Dzhokhar Tsarnaev

(the younger brother), at Rank-1 amongst one million mugshot images if he was in the

database [73].

The success of face recognition technology in these scenarios is currently limited by the

unconstrained nature of the imagery typically available. Accuracies of current COTS systems

are highly sensitive to the quality of available face images. The large-scale face recognition

evaluation by NIST (FRVT 2013 [55]), also reported that error rates of the top six COTS

systems more than doubled when matching lower quality webcam images to the mugshot

gallery (see Fig. 1.1). While the feasibility and utility of fully automated face recognition

for surveillance purposes are limited, used as an investigative tool, face recognition can still

assist law enforcement in searching for a list of suspects for manual examination.

7http://www.independent.co.uk/news/uk/crime/more-support-for-cctv-after-riots-2375768.html
8http://www.washingtonpost.com/wp-srv/special/national/boston-marathon-bombing-victims/
9http://latimesblogs.latimes.com/technology/2011/08/london-riots-facial-recognition-tech-being-used-

by-police.html
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In unconstrained scenarios where face image acquisition is not well controlled and sub-

jects may be uncooperative (or unknowing), multiple factors which are known to confound

the performance of face recognition systems are simultaneously present. Such confounding

factors include facial pose, non-uniform illumination, facial expression, as well as occlusion

and low image resolution.

• Pose: Facial pose can be categorized as in-plane (roll) or out-of-plane rotation (yaw

and/or pitch). In-plane rotations can be corrected for with simple 2D transformations.

However, when the head is rotated out-of-plane, certain regions of the face become

“self-occluded” or no longer visible in the acquired face image (see Fig. 1.2(a)). This

results in missing information and makes it difficult to determine correspondences

between features of two faces at different poses.

• Illumination: For face images acquired in natural settings, ambient lighting can be

drastically different depending on the setting (e.g., indoor vs. outdoor) and is affected

by daily changes even in a specific environment (e.g., the amount of light coming in

from windows on a particular day and time). The angle of the head with respect

to the light source also causes changes in how the face is illuminated. Due to the

three-dimensional structure of the face, certain angles of illumination can cause severe

shadows across the face. Darkening or lightening of facial features causes them to

appear very different in a 2D color or grayscale image. Some features may even diminish

completely if the illumination is either too strong or too weak (see Fig. 1.2(b)).

• Expression: While a neutral or relaxed facial expression is probably the most fre-

quent state of a person’s face, face images are often captured mid-conversation, while

viewing something surprising, upsetting, etc., or while simply “making a face.” Such

daily activities cause different expressions involving different facial regions and com-

ponents (see Fig. 1.2(c)). As facial recognition technology became widely used by

Departments of Motor Vehicles (DMVs) across the United States, some DMVs be-
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gan enforcing a no smiling rule for new driver’s license photos.10 However, recently

DMVs (e.g., Delaware11) have started to upgrade their facial recognition technology

to systems which are capable of matching face images with high accuracy, regardless

of smiling or neutral expression, and have lifted the ban on smiling. Nevertheless,

extreme expressions are still challenging for state-of-the-art face recognition systems.

• Occlusion: Eyeglasses and sunglasses are a common cause of errors in facial recogni-

tion systems because the eye region, which is often highly discriminative, gets occluded.

Facial occlusions not only cause missing information, but also extraneous information

because it is difficult to detect and mask out occluded facial regions for matching. Even

if a person consistently wears eyeglasses, specular reflections that change based on the

light source still cause additional intra-person face variation. Other occluding facial

accessories, such as baseball caps and hoods, can hide the forehead and eyes and cast

shadows on the face. Besides facial accessories, faces can also be occluded by other

objects or persons, which is typical of faces in a crowd; to accurately identify such

“partial faces” in a crowd is an application of high interest for surveillance purposes.

• Resolution: The spatial resolution of a face, irrespective of image resolution, can be

measured as the distance (i.e., number of pixels) between the two eyes, also termed

interpupillary distance (IPD). Smaller IPDs generally lead to lower face recognition

accuracy, but there have also been studies (e.g., [53]) that show that the discrepancy

between the IPDs of two face images being compared can cause more errors than the

absolute IPD values.

The above factors are typically those assumed present when dealing with “unconstrained

face recognition.” However, another variation that is known to degrade performance of face

recognition systems is facial aging (see Fig. 1.3). Given two face images of the same person

10http://usatoday30.usatoday.com/news/nation/2009-05-25-licenses N.htm
11http://www.delawareonline.com/story/news/traffic/burke/2015/01/28/dmv-lifts-ban-smiling-license-

photos/22475061/
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(a) Facial pose

(b) Illumination

(c) Expression

Figure 1.2 Sources of intra-class variability: (a) pose, (b) illumination, and (c) expression.
Although all images shown here are of different people, such variations typically cause two
images of the same person to appear very different.

captured multiple years apart, a robust face recognition system should still be able to rec-

ognize the two photos as the same person. Unlike the above factors, facial aging cannot be

controlled either by the subject or the imaging environment; it is a challenge that can be

present in both constrained and unconstrained face recognition scenarios. Facial aging will

be discussed later in this chapter. While intra-class variations are a major challenge for face

recognition systems, inter-class similarities can also cause errors. For example, it can be dif-

ficult (even for humans) to distinguish between persons with kinship relations (particularly

twins, see Fig 1.4(a)), and persons that are not related can exhibit strong similarities (see

Fig 1.4(b-d)).
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Figure 1.3 A teacher who wears the same outfit for his school picture every year; while the
outfit is the same, his face and eyeglasses change over time. The overall quality of the image
also changes (i.e., improves over time). Such temporal aspects are additional sources of
intra-class variation.
[Images are from: http://fillthewell.com/yearbook-pictures/]

(a) (b) (c) (d)

Figure 1.4 Sources of inter-class similarity: (a) kinship similarities (in this case, twins) and
(b)-(d) different people with no kinship relation who happen to exhibit very similar facial
characteristics. This is sometimes referred to as a doppelgänger; (b) shows, as an example,
that president Barack Obama (left) has a doppelgänger (right) from Indonesia.
[Images in (b) are from: http://www.theguardian.com/theguardian/2010/dec/05/barack-obama-
doppelganger-ilham-anas]
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Gallery:	  
Face	  Image	  Database	  

(IDs	  are	  known)	  

…
 

Top-K Matches 
(Candidate List) 

Probe Image 

Automa:c	  
Face	  Matcher	  

Figure 1.5 A flowchart of automatic face recognition in identification mode. A probe face im-
age (with unknown identity) is matched against all face images enrolled in a gallery database.
The top-k most similar identities retrieved from the database are then manually adjudicated
by human analysts to determine whether the top-k candidates contain the identity of the
probe face image. In verification mode, the probe image would be accompanied by a claimed
identity and then only compared to the gallery image with the same identity as that which
is claimed by the probe.

1.1 Background

Automatic face recognition operates in different modes depending on the application. Re-

gardless of application, face images labeled with their identities are first enrolled in a

database, referred to as the gallery. A face recognition system then takes a face image

as input (i.e., the probe or query) and matches it against one or many face images in the

database. Face verification involves a one-to-one comparison to verify that the probe face

image is the identity that it claims to be (e.g., passport and passenger processing at airports,

access control for buildings, and mobile phone authentication). Face identification involves

one-to-many comparisons to retrieve (from the gallery) the identity of a probe face image

whose identity is unknown. Because automatic face recognition systems susceptible to er-

rors, in practice, the identity of the probe face image is established by manual adjudication
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of the top-k most similar identities (see Fig. 1.5), where k is application dependent (e.g., de-

duplication, watch list surveillance, tag suggestions). In some scenarios, the top-k candidate

identities are always manually adjudicated (e.g., identification of a suspected criminal in

forensics); this can be considered a closed-set identification scenario, where we assume that

the identity of the probe is present in the gallery. However, open-set identification, where the

identity of the probe may not be present in the gallery, is more representative of real-world

scenarios. For open-set applications, the frequency of false alarms raised for subjects not

in the gallery can be reduced by only returning the top candidate matches if they exceed a

predetermined threshold (i.e., k is of variable length). This is useful for “lights out” appli-

cations where it is impractical for a human analyst to review candidates for every query to

the database (e.g., watch list surveillance, especially in high traffic areas).

Whether verification or identification, the primary goal of an automatic face recognition

system is to compute a measure of similarity between any two face images. Ideally, faces of

the same individual should have higher similarity than faces of different individuals. However,

there are multiple components in the face recognition pipeline that have significant impact

on the computation of similarity scores and the resulting recognition performance.

1.1.1 Automatic Face Recognition Pipeline

The automatic face recognition pipeline (shown in Fig. 1.6) typically consists of the following

sequential components: (i) face detection, (ii) face normalization, (iii) feature extraction

and face representation, and (iv) comparison. Each of these components are crucial for

achieving accurate and robust face recognition systems, and a significant amount of research

has been devoted to each component individually. While state-of-the-art systems perform

these steps fully automatically with extremely high accuracies for controlled environment

and cooperative subject scenarios (e.g., mugshot face images), open research problems still

exist for unconstrained scenarios.

Face Detection: Face detection is the process of automatically determining whether a
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Face Detection Face Normalization Feature Extraction Comparison 
s(a,b) = 0.14 

Figure 1.6 The automatic face recognition pipeline typically consists of (i) face detection,
(ii) face normalization (to mitigate geometric and photometric variations), (iii) feature ex-
traction, and (iv) comparison of resulting face representations.

face (or multiple faces) exist in an image, and subsequently outputting the locations of all

detected faces. While it is a trivial task for humans to locate faces in an image, automatic

extraction of face “sub images” from arbitrary images is a challenging task for machines.

This is because of large intra-class variability in the appearance of faces (due to location,

scale, skin color, etc.), as well as the possible presence of other face-like objects.

Research in face detection has been ongoing for more than two decades, but the seminal

work of Viola and Jones [135] is credited with being the first real-time and accurate face de-

tector, enabling many real-world applications. The Viola-Jones algorithm is an appearance-

based method that uses simple Haar-like features which are sums of rectangular regions

of pixels that respond to contrast differences structures on the face (e.g., the two eyes are

typically darker than the bridge of the nose). At the time it was introduced, the novelty

of the Viola-Jones face detector was due to three key contributions: (i) fast feature com-

putation using an “integral image”, ii) feature subset selection with AdaBoost [46], and

iii) fast and accurate rejection of non-faces using an attentional cascade structure [135].

Though the Haar-like features are simple, computation of the over-complete set is expensive

(e.g., 160,000 features for a 24×24 window), so the integral image enables the sum of an

arbitrary rectangle to be computed with just four lookups [135]. The over-complete set of

features is also computationally expensive to be used directly for classification, so multiple
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“weak” classifiers are trained sequentially with AdaBoost [46] where each weak classifier is

based on a single feature. Because selection of a small number of features sacrifices accu-

racy for real-time processing, Viola and Jones further use a cascade of weak classifiers which

quickly discards non-face regions and allocates more resources to possible faces [135]. Ex-

perimental results in [135] demonstrated that a single-stage classifier with 200 features and

a cascade of 10 classifiers each with 20 features achieved similar detection rates, but the

cascade was 10 times faster.

Since its publication in 2004, the Viola-Jones face detector has greatly influenced research

in face detection and is still widely used. However, many other methods have since been

proposed that stem from the techniques proposed by Viola and Jones [135], and aim to be

more robust to variations in facial pose, illumination, expressions, and occlusions. A survey

of face detection approaches is provided in [150], and an in depth evaluation of various

detection algorithms on unconstrained faces is given in [36]. Figure 1.7 shows example face

detection results from an implementation of the Viola-Jones algorithm and a detector from

a COTS face recognition system. The COTS detector performs better than the Viola-Jones

algorithm, but errors are still observed for faces with extreme facial pose and occlusions, for

example.

Face Normalization: Face normalization seeks to mitigate geometric and photometric

variations that can greatly affect the subsequent modules of the face recognition pipeline.

To normalize shape, face alignment is often performed to transform all faces to a canonical

view. Face alignment aims at determining correspondences between face images based on

any number of feature/landmark/fiducial points (e.g., eyes, nose, mouth, contour, etc.). The

most common face alignment technique is a simple 2D rigid affine transformation based on

the two eye locations to correct for size and in-plane head rotation. However, in uncon-

strained face recognition, face images may contain out-of-plane rotations, so a simple 2D

rotation based on the eyes alone may not be sufficient.

Active Shape Models (ASMs) [38] and Active Appearance Models (AAMs) [37, 93] were
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(a)

(b)

(c)

(d)

Figure 1.7 Example face detection results. Faces were (a) detected and (b) not detected by an
implementation of the Viola-Jones algorithm [135]. Face images in (b) can be better detected
by (c) a COTS face recognition system. However, the COTS detector also encounters (d)
errors due to occlusion and facial pose, in particular. The small and large rectangles in
(c) and (d) show bounding boxes of face and head detections, respectively. The circles are
detected eye locations. All face images are from the LFW database [62].
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Figure 1.8 Example images from eight face tracks in the YouTube Faces (YTF) database
where all images in that track could not be enrolled by one of the COTS matchers. These
images display extreme pose and illumination conditions, low resolution, and motion blur.

some of the first statistical models proposed for object (e.g., face) alignment. At their time,

ASMs and AAMs were state-of-the-art, mainly due to novelty from learning shape and/or

texture variations of a face from labeled training data. While ASMs and AAMs improved

specificity of model-based approaches, they did so at the cost of generalization; alignment

performance suffers when ASMs or AAMs are trained on a large database and/or fitted to

previously unseen instances.

AAM-based methods were predominant for some time, but more robust solutions for

landmark localization and alignment have since been proposed. For example, Zhu and Ra-

manan [153] propose a unified approach for detection, alignment, and landmark localization

for faces “in the wild” that discriminatively encodes deformation and 3D structure as mix-

tures of trees with shared pool of parts [153]. Face alignment can also be done in 3D, with

3D morphable models (3DMMs), for example [26,27]. Jourabloo and Liu propose a 3DMM-

based approach to estimate both 2D and 3D facial landmarks for full pose variations, which

additionally allows for estimation of the visibility of 2D landmarks [66]. Additionally, some

recent works have shown impressive results for “frontalization” of unconstrained 2D face im-

ages with 3D modeling techniques (e.g., [127, 128]), as well as 3D face reconstruction from

a collection of unconstrained 2D face images [115].

Face alignment is also associated with “failure to enroll.” If landmark points can not be

detected, features cannot be extracted which can cause the entire enrollment process to fail.

Figure 1.8 shows cropped face images from video frames in the YouTube Faces database

where two COTS face matchers failed to enroll the face. Landmark localization and face
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alignment are difficult problems, and many face recognition methods are highly dependent on

the accuracy of either one or both of these processes; hence, some “alignment-free” methods

have been proposed (e.g., [84]).

Feature Extraction and Face Representation: Feature extraction and face repre-

sentation go hand in hand. The simplest features are the raw pixel values of the face, where

the representation is then a rasterized vector of raw pixel values. However, raw pixel values

in vector form are not very informative; a significant amount of additional and relevant in-

formation exists in a face image that can be used to represent a face and enhance matching

results. For example, high-level features, such as the distances between facial components

and their relative locations and ratios, in addition to low-level features such as wrinkles and

facial marks, can also be encoded to further discriminate between individuals.

Use of additional features seems like an obvious way to improve performance. However,

the primary issue with adding more informative features is that the dimensionality of the

feature vector becomes increasingly large (and likely redundant). Hence, the representation

step typically focuses on compressing features so that they are both compact and highly

discriminative. A vast amount of research has been devoted to these tasks (extraction and

representation), some of which will be discussed in Section 1.2.

Comparison: Once a compact and discriminative representation of a face image has

been obtained, the next step is to compare it to the representations of other face images

to compute a measure of similarity. The Euclidean distance between feature vectors can

be used; however, a more sophisticated choice of distance metric may significantly improve

the recognition rate. Some examples of other distance functions include cosine, Manhattan,

Tchebyshev, and correlation, as well as histogram intersection, log-likelihood statistics, chi-

square statistics, etc. Distance metric learning has also been applied to face recognition

(e.g., [39,61,128]), where a distance metric is learned from training data to simultaneously

minimize distances between instances of the same class and maximize distances between

different classes.

15



1.2 Research Progression

The concept of identifying individuals based on retained face images dates back to the

19th century when Alphonse Bertillon developed a system for identifying criminals based

on anthropometric measurements in 1879 [112]. The Bertillon system, or bertillonage, was

introduced in the U.S. in 1887 as the primary method for identifying and tracking criminals.12

Although it was replaced by fingerprinting in the early 20th century, face images of criminals,

now known as mugshots, are still used worldwide.

‘‘...according to the method prescribed by Dr. Bertillon, the

exact identity of any adult person can be established with so much

definiteness that when signalized a second time he can be recognized

with infallible certainty by a simple reference to the file in which

the former signalment is kept. Even if this file represented the

entire population in the country, the process of identifying two

correctly-taken signalments by its means could be performed in most

cases in a few minutes, without any assistance from a similarity

of names.’’ - From publisher’s preface to Signaletic Instructions

Including the Theory and Practice of Anthropometrical Identification by

Alphonse Bertillon, 1896

Partially automated recognition began in the mid 1960s when Woodrow W. Bledsoe came

up with a “man-machine” system for identification of individuals based on physiological mea-

surements which were entered by hand (e.g., height, weight, interpupillary distance, etc.),

stored in documents, and searched automatically [9]. Bledsoe understood that the results

were highly dependent on the angle of the face images, so he learned a transformation from

the actual 3D heads of seven individuals and applied this transformation to the measure-

ments of any non-frontal faces; a concept that is still used in current state-of-the-art 3D face

models.
12http://www.nleomf.org/museum/news/newsletters/online-insider/november-2011/bertillon-system-

criminal-identification.html
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Since Bledsoe’s man-machine system, 50 years of research (see Jain et al. for an overview

[65]) has been devoted to improving the robustness and efficiency of fully automated face

recognition systems (albeit recognition results are often manually adjudicated). Every stage

of the pipeline has received substantial research attention and great progress has been made

in face detection, alignment and normalization, feature extraction and representation, and

comparison. The progression of face recognition from frontal constrained face matching to

unconstrained “in the wild” face matching can roughly be delineated by three face repre-

sentation approaches: (i) holistic, (ii) local, and (iii) learned representations. This section

briefly discusses a few methods related to these categories.

1.2.1 Face Databases

First of all, it would not be possible to discuss progress in face recognition research without

reference to standardized face image databases and evaluations that have paved the way for

such success. While many researchers evaluate proposed methods on in-house databases,

research progression in face recognition is primarily facilitated and motivated by the compi-

lation and public release of face image databases. Some of the first standardized databases

on which the research community began to evaluate proposed methods are shown in Fig. 1.9.

While databases such as FERET [97], FRGC [97], and AR [92] (example images shown

in Fig. 1.9) greatly contributed to advancements in face recognition research, most of them

were acquired under relatively controlled conditions and were compiled by research teams for

studying specific subproblems of face recognition (e.g., illumination, expression, pose). Such

databases allow researchers to directly evaluate performance on face images that exhibit

certain variations, but are not very representative of face images encountered in real-world

scenarios. As algorithms continued to mature to handle controlled/simulated variations in

pose, illumination, expression, and occlusion, more challenging databases were needed.

For this reason, Huang et al. released the Labeled Faces in the Wild (LFW) database

which was compiled by searching the internet for the names of public figures, athletes,
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actors/actresses, etc. [62]. The LFW database includes 13,233 face images of 5,749 different

people. All face images were automatically detected by an implementation of the Viola-Jones

face detector [135], so they are constrained in that respect, but images typically exhibit

multiple variations that are challenging for face recognition algorithms. Along with the

database, Huang et al. released the LFW experimental protocol: 10-fold cross-validation on

verification/classification of 300 same and 300 not-same face pairs per split.

1.2.2 Holistic Representation

Drawing upon the Sirovich and Kirby [119] discovery that face images could be reconstructed

as projections onto a small set of eigenpictures, the Eigenfaces method was one of the first

fully automatic face recognition algorithms proposed in 1991 by Turk and Pentland [132].

A low-dimensional “face space” is calculated based on the training set of N face images

using principal component analysis (PCA). The face space is the set of M < N eigenvectors

corresponding to the largest M eigenvalues of the covariance matrix of the training set. All

faces are then represented as the weights associated with their linear projection onto the set

of eigenfaces, and dissimilarity is defined as Euclidean distance between two M -dimensional

feature vectors. Turk and Pentland also use the distance to face space for automatic face

detection; every pixel of an image is projected onto face space to acquire a “face map” where

low values (i.e., small distances to face space) indicate the presence of a face. Experiments

conducted on 16 subjects, represented by 7 eigenfaces, showed that Eigenface representation

was fairly robust to lighting variations (96% identification accuracy) but suffered more errors

with changes in head size and pose. Fisherfaces [13] is an extension of Eigenfaces that uses

supervised dimensionality reduction to find the subspace that minimizes intra-person and

maximizes extra-person variance via linear discriminant analysis (LDA).

These first fully automatic face recognition methods can be categorized as holistic rep-

resentations, as they utilize all the facial pixels together to drive a representation. Holistic

methods heavily rely on accurate alignment (typically based on eye locations) which be-
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(a) FERET

(b) FRGC

(c) AR

(d) LFW

(e) IJB-A

Figure 1.9 Example face images from different databases: (a) FERET [97], (b) FRGC [97],
(c) AR [92], (d) LFW [62], and (e) IJB-A [72]. Databases (a)-(c) contain variations such
as illumination, expression, and occlusion to challenge face recognition research, but they
are relatively controlled acquisition conditions because such variations are simulated/staged
(subjects are typically students and members of research groups). Databases (d) and (e)
contain more unconstrained face images (e.g., collected from the internet).
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Table 1.1 Face image databases in the public domain

Database Year
Num. Subj.

(Num. Imgs.)
Acquisition Conditions

NIST Mugshot Id [140] 1994 1,573 (3,248) constrained, operational

FERET [97] 1996 1,199 (14,126) simulated/staged PIE

Yale [13] 1997 15 (165) simulated/staged IE

AR [92] 1999 126 (4,000) simulated/staged IEO

Yale B [48] 2001 10 (5,760) simulated/staged PIE

CMU PIE [117] 2003 68 (41,368) simulated/staged PIE

FRGC [97] 2005 >466 (>20,000) simulated/staged IE

LFW [62] 2007 5,749 (13,233) unconstrained, web-collected

CMU Multi-PIE [51] 2008 337 (>750,000) simulated/staged PIE

MEDS [45] 2011 518 (1,219) constrained, operational

CASIA-WebFace [146] 2014 10,575 (494,414) unconstrained, web-collected

IJB-A [72] 2015 500 (5,712) unconstrained, web-collected
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comes difficult when faces are encountered that may be non-frontal or contain expression

variations, etc. Holistic methods also do not generalize well to new databases and have

difficulty with variations not present in the training set (e.g., presence/absence of eyeglasses

in training/testing).

1.2.3 Local Representation

Local representations typically perform a dense sampling of features at overlapping patches

in the face image and at multiple scales. To incorporate global information, geometric

relationships between features are often encoded by concatenating features extracted from

either a common set of landmark points or from a grid overlaid on the face. Hence, local

representations can also be sensitive to face alignment. Because the resulting set of features

is often over-complete with high dimensionality, feature selection (e.g., boosting) or subspace

methods (e.g., PCA, LDA) are adopted to achieve a compact face representation.

Liu et al. presented a novel augmented Gabor feature vector for face representation and

proposed the Gabor-Fisher classifier (GFC) for face recognition [88]. Gabor wavelets had

been used for face representation in prior works (e.g., Lades et al. [77]), but the novelty

of the Liu et al. Gabor feature was the concatenation of Gabor filter responses (using five

scales and eight orientations) and the subsequent application of PCA to compress the high-

dimensional feature vector. They showed that Gabor face representation with PCA per-

formed better than both Eigenfaces and Fisherfaces (which use the original image intensity

values as features). Furthermore, the GFC, which applied the Enhanced Fisher linear dis-

criminant Model (EFM) to the compressed augmented Gabor feature vector, achieved better

performance than both PCA and LDA with the Gabor feature vector. The use of EFM

helps improve discrimination and generalization and alleviates the small sample problem of

FLD/LDA.

Ahonen et al. presented the first application of the local binary pattern (LBP) texture

descriptor to face recognition [4]. Specifically, they used the uniform patterns extension
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of LBP (i.e., every circular pattern with at most two bitwise transitions contributes to its

own bin in the histogram and all other non-uniform patterns contribute to a single bin).

One major contribution of the Ahonen et al.’s LBP face representation was the spatially

enhanced histogram. To incorporate regional and global properties in combination with

the local features from the LBPs themselves, they placed a grid over the face, extracted

a histogram of LBP for each grid location, and concatenated the results to form the final

feature vector of the face. Because of this representation, different weights can be assigned

to the grid locations to be used with the weighted Chi squared distance measure. Patches

that contribute more to discriminating between identities (e.g., the eyes) can be given more

weight. In comparison with other local descriptors, Ahonen et al. [4] provided experiments

to show that LBP representation typically demonstrated the best performance on subsets of

the FERET database; likely due to the monotonic gray-scale invariance of LBP compared

to the other local descriptors.

Recently, a few extremely high-dimensional local representations (with efficient dimen-

sionality reduction techniques) have shown impressive performance on the LFW database.

For example, high-dimensional features (sampled at multiple scales on dense landmarks de-

tected by Cao et al. [29]) with Joint Bayesian classification [33] achieve 93-95% accuracy

on the LFW database for LBP, Gabor, HOG, SIFT, and LE descriptors trained on WDRef

database (99,773 images of 2,995 subjects) [34]. Most of the initial local representation meth-

ods have now been categorized as methods based on “handcrafted” or “engineered” features

because image filters are pre-defined and performance typically depends on a fine tuning of

the radius and scales of sampling.

1.2.4 Learned Representation

Motivated by the drawbacks of handcrafted local descriptors such as LBP, Gabor, SIFT etc.,

Cao et al. proposed a learning-based (LE) descriptor [30]. LE descriptors are extracted by

sampling a ring-based pattern from the neighborhood of each pixel to form a low-level feature
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vector which is then normalized to unit length. Cao et al. applied unsupervised learning

methods (K-means, PCA tree, or random-projection tree) to encode feature vectors into

discrete codes. Face images are represented as “code images,” and histograms of LE codes can

be extracted from grid locations and concatenated to form the final face representation. Cao

et al. showed that the distribution of the LE descriptors is more uniform across face images

than LBP and histogram of oriented gradients (HOG) and is therefore more informative,

discriminative, and compact [30]. The LE descriptors are combined with a pose-adaptive

matching method which aligns and matches nine components of the face separately, combines

their similarity scores, and delegates the verification decision to a linear SVM classifier that

has been trained on the two poses most similar to the input face images. Experimental results

on the LFW (84.45% accuracy) and Multi-PIE (95.19% accuracy) databases show that the

LE descriptors with pose-adaptive matching performs better than other methods trained in

the same manner and is competitive with methods trained using additional information [30].

1.2.4.1 Deep ConvNets

More recently, deep neural networks have achieved impressive results for many visual recog-

nition tasks [75], including face recognition. Neural networks are not new (e.g., perceptrons

were first developed in the 1950s); however, network models with many hidden layers (deep

structures) can be trained due to better regularization strategies and availability of large face

databases and processing capabilities. Again, rather than handcrafted features, face repre-

sentations are learned by deep convolutional neural networks (ConvNets) trained to classify

identities (or verify pairs of face images) from large-scale training sets of face images. The

dimensionality of the feature representation is hierarchically reduced due to the structure of

convolutional and pooling layers; both low-level features and global features are learned in a

cascaded manner. Commonly, the output of the last hidden layer (prior to the classification

layer) has been shown to have learned a highly robust face representation for new face images

in testing [123,128]. While the specific architectures of the networks in [123,128,146] are all
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different, their high recognition performance can generally be attributed to a few common

properties: better regularization strategies for learning very deep structures (4-11 layers),

availability of large-scale training databases (e.g., > 4 million images [128]), and access to

faster and cheaper computational resources.

However, the success of these deep ConvNets approaches is not due to sophisticated

learning and large-scale training sets alone; many of these methods also include additional

preprocessing and/or post-processing steps that further boost performance. For example,

Taigman et al. directly feed raw RGB pixel values as input to their deep ConvNet under the

assumption that their 3D face frontalization is successful [128]. This strong assumption may

not have been possible a few years ago when 3D frontalization capabilities from unconstrained

2D images were not accurate and robust. Sun et al. train multiple deep ConvNets on various

face patches at different scales [121], and DeepID [123] (and its variants) utilize the Joint

Bayesian classification method [33] on their deep representation; Joint Bayesian [33] is a

supervised subspace learning approach that has achieved high accuracies with other face

representations as well (e.g., [34, 85]).

1.3 Video Face Recognition

Face recognition in video is becoming increasingly important due to the abundance of video

data captured by surveillance cameras and mobile devices, uploaded to the Internet, etc.

Given the aggregate of facial information contained in a video (i.e., a sequence of face images

or frames), video-based face recognition solutions can potentially alleviate classic challenges

caused by variations in pose, illumination, and expression. A summary of the common public

domain databases used to evaluate video-based face recognition algorithms can be found in

Table 1.2. Of particular interest for these databases is the number of subjects available, and

whether or not the activities of the subjects were constrained or unconstrained (e.g., subjects

were directed to move in certain ways vs. subjects act naturally in an environment). Notably,
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Table 1.2 Characteristics of popular face video databases in the public domain.

Database Acquisition Conditions Subjects Videos Accuracy

Motion of Body (MoBo) [52]
Treadmill walking: slowly, quickly,

on incline, or with a ball
25 150 98.8% [89]

Face in Action (FIA) [49]
Variations in expressions

and orientations; indoor/outdoor
221 n/a 99% [101]a

1st Honda/UCSD [79] Staged head rotations and expressions 20 75 99% [131]

MBGC [103]
Walking, activity, conversation;

standard and high resolutions
821 3,764 see [103]

YouTube Celebrity [69]
Unconstrained, many same-subject

tracks from the same video
47 1,910 78.9% [145]

YouTube Faces [141] Unconstrained 1,595 3,425 54.8% [128]b

IJB-A [72] Unconstrained 500 2,085 40.6% [72]b

aAuthors used an indoor subset of FIA bTAR @ 1.0% FAR

Figure 1.10 Example images from face tracks of two subjects in the YouTube Faces (YTF)
database. The top two and bottom two rows are face tracks from the same subject.
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the YouTube Faces (YTF) database [141] contains the largest number of subjects and the

faces in the video tracks are relatively more unconstrained than other face video databases.

The MBGC video data [103] also has strong relevance to unconstrained faces in video, but

the YTF database is more widely used due to the following reasons: (i) it contains the

largest number of subjects, (ii) the actions of the subjects are naturally varied (as opposed

to performing prescribed actions), (iii) the YTF database is easier to acquire (thus allowing

the baselines to be used by the research community at large), and (iv) all subjects in the YTF

database also have still images available in the LFW database [62] (thus allowing baselines

to be compared to the video-to-still image matching scenario). The IJB-A database [72] also

contains unconstrained face videos but with fuller pose variations and lower quality faces

than the YTF database (faces in YTF were detected by Viola-Jones detector which can miss

faces at extreme poses, while faces in IJB-A were manually annotated by humans).

Video-based face recognition approaches have been organized into the following two cat-

egories [10] based on how they leverage the multitude of information available in a video

sequence: (i) sequence-based, and (ii) set-based. At a high-level, what most distinguishes

these two approaches is whether or not they utilize temporal information. Sequence-based

approaches consider all detected faces based on their temporal ordering. For example, Zhou

et al. combined both face tracking and face recognition into a single framework, which al-

lowed the inter-frame dynamics to be exploited during the recognition process [152]. See [10]

for more details about sequence-based methods.

Set-based approaches to video-based face recognition consider all the available frames of a

subject’s face as an unordered set. Such methods have been further organized into approaches

that fuse the available information prior to matching, and those that fuse information after

performing matching [10]. Methods that fuse information prior to matching will generally

output either a feature vector representation or a single face image. For example, manifold-

based methods project the set of face images onto a manifold within a feature space, which

in turn facilitates matching within the feature space [80,138]. Manifold methods are similar
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to sequence-based methods in that they require specialized matching algorithms. Both super

resolution methods [6] and 3D modeling-based methods [101] output a single face image that

in turn can be matched with an existing face recognition system. Thus, while such synthesis-

based methods attempt to solve a difficult generative modeling task, these methods are

compatible with existing face recognition engines. A few commercial solutions are available

for such synthesis methods, though they are only semi-automated and hence more relevant

to forensic applications.

Finally, set-based methods that fuse information after the face matching process seek to

combine the comparison scores from static face matchers into a single similarity score. For

example, Taigman et al. [128] randomly selected 100 pairs of frames from two videos and

used the mean of the pairwise similarity scores as the similarity score between two videos;

this simple extension of their static image-based method (i.e., DeepFace) achieves 91.4%

accuracy on the YTF database. Yi et al. also applied their deep ConvNet approach to video

data in a similar manner (randomly select 15 frames from each video) and also achieve high

accuracy (92.2%) on the YTF database. Like the LFW database, deep ConvNet methods

are currently outperforming all other methods on the YTF database.

1.4 Face Image Quality

Face recognition system errors are often due to quality issues at the time of acquisition

of the face image. In constrained and controlled capture environments (e.g., passport and

mugshot photos), low quality face images are typically due to operator issues or uncoopera-

tive users. Many users of face recognition systems are unaware of the sensitivity of automatic

face recognition systems to illumination, facial pose, expression, eyeglasses, etc., or subjects

may be uncooperative (e.g., for mugshot photos). In unconstrained scenarios, ranging from

surveillance imagery to face images available on the internet, low quality face images are

unavoidable due to the nature of the applications. Available face images are either not col-
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lected for use with identification documents and face recognition purposes, or face images

are captured covertly where subjects are unaware of acquisition or purposely do not want a

good quality face image to be acquired.

Following the accepted definition of biometric sample quality, a face quality measure

should be predictive of automatic face recognition performance [5, 23, 56]. Hence, a face

image determined to be of low (poor) quality should result in low genuine and high impostor

similarity scores, and a high (good) quality face image should result in high genuine and low

impostor similarity scores. The benefits of an automatic measure of face quality are similar

to the benefits of automatic quality measures for any other biometric trait (e.g., fingerprint

or iris) [56]. Some examples include the following:

• To assist with the integrity of enrollment face databases, automatic quality measures

could be integrated into face image acquisition protocols, where the process cannot

be completed until a face image of desired quality has been acquired. The quality

measures could also be applied retroactively to legacy face databases to “flag” low

quality images which have been previously enrolled.

• Similarly, an automatic quality check could be incorporated at the time of verification

or identification in controlled and constrained scenarios where capture of additional

face images is possible if necessary. Rather than returning a false match or false non-

match, where the operator (or user) would need to ascertain whether to attempt the

process again, the system could have a “reject option” where no decision is given unless

the query face image is of sufficient quality. If the acquired face image does not pass a

quality check, the user can be prompted to provide a better quality face image.

• A face quality measure can be used to weight face image samples for fusion of different

biometric traits (e.g., face and iris) or of multiple face images (and/or video frames)

in media collection scenarios such as those explored in Chapter 2.

• Automatic invocation of adaptive recognition systems based on the quality (e.g., fusion
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of multiple matchers if face quality is poor may boost the performance, but fusion could

be avoided for high quality samples where additional computation is unnecessary or

fusion may even degrade performance). Hence, it may be useful to have both matcher-

independent and matcher-dependent quality measures.

Bharadwaj et al. [23] and Alonso-Fernandez [5] provide recent reviews of biometric sam-

ple quality for fingerprint, face, and iris. The most widely used biometric sample quality

has without a doubt been the use of NIST Fingerprint Image Quality (NFIQ v1.0 [125] and

NFIQ v2.0 [124]); with wide acceptance, it is now the de facto standard for assessing finger-

print image quality for many important applications, including the US-VISIT program [96].

NFIQ is an integer value of 1 to 5 (1 being the highest quality) that predicts the expected

performance of fingerprint matching algorithms on a given fingerprint image. In comparison,

face image quality has been studied in the literature (e.g., [22, 35, 42]), but no satisfactory

solutions are yet available from either the research community or commercial vendors, to the

best of our knowledge.

1.5 Facial Aging

Because of the natural process of aging, appearance changes that affect both facial shape

and texture are inevitable. Hence, the permanence/persistence of the face as a biometric

tends to be lower than that of the other primary biometric traits (i.e., fingerprint and iris).

Unlike other factors such as pose and illumination, aging variations cannot be controlled;

facial aging is a challenge that spans both constrained and unconstrained applications of

face recognition. A common approach to handle the issue of faces changing over time is

“template update” where subjects’ enrolled samples are periodically updated. For example,

driver’s licenses and passport photos must be renewed every so many years. While template

update is effective, there are many applications where template update is not a viable solution

(e.g., de-duplication, identification of missing persons, surveillance and watch-list scenarios).
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To solve this problem, there have been two primary approaches in the literature: (i) age

simulation/progression of face images prior to feature extraction and matching (e.g., [78,

102]) and (ii) recognition methods which utilize “age-invariant” features and/or subspaces

(e.g., [67,83,87]). Ramanathan et al. provide a survey of approaches related to facial aging

[111].

1.6 Benchmarking State of the Art

Progress in face recognition research has largely been driven by systematic large-scale eval-

uations of current methods, which not only encourage competition, but also help to identify

future areas of research. While the research community attempts to benchmark published

methods against each other, public access to large operational databases has been limited.

Hence, third-party evaluations done by the National Institute of Standards and Technol-

ogy (NIST) are invaluable for knowledge of current state-of-the-art algorithms; NIST has

access to large operational databases and conducts extensive testing of multiple algorithms

on protocols that mimic operational scenarios.13 In particular, commercial vendors, whose

algorithms are typically proprietary, submit their algorithms for the NIST evaluations. The

research community should pay close attention to the results of these tests; actual state-of-

the-art methods are different than “home-brewed” algorithms evaluated on small “in-house”

or lab-collected databases.

To measure progress in face recognition, we can track the results of the various NIST

evaluations, which began in September 1993 with the FERET program [107]. At that time,

face recognition systems were limited to prototypes from research labs and universities,

and few were fully automatic. Commercial systems have since been evaluated in multiple

Face Recognition Vendor Tests (FRVTs). Table 1.3 shows that the FRVTs (and the MBE

[57]) have documented continuously increasing TARs at 0.1% FAR on frontal constrained

face images from 2000 to 2013; a decrease in error rates of approximately three orders of

13http://www.nist.gov/itl/iad/ig/face.cfm
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Table 1.3 Face recognition performance on frontal, constrained face images as reported over
the years in NIST evaluations.

Evaluation Year Rank-1 Accuracy Gallery Size TAR @ 0.1% FAR

FERET [107] 1993/94 78% 316 21%

FERET [107] 1996/97 95% 831 46%

FRVT [106] 2002 73% 37,437 80%

FRVT [108] 2006 n.a. n.a. 99%

FRGC v2.0 [105] 2005 n.a. 16,028 99%

MBE [57] 2010 92% 1.6M >99%

FRVT [55] 2014 96% 1.6M n.a.

magnitude has been observed.

The most recent NIST evaluation, FRVT 2013, focused on large-scale face identification,

both closed-set and open-set [55]. While closed-set accuracies of the top six commercial

vendors were quite high (best was 4.1% rank-1 miss rate), open-set accuracies decreased sig-

nificantly for a FAR of 0.2% (best was 7.5% rank-1 detection and identification miss rate).

These evaluations have also experimented on face images captured in less ideal conditions

(i.e., non-uniform lighting, lower resolution, non-frontal); the FRGC and FRVT evaluations

identified pose, illumination, and outdoor imagery as especially challenging for algorithms.

However, with the exception of the webcam face images used in FRVT 2013, most of these

evaluations on other factors have been on databases with staged variations (i.e., lab col-

lected).

1.6.1 Unconstrained Face Recognition

Current state-of-the-art methods for unconstrained face recognition have been benchmarked

by the LFW database protocol since its release in 2007 [62]. Numerous methods have eval-

uated on the LFW protocol (almost 60 publications on the LFW website14 at the time of

writing). Recently, the LFW protocol has been dominated by convolutional neural network

approaches with reported accuracies of 97–99% (e.g., [121, 128, 146]). As previously dis-

14http://vis-www.cs.umass.edu/lfw/results.html

31



cussed, these high accuracies are largely due to the use of large-scale training databases

external to LFW; methods which leverage outside training data (ConvNet methods already

mentioned, as well as e.g., [30, 34,90]) have proven to achieve much higher accuracies than

methods that only train on LFW face images (current best accuracies are 95.89% [7] and

88.97% [81]). The public availability of the LFW database has greatly contributed to ad-

vancements in the development of face recognition techniques that are robust to variations

in pose, illumination, expression, etc. by facilitating competition amongst research teams,

as well as the goal to outperform humans [76]. However, there are a few limitations of the

LFW protocol as discussed in the next section.

1.6.1.1 Drawbacks of the LFW Protocol

The LFW database protocol was designed for the classification task of determining whether

a pair of face images is the same (i.e., genuine) or different (i.e., impostor). Hence, the

LFW protocol is specifically an evaluation of face verification. While face verification is a

real-world biometric scenario, the LFW protocol suffers from the following limitations:

• Many methods that use the LFW protocol only report the accuracy of their final

classifier that determines same vs. not-same face pairs. However, in a biometric

verification system, we typically do not require a classifier to make a binary decision. A

face recognition system will be deployed, and the system administrators will determine

the threshold at which they wish to operate the system (depending on security and

usability requirements of the application domain). Hence, a full receiver operating

characteristic (ROC) curve should be reported to demonstrate performance across

different thresholds.

• Because of the above point, biometric systems should especially be tested at low false

accept rates (FARs) as this is typically where most applications operate (e.g., FARs

well below 1%). The LFW protocol, which contains only 300 impostor scores per cross-

validation fold, does not allow for evaluating at these low FARs (e.g., 1/300 = 0.3%
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and is not statistically reliable).

• Many unconstrained face recognition scenarios require face identification, rather than

verification, tasks. While verification and identification are related, DeCann and Ross

show that a good verification system does not necessarily imply a good identification

system (and vice versa) [40]. Hence, unconstrained face recognition methods should

also be evaluated in identification modes (both closed-set and open-set).

Because of these drawbacks, the LFW protocol design has received recent criticisms

[85, 129, 151], and research focus is beginning to shift towards evaluation in more realistic

biometric settings. In 2014, Liao et al. released a new unconstrained face recognition proto-

col: Benchmark of Large-scale Unconstrained Face Recognition (BLUFR) [85]. The protocol

is still 10-fold cross-validation but exploits the large number of face images available in the

LFW database; BLUFR has both verification and open-set identification protocols consisting

of about 157,000 genuine scores and 47 million impostor scores per fold.15

Liao et al. [85] provide results on the BLUFR protocol for some benchmark methods, in-

cluding Chen et al.’s high-dimensional LBP with Joint Bayesian classification [33,34]; while

Chen et al.’s approach achieves 95% accuracy on the LFW protocol, the accuracies signifi-

cantly drop for the more challenging BLUFR protocol (see Table 1.4). Similarly, deep neural

network approaches (e.g., Yi et al. [146] and Wang et al. [136]) achieve ∼98% accuracy

on the LFW protocol, but only 90% and 56% accuracies on the BLUFR protocol. These

results demonstrate that accuracies of ∼99% on the LFW protocol are misleading; there is

still room for improvement in scenarios more representative of real-world (i.e., large-scale)

biometric applications.

The YTF database protocol (i.e., 10-fold cross-validation of 250 same and 250 not-same

pairs per fold [141]) is the video-equivalent of the LFW protocol and contains the same

drawbacks. Additionally, another issue with these two databases is that web-collected data

can easily contain labeling errors. Because the LFW and YTF protocols contain so few face

15http://www.cbsr.ia.ac.cn/users/scliao/projects/blufr/

33

http://www.cbsr.ia.ac.cn/users/scliao/projects/blufr/


Table 1.4 Comparison of performance on the LFW [62] vs. BLUFR [85] protocols.

LFW Protocol BLUFR Protocol

Method Accuracy (%) TAR @ 0.1% FAR DIR @ 1% FAR

HighDimLBP + JointBayes [34]* 95.17 41.66 18.07

Yi et al. [146] 97.73 80.26 28.90

Wang et al. [136] 98.20 89.80 55.90

*Performance here for [34] on BLUFR protocol was reported by [85]

pairs, these errors may be significant. By studying human performance (via crowdsourcing

on Amazon Mechanical Turk), we discovered 111 errors out of the 2,500 genuine pairs in the

YTF protocol [16]. Some of the errors were due to the difficult task of verifying ground truth

because of the temporal aspect of videos; the person of interest may not appear in the video

until a few or many frames into the sequence. Databases that have been reliably annotated

with ground truth labels prior to release, such as the IJB-A database [72], are invaluable to

the research community.

An additional limitation of the LFW and YTF unconstrained face databases is that

they were both compiled using a commodity face detector, namely, an implementation of

the Viola-Jones algorithm [135]. While automatic face detection facilitates the collection

of large-scale face databases, this property immediately puts a constraint on the collected

face images which are supposed to be unconstrained. The constraint being that Viola-Jones

based algorithms (and most other existing face detectors) perform best on near-frontal face

images [36]. Additionally, poor illumination, extreme expression, and occlusions can also

cause face detection to fail. Hence, current research efforts in unconstrained face recognition

have been optimizing automatic face recognition only for those faces which can be detected

by these commodity detectors.

For the reasons mentioned above, the IARPA Janus program released a new uncon-

strained face database, IARPA Janus Benchmark A (IJB-A), which is a joint face detection

and recognition database [72]. IJB-A contains 500 subjects with an average of 11.4 face im-
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ages and 4.2 videos per subject. All faces in both images and video frames were annotated

manually via sophisticated methods using Amazon Mechanical Turk [126]. Because all faces

are detected by humans (rather than automatically detected by a Viola-Jones face detec-

tor), the IJB-A database contains larger ranges of variations (particularly facial pose) that

degrade performance of current face detection and recognition approaches. The IJB-A face

recognition challenge managed by NIST16 is a “template-based” matching scenario where

each sample is a composite of still images and video frames of the same subject; the goal

is to leverage complementary information that may be available in multiple unconstrained

faces. The current leaderboard17 accuracies for the IJB-A challenge are the following: 82%

TAR @ 1% FAR (1:1 verification), 88% rank-1 accuracy (1:N closed-set), and 53% TPIR @

1% FPIR (1:N open-set).

1.6.2 Age-Invariant Face Recognition

State-of-the-art age-invariant face recognition systems (in the literature) are currently bench-

marked by the FG-NET [78] and MORPH [113] databases; a number of methods claim to im-

prove the “age-invariance” of face recognition by reporting overall performance on FG-NET

and/or MORPH. For example, [50] reports rank-1 identification accuracies of 69.0% and

91.1% on the FG-NET and MORPH-II databases, respectively. Using the periocular region,

Xu et al. [67] reported 100% rank-1 accuracy and 98% TAR at 0.1% FAR on FG-NET.

However, an overall performance improvement on a specific database does not necessarily

indicate a good solution to the facial aging problem. Klare and Jain demonstrate that meth-

ods developed (trained) for age-invariance may actually decrease performance in non-aging

scenarios [70]. Furthermore, simply stating accuracies on the entire longitudinal database

does not provide any information/quantification regarding facial aging as a covariate to face

recognition (i.e., how much impact specific ages or time lapses have on comparison scores

and/or accuracies).

16https://www.nist.gov/programs-projects/face-challenges
17IJB-A reports are periodically updated. Leaderboard results reported here are from Nov. 2016.
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To further study facial aging, most researchers divide the database into partitions (of

age groups or elapsed times) and report performance for each partition. Performance trends

across increasing age group or elapsed time are then evaluated. While this approach provides

empirical notions of how facial aging affects the performance of systems, covariate analysis

is needed to account for the effects of other factors (e.g., pose, image quality) that also play

a role in performance. In particular, the FG-NET database contains a number of other

variations that can make recognition difficult, in addition to those related to facial aging

(see Fig. 1.11).

Longitudinal databases are difficult to acquire because images of the same subjects need

to be collected over time. A database for studying facial aging should consist of both a large

number of subjects and a large number of images per subject that have been collected over

time. While the FG-NET and MORPH databases have primarily been the only publicly

available databases for studying facial aging, they are not ideal for longitudinal study due

to the following reasons:

• FG-NET contains only 82 subjects in total, and 48% of the 1,002 total face images are

younger than 13 years old. Even with small elapsed times, face recognition of children

is still an open research problem; the FRVT 2013 [55] reported that all of the top six

commercial algorithms suffered an especially large decrease in performance for all age

groups less than 13 years old.

• While the largest commercial version of the MORPH database has about 20,000 sub-

jects, there are only an average of 4 face images per subject. Additionally, there are

only 317 subjects with more than 5 face images collected over at least 5 years.

Hence, if we wish to study how facial changes of individuals affects face recognition perfor-

mance over time, we need to leverage a database that is both fairly constrained with respect

to other covariates and contains a large number of images per subject acquired over periods

of time which are long enough for facial changes due to aging to occur.
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(a) (b)

Figure 1.11 Face images of two example subjects from the FG-NET database [78]: (a) female
at ages 3–38 years and (b) male at ages 19–63 years. As shown in these examples, the FG-
NET database contains a significant amount of variations (pose, illumination, inter-pupillary
distances, image quality, etc.), in addition to intrinsic variations due to facial aging.

48 49 51 52 53

47 48 49 50 53

43 44 46 47 48

Figure 1.12 Face images and corresponding ages (in years) of three example subjects from the
MORPH database [113]. The largest commercial version of MORPH has 78,207 face images
of 20,569 subjects. However, there are only 317 subjects with at least 5 images acquired over
at least 5 years (these are three of the 317).
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1.7 Contributions

Automatic face recognition has been an extensively studied topic for more than two decades.

Significant advancements in the technology have been realized in numerous subtasks needed

for robust recognition (face detection, alignment, feature extraction, matching). However,

as the technology moves from research problems to real-world deployment systems, it is

imperative that the research be driven by requirements of these real-world scenarios. In

summary, this introduction has highlighted a few limitations of current research in uncon-

strained face recognition and studies on facial aging, particularly with respect to how these

two challenging problems are benchmarked and evaluated.

The perceived contributions of this thesis are the following:

1. Experimental protocols are developed for identification of unconstrained face images.

Baseline results using a state-of-the-art COTS face matcher and a separate 3D face

modeler are provided for both closed-set and open-set scenarios.

2. A framework is provided for matching a collection of face media (image(s), video(s),

3D model(s), demographic data, and sketch) to mitigate the challenges associated

with unconstrained face recognition (uncooperative subjects, unconstrained imaging

conditions) and to boost recognition accuracy in scenarios where multiple instances of

the face may be available (e.g., persons of interest on a watch list).

3. An automatic measure of face image quality is proposed which can be used to reject

low-quality face images prior to matching and rank a collection of face images in order

of quality (e.g., to determine which face image to put in the gallery or which face

images to use to build a 3D face model).

4. The largest (to date) longitudinal study of face recognition performance is conducted

to determine the state-of-the-art robustness to facial aging. The study involves two op-

erational mugshot databases consisting of (i) 147,784 images of 18,007 subjects and (ii)
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31,852 images of 5,636 subjects; each subject has a minimum of 4 mugshots collected

over an average of 8.5 and 5.8 years for the two databases, respectively. Mixed-effects

regression models are used to analyze trends in genuine scores over time (i.e., as sub-

jects age) and quantify the subject-specific variability. As such, estimates are provided

for how many years of aging are tolerated by face matchers, e.g., before 95% of the

population’s genuine scores will drop below the threshold at 0.1% FAR. The effects of

demographics (age, gender, race) and face image quality are also analyzed.

1.8 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 focuses on utilizing a face

media collection to improve unconstrained face recognition accuracy. Chapter 3 investigates

human assessments of the quality of a large database of unconstrained face images and

proposes an automatic measure of face image quality. Chapter 3 provides a longitudinal

study on automatic face recognition which utilizes multilevel statistical models for a covariate

analysis of elapsed time and other factors. Chapter 4 concludes this thesis with a summary

of contributions and future work.
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Chapter 2

Face Recognition with Media

Collection

2.1 Introduction

As face recognition applications progress from constrained imaging and cooperative subjects

(e.g., identity card deduplication) to unconstrained imaging scenarios with uncooperative

subjects (e.g., watch list monitoring), a lack of guidance exists with respect to optimal

approaches for integrating face recognition algorithms into large-scale applications of interest.

In this work we explore the problem of identifying a person of interest given a variety of

information sources about the person (face image, surveillance video, face sketch, 3D face

model, and demographic information) in both closed-set and open-set identification modes.

Identifying a person based on unconstrained face images is an increasingly prevalent

task for law enforcement and intelligence agencies. In general, these applications seek to

determine the identity of a subject based on one or more probe images or videos, where

a top-100 ranked list retrieved from the gallery (for example) may suffice for analysts (or

forensic examiners) to identify the subject [64]. In many cases, such a forensic identification
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Gender: Male   Race: White   Age: 60-70 

(a) 

(b) 

(c) 

(d) 

Figure 2.1 A collection of face media for a particular subject may consist of (a) multiple
still images, (b) a face track from a video, (c) a forensic sketch, (d) a 3D face model of the
subject derived from (a) and/or (b), and demographic information (e.g., gender, race, and
age). The images and video track shown here are from [62, 141]. The sketch was drawn by
a forensic sketch artist after viewing the face video. In other applications, sketches could be
drawn by an artist based on verbal description of the person of interest.

is performed when multiple face images and/or a face track (i.e., a sequence of cropped face

images which can be assumed to be of the same person) from a video of a person of interest

are available (see Fig. 2.1). For example, in investigative scenarios, multiple face images of

an unknown subject often arise from an initial clustering of visual evidence, such as a network

of surveillance cameras, the contents of a seized hard drive, or from open source intelligence

(e.g., social networks). In turn, these probe images are searched against large-scale face

repositories, such as mug shot or identity card databases.

High profile crimes such as the Boston Marathon bombings often rely on data extracted

by significant manual effort to identify the person of interest:

"It’s our intention to go through every frame of every video [from the

marathon bombings]," Boston Police Commissioner Ed Davis1

1http://www.washingtonpost.com/world/national-security/boston-marathon-bombings-investigators-
sifting-through-images-debris-for-clues/2013/04/16/1cabb4d4-a6c4-11e2-b029-8fb7e977ef71 story.html
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While other routine, but high value, crimes such as armed robberies, kidnappings, and acts of

violence require similar identifications, only a fraction of the manual resources are available to

solve these crimes. Thus, it is paramount for face recognition researchers and practitioners

to have a firm understanding of optimal strategies for combining multiple sources of face

information, collectively called face media, available to identify the person of interest.

While forensic identification is focused on human-driven queries, several emerging appli-

cations of face recognition technology exist where it is neither practical nor economical for a

human to have a high degree of intervention with the automatic face recognition system. One

such example is watch list identification from surveillance cameras, where a list of persons of

interest are continuously searched against streaming videos. Termed as open-set recognition,

these challenging applications will likely have better success as unconstrained face recogni-

tion algorithms continue to develop and mature [28]. While a closed-set identification system

deals with the scenario where the person of interest is assumed to be present in the gallery,

and always returns a non-empty candidate list, an open-set identification system allows for

the scenario where the person of interest is not enrolled in the gallery, and so can return a

possibly empty candidate list [82]. We provide experimental protocols, recognition accura-

cies on these protocols using COTS face recognition and 3D face modeling algorithms, and

an analysis of the integration strategies to improve operational scenarios involving open-set

recognition.

2.1.1 Overview

In forensic investigations, manual examination of a suspect’s face image against a mug shot

database with millions of face images is prohibitive. Thus, automatic face recognition tech-

niques are utilized to generate a candidate suspect list. As shown in Fig. 2.2, forensic

investigations using face images typically involve six stages: obtaining face media, prepro-

cessing, automatic face matching, generating a suspect list, human or forensic analysis, and
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Figure 2.2 Forensic investigations by law enforcement agencies using face images typically
involve six main stages: obtaining face media, preprocessing, automatic face matching,
generating a suspect list, human analysis, and suspect identification. Feedback occurs af-
ter human analysis reveals that, for example, additional preprocessing of the input image
(e.g., illumination correction and/or manual eye locations), demographic filtering of the
gallery, and/or a different face sample from the media collection is necessary.

suspect identification.2 The available forensic data or media of the suspect may include still

face image(s), video track(s), a face sketch, and demographic information (e.g., age, gender,

and race) as shown in Fig. 2.3. While traditional face matching methods take a single media

(i.e., a still face image, video track, or face sketch) as probe to generate a suspect list, a

media collection is expected to provide more identifiable information about a suspect. The

proposed approach contributes to forensic investigations by taking into account the entire

media collection of the suspect to perform face matching. This approach generates a single

candidate suspect list (rather than a separate list for each face sample in the collection),

thereby reducing the amount of human analysis needed.

In this work, we examine the use of commercial off the shelf (COTS) face recognition

systems with respect to the aforementioned challenges in large-scale unconstrained face

recognition scenarios. First, the efficacy of forensic identification is explored by combin-

ing two public-domain unconstrained face databases, Labeled Faces in the Wild (LFW) [62]

and YouTube Faces (YTF) [141], to create sets of multiple probe images and videos to be

matched against a gallery consisting of a single image for each subject. To replicate forensic

identification scenarios, we further populate our gallery with one million operational mug

shot images from the Pinellas County Sheriff’s Office (PCSO) database.3 Using this data,

2A more detailed description of this forensic investigation process can be found at: http://www.justice.
gov/criminal/cybercrime/docs/forensics chart.pdf

3http://biometrics.org/bc2010/presentations/DHS/mccallum-DHS-Future-Opportunities.pdf
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...

Automatic face matching Generating suspect list

Gallery of mugshots

Human analysis

Top 200 matches

Media collection as a probe

Single or multiple images

Single or multiple videos

Sketch

3D face model or data
Attributes: age, gender, race, etc. 

Figure 2.3 Schematic diagram of a person identification task given a face media collection
as input.

we are able to examine how to boost the likelihood of face identification through different

fusion schemes, incorporation of 3D face models and hand drawn sketches, and methods

for selecting the highest quality video frames. Researchers interested in improving forensic

identification accuracy can use this competitive baseline (on public-domain databases LFW

and YTF) to provide more objectivity towards such goals.

Most of the work on unconstrained face recognition using the LFW and YTF databases

has been reported in verification scenarios [98, 137]. However, in forensic investigations, it

is the identification mode that is of interest, especially the open-set identification scenario

where the person of interest may not be present in legacy face databases.

The contributions of this work are summarized as follows:

• We show, for the first time, how a collection of face media (image(s), video(s), 3D

model(s), demographic data, and sketch) can be used to mitigate the challenges as-

sociated with unconstrained face recognition (uncooperative subjects, unconstrained

imaging conditions) and boost recognition accuracy.

• Unlike previous studies that report results in verification mode, we present results for

both open-set and closed-set identifications which are the norm in identifying persons

of interest in forensic and watch list scenarios.
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• We present effective face quality measures to determine when the fusion of information

sources will help boost identification accuracy. The quality measures are also used to

assign weights to different media sources in fusion schemes.

• To demonstrate the effectiveness of media-as-input for the difficult problem of un-

constrained face recognition, we utilize a state of the art COTS face matcher and a

separate COTS 3D face modeler, namely the Aureus 3D SDK provided by CyberEx-

truder4. Face sketches were drawn by forensic sketch artists who generated the sketch

after viewing low quality videos. In the absence of demographic data for LFW and

YTF databases, we used crowdsourcing to obtain the estimates of gender and race.

The above strategy allows us to show the contribution of various media components

as we incrementally add them as input to the face matching system.

• Pose-corrected versions of all face images in the LFW database, pose-corrected video

frames from the YTF database, forensic sketches, and experimental protocols used in

this work have been made publicly available.5

The remainder of this chapter is organized as follows. In Section 2.2, we briefly review

published methods related to unconstrained face recognition. We detail the proposed face

media collection as input and media fusion method in Sections 2.3 and 2.4, respectively.

Experimental setup and protocols are given in Section 2.5, and experimental results are

presented in Section 2.6. We conclude this work in Section 2.7.

2.2 Related Work

The release of the public-domain database Labeled Faces in the Wild6 (LFW) in 2007 spurred

interest and progress in unconstrained face recognition. The LFW database is a collection

4http://cyberextruder.com/products/aureus-3d-sdk/
5http://biometrics.cse.msu.edu/pubs/databases.html
6http://vis-www.cs.umass.edu/lfw/
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(a) LFW face images

(b) YTF face video tracks

Figure 2.4 Example (a) face images from the LFW database and (b) face video tracks from
the YTF database. All faces shown are of the same subject.
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of 13, 233 face images, downloaded from the Internet, of 5, 749 different individuals such as

celebrities, public figures, etc. [62]. These images were selected since they meet the criterion

that faces can be successfully detected by the Viola-Jones face detector [135]. Despite this

property, the LFW database contains significant variations in facial pose, illumination, and

expression, and many of the face images are occluded. The LFW protocol consists of face

verification based on ten-fold cross-validation, each fold containing 300 “same face” and 300

“not-same face” image pairs.

The YouTube Faces7 (YTF) database, released in 2011, is the video-equivalent to LFW

for unconstrained face matching in videos. The YTF database contains 3, 425 videos of

1, 595 individuals. The individuals in the YTF database are a subset of those in the LFW

database. Faces in the YTF database were also detected with the Viola-Jones face detector

at 24 fps, and face tracks were included in the database if there were at least 48 consecutive

frames of that individual’s face. Similar to the LFW protocol, the YTF face verification

protocol consists of ten-fold cross-validation, each fold containing 250 “same face” and 250

“not-same face” track pairs. Figure 2.4 shows example face images and video tracks from

the LFW and YTF databases for one particular subject. In this work, we combine these

two databases to evaluate the performance of face recognition on unconstrained face media

collections.

We provide a summary of related work on unconstrained face recognition, focusing on

various face media matching scenarios in Table 2.1. We emphasize that most prior work

has evaluated unconstrained face recognition methods in the verification mode. While fully

automated face recognition systems are able to achieve ∼99% True Accept Rate (TAR) at

0.1% False Accept Rate (FAR) in constrained imagery and cooperative subject conditions,

face recognition in unconstrained environments remains a challenging problem [97]. However,

face verification accuracies on the LFW protocol have recently seen drastic improvements.

When utilizing outside training data, recent works have achieved TARs greater than 94% at

7http://www.cs.tau.ac.il/∼wolf/ytfaces/
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1% FAR and classification accuracies over 97% (e.g., [122,128]). However, at 1% FAR, the

LFW protocol only contains three impostor scores per fold, so these saturated accuracies

may overestimate the abilities of FR systems on unconstrained faces. Liao et al. propose a

new benchmark for LFW which allows for evaluation at lower FARs; out of three features

and seven learning algorithms, they find the best performance is 42% and 66% at 0.1% and

1% FAR, respectively [85]. Open-set identification performance is even lower at 18% for

Rank-1 and 1% FAR [85].

Unconstrained face recognition methods can be grouped into two main categories: single

face media based methods and face media collection based methods. Single media based

methods focus on the scenario where both the query and target instances contain only

one type of face media, such as a still image(s), video track(s), or 3D image(s) or model(s).

However, the query and target instances can be different media types, such as single image vs.

single video. These methods can be effective for unconstrained illumination and expression

variations but can only handle limited pose variations. For example, while ∼97% TAR at

0.1% FAR has been reported in MBGCv2.0 unconstrained vs. unconstrained face matching,

under large pose variations, this performance drops to ∼17% TAR in MBGCv2.0 non-frontal

vs. frontal face matching (see Table 2.1). Such challenges were also observed in single image

vs. single image face matching in LFW, and single video vs. single video face matching in

YTF and MBGCv2.0 walking vs. walking databases.

These observations suggest that in unconstrained scenarios, a single face media probe,

especially of “low quality”, may not be able to provide a sufficient description of a face. This

motivates the use of a face media collection which utilizes any source of information that is

available for a probe (or query) instance of a face. One preliminary study in this direction

is the FRGCv2.0 Exp. 3 where (i) a single 3D face image and (ii) a collection of single 3D

image and a single 2D face image were used as queries. Results show that 2D face image

and 3D face image did improve the face matching performance (79% TAR for 3D face and

2D face vs. 53% TAR for just the 3D face at 0.1% FAR) in unconstrained conditions. It
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Table 2.1 A summary of published methods on unconstrained face recognition (UFR). Per-
formance is reported as True Accept Rate (TAR) at a fixed False Accept Rate (FAR) of
0.1% or 1%, unless otherwise noted.

Dataset
Query Type (size) vs.

Target Type (size)

Accuracy

(TAR @ FAR)
Source

U
F
R

o
n

S
in
g
le

M
e
d
ia

FRGC v2.0 Exp. 4

unconstrained vs. constrained

Single image (8,014) vs.

single image (16,028)
12% @ 0.1% [97]

MBGC v2.0

unconstrained vs. unconstrained

Single image (10,687) vs.

single image (8,014)
97% @ 0.1% [97]

MBGC v2.0

non-frontal vs. frontal

Single image (3,097) vs.

single image (16,028)
17% @ 0.1% [97]

MBGC v2.0

unconstrained vs. HD video

Single image (1,785) vs.

single HD video (512)
94% @ 0.1% [97]

MBGC v2.0

walking vs. walking

Notre Dame:

Single video (976) vs.

single video (976)

UT Dallas:

Single video (487) vs.

single video (487)

Notre Dame:

46% @ 0.1%

UT Dallas:

65% @ 0.1%

[97]

FRGC v2.0 Exp. 3

3D vs. 3D

Single 3D image (4,007) vs.

single 3D image (4,007)
53% @ 0.1% [97]

LFW

Image-Unrestricted Protocol

(w/ outside training data)

300 genuine and

300 impostor pairs per fold

88% @ 1%

94% @ 1%

95% @ 1%

[34]

[128]

[122]

LFW

BLUFR Protocol

4,249 subjects and

9,708 images per fold
90% @ 0.1% [136]

YouTube Celebritites
1,500 video clips of

35 celebrities

79%

Rank-1 Acc.
[145]

YouTube Faces
250 genuine and

250 impostors per fold

55% @ 1%

63% @ 1%

[128]

[19]

U
F
R

o
n

M
e
d
ia

C
o
ll
e
c
ti
o
n

FRGC v2.0 Exp. 3

Single image &

single 3D image (8,014) vs.

single 3D image (943)

79% @ 0.1% [97]

MBGC v2.0

unconstrained face and iris

vs. NIR& HD videos

Single face & iris (14,115) vs.

single NIR & single HD (562)
97% @ 0.1% [97]

LFW & YouTube Faces

(plus 3D face models &

demographic information)

Single image vs. single image 56.7%

This work1

Multiple images vs. single image 72.0%

Single video vs. single image 31.3%

Multiple videos vs. single image 44.0%

Multiple images & multiple videos

vs. single image
77.5%

Multiple images, multiple videos,

& 3D model vs. single image
83.0%

Multiple images, multiple videos,

3D model, & demographics

vs. single image

84.9%

1Performance measures reported here for scenarios considered in this work are Rank-1 identification accuracies.
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is, therefore, important to determine how we can improve the face matching accuracy when

presented with a collection of face media of different types, albeit of different qualities, as

probe.

2.3 Media-as-Input

A face media collection can consist of still images, video tracks, a 3D model, a forensic sketch,

and demographic information. In this section, we discuss how we use face “media-as-input”

as probe and our approach to media fusion.

2.3.1 Still Image and Video Track

Still image and video track are two of the most widely used sources of media in face recogni-

tion systems [82]. Given multiple still images and videos, we use the method reported in [19]

to match all still images and video frames available for a subject of interest to the gallery

mugshot (frontal pose) images using a COTS face matcher. The resulting match scores are

then fused to get a single match score for either multiple probe images or video(s).

2.3.2 3D Face Models

One of the main challenges in unconstrained face recognition is large variations in facial

pose [47,94]. In particular, out-of-plane rotations drastically change the 2D appearance of a

face, as they cause portions of the face to be occluded. A common approach to mitigate the

effects of pose variations is to build a 3D face model from a 2D image(s) so that synthetic

2D face images can then be rendered at designated poses (e.g., [8, 63,86]).

In this work, we use a state of the art COTS 3D face modeling SDK, namely CyberEx-

truder’s Aureus 3D SDK, to build 3D models from 2D unconstrained face images.8 We input

eye locations (extracted automatically by [34] for LFW images and the COTS face matcher

8http://www.cyberextruder.com/aureus-3d-sdk
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for YTF video frames) to the SDK to help with model robustness. The entire 3D face mod-

eling process is fully automatic. The 3D face model is then used to render a “pose corrected”

(i.e., frontal facing) image of the unconstrained probe face images. The pose corrected im-

age can then be matched against a frontal gallery. We also pose correct “frontal” gallery

images because even the gallery images can have variations in pose as well. Experimental

results show that including pose corrected gallery images indeed improves the identification

performance.

Given the original and pose corrected probe and gallery images, there are four matching

scores that can be computed between any pair of probe and gallery face images (see Fig. 2.5).

We use the score s1 as the baseline to determine whether including scores s2, s3, s4, or their

fusion can improve the performance of a COTS face matcher. A face in a video frame can be

pose corrected in the same manner. The Aureus SDK also summarizes faces from multiple

frames in a video track as a “consolidated” 3D face model (see Fig. 2.6).

2.3.3 Demographic Attributes

In many law enforcement and government applications, it is customary to collect ancillary

information like age, gender, race, height, and eye color from the subjects during enroll-

ment. We explore how to best utilize demographic data to boost the recognition accuracy.

Demographic information such as age, gender and race becomes even more important in

complementing identity information provided by face images and videos in unconstrained

face recognition due to the difficulty of the face matching task.

In this work, we take gender and race attributes of each subject in the LFW and YTF

face databases as one type of media. Since this demographic information is not available

for the subjects in the LFW and YTF face databases, we utilized the Amazon Mechanical

Turk (MTurk) crowdsourcing service9 to obtain the “ground-truth” gender, and race of the

596 subjects that are common in LFW and YTF datasets. Most studies on automatic

9www.mturk.com/mturk/
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s1 

s4 

s3 

s2 

Probe Gallery 

Original 

Pose 
Corrected 

Pose 
Corrected 

Original 

Figure 2.5 Pose correction of probe (left) and gallery (right) face images using CyberEx-
truder’s Aureus 3D SDK. We consider the fusion of four different match scores (s1, s2, s3,
and s4) between the original probe and gallery images (top) and synthetic pose corrected
probe and gallery images (bottom).

Figure 2.6 Pose corrected faces (b) in a video track (a) and the resulting “consolidated” 3D
face model (c). The consolidated 3D face model is a summarization of all frames in the video
track.
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demographic estimation are limited to frontal face images [59]; demographic estimation from

unconstrained face images (e.g., the LFW database) is challenging [76]. For gender and

race estimation tasks, we submitted 5, 749 (i.e., the number of subjects in LFW) Human

Intelligence Tasks (HITs), with ten human workers per HIT, at a cost of 2 cents per HIT.

Finally, a majority voting scheme (among the responses) was utilized to determine the gender

(Female or Male) and race (Black, White, Asian or Unknown) of each subject. We did not

consider age in this work due to large variations in age estimates by crowd workers.

2.3.4 Forensic Sketches

Face sketch based identification dates back to the 19th century [130], where the paradigm

for identifying subjects using face sketches relied on human examination. Recent studies

on automated sketch based identification systems show that sketches can also be helpful to

law-enforcement agencies to identify the person of interest from mugshot databases [58,74].

In situations where the suspect’s photo or video is not available, expertise of forensic sketch

artists are utilized to draw a suspect’s sketch based on a verbal description provided by an

eyewitness or victim. In some situations, even when a photo or video of a suspect is available,

the quality of this media can be poor. In this situation also, a forensic sketch artist can be

called in to draw a face sketch based on the low-quality face photo or video. For this reason,

we also include the face sketch in a face media collection.

We manually selected 21 low-quality (large pose variations, shadow, blur, etc.) videos

(one video per subject) from the YTF database (for three subjects, we also included a low

quality still image from LFW). We then asked two forensic sketch artists to draw a face sketch

for each subject in these videos (10 subjects were drawn by one forensic sketch artist, and 11

subjects by the other). Our current experiments are limited to sketches of 21 subjects due

to the high cost of hiring a sketch artist. Examples of these sketches and their corresponding

low-quality videos are shown in Figs. 2.7 and 2.15.
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(c) Forensic
Sketch

(a) Video
(b) Cropped face 

image from video

Figure 2.7 An example of a sketch drawn by a forensic artist by looking at a low-quality
video. (a) Video shown to the forensic artists, (b) facial region cropped from the video
frames, and (c) sketch drawn by the forensic artist. Here, no verbal description of the person
of interest is available.

2.4 Media Fusion

Given a face media collection as probe, there are various schemes to integrate the identity

information provided by each individual media component, such as score level, rank level,

and decision level fusion [114]. Among these approaches, score level fusion is the most

commonly adopted. Some COTS matchers do not output a meaningful match score (to

prevent hill-climbing attacks [133]). Thus, in these situations, rank level or decision level

fusion is typically adopted.

In this work, we match each face media (image, video, 3D model, sketch, or demographic

information) of a probe collection to the gallery and combine the scores using score level

fusion. Specifically, score level fusion takes place in two different layers: (i) fusion within one

type of media, and (ii) fusion across different types of media. The first fusion layer generates a

single score from each media type if multiple instances are available. For example, matching

scores from multiple images or multiple video frames can be fused to get a single score.

Additionally, if multiple video clips are available, matching scores of individual video clips

can also be fused. Score fusion within the ith face media can generally be formulated as

si = F(si,1, si,2, · · ·, si,n), (2.1)
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where si is a single match score based on n instances of the ith face media type; F(·) is a

score level fusion rule; we use the sum rule, e.g., s = 1
n

∑
si,n, which has been found to be

quite effective in practice [19]. Note that the sum and mean rules are equivalent, but we use

the terms mean and sum for situations when normalization by the number of scores is and

is not necessary, respectively. Given a match score for each face media type, the next fusion

step involves fusing the scores across different types of face media. Again, the sum rule is

used and found to work very well in our experiments; however, as shown in Fig. 2.8, face

media for a person of interest can be of different quality. For example, a 3D face model can

be corrupted due to inaccurate localization of facial landmarks. As a result, match scores

calculated from individual media sources may have different degrees of confidence.

We take into account the quality of individual media type by designing a quality based

fusion. Specifically, let S = [s1, s2, · · ·, sm]T be a vector of the match scores between n

different media types in a collection of probe and gallery, and Q = [q1, q2, · · ·, qm]T be a

vector of quality values for the corresponding input media. Match scores from the COTS

matcher are normalized with z-score normalization. The quality values are normalized to

the range [0, 1]. The final match score between a probe and a gallery image is calculated by

a weighted sum rule fusion,

s =
1

m

m∑
i=1

qisi = QTS. (2.2)

Note that the quality based across-media fusion in (2.2) can also be applied to score level

fusion within a particular face media type (e.g., 2D video frames).

In this work, we have considered five types of media in a collection: 2D face image, video,

3D face model, sketch, and demographic information. However, since sketches of only 21

persons (out of 596 persons that are common in LFW and YTF databases) are available, in

most of the experiments, we perform quality-based fusion in (2.2) based on only four types

of media (m = 4). The quality measures for individual media type are defined as follows.

• Image and video: For a probe image, the COTS matcher assigns a face confidence
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value in the range of [0, 1], which is used as the quality value. For each video frame, the

same face confidence value measure is used. The average face confidence value across

all frames is used as the quality value for a video track.

• 3D face model: The Aureus 3D SDK used to build a 3D face model from image(s)

or video frame(s) does not output a confidence score. We define the quality of a 3D

face model based on the pose corrected 2D face image generated from it. Given a

pose corrected face image, we calculate its structural similarity (SSIM) [139] to a set

of predefined reference images (manually selected frontal face images). Let IPC be a

pose corrected face image (from the 3D model), and R = {R1,R2, · · ·,Rt} be the set

of t reference face images. The quality value of a 3D model based on SSIM is defined

as

q(IPC) = 1
t

t∑
i=1

SSIM(IPC ,Ri)

= 1
t

t∑
i=1

l(IPC ,Ri)
α · c(IPC ,Ri)

β · s(IPC ,Ri)
γ

(2.3)

where l(·), c(·), and s(·) are luminance, contrast, and structure comparison functions

[139], respectively; α, β, and γ are parameters used to adjust the relative importance

of the three components. We use the recommended parameters α = β = γ = 1 in [139].

The quality value is in the range of [0, 1].

• Demographic information: As stated earlier, we collected demographic attributes

(gender and race) of each face image using the MTurk crowdsourcing service with

ten MTurk workers per task. Hence, the quality of demographic information can be

measured by the degree of consistency among the ten MTurk workers. Let E = [e1, e2, ··

·, ek]T be the collection of estimates of one specific demographic attribute (gender or

race) by k (here, k = 10) MTurk workers. The quality value of this demographic

attribute can be calculated as

q(E) =
1

k
max

i=1,2,···,c
{
∑

(E == i)}, (2.4)
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(a) Images (b) Video frames

(c) 3D face models (d) Demographic information

QV = 0.6 QV = 0.35

QV = 0.30QV = 0.96 QV = 0.94QV = 0.99

QV of white =1.0
QV of male = 1.0

Figure 2.8 Examples of different face media types with varying quality values (QV) of one
subject: (a) images, (b) video frames, (c) 3D face models, and (d) demographic information.
The range of QV is [0,1].

where c is the total number of classes for one demographic attribute. Here, c = 2 for

gender (Male and Female); while c = 4 for race (Black, White, Asian, and Unknown).

The notation
∑

(E == i) denotes the number of estimates that are labeled as class i.

The quality value range in (2.4) is in [0, 1].

Quality values for different face media of one subject are shown in Fig. 2.8. We note that

the proposed quality measures give reasonable quality assessments for different input media.

2.5 Experimental Setup

The 596 subjects who have at least two images in the LFW database and at least one video

track in the YTF database (subjects in YTF are a subset of those in LFW) are used to

evaluate the performance of face identification on media-as-input in both closed-set and

open-set scenarios. The state of the art COTS face matcher used in our experiments was

one of the top performers in the 2010 NIST Multi-Biometric Evaluation [97]. Though the
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Table 2.2 Number of probe face images (from the LFW database) and video tracks (from
the YTF database) available for the 596 subjects that are common in the two databases.

# images/videos per subj. 1 2 3 4 5 6 7+

# subjects (LFW images) 238 110 78 57 25 12 76

# subjects (YTF videos) 204 190 122 60 18 2 0

COTS face matcher is designed for matching still images, we apply it to video-to-still face

matching via multi-frame fusion to obtain a single score for the video track [19]. In all cases

where video tracks are part of the face media collection, we use the mean rule for multi-frame

fusion (the max fusion rule performed comparably [19]).

2.5.1 Closed Set Identification

In closed-set identification experiments, one frontal LFW image per subject is placed in the

gallery (one with the highest frontal score from the COTS matcher), and the remaining LFW

images are used as probes. All YTF video tracks for the 596 subjects are used as probes.

Table 2.2 shows the distribution of number of probe images and videos per subject. The

average number of images, video tracks, and total media instances per subject is 5.3, 2.2, and

7.4, respectively. We further extend the gallery size with an additional 3, 653 LFW images

(of subjects with only a single image in LFW). In total, the size of the gallery is 4, 249.

We evaluate five different scenarios depending on the contents of the probe set: (i) single

image as probe, (ii) single video track as probe, (iii) multiple images as probe, (iv) multiple

video tracks as probe, and (v) multiple images and video tracks as probe. We also take into

account the 3D face models and demographic information in the five scenarios. To better

simulate the scenarios in real-world forensic investigations, we also provide a case study on

the Boston Marathon bomber to determine the efficacy of using media, and the generalization

ability of our system to a large gallery with one million background face images.

For all closed-set experiments involving still images from LFW, we input automatically
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extracted eye locations (from [34]) to the COTS face matcher to help with enrollment because

the COTS matcher sometimes enrolls a background face in the LFW image that is not

the subject of interest. Against a gallery of approximately 5, 000 LFW frontal images, we

observed a 2–3% increase in accuracy for Rank-20 and higher by inputting the automatically

extracted eye locations from [34]. Note that for the YTF video tracks, there are no available

ground-truth eye locations for faces in each frame. Recall from Section 2.3.2 that we input

eye locations from [34] and the COTS face matcher to build the 3D models for LFW images

and YTF video frames, respectively; hence, the entire 3D face modeling process is fully

automatic. We report closed-set identification results as Cumulative Match Characteristic

(CMC) curves.

2.5.2 Open Set Identification

Here, we consider the case when the person of interest in the probe image or video track

may not have a true mate in the gallery. This is representative of a watch list scenario. The

gallery (watch list) consists of 596 subjects with at least two images in the LFW database and

at least one video in the YTF database. To evaluate performance in the open-set scenario,

we construct two probe sets: (i) a genuine probe set that contains faces matching gallery

subjects, and (ii) an impostor probe set that does not contain faces matching gallery subjects.

We conduct two separate experiments: (i) randomly select one LFW image per watch

list subject as the genuine probe set and use the remaining LFW images of subjects not

on the watchlist as the impostor probe set (596 gallery subjects, 596 genuine probe images,

and 9, 494 impostor probe images), and (ii) use one YTF video per watch list subject as the

genuine probe set, and the remaining YTF videos which do not contain watch list subjects as

the impostor probe set (596 gallery subjects, 596 genuine probe videos, and 2, 064 impostor

probe videos). For each of these experiments, we evaluate three scenarios for the gallery: (i)

single image, (ii) multiple images, and (iii) multiple images and videos.

Open-set identification can be considered a two step process: (i) decide whether or not to
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reject a probe image as not in the watchlist, and (ii) if probe is in the watchlist, recognize the

person. Hence the performance is evaluated based on (i) Rank-1 detection and identification

rate (DIR), which is the fraction of genuine probes matched correctly at Rank-1, and not

rejected at a given threshold, and (ii) the false alarm rate (FAR) of the rejection step (i.e.

the fraction of impostor probe images which are not rejected). We report the DIR vs. FAR

curve describing the tradeoff between true Rank-1 identifications and false alarms.

2.6 Experimental Results

2.6.1 Pose Correction

We first investigate whether using a COTS 3D face modeling SDK to pose correct a 2D face

image prior to matching improves the identification accuracy. The closed-set experiments in

this section consist of a gallery of 4, 249 frontal LFW images and a probe set of 3, 143 LFW

images or 1, 292 YTF videos. Table 2.3 (a) shows that the COTS face matcher performs

better on face images that have been pose corrected using the Aureus 3D SDK. Matching the

original gallery images to the pose corrected probe images (i.e., match score s3) performs the

best out of all four match scores, achieving a 7.25% improvement in Rank-1 accuracy over the

baseline (i.e., match score s1). Furthermore, fusion of all four scores (s1, s2, s3, and s4) with

the simple sum rule provides an additional 2.6% improvement at Rank-1. Consistent with

the results for still images, match scores s3 and sum(s1, s2, s3, s4) also provide significant

increases in identification accuracy over using match score s1 alone for matching frames of

a video track (Table 2.3 (b)). We note that s4 likely performs lower than s3 because the

gallery images are already fairly frontal. If both the gallery and the probe face images are

unconstrained then s4 may perform better.

Next, we investigate whether the Aureus SDK consolidated 3D models (i.e., n frames of

a video track summarized as a single 3D face model rendered at frontal pose) can achieve

comparable accuracy to matching all n frames. Table 2.4(a) shows that the accuracy of
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Table 2.3 Closed-set identification accuracies (%) for pose corrected gallery and/or probe
face images using 3D model. The gallery consists of 4,249 LFW frontal images and the
probe sets are (a) 3,143 LFW images and (b) 1,292 YTF video tracks. Performance is shown
as Rank retrieval results at Rank-1, 20, 100, and 200. Computation of match scores s1, s2,
s3, and s4 are shown in Fig. 2.5.

LFW Images

R-1 R-20 R-100 R-200

s1 56.7 78.1 87.1 90.2

s2 57.7 77.6 86.0 89.9

s3 63.9 83.4 90.7 93.6

s4 55.6 78.8 88.0 91.9

sum 66.5 85.9 92.4 95.1

(a)

YTF Video Tracks

R-1 R-20 R-100 R-200

s1 31.3 54.2 68.0 74.5

s2 32.3 55.3 67.8 73.9

s3 36.3 58.8 71.3 77.2

s4 31.7 54.4 68.7 76.5

sum 38.8 61.4 73.6 79.0

(b)

Table 2.4 Closed-set identification accuracies (%) for matching consolidated 3D face models
built from (a) all frames of a video track or (b) a subset of high quality (HQ) video frames.

Consolidated 3D Model:

All Frames

R-1 R-20 R-100 R-200

s3 33.1 54.1 67.3 72.8

s4 29.4 51.7 64.8 71.1

sum 34.6 56.4 68.2 74.1

(a)

Consolidated 3D Model:

Frame Selection

R-1 R-20 R-100 R-200

s3 34.4 56.6 67.8 73.4

s4 29.8 52.4 66.5 72.7

sum 35.9 58.3 69.9 75.1

(b)

sum(s3, s4) (i.e., consolidated 3D models matched to original and pose corrected gallery

images) provides the same accuracy as matching all n original frames (i.e., score s1 in Ta-

ble 2.3 (b)). However, the accuracy of the consolidated 3D model is slightly lower (∼ 5%)

than mean fusion over all n pose corrected frames (i.e., score s3 in Table 2.3 (b)). Hence,

the consolidated 3D model built from a video track is not able to retain all discriminatory

information contained in the collection of n pose-corrected frames.

2.6.2 Forensic Identification: Media-as-Input

A summary of results for the various media-as-input scenarios is shown in Fig. 2.9. For all

scenarios that involved multiple probe instances (i.e., multiple images and/or videos), the
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mean fusion method gave the best result. For brevity, all CMC curves and results that

involve multiple probe instances are also obtained via mean fusion. We also investigated

the performance of rank-level fusion; the highest-rank fusion performed similar to score-level

fusion, while the Borda count method [114] performed worse.

As observed in the previous section, pose correction with the Aureus 3D SDK to obtain

scores s3 or sum(s1, s2, s3, s4) achieves better accuracies than score s1. This is also observed

in Figs. 2.9(a) and 2.9(b) where scores sum(s1, s2, s3, s4) and s3 provide approximately a

5% increase in accuracy over score s1 for multiple images and multiple videos, respectively.

This improvement is also observed in Fig. 2.9(c) for matching media that includes both still

images and videos, but the improvement is mostly at low ranks (< Rank-50).

Figure 2.9 shows that (i) multiple probe images and multiple probe videos perform better

than their single instance counterparts, but (ii) multiple probe videos actually perform worse

than single probe image (see Figs. 2.9(a) and 2.9(b)). This is likely due in part to videos in

the YTF database being of lower quality than the still images in the LFW database. However,

we note that though multiple videos perform poorly compared to still images, there are still

cases where the fusion of multiple videos with the still images does improve the identification

performance. This is shown in Fig. 2.9(c); the best result for multiple images is plotted as a

baseline to show that the addition of videos to the media collection improves identification

accuracy. An example of this is shown in Fig. 2.10. For this particular subject, there is

only a single probe image available that exhibits extreme pose. The additional information

provided by the 3D model and video track improves the true match from Rank-438 to Rank-

8. In fact, the performance improvement of media (i.e., multiple images and videos) over

multiple images alone can mostly be attributed to cases where there is only a single probe

image with large pose, illumination, and expression variations.

While Fig. 2.9 shows that including additional media to a probe collection improves iden-

tification accuracies on average, there are cases where matching the entire media collection

can degrade the matching performance. An example is shown in Fig. 2.11. Due to the
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Figure 2.9 Closed-set identification results for different probe sets: (a) multiple still face
images, (b) multiple face video tracks, and (c) face media collection (images, videos and
3D face models). Single face image and video track results are plotted in (a) and (b) for
comparison. Note that the ordinate scales are different in (a), (b), and (c) to accentuate the
difference among the plots.
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(a) Probe media collection (b) Gallery true mate

Figure 2.10 A collection of face media for a subject (a) consisting of a single still image,
3D model, and video track improves the retrieval rank of the true mate in the gallery (b).
Against a gallery of 4,249 frontal images, the single still image was matched at Rank-438
with the true mate. Including the 3D model along with the still image improved the match to
Rank-118, while the entire probe media collection was matched to the true mate at Rank-8.

(a) Probe image and 3D model (b) Gallery image and 3D model

(c) Probe video tracks

Figure 2.11 Additional face media does not always improve the identification accuracy. In
this example, the probe image with its 3D model (a) was matched at Rank-5 against a gallery
of 4,249 frontal images. Inclusion of three video tracks of the subject (c) to the probe set
degraded the true match to Rank-216.
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fairly low quality of the video tracks, the entire media collection for this subject is matched

at Rank-216 against the gallery of 4, 249 images, while the single probe image and pose

corrected image (from the 3D model) are matched at Rank-5. This necessitates the use of

quality measures to assign a degree of confidence to each media.

We evaluated the face verification performance (see Fig. 2.12) using the same database

as the closed-set identification protocol (i.e., gallery (target) of 4,249 images and probe

(query) media collections of 596 subjects). We found that score s3 still outperforms s1, s2,

and s4 for still images and videos frames. In investigating why s3 performs better than

s4, we found that s4 provides a better genuine score distribution than s3, but the impostor

distribution of s4 has a longer tail. We believe this is partially due to similarities in the

contours of two pose-corrected images. However, we find that multiple images with their

3D models (sum(s1,s2,s3,s4)) perform better than a media collection of multiple images (s1)

and video frames (s1 or consolidated 3D model), whereas in closed-set identification, these

media collections perform better than the multiple images and 3D models alone. In both

identification and verification modes, the best performance is a collection of images with

their 3D models and video frames. Image and video scores were normalized with z-score

normalization.

2.6.3 Quality-based Media Fusion

In this section, we evaluate the proposed quality measures and quality-based face media

fusion. As discussed in Section 2.4, quality measures and quality-based face media fusion

can be applied at both within-media layer and across-media layer.

Tables 2.5 (a) and (b) show the closed-set identification accuracies of quality-based fu-

sion of match scores (s1, · · ·, s4) of single image per probe and multiple images per probe,

respectively. The performance with sum rule fusion is also provided for comparison. Our

results indicate that the proposed quality measures and quality based fusion are able to im-

prove the matching accuracies in both scenarios. Examples where the quality-based fusion
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Figure 2.12 Face verification performance of a gallery of 4,249 frontal LFW images and probe
media collections of 596 subjects.
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Table 2.5 Closed-set identification accuracies (%) for quality based fusion (QBF) (a) within
a single image, and (b) across multiple images.

QBF within a single image

R-1 R-20 R-100 R-200

sum 65.7 83.2 90.1 93.5

QBF 66.5 85.9 92.6 95.3

(a)

QBF across multiple images

R-1 R-20 R-100 R-200

sum 79.4 91.1 94.5 96.5

QBF 80.0 91.8 94.5 96.5

(b)

performs better than sum rule fusion are shown in Fig. 2.13 (a). Although in some cases the

quality-based fusion may perform worse than sum rule fusion (see Fig. 2.13 (b)), overall, it

still improves the matching performance (see Table 2.5).

We have also applied the proposed quality measure for 3D face model to select high-

quality frames that are used to build a consolidated 3D face model for a video clip. Fig-

ure 2.14 (a) shows two examples where the consolidated 3D models using frame selection

with SSIM quality measure (see Sec. 2.4) gets better retrieval ranks than using all frames.

Although, a single value, e.g., the SSIM based quality measure, may not always be reliable to

describe the quality of a face image (see Fig. 2.14 (b)), frame selection still slightly improves

the identification accuracy of the consolidated 3D face models at low ranks (see Table 2.4).

2.6.4 Forensic Sketch Experiments

In this experiment, we study the effectiveness of forensic sketches in a media collection. For

each subject with a forensic sketch, we input the forensic sketch to the COTS matcher to

obtain a retrieval rank. Among the 21 subjects for whom we have a sketch, sketches of

12 subjects are observed to perform significantly better than the corresponding low-quality

videos. Additionally, when demographic filtering using gender and race is applied, we can

further improve the retrieval ranks. Figure 2.15 shows three examples where the face sketches

significantly improved the retrieval ranks compared to low quality videos. The retrieval ranks
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Quality values: 0.78, 0.30
SUM rule rank: 202
QBF  rule rank: 149

Quality values: 0.78, 0.87
SUM rule rank: 286
QBF  rule rank: 163

Quality values: 0.86, 0.64
SUM rule rank: 283
QBF  rule rank: 123

Quality values: 0.46, 0.99
SUM rule rank: 7
QBF  rule rank: 1

(a) (b)

Quality values: 0.42, 0.98
SUM rule rank: 95
QBF  rule rank: 150

Quality values: 0.78, 0.67
SUM rule rank: 124
QBF  rule rank: 243

Figure 2.13 A comparison of quality based fusion (QBF) vs. simple sum rule fusion (SUM).
(a) Examples where quality based fusion provides better identification accuracy than sum
fusion; (b) Examples where quality based fusion leads to lower identification accuracy com-
pared with sum fusion.

All Frames:
Rank-3,962

SSIM Frames:
Rank-19

All Frames:
Rank-1,099

SSIM Frames:
Rank-40

All Frames:
Rank-885

SSIM Frames:
Rank-1

All Frames:
Rank-706

SSIM Frames:
Rank-2

All Frames:
Rank-3

SSIM Frames:
Rank-480

All Frames:
Rank-17

SSIM Frames:
Rank-3,009

(a)

(b)

Figure 2.14 Retrieval ranks using consolidated 3D face models (built from video tracks).
Frame selection with SSIM quality measure (see Sec. 2.4) prior to building the consolidated
3D face model (a) improves and (b) degrades the identification accuracy. However, overall,
frame selection using the proposed quality measure based on SSIM improves the COTS
matcher’s performance by an average of 1.43% for low ranks 1 to 50.
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Probe: Video

Probe: Sketch

Gallery

Matching rank:
3,147(1,956)

Matching rank:
5(4)

Fusion:
29(19)

Probe: Video

Probe: Sketch

Gallery

Matching rank:
372(243)

Matching rank:
12(8)

Fusion:
45(30)

Probe: Video

Probe: Sketch

Gallery

Matching rank:
1,129(755)

Matching rank:
113(80)

Fusion:
194(137)

Figure 2.15 Three examples where the face sketches drawn by a forensic artist after viewing
the low-quality videos improve the retrieval rank. The retrieval ranks without and with
combining the demographic information (gender and race) are given in the form of #(#).

of sketch and low-quality video fusion are also reported in Fig. 2.15.

To further demonstrate the efficacy of forensic sketch, we focus on identification of Tamer-

lan Tsarnaev, the older brother involved in the 2013 Boston Marathon bombing. In an ear-

lier study Klontz and Jain [73] showed that while the younger brother, Dzhokhar Tsarnaev,

could be identified at Rank-1 based on his probe images released by the authorities, the

older brother could only be identified at Rank-12,446 (from a gallery of one million images

with no demographic filtering). Figure 2.16 shows three gallery face images of Tamerlan

Tsarnaev (1x, 1y, and 1z [73]) and two probe face images (1a and 1b) which were released

by the FBI during the investigation.10 Because the probe images of Tamerlan Tsarnaev are

of poor quality, particularly due to wearing of sunglasses and a hat, we also asked a sketch

artist to draw a sketch of Tamerlan Tsarnaev (1c in Fig. 2.16) while viewing the two probe

images.11

To simulate a large-scale forensic investigation, the three gallery images of Tamerlan

Tsarnaev were added to a background set of one million mugshot images of 324,696 unique

subjects from the PCSO database. Particularly due to the occlusion of eyes, the probe

images are difficult for the COTS face matcher to identify (though they can be enrolled with

10http://www.fbi.gov/news/updates-on-investigation-into-multiple-explosions-in-boston
11“I was living in Costa Rica at the time that event took place and while I saw some news coverage, I

didn’t see much and I don’t know what he actually looks like. The composite I am working on is 100% derived
from what I am able to see and draw from the images you sent. I can’t make up information that I can’t
see, so I left his hat on and I can only hint at eye placement.” - Jane Wankmiller, forensic sketch artist,
Michigan State Police.
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Race: White

Gender: Male

Age: 20 to 30

1a 1b 1c

1x 1y 1z

Figure 2.16 Face images used in our case study on identification of Tamerlan Tsarnaev, one
of the two suspects of the 2013 Boston Marathon bombings. Probe (1a, 1b) and gallery (1x,
1y, and 1z) face images are shown. 1c is a face sketch drawn by a forensic sketch artist after
viewing 1a and 1b, and a low quality video frame from a surveillance video.
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Table 2.6 Retrieval ranks for probe images (1a, 1b) and sketch (1c) matched against gallery
images 1x, 1y, and 1z with an extended set of one million mug shots (a) without and (b)
with demographic filtering. Rows max and mean denote score fusion of multiple images of
this suspect in the gallery; columns max and sum are score fusion of the three probes.

(a) Without Demographic Filtering

1a 1b 1c max sum

1x 117,322 475,769 8,285 18,710 27,673

1y 12,444 440,870 63,313 38,298 28,169

1z 87,803 237,704 53,771 143,389 55,712

max 9,409 117,623 6,259 14,977 6,281

mean 13,658 125,117 8,019 20,614 8,986

(b) With Demographic Filtering (white male, 20-30)

1a 1b 1c max sum

1x 5,432 27,617 112 114 353

1y 518 25,780 1,409 1,656 686

1z 3,958 14,670 1,142 2,627 1,416

max 374 6,153 94 109 106

mean 424 5,790 71 109 82
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manually marked eye locations), as shown in Table 2.6. However, the retrieval rank for the

sketch (1c in Fig. 2.16) is much better compared to the two probe images (1a and 1b in Fig.

2.16), with the best match at Rank-6,259 for max fusion of multiple images of Tamerlan

Tsarnaev (1x, 1y, and 1z ) in the gallery. With demographic filtering [71] (white male in the

age range of 20 to 30 filters the gallery to 54, 638 images of 13, 884 subjects), the sketch is

identified with gallery image 1x (a mugshot)12 in Fig. 2.16 at Rank-112. Again, score fusion

of multiple images per subject in the gallery further lowers the retrieval to Rank-71. The

entire media collection (here, 1a, 1b, and 1c in Fig. 2.16) is matched at Rank-82 against the

demographic-filtered and multiple image-fused gallery.

2.6.5 Watch List Scenario: Open Set Identification

We report the DIR vs. FAR curves of open-set identification in Figs. 2.17 (a) and (b). With

a single image or single video per subject in the gallery, the DIR values at 1% FAR are about

25% and 10% for still image probe and video clip probe, respectively. This suggests that a

large percentage of probe images or video clips that are matched to their gallery true mates

at a low rank in a closed-set identification scenario, can no longer be successfully matched

in an open-set scenario. Of course, this comes at the benefit of much lower false alarms

than in the closed-set identification. The proposed face media collection based matching

still shows improvement over single media based matching. For example, at 1% FAR, face

media collection based matching leads to about 20% and 15% higher DIRs for still image

and video clip probes, respectively.

2.6.6 Large Gallery Results

In order to simulate the large-scale nature of operational face identification, we extend the

size of our gallery by including one million face images from the PCSO database. We

12http://usnews.nbcnews.com/ news/2013/05/06/18086503-funeral-director-in-boston-bombing-case-
used-to-serving-the-unwanted?lite
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(a) Probe: Single Image
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Figure 2.17 Scenarios of open-set and closed-set identifications. Open-set identification with
(a) a single face image as the probe and various media collections as the gallery and (b) a
single face video track as the probe and various media collections as the gallery; the legend
denotes the gallery media collection in (a) and (b). Closed-set identification of (c) various
media collections as probe against a large gallery set with one million background face images
from the PCSO database; the legend denotes the probe media collection; the black curve
denoted with “D.F.” indicates that demographic information (gender and race) is also fused
with the other face media. Note that the ordinate scales are different in (a) and (b) to
accentuate the difference among the plots.
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acknowledge that there may be a bias towards matching between LFW probe and LFW

gallery images versus matching LFW probe with PCSO gallery images. This bias is likely

due to the fact that the gallery face images in LFW are not necessarily frontal with controlled

illumination, expression, etc., while the background face images from PCSO are mugshots of

generally cooperative subjects. The extended gallery set with 1M face images makes the face

identification problem more challenging. Figure 2.17(c) gives the media collection based face

identification accuracies with 1M background face images. A comparison between Fig. 2.17

(c) and Fig. 2.9 shows that the proposed face media collection based matching generalizes

well to a large gallery set.

2.7 Conclusions

We studied face identification of persons of interest in unconstrained imaging scenarios with

uncooperative subjects. Given a face media collection of a person of interest (i.e., face

images and video clips, 3D face models built from image(s) or video frame(s), face sketch,

and demographic information), we have demonstrated an incremental improvement in the

identification accuracy of a COTS face matching system. We believe this is of great value to

forensic investigations and “lights out” watch list operations, as matching the entire probe

collection outputs a single ranked list of candidate identities, rather than a ranked list for

each face media sample. Evaluations are provided in the scenarios of closed-set identification,

open-set identification, closed-set identification with a large gallery, and verification. Our

contributions can be summarized as follows:

1. A collection of face media, such as image, video, 3D face model, face sketch, and

demographic information, on a person of interest improves identification accuracies,

on average, particularly when individual face samples are of low quality.

2. Pose correction of unconstrained 2D face images and video frames (via 3D face model-

ing) prior to matching improves the accuracy of a state of the art COTS face matcher.
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This improvement is especially significant when match scores from rendered pose cor-

rected images are fused with match scores from original face imagery.

3. A single consolidated 3D face model summarizes the entire video track to a single

representation, but score-level fusion of the multiple pose corrected frames from the

video track performs better than the consolidated model.

4. Quality based fusion of match scores of different media types performs better than

fusion without incorporating the quality.

5. The value of forensic sketch drawn based on low quality videos or low quality images

of the suspect is demonstrated in the context of one of the Boston bombing suspects

and YTF video tracks.

While the LFW and YTF databases contain variations in pose, illumination, expression,

occlusion, resolution, etc., matching a face media collection may not boost the performance

if there are long elapsed times between the probe face samples and the true mate in the

gallery. Figure 2.18 shows an example of two age-separated face images of the same subject

in the LFW database. This type of scenario is difficult to analyze because the LFW and

YTF databases do not contain age information for the images.

Figure 2.18 An example of two face images of the same subject in the LFW database where
facial aging has occurred.
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Chapter 3

Automatic Face Image Quality

The performance of automatic face recognition systems largely depends on the quality of

the face images acquired for comparison. Under controlled image acquisition conditions

(e.g., mugshot photos) with uniform lighting, frontal pose, neutral expressions, and standard

image resolution, face recognition systems can achieve extremely high accuracies (e.g., >99%

TAR at 0.1% FAR [57]). The system errors still present here are often caused by a relatively

small portion“poor” quality face images. This could be due to uncooperative subjects or

operator negligence during the acquisition of a mugshot, for example (see Fig. 3.1). There

are many emerging applications of face recognition which seek to operate on face images

captured in less than ideal conditions (e.g., surveillance). In such cases where large intra-

subject facial variations are more prevalent, or even the norm, the accuracy of face recognition

degrades. The 2014 large-scale evaluation conducted by NIST demonstrated that mugshot-

to-mugshot recognition error rates more than doubled for the top six commercial algorithms

when comparing a mugshot gallery to lower quality webcam face images [55].

The performance of biometric recognition, in general, is driven by the quality of biometric

samples (e.g., fingerprint, iris, and face images) [5,24,56]. Biometric sample quality is defined

as a measure of a sample’s utility to automatic matching [5, 24, 56]. A desirable property of

a biometric quality measurement is that it should be indicative of recognition performance
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(a)

(b)

Figure 3.1 Examples of (a) high and (b) low quality mugshots from the PCSO database.
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and be correlated with error rates such as false non-match rate (FNMR), false match rate

(FMR), or identification miss rates. If a system can automatically determine the quality of

a biometric sample defined in this way, it can be useful for several practical applications.

• Negative identification systems - e.g., automated security checkpoints at airports to

compare passengers against watch list photos. If passengers are purposely trying to

evade detection, automatic face quality assessment can flag their attempt and/or deny

entry through the checkpoint.

• Quality-based fusion: multiple face images (e.g., sequence of video frames), multi-

biometric fusion [109] (e.g., face and fingerprint), or 3D face modeling from collection

of face images.

• Dynamic assignment of comparisons to different matching algorithms. High quality

face images can be assigned to high-throughput algorithms, while low quality face

images could be assigned to slower, but more robust, algorithms.

A biometric quality measure able to detect “bad” quality samples can subsequently process

them accordingly (e.g., reject poor quality samples, request a better sample from the user,

employ a slower but more robust matching algorithm, etc.). Additionally, a quality measure

can be used to rank a collection of biometric samples which is particularly useful when

multiple samples of a subject are available (e.g., frames from a video track, see Fig. 3.2).

Because a biometric sample’s quality is specific to automatic recognition performance,

human visual perception of the sample’s quality may not be well correlated with recognition

performance [24, 56]. Particularly, given a fingerprint or iris image, it is difficult for a hu-

man to assess the quality in the context of recognition because humans (excluding forensic

experts) do not naturally use fingerprints or iris textures for person recognition. However,

the human visual system is extremely advanced when it comes to recognizing the faces of

individuals, a routine daily task. In fact, it was recently shown that humans surpass the per-

formance of current state-of-the-art automated systems on recognition of very challenging,
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(a)

(b)

Figure 3.2 (a) Video frames from a sample video in the IJB-A [72] unconstrained face
database and (b) corresponding cropped faces sorted from high to low quality by the pro-
posed approach.
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low quality, face images [25]. To the best of our knowledge, very few studies have actu-

ally investigated face image quality assessment by humans. Adler and Dembinsky [2] found

very low correlation between human and algorithm measurements of face image quality (98

mugshots of 29 subjects, 8 human evaluators), while Hsu et al. [60] found some consistency

between human perception and recognition-based measures of face image quality (frontal

and controlled illumination face images, 2 human evaluators).

Face recognition performance is highly sensitive to factors such as pose, illumination,

expression, occlusion, resolution, and other intrinsic or extrinsic properties of face images.

The primary goal of face recognition research is to develop systems which are more robust

to these factors. Recent works on automatic face recognition have devoted efforts towards

recognition of unconstrained facial imagery [136] where facial variations of any kind can

be simultaneously present (e.g., face images from surveillance cameras). While much prior

work has been conducted in face image quality, it has primarily focused on the quality of

lab-collected face image databases where facial variations such as pose and illumination

are synthetic/staged/simulated in order to isolate and facilitate evaluation of the different

factors. In this work, we focus on automatic face image quality of unconstrained face images

using the Labeled Faces in the Wild (LFW) [62] and IARPA Janus Benchmark A (IJB-A) [72]

unconstrained face datasets. The contributions of this work are summarized as follows:

• Collection of human ratings of face image quality for a large database of unconstrained

face images (namely, LFW [62]) by crowdsourcing a small set of pairwise comparisons

of face images and inferring the complete ratings with matrix completion.

• Investigation of the utility of face image quality assessment by humans in the context

of automatic face recognition performance. This is the first study on human quality as-

sessment of face images that exhibit a wide range of quality factors (i.e., unconstrained

face images).

• Comparison of two methods for “ground truth” labeling the quality of face images in
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a database: (i) human quality ratings and (ii) quality labels computed from similarity

scores from COTS matchers. The latter serves as an “oracle” for a face quality measure

that is correlated with recognition performance.

• Automatic prediction of the face image quality of an unseen image using image features

from a deep neural network.

Our experimental evaluation follows the methodology advocated by Grother and Tabassi [56]

where a biometric quality measurement is tested by “relating quality values to empirical

matching results.” Our evaluation focuses on two primary uses of the proposed face image

quality measure: (i) for ranking a collection of face images, and (ii) to reject low quality face

images to improve error rates (e.g., FNMR) of automatic face recognition systems.

3.1 Related Work

A number of studies (e.g., [1, 20, 21]) have offered in depth analyses of the performance of

automatic face recognition systems with respect to different covariates. These studies have

identified key areas of research and have guided the community to develop algorithms that

are more robust to the multitude of variations in face images. The covariates studied include

image-based, such as pose, illumination, expression, resolution, and focus, as well as subject-

based, such as gender, race, age, and facial accessories (e.g., eyeglasses). In general, it is

typically shown that face recognition performance degrades due to these different sources of

variability. Intuitively, the magnitude of degradation is algorithm-specific.

Prior works have proposed face image quality as some measure of the similarity to ref-

erence face images (typically frontal pose, uniform illumination, neutral expression). For

example, [116] uses luminance distortion from a high quality reference image for adaptive

fusion of two face representations. Wong et al. [142] propose probabilistic similarity to a

reference model of “ideal” face images for selecting high quality frames in video-to-video ver-

ification, and Best-Rowden et al. [17] investigated structural similarity (SSIM) for quality-
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Table 3.1 Summary of Related Work on Automatic Methods for Face Image Quality

Study

(year)

Database:

Num. imgs. (subj.)

Target Quality

Value
Learning Approach Evaluation

Hsu
et al. [60]
(2006)

FRGC: 1,886 (n/a)

passports: 2,000 (n/a)

mugshots: 1,996 (n/a)

Continuous (genuine
score)

Neural network to combine
27 quality measures
(exposure, focus, pose,
illumination, etc.) for
prediction of genuine scores

ROC curves for
different levels of
quality (FaceIt
algorithm by Identix)

Aggarwal
et al. [3]
(2011)

Multi-PIE: 6,740 (337)∗

FacePix: 1,830 (30)

Continuous (genuine
score) or Binary
(algorithm success
vs. failure, requires
matching prior to
quality)

MDS to learn a mapping
from illumination features
to genuine scores. Predicted
genuine score compared to
algorithm score to predict
algorithm success or failure

Prediction accuracy of
algorithm success vs.
failure, ROC curves
for predicted, actual,
95% and 99% retained
(SIFT-based and
PittPatt algorithms)

Phillips
et al. [104]
(2013)

PaSC: 4,688 (n/a)

GU†: 4,340 (437)

Binary (low vs.
high)

PCA + LDA classifier Error vs. Reject curve
for FNMR vs. percent
of images removed

Bharadwaj
et al. [22]
(2013)

CAS-PEAL: n/a (1,040)

SCFace: n/a (130)

Quality bins (poor,
fair, good, excellent)

SVM on GIST and HOG
features

ROC curves, rank-1
accuracy, EER, %
histogram overlap
(COTS algorithm)

Abaza
et al. [1]
(2014)

GU†: 4,340 (437) Binary (good vs.
ugly)

Neural network (1-layer) to
combine contrast,
brightness, sharpness, focus,
and illumination measures

Rank-1 identification
for blind vs.
quality-selective fusion

Dutta
et al. [42]
(2014)

Multi-PIE: 3,370 (337)‡ Continuous (false
reject rate)

Probability density
functions (PDFs) model
interaction between image
quality (deviations from
frontal and uniform lighting)
and recognition performance

Predicted vs. actual
verification
performance for
different clusters of
quality (FaceVACS
algorithm)

Kim
et al. [68]

FRGC: 10,448 (322) Binary (low vs.
high) or Continuous
(confidence of the
binary classifier)

Objective (pose, blurriness,
brightness) and Relative
(color mismatch between
train and test images) face
image quality measures as
features fed into AdaBoost
binary classifier

Identification rate
w.r.t. fraction of
images removed, ROC
curve with and
without low quality
images (SRC face
recognition algorithm)

Chen
et al. [35]
(2015)

SCFace: 2,080 (130)

(trained with FERET,

FRGC, LFW, and

non-face images)

0 – 100 (rank-based
quality score)

A ranking function is
learned by assuming images
from different databases are
of different quality and
images from same database
are of equal quality

Visual quality-based
rankings,
Identification rate

Proposed
Approach

LFW: 13,233 (5,749)

IJB-A: 5,399 (500)

Continuous (human
quality ratings or
normalized
comparison scores)

Support vector regression
with image features from a
deep convolutional neural
network [136]

Error vs. Reject
curves, visual
quality-based ranking

Note: n/a indicates that the authors did not report the number (an unknown subset of the database may have been used)
∗Only the illumination subset of Multi-PIE
†GU denotes the Good and Ugly partitions of the Good, Bad, and Ugly (GBU) face database
‡Only neutral expressions from Multi-PIE
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based fusion within a collection of face media. Reference-based approaches are dependent

on the face images used as reference and may not generalize well to different databases or

face images with multiple quality factors present.

More recently, especially with the influx of unconstrained face images, interest has peaked

in automatic measures for face image quality that can encompass multiple quality factors, and

hence, determine the degree of suitability for automatic matching of an arbitrary face image.

Table 3.1 summarizes related works in automatic face image quality which are learning-based

approaches. These methods are related in that they all define some target quality which is

related to automatic recognition performance. The target quality value can be a prediction

of the genuine score (e.g., [3, 60]), a bin indicating that an image is poor, fair, or good for

matching (e.g., [22]), or a binary value of low vs. high quality image (e.g., [1, 68, 104]).

For example, Bharadwaj et al. fuse similarity scores from two COTS matchers, define quality

bins based on CDFs of images that were matched correctly and incorrectly, and use a support

vector machine (SVM) trained on holistic image features to classify a test image as poor,

fair, good, or excellent quality [22]. Rather than defining target quality values for a training

database of face images, Chen et al. propose a “learning to rank” framework which assumes

a rank-ordering of a set of databases (e.g., non-face images < unconstrained face images <

ID card face images) where face images from the same database have equal quality; rank

weights from multiple types of features are learned and then mapped to a quality score

0∼100 [35].

In our approach, we annotate a large database of unconstrained face images with target

quality values (defined as either human quality ratings or score-based values from a COTS

matcher), extract image features using a deep convNet [136], and learn a model for prediction

of face quality from the deep convNet features using support vector regression. The target

quality values in this work are continuous and allow for a fine-tuned quality-based ranking

of a collection of face images.
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Table 3.2 Performance of Face Recognition Algorithms on the BLUFR Protocol [85]

Algorithm TAR @
0.1% FAR

DIR @
1% FAR

HDLBP + JointBayes [34]* 41.66 18.07

Yi et al. [146] 80.26 28.90

DCNN et al. [136] 89.80 55.90

COTS-A 88.14 76.28

COTS-B 76.01 53.21
*Performance here for [34] was reported by [85]

3.2 Face Image Databases and COTS Matchers

In this work, we utilize two unconstrained face databases: Labeled Faces in the Wild (LFW)

[62] and IARPA Janus Benchmark A (IJB-A) [72]. Both LFW and IJB-A contain face

images with unconstrained facial variations that affect the performance of face recognition

systems (e.g., pose, expression, illumination, occlusion, resolution, etc.). The LFW database

consists of 13,233 images of 5,749 subjects, while the IJB-A database consists of 5,712 images

and 2,085 videos of 500 subjects. Face images in the LFW database were detected by the

Viola-Jones face detector [135] so the pose variations are limited by the pose tolerance of

the Viola-Jones detector. Face images in IJB-A were manually located, so the database is

considered more challenging than LFW due to full pose variations [72]. See Fig. 3.3 for

sample face images from the two databases.

Because face image quality needs to be evaluated in the context of automatic face recog-

nition performance, we make use of two commercial face matchers, denoted as COTS-A

and COTS-B. Table 3.2 shows that COTS-A and COTS-B are competitive algorithms on

the BLUFR protocol [85] for the LFW database. Performance is also reported for the deep

learning-based matcher proposed by Wang et al. [136] as DCNN. The feature representation

from [136] is used in this work to predict face image quality.
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(a) LFW

(b) IJB-A

Figure 3.3 Sample face images from the (a) LFW [62] and (b) IJB-A [72] unconstrained face
databases.
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3.3 Face Image Quality Labels

Biometrics and computer vision heavily rely on supervised learning techniques when training

sets of labeled data are available. When the aim is to develop an automatic method for face

image quality, compiling a quality-labeled face image database is not straightforward. The

definition of face image quality (i.e., a predictor of automatic matching performance) does

not lend itself to explicit labels of face image quality, unlike labels of facial identity or face vs.

non-face labels for face recognition and detection methods, respectively. Possible approaches

for generating quality labels of face images include:

1. Combine various measurements of image quality factors into a single value which in-

dicates the overall face quality.

2. Human annotations of perceived image quality.

3. Based on comparison scores (or performance measures) from automatic face recognition

matchers.

The issues with 1) are that it is an “ad-hoc”/heuristic approach and, thus far, has not

achieved much success (e.g., [104]). The issue with 2) is that human perception of quality

may not be indicative of automatic recognition performance; previous works [22, 56] have

stated this consensus but, to our knowledge, the only studies to investigate these statements

were conducted on constrained face images (e.g., mugshots) [2,60]. The issue with 3) is that

comparison scores are obtained from a pair of images, so labeling single images based on

comparison scores (or performance) can be problematic. However, this approach achieved

some success for fingerprint [56, 125], and only few studies [22, 104] have considered it for

face quality. In this work, we investigate both methods 2) and 3), detailed in the remainder

of this section.

86



3.3.1 Human Ratings of Face Image Quality

Because of the inherent ambiguity in the definition of face image quality, framing an appro-

priate prompt to request a human to label the quality of a face image is challenging. If asked

to rate a face image on a scale of 1 to 5, for example, there are no notions as to the meaning

of the different levels. Additionally, some prior exposure to the variability in the face images

that the human will encounter may be necessary so that they know what kinds of “quality”

to expect in face images (i.e., a baseline) before beginning the quality rating task.

In this work, we choose to only collect quality labels for relative pairwise comparisons

of face images by asking the following question: “Which face (left or right) has better

quality?” Crowdsourcing literature [148] has demonstrated that ordinal (comparison-based)

tasks are generally easier and take less time than cardinal (score-based) tasks. Ordinal tasks

additionally avoid calibration efforts needed for cardinal responses from raters inherently

using different ranges for decision making (i.e., biased ratings, inflated vs. conservative

ratings, meaning of absolute ratings changes with exposure to more data).

To obtain absolute quality ratings for individual face images, we make use of a matrix

completion approach [148] to infer the quality rating matrix from the pairwise comparisons.

Because it is infeasible to have multiple persons manually assess and label the qualities of

all face images in a large database, this approach is desirable in that it only requires a small

set of quality labels from each human rater in order to infer the quality ratings for the entire

database. The details of data collection and the matrix completion approach are discussed

in the remainder of this section.

3.3.1.1 Crowdsourcing Comparisons of Face Quality

Amazon Mechanical Turk (MTurk)1 was utilized to facilitate collection of pairwise compar-

isons of face image quality from multiple human raters (i.e., MTurk “workers”). Given a

pair of face images, displayed side by side, our Human Intelligence Task (HIT) was to select a

1https://www.mturk.com
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response to the prompt “Indicate which face has better quality” out of the following options:

(i) left face is much better, (ii) left face is slightly better, (iii) both faces are similar, (iv)

right face is slightly better, and (v) right face is much better. Fig. 3.4 shows the interface

used to collect the responses.2

Our HIT requested each worker to provide responses to a total of 1,001 face image pairs,

made up of 6 tutorial pairs, 974 random pairs, and 21 consistency check pairs. The tutorial

pairs were pre-selected from the LFW database where the quality of one image was clearly

better than the quality of the other (Fig. 3.5 shows the sets of images used). Because these

pairs had “correct” responses, they allowed us to ensure that the worker had completed the

tutorial introduction and understood the goal of the task. The next 974 pairs of images were

chosen randomly from the LFW database, while the final 21 pairs were selected from the

set of 974 as repeats to test the consistency of the worker’s responses. MTurk workers who

attempted our HIT were only allowed to complete it if they passed the tutorial pairs, and

we only accepted the submitted responses from workers who were consistent on at least 10

out of the 21 consistency check pairs.

In order to be eligible to attempt our HIT for assessment of face image quality, MTurk

workers had to have previously completed at least 10,000 HITs from other MTurk “re-

questers” with an approval rate of at least 99%. These stringent qualifications helped to

ensure that only experienced and reliable workers (in terms of MTurk standards) partici-

pated in our data collection.3 A total of 435 MTurk workers began our HIT. After removing

245 workers who did not complete the full set of 1,001 pairwise comparisons and 4 workers

who failed the consistency check (inconsistent response for 10 or more of the 21 repeated

pairs), a total of 194 workers were each compensated US $5.00 through the MTurk crowd-

sourcing service.

2The tool is available at http://cse.msu.edu/∼bestrow1/FaceOFF/.
3The MTurk worker qualifications are managed by the MTurk website.
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Figure 3.4 The interface used to collect responses for pairwise comparisons of face image
quality from MTurk workers.

Figure 3.5 Face images (from the LFW database) used for the 6 tutorial pairs used to check
whether MTurk workers understood the task before completing the pairwise comparisons
used in our study of face image quality. For each of the tutorial pairs, one image was
selected from the top row (high quality images) and one image was selected from the bottom
row (low quality images), so the pairwise comparison of face quality had an unambiguous
answer.
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3.3.1.2 Matrix Completion

After collecting random sets of pairwise comparisons of face image quality from 194 workers

via MTurk, we use the matrix completion approach proposed by Yi et al. [148] to infer a

complete set of quality ratings for each worker on the entire LFW database (13,233 total face

images). The aim is to infer F̂ ∈ Rm×n, the worker-rating matrix for face image qualities,

where n is the number of workers and m is the number of face images.

Yi et al. [148] show that only O(r logm) pairwise queries are needed to infer the full rank-

ing list of a worker for all m items (face images), where r is the rank of the unknown rating

matrix (r � m). The maximum possible rank of the unknown rating matrix is r = n = 194

workers, O(194 log 13, 233) ≈ 800; hence, the 974 random pairs per worker collected in our

study are sufficient to do the matrix completion, especially since we expect r < n (i.e., the

quality ratings from the n workers are not all independent).

While relative pairwise comparisons are often preferred in crowd-based tasks [148] because

they avoid the biases from raters’ tendencies to give conservative or inflated responses when

using an absolute scale (e.g., quality levels 1 to 5), we still observed a bias after the matrix

completion where the bias is from a tendency to respond “Similar”. Fig. 3.6 shows an inverse

relationship between the number of pairs that a worker marked “Similar” and the resulting

range of quality ratings for that worker (after matrix completion). Note that this bias is

not due to the coarse levels of left image is “much better” vs. “slightly better” because

prior to matrix completion we combine these responses to simply “left is better”. Because

of this observation, min-max normalization was performed on each worker’s quality ratings

to transform them to the same range (0 to 1).

After matrix completion, there are face image quality ratings from 194 different workers

for each face image in the LFW database. With the aim of obtaining a single quality rating

per face image in the LFW database, we simply take the median value from all 194 workers

to reduce the 194× 13, 233 matrix of quality ratings to a 1× 13, 233 vector of quality ratings

(one per image in LFW). We empirically tested other heuristics (mean, min, max) but found
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that median seemed to result in the best quality ratings.

3.3.2 Recognition-based Face Image Quality Labels

Target quality labels acquired from similarity scores serve as an “oracle” for a quality measure

that is highly correlated with automatic recognition performance. For example, if the goal

is to detect and remove low-quality face images to improve the FNMR, then face images

could be removed from a database in the order of their genuine comparison scores. Previous

works on biometric quality (fingerprint [56,125] and face [22]) have defined “ground truth” or

“target” quality labels as a measure of the separation between the sample’s genuine score and

its impostor distribution when compared to a gallery of enrollment samples. A normalized

comparison score for the jth query sample of subject i can be defined as,

zij = (sGij − µIij)/σIij, (3.1)

where sGij is the genuine score and µIij and σIij are the mean and standard deviation, respec-

tively, of the impostor scores for the query compared to the gallery. Previous works then

bin the normalized comparison scores into quality bins based on the cumulative distribution

functions (CDFs) of sets of correctly and incorrectly matched samples [22,56,125]. Instead,

we propose to directly predict the zij for a given face image to obtain a continuous measure

of face image quality.

Target quality values defined based on comparison scores are confounded by the fact that

a comparison score is computed from two face images, but we are trying to label the quality

of a single face image. A simplifying assumption can be made if it can be assumed that the

quality of the enrollment samples is at least as good as the quality of the probe samples;

because comparison scores are typically governed by the low quality samples [56], the quality

value can be assigned to the probe image.

To allow for this simplifying assumption, we manually selected the best quality image
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Figure 3.6 The resulting range of the face quality values (after matrix completion) for a
particular worker inversely depends on the number of pairs that the worker marked “Similar”
quality. Although collection of relative responses avoids bias present when workers are asked
to rate individual images on an absolute scale, bias is still present from tendency to respond
“Similar”. This indicates that normalization is required to transform the quality ratings
from each worker to the same scale.

Figure 3.7 Histogram of rank correlations between the face image quality ratings of all pairs
of MTurk workers (

(
194
2

)
= 18, 721 total pairs of workers). The quality ratings are those

obtained after matrix completion. The degree of concordance between workers is 0.37, on
average.
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Figure 3.8 Illustration of the pairwise quality issue. Images in the left and right columns are
individually of high and low qualities, respectively. However, when compared with the other
images, they can produce both high and low similarity scores. (Similarity scores are from
COTS-A with range of [0, 1].)

for every subject in the LFW database. There are 1,680 subjects in LFW with at least two

face images. The best image selected by us is placed in the gallery (1,680 images, one per

subject), while the remaining 7,484 images of these subjects are used as the probe set. The

additional 4,069 images in the LFW database (subjects with only a single image) are used to

extend the size of the gallery. Normalized comparison scores are computed using Eqn. (3.1)

for the 7,484 probe images for each of the face matchers (COTS-A, COTS-B, and DCNN)

and are used as score-based target face quality values.

3.4 Automatic Prediction of Face Quality

Given that we have obtained face image quality labels for the LFW database, we now wish

to train a model to automatically predict the quality of an unseen face image. Ideally, we

would compile a set of automatically extracted image features that are measurements of
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known quality factors that affect face recognition performance, such as pose, illumination,

expression, occlusion, contrast, focus, etc. Rather than trying to handcraft a set of image

features for our task of predicting face image quality, we make use of features extracted from

a deep convolutional neural network which was trained for recognition purposes by Wang

et al. [136]. The features are 320-dimensional, so we refer to them as Deep-320 features. The

deep network in [136] was trained on the CASIA WebFaces database [147]. We additionally

consider a 5-dimensional feature set, referred to as Vishnu-5, which includes a face alignment

score, number of occluded landmarks (out of 68 total), and measures of facial pose (i.e., yaw,

pitch, and roll). Using either the Deep-320 or Vishnu-5 image features, we then train a

support vector regression (SVR) [31] model with radial basis kernel function to predict

either the normalized comparison scores (zij) from a commercial matcher or the human

quality ratings. The parameters for SVR are determined via grid search on a validation set

of face images.

3.5 Experimental Evaluation

The aim of this work is twofold:

1. Label the target, or “ground truth”, quality values of a face image database.

2. Train a model to automatically predict the target quality values using features auto-

matically extracted from an unseen test face image (prior to matching).

Hence, in Sec. 3.5.1, we first evaluate the target quality values to determine their utility

for automatic recognition. In Sec. 3.5.2 we then evaluate how well the target quality values

can be predicted by the proposed model for automatic face image quality. Following the

methodology advocated by Grother and Tabassi [56], we evaluate the face quality measures

using the following performance metrics.

• Error versus Reject (EvR) curve evaluates how efficiently rejection of low quality sam-

ples results in decreased error rates. The EvR curve plots an error rate (FNMR or
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(a) Kendall’s tau

(b) Spearman

Figure 3.9 Rank correlations between the different target face quality values considered in this
work. COTS-B FQ is a face quality measure output by COTS-B (black-box method to us,
included for comparison). Three red asterisks indicate that the correlations are statistically
significant at α = 0.001. The score-based measures of face quality (zij) from COTS-A and
COTS-B have the strongest correlation, while the human quality ratings have the weakest
correlation with the other quality measures.
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FMR) versus the fraction of images removed/rejected, where the error rates are re-

computed using a fixed threshold (e.g., overall FMR = 0.01%) after a fraction of the

images have been removed.

We additionally provide visual inspections of face images rank-ordered by the proposed face

image quality.

3.5.1 Target Face Image Quality Values

First, the face images in the LFW database are “ground truth” labeled with the methods

discussed in Section 3.3. We refer to these quality values as target quality values and the

ones predicted by our model as predicted. Fig. 3.9 shows the distributions of the target labels

for COTS-A zij, COTS-B zij, and the human ratings after matrix completion, as well as a

measure of quality output by the COTS-B matcher (for comparison). Fig. 3.9 also shows

that the rank correlation is fairly low between the human ratings of quality and the score-

based quality values, while the score-based quality values from the two matchers are highly

correlated.

We evaluate the target quality values using the same gallery/probe setup of the LFW

database that was used to compute the normalized comparison scores (zij). This allows for

comparison of the human quality ratings and the score-based quality values. Fig. 3.10 plots

EvR curves for both methods, evaluated for three different face matchers (COTS-A, COTS-

B, and DCNN [136]). Fig. 3.10(a) shows that removing probe images in order of human

quality ratings does decrease FNMR for all three matchers. So, human quality ratings are

correlated with recognition performance; however, the score-based quality values are much

more efficient in reducing FNMR. This is expected because the score-based target quality

values are computed from the same comparison scores used to compute the FNMR. Again,

the score-based quality values here somewhat serve as an “oracle” for a desirable quality

measure.

The utility of the target quality values in terms of reducing FMR in Fig. 3.10(b) is not
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Figure 3.10 Error vs. Reject curves for (a) FNMR and (b) FMR on the LFW database (5,749
gallery and 7,484 probe images). Probe images were rejected in order of target (i.e., “ground
truth”) quality values of human quality ratings or score-based quality values (zij). Thresholds
are fixed at (a) 0.2 FNMR and (b) 0.01 FMR for comparison of the three face matchers
(COTS-A, COTS-B, and DCNN [136]).
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as apparent; in fact, removing low quality images based on human quality ratings clearly

increases FMR for COTS-B (though the magnitude of the increase is quite small). The

relation between face quality and impostor scores (i.e., FMR) is generally less of a concern.

For biometric quality, in general, we desire high quality samples to produce low impostor

similarity scores, but low quality samples may also produce low (or even lower) impostor

scores. If this is the case, low quality face images may be beneficial to FMR for empirical

evaluation, but still undesirable operationally.

3.5.2 Predicted Face Image Quality Values

The proposed framework for automatic prediction of face image quality (both human ratings

and score-based quality values) is used to predict the quality of face images from the LFW [62]

and IJB-A [72] databases. The prediction models for both databases are trained using LFW

face images and the following experimental protocols.

3.5.2.1 Train, Validate, and Test on LFW:

We first divide 7,484 face images of the 1,680 subjects with two or more images in LFW into

10 random splits for training and testing data, where the subjects are randomly split into

2/3 and 1/3 for training and testing, respectively. For each split, we then conduct 5-fold

cross-validation within the training set to determine the parameters (via grid-search) for the

support vector regression model. The selected set of parameters is then applied to the full

training set to result in a single model for each of the 10 splits, which are then used to predict

the quality labels of the images in each of the 10 test sets. This framework ensures subject-

disjoint training and testing sets, and parameter selection is conducted within a validation

set, not optimized for the test sets.

Table 3.3 gives the rank correlation (mean and standard deviation over the 10 splits)

between the target and predicted quality values for human quality ratings and score-based

quality values (for COTS-A and COTS-B). The first observation is that the Deep-320 features
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Table 3.3 Rank Correlation, (a) Kendall’s tau and (b) Spearman, Between Target and Pre-
dicted Quality Labels (Mean ± Standard Deviation Over 10 Random Splits of LFW Images)

(a)

Face Quality Label

COTS-A zij COTS-B zij Human Rating

Deep-320 0.395 ± 0.018 0.305 ± 0.019 0.412 ± 0.016

Vishnu-5 0.232 ± 0.031 0.202 ± 0.018 0.295 ± 0.018

(b)

Face Quality Label

COTS-A zij COTS-B zij Human Rating

Deep-320 0.558 ± 0.023 0.442 ± 0.026 0.585 ± 0.019

Vishnu-5 0.340 ± 0.042 0.297 ± 0.026 0.431 ± 0.025

better predict all three quality measures than the Vishnu-5 features. Additionally, prediction

of human quality ratings is more accurate than prediction of score-based quality from either

COTS-A or COTS-B, likely due to the difficulty in predicting particular nuances of each

matcher.

To further investigate the resulting face quality predictions, we computed the Spearman

rank correlation between the target and predicted values separately for the multiple images

of each subject; i.e., given multiple face images of a subject, we rank them based on the

target and the quality values, and compute the correlation between the two ranking lists.

Figs. 3.12 and 3.13 show examples of strong correlation between target and predicted human

quality ratings, while Figs. 3.14 and 3.15 show examples of weak or even negative correlation.

Figs. 3.16 and 3.17 show examples of negative correlation between target and predicted score-

based quality for COTS-A. It appears that weak correlation is observed when the multiple

images of a subject are of similar quality; it is difficult to achieve a consistent fine-tuned

ranking of face images when all of the qualities are similar.

To evaluate the quality values in the context of automatic face recognition performance,

error vs. reject curves (for FNMR) are plotted in Fig. 3.11 for both target and predicted

quality values. The figures demonstrate that rejecting low quality face images based on

predicted zij, predicted human ratings, or the COTS-B measure of face quality, results in
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Figure 3.11 Error vs. Reject curves for target and predicted face image quality values. The
curves show the efficiency of rejecting low quality face images in reducing FNMR at a fixed
FMR of 0.001%. The model used for the face quality predictions in (a)-(c) are support vector
regression on the deep-320 features from the deep convNet in [136].
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comparable efficiency in reducing FNMR (e.g., removal of 5% of probe images lowers FNMR

by ∼2%). However, none of the methods are near as efficient as rejecting images based on

the target zij values, which serve as an oracle for a predicted face quality measure that is

highly correlated with the recognition performance.

3.5.2.2 Train and Validate on LFW, Test on IJB-A:

In this framework, we conduct 5-fold cross-validation over the 7,484 LFW images (folds are

subject-disjoint) to determine the parameters for the support vector regression model via

grid search. We then apply the selected set of parameters to all of the LFW training images.

This model trained on LFW face images is then used to predict the quality of face images

in the IJB-A database. The Deep-320 image features [136] are used here.

We currently do not have any ground truth quality labels for IJB-A face images because

we did not collect human annotations for this database, and we do not have a recognition

protocol set up with a higher quality gallery. Initial efforts to construct a high quality gallery

(faces with frontal pose, neutral expression, no occlusion, etc.) for IJB-A indicated that this

is not possible for all the subjects. Hence, current evaluation entails visual inspection of the

rank-ordering of face images based on the predicted quality values. Figs. 3.18–3.20 shows

that the proposed automatic face quality measure does a fairly good job at sorting face

images (and video frames in Fig. 3.21) in order of face quality. Figs. 3.18–3.20 also show face

images sorted by the Rank-based Quality Score (RQS) of Chen et al. [35] for comparison.

Though it is difficult to compare the two methods without recognition experiments, there

are a few cases where the top highest quality faces predicted by our method appear to be

better than the RQS ranking (e.g., top row in Fig. 3.20).
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Ranked by Target Human Quality Ratings

Ranked by Predicted Human Quality Ratings

Figure 3.12 Face images from a subject in LFW are rank-ordered by target (left) and pre-
dicted (right) human quality ratings, in order of increasing face quality. The Spearman
correlation between the target and predicted rank orderings for this subject is 0.72.
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Ranked by Target Human Quality Ratings Ranked by Predicted Human Quality Ratings

Figure 3.13 Face images from LFW are rank-ordered by target (left) and predicted (right)
human quality ratings, in order of increasing quality. Examples shown have positive rank
correlation between target and predicted rankings. For each of the three example subjects,
the Spearman correlation between the target and predicted rank orderings are 0.94, 0.90,
and 0.50 (top to bottom).
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Ranked by Target Human Quality Ratings Ranked by Predicted Human Quality Ratings

Figure 3.14 Face images from LFW rank-ordered by target (left) and predicted (right) human
quality ratings, in order of increasing quality. Examples shown have negative (or zero) rank
correlation between target and predicted rankings. For each of the example subjects, the
Spearman correlation between the target and predicted rank orderings are -0.50, and 0.00
(top to bottom).
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Ranked by Target Human Quality Ratings Ranked by Predicted Human Quality Ratings

Figure 3.15 Face images from LFW rank-ordered by target (left) and predicted (right) human
quality ratings, in order of increasing quality. Examples shown have strong negative rank
correlation between target and predicted rankings. For each of the example subjects, the
Spearman correlation between the target and predicted rank orderings are -0.90, and -0.70
(top to bottom).
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Ranked by Target COTS-A zij Ranked by Predicted COTS-A zij

Figure 3.16 Face images from LFW rank-ordered by target (left) and predicted (right) score-
based quality values (COTS-A zij), in order of increasing quality. Examples shown have
negative rank correlation between target and predicted rankings. For each of the example
subjects, the Spearman correlation between the target and predicted rank orderings are -0.33
and -0.37 (top to bottom).
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Ranked by Target COTS-A zij Ranked by Predicted COTS-A zij

Figure 3.17 Face images from LFW rank-ordered by target (left) and predicted (right) score-
based quality values (COTS-A zij), in order of increasing quality. Examples shown have
negative rank correlation between target and predicted rankings. For each of the three
example subjects, the Spearman correlation between the target and predicted rank orderings
are -1.00, -0.20, and -0.31 (top to bottom).
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Ranked by Predicted Human Rating

Ranked by RQS [35]

Figure 3.18 Face images from IJB-A [72] sorted by face image quality (best to worst). The
face image qualities were automatically predicted by (left) the proposed approach (SVR
model on Deep-320 image features [136]) and human quality ratings from the LFW database)
and (right) Rank-based Quality Score (RQS) [35] for comparison.
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Ranked by Predicted Human Rating

Ranked by RQS [35]

Figure 3.19 Face images from IJB-A [72] sorted by face image quality (best to worst). The
face image qualities were automatically predicted by (left) the proposed approach (SVR
model on Deep-320 image features [136]) and human quality ratings from the LFW database)
and (right) Rank-based Quality Score (RQS) [35] for comparison.
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Ranked by Predicted Human Rating Ranked by RQS [35]

Figure 3.20 Face images from two subjects in IJB-A [72] sorted by face image quality (best
to worst). The face image qualities were automatically predicted by (left) the proposed
approach (SVR model on Deep-320 image features [136]) and human quality ratings from
the LFW database) and (right) Rank-based Quality Score (RQS) [35] for comparison.
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Figure 3.21 Face images from the videos of example subjects in IJB-A [72] sorted by face
image quality (best to worst) which was automatically predicted by the proposed approach
using a model (SVR on Deep-320 image features [136]) trained on human quality ratings
from the LFW database.
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3.6 Conclusion

Automatic face image quality assessment is a challenging problem with important opera-

tional applications. Automatic detection of low quality face images would be beneficial in

maintaining the integrity of enrollment databases, reacquisition prompts, quality-based fu-

sion, and adaptive recognition approaches. In this work, we have investigated two methods

for assigning target face image quality values to a large database of face images to be used

for training, and proposed a model for automatic prediction of face image quality using

only image features extracted prior to matching. The conclusions and contributions can be

summarized as follows:

• Human ratings of face image quality (obtained from crowdsourcing and matrix com-

pletion) are correlated with automatic recognition performance for unconstrained face

images. Rejection of 5% of the lowest quality face images (based on human quality

ratings) in the LFW database resulted in ∼ 2% reduction in FNMR.

• Human quality ratings are not as correlated with recognition performance as are target

face quality values obtained from similarity scores (matcher-specific). This was as

expected since score-based quality serves as an oracle for an ideal quality measure

(performance is directly computed from the same similarity scores), whereas human

quality ratings are solely based on single images.

• Automatic prediction of human quality ratings is more accurate than prediction of

score-based face quality values. It is difficult to predict the score-based quality because

of nuances of specific matchers and pairwise quality factors (i.e., comparison scores are

a function of two face images, but we are using the scores to label the quality of a single

face image).

• Visual inspection of face images rank-ordered by the proposed automatic face quality

measures (both human ratings and score-based quality) are promising, even for cross-
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database prediction (i.e., model trained on LFW [62] and tested on IJB-A [72] face

images).
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Chapter 4

Longitudinal Study of Automatic Face

Recognition

4.1 Introduction

Technological advancements in automatic face recognition have progressively tackled chal-

lenges caused by variations in facial pose, illumination, and expression (collectively called

PIE variations). Current efforts (e.g., [128,136]) are breaking ground on robustness to “faces

in the wild” (e.g., images posted on the web) to account for PIE, occlusion, and partial face

images. Comparatively, aging variations (i.e., large time lapse between pairs of images being

compared) have received considerably less attention in the face recognition community.

Published studies on facial aging in the context of automatic face recognition have pri-

marily employed cross-sectional techniques where a population of individuals who differ in

age are analyzed according to differences between age groups [15, 55, 70, 87, 99]. However,

cross-sectional analysis cannot adequately explore age-related effects because assumptions

of independent observations require that there be only one measurement per individual in

the study (see Fig. 4.6. Past and future measurements are either not considered or are
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(a) Ages 30.5 and 39.6 (0.423) (b) Ages 32.2 and 40.3 (0.433)

(c) Ages 29.5 and 38.3 (0.498) (d) Ages 39.2 and 48.6 (0.500)

Figure 4.1 Face image pairs of four subjects from the PCSO LS mugshot database which are
age-separated by eight to ten years. Similarity scores from a state-of-the-art face matcher
(COTS-A) are shown in parentheses (score range is [0.0, 1.0]). The thresholds at 0.01%
and 0.1% FAR are 0.533 and 0.454, respectively. Hence, all of these genuine pairs would
be falsely rejected at 0.01% FAR, while the two female subjects, (a) and (b), would also be
rejected at 0.1% FAR.

summarized into a single measurement which loses information; trends of individuals over

time are not analyzed. Hypotheses about facial aging are, instead, longitudinal by nature

and require multiple measurements of the same individuals over time to reveal trends in

comparison scores with respect to facial aging.

To what extent facial aging affects the performance of automatic face recognition systems

is of more than academic concern. Because the appearance of the face changes throughout

a person’s life, most identity documents containing face images expire after a designated

period of time; U.S. passports are only valid for five years for minors and ten years for

adults, while U.S. driver’s licenses typically require renewal every five years. Additionally,

to our knowledge, ensuring that a new (more recent) photo has been submitted for renewal

is not verified, especially for renewals by mail or online. Validity periods of such identity

documents may be too long if these photos are to be used with state-of-the-art face matching
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systems. Fig. 4.1 shows that elapsed times of eight to ten years between two face images

can cause false non-match errors. Studying how the actual comparison scores change over

time is important for understanding the implications of operating with a global threshold1

(e.g., de-duplication and other open-set scenarios) on face recognition accuracy.

While longitudinal studies for automatic iris recognition [54] and fingerprint recogni-

tion [149] have been published, to our knowledge, no large-scale longitudinal study of au-

tomatic face recognition performance has been reported in the literature. We aim to fill

this gap by addressing the following question: How robust are state-of-the-art automatic

face recognition systems to facial aging? In this chapter, we conduct a longitudinal analysis

of the performance of state-of-the-art COTS face matchers on two longitudinal face image

databases consisting of repeat criminal offenders (mugshots) from two different law enforce-

ment agencies (see Table 4.2). The COTS matchers used here are among the top-ranked

performers in the FRVT 2013 face recognition evaluation [55]. The contributions of this

chapter can be summarized as follows:

1. Longitudinal analysis of two of the largest longitudinal databases studied to date.

LEO LS contains 31, 852 images of 5, 636 subjects, and PCSO LS contains 147, 784

images of 18, 007 subjects, where the average time span between a subject’s multiple

image acquisitions is 6.1 and 8.5 years, respectively. Such large-scale databases allow

for evaluation of performance at low FAR values (e.g., 0.01% and 0.1%). Previous

studies (e.g., [70, 99]) evaluated at 1% FAR and higher.

2. Determine the age-invariant properties of current state-of-the-art face matchers. Rates

of change over time in genuine comparison scores are analyzed using mixed-effects re-

gression models, which are appropriate for longitudinal data. In doing so, we quan-

tify (i) the population-mean rate of change in genuine scores over time and (ii) the

variability in subject-specific longitudinal trends (i.e., how closely individuals in the

1A biometric system operating with a global threshold uses the same decision threshold for all subjects
across all comparisons.
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population follow the population-mean trend). We also investigate the influence of age

at enrollment, sex, race, and face image quality.

3. Methodology and analysis tools for advancing the development and evaluation of age-

invariant face recognition algorithms. The analysis conducted in this chapter can be

applied to any matcher and any database. Periodic reevaluation will be necessary as

face recognition technology evolves to better address facial aging.2

Our previous longitudinal analysis of automatic face recognition was first published

in [18]. The present work extends and refines our previous study in significant ways. The

primary differences are as follows. (i) We study longitudinal effects of both aging (elapsed

time) and age (biological age); [18] only studied elapsed time. (ii) Genuine scores are com-

puted to represent a scenario where the youngest image of each subject is enrolled in a

gallery (a subject with ni total images has ni − 1 scores, whereas [18] computed all
(
ni

2

)
genuine scores). Comparing query images to an enrollment image (a fixed point in time)

simplifies the complex correlation structure that is present for all pairwise comparisons. (iii)

We analyze an additional longitudinal face database (namely, LEO LS) from a different law

enforcement agency than the PCSO LS database used in [18], and a different COTS matcher

is used to obtain genuine scores for LEO LS. Still, longitudinal analysis shows similar results

for both databases and matchers.

The remainder of this chapter is organized as follows. Section 4.2 highlights related

work on facial aging as it pertains to automatic face recognition. Section 4.3 details the

two longitudinal face databases used in this study. Section 4.4 explains the methodology

used for longitudinal analysis. Section 4.5 gives results for both the PCSO LS and LEO LS

face databases. Section 4.6 summarizes our observations about the current longitudinal

capabilities of automatic face recognition.

2To facilitate longitudinal study on other face datasets and matchers, the code of our longitudinal analysis
will be made publicly available at http://biometrics.cse.msu.edu/.
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4.2 Related Work

Almost all of the published studies that investigate the effects of facial aging on automatic

face recognition performance adopt the following approach: (i) divide the database (face

pairs) into partitions depending on age group or time lapse, (ii) report summary performance

measures (e.g., TAR at fixed FAR) for each partition independently, and then (iii) draw

conclusions from the differences in performance across the partitions. Such an approach has

led to the following general conjectures [91]: (i) Face recognition performance decreases as the

time elapsed between two images of the same person increases (e.g., [70, 87,99]). (ii) Faces

of older individuals are easier to recognize/discriminate than faces of younger individuals

(e.g., [55, 87]). See Table 4.1 for a summary of these studies.3

Partitioning of data (images or subjects) based on age group or time lapse is often

arbitrary and varies from one study to another. Erbilek and Fairhurst show that different

age group partitionings result in different performance trends for both iris and signature

modalities [43]. Furthermore, this cohort-based analysis with summary statistics cannot

address whether age-related performance trends are due to changes in genuine (same subject)

comparison scores, impostor (different subjects) comparison scores, or both.

Multilevel (hierarchical or mixed-effects) statistical models have been used for determin-

ing important factors (covariates) to explain the performance of face recognition systems.

Beveridge et al. [20] apply generalized linear mixed models to verification decisions (accept

or reject) made by three algorithms in the FRGC Exp. 4 evaluation. In addition to eight

levels of FAR as a covariate, they analyze gender, race, image focus, eye distances, age, and

elapsed time. The limitations of this study include (i) the maximum elapsed time between

face images of the same subject is less than one year, and (ii) it only involves 351 subjects.

Poh et al. [110] utilized regression models to estimate subject-specific biometric (face and

speech) performance trends over time, but the database used only contains 150 subjects and

3Studies that address developing age-invariant face recognition algorithms (e.g., [50,67]) are beyond the
scope of this work.
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Table 4.1 Table of related work on the effects of facial aging on face recognition performance.

Study Database Age or Elapsed Time
Partitions

Summary of Findings

Ling et al. [87]

Passports
(private)

4–11 years elapsed time Degradation in EER saturates after 4 years elapsed
time.

FG-NET 0–8, 8–18, and 18+
years old

Verification accuracies increase with increasing age
group.

Klare and
Jain [70]

PCSO (200,000
mugshots,
64,000 subjects)

0-1, 1-5, 5-10, 10+ years
elapsed time

TARs at 1% FAR are 96.3%, 94.3%, 88.6%, and
80.5% for the listed elapsed time partitions.
Training/testing on different aging partitions
decreases performance in some non-aging scenarios.

Otto et al. [99] MORPH-II 0–1, 1–5 years elapsed
time

TARs at 1% FAR are 97% and 95% for the listed
elapsed time partitions. The nose is the most stable
facial component over time.

Bereta
et al. [15]

FG-NET 0–5, 6–10, 11–15, 16–20,
21–30, and 30+ years
elapsed time; 23–30,
31–40, 41–50, and 50+
years old

Identification accuracies of local descriptors
(e.g., variants of LBP) when combined with Gabor
wavelet magnitudes become relatively consistent
across absolute ages and age gap groups, but
accuracies are still fairly low for a small gallery.

NIST FRVT [55] Visa images
(19,972
subjects)

baby, kid, pre-teen,
teen, young, parents,
older

Error rates (for open-set identification) are higher for
younger age groups when the same threshold is used
for all age groups.

EER = equal error rate; TAR = true accept rate; FAR = false accept rate

the elapsed times are less than two years. The longitudinal study on face recognition in

this work follows the general methodology of linear mixed-effects statistical models outlined

in [54] for iris recognition and [149] for fingerprint recognition.

The two main databases used for research on facial aging, including automatic age esti-

mation, age progression, and age-invariant face recognition, are FG-NET [78] and MORPH

[113]. Panis et al. [100] provide a recent overview of research that has utilized the FG-NET

database. While the public release of these databases greatly encouraged progress in these

areas, the databases are not suitable for longitudinal analysis because (i) FG-NET contains

only 82 subjects in total, and (ii) MORPH contains only a small number of subjects with mul-

tiple images over time (only 317 subjects have at least 5 images over at least 5 years).4 The

Cross-Age Celebrity Dataset (CACD) [32] was recently released, containing 163, 446 images

of 2, 000 celebrities across 10 years. However, because the images were downloaded from the

web (via Google search), the unconstrained quality makes it difficult to statistically model

4Images in FG-NET are relatively unconstrained (scanned from personal photo collections), while the
MORPH databases are mugshots, similar to LEO LS and PCSO LS used in this work but with different
database properties (see Table 4.2).

119



Table 4.2 Facial Aging Databases

Database
Num.

Subjects

Num.

Imgs

Num. Imgs

per Subject

Age Range

(years)

FG-NET [78] 82 1,002
6–18

(avg. 12)

0–69

(avg. 16)

MORPH-II [113] 13,000 55,134
2–53

(avg. 4)

16–77

(avg. 42)

MORPH-II

commercial [113]a
20,569 78,207

1–76

(avg. 4)

15–77

(avg. 33)

CACD [32] 2,000 163,446
n.a.

(avg. 81)

16–62

(n.a.)

LEO LSb 5, 636 31, 852
4–20

(avg. 6)

12–69

(avg. 31)

PCSO LSb 18, 007 147, 784
5–60

(avg. 8)

18–83

(avg. 35)
aThis largest version of MORPH-II only has 317 subjects with

at least 5 images acquired over at least 5 years.
bThe longitudinal face image databases used in this study (details in Sec. 4.3).

the effects of facial aging. Variations in pose, illumination, expression, etc., may largely

influence the trends in similarity scores. Such covariates are difficult to quantify in order to

“tease out” these effects from the longitudinal effects, so standardized imaging (near-frontal,

neutral expression, uniform illumination) is preferable for the longitudinal study conducted

in this work. Relatively constrained images, such as mugshots, help to ensure that other

effects, such as PIE variations, are captured in the noise term in the statistical models. For

the above reasons, our longitudinal analysis utilizes two new longitudinal face databases,

detailed in Section 4.3.

4.3 Longitudinal Face Databases

Operational face image datasets maintained by government and law enforcement agencies

can contain longitudinal records of individuals of magnitudes that are infeasible to collect

in laboratory settings (e.g., elapsed times over 10+ years). These agencies routinely collect

face images of the same individuals over time and have been doing so for relatively long
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durations, primarily for applications involving driver’s licenses, visa and passport applica-

tions/renewals, frequent travelers, and multiple arrests of repeat criminal offenders. The

sources of face images in our longitudinal analysis are mugshot bookings. While we acknowl-

edge that lifestyle factors (e.g., drug5 and alcohol use, trauma, etc.) may increase aging

rates for some individuals in this population (adult repeat criminal offenders), these accel-

erated agers are expected to be outliers in the statistical models in our analysis; the overall

trends should be relatively robust to this factor. Additionally, we were not able to access

any other longitudinal face data. We did attempt to use longitudinal face images from the

State Department visa databases. However, we discovered that roughly 5% of genuine face

images were duplicate photo submissions (e.g., an individual reuses the same photo for a visa

renewal application), so the corresponding inaccurate age information rendered it unsuitable

for longitudinal study.

The two databases used in this longitudinal study (LS), denoted LEO LS and PCSO LS,

are subsets of subjects and images from two larger mugshot databases initially consisting

of 3.7 and 1.5 million images, respectively. The following criteria were used to compile the

subsets: (i) Each subject has at least 4 (LEO LS) or 5 (PCSO LS) face images that were

(ii) acquired over at least a 5 year time span, and (iii) each pair of consecutive images is

time-separated by at least one month. Database statistics are shown in Fig. 4.2.

The facial variations in the PCSO S and LEO LS databases are well-controlled because

the mugshots adhere to standards similar to those detailed in the ANSI/NIST-ITL 2011

face image standards.6 The standards specify that mugshots should be captured at frontal

pose, with neutral expression, uniform illumination, and a background set to 18% gray, for

examples. Because these databases are both from operational sources, some confounding

factors are still present, such as minor pose and expression variations (see Fig. 4.5). We

also observed rare occurrences of facial occlusions or injury, as shown in Fig. 4.4, but have

retained such images in this study.

5See Yadav et al. [143] for work specifically on the effects of drug abuse on face recognition performance.
6https://www.nist.gov/itl/iad/image-group/ansinist-itl-standard-history
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PCSO LS Longitudinal Database (147, 784 mugshots of 18, 007 subjects; avg. of 8 mugshots per subject)
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LEO LS Longitudinal Database (31, 852 mugshots of 5, 636 subjects; avg. of 6 mugshots per subject)
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Figure 4.2 Statistics of the two longitudinal face image databases (PCSO LS and LEO LS)
used in this study. (a) and (e) Number of face images per subject, (b) and (f) the time
span of each subject (i.e., the number of years between a subject’s youngest and oldest face
image acquisitions), (c) and (g) demographic distributions of sex (male, female) and race
(white, black, Asian, Indian, unknown), and (d) and (h) the age of the youngest image of
each subject (in years).

For both databases, we only include white and black race subjects in this study because

there are too few subjects of other races to do a meaningful statistical analysis. Since human

labeling errors pertaining to demographic attributes and subject ID can be inadvertently

introduced in large-scale legacy databases, we determine the sex, race, and date of birth

of a subject as the majority vote from each subject’s records to ensure consistent labels

within each subject. Identifying all such errors was not feasible due to the large size of these

databases, but a cursory examination of the PCSO LS database revealed 134 subject records

that contained multiple identities (Fig. 4.3). These subject records were removed from our

study.
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(a) (b) (c)

Figure 4.3 Three examples of labeling errors in the PCSO LS face database. All pairs show
two different subjects who are labeled with the same subject ID number in the database.

Figure 4.4 Examples of facial occlusions (sunglasses, bandages, and bruises) in the PCSO LS
face database.

4.3.1 LEO LS Face Database

The LEO LS database contains 31, 852 images of 5, 636 subjects from an operational dataset

of law enforcement images. Each subject has an average of 6 images over an average time

span of 5.8 years (maximum of 8 years). Demographic makeup of the LEO LS database

includes 2, 009 white and 3, 627 black subjects where 4, 922 subjects are males and 714 are

females. Subjects in LEO LS are primarily adults, but there are 656 images of 369 subjects

that are younger than 18 years-old; these may be juvenile7 arrests or they could be data

entry errors. Due to privacy considerations, we only have access to the comparison scores

(both genuine and impostor), so we cannot show face images from this database.

4.3.2 PCSO LS Face Database

The PCSO LS database consists of 147, 784 operational mugshots of 18, 007 repeat criminal

offenders booked by the Pinellas County Sheriff’s Office (PCSO) from 1994 to 2010. Each

7In the United States, a juvenile is typically under the age of 17.
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Table 4.3 Overall true accept rates (TARs) at fixed false accept rates (FARs) for various face
matchers on the PCSO LS and LEO LS databases.

0.01% FAR 0.1% FAR 1% FAR

PCSO LS
COTS-A 94.98 97.83 99.14
PittPatt 41.54 58.65 78.30

LEO LS

COTS-B 99.35 99.66 99.84
COTS-2 90.62 94.96 97.92
COTS-3 78.97 86.87 93.49
COTS-4 96.68 98.47 99.31

subject has an average of 8 images over an average time span of 8.5 years (maximum of 16

years). Demographic makeup of the PCSO LS database includes 11, 002 white and 7, 004

black subjects where 14, 882 subjects are males and 3, 124 are females. Example face images

from PCSO LS are shown in Fig. 4.5. Each booking record in PCSO LS contains both the

date of birth and the date of arrest (actual dates were unavailable for LEO LS, only the ages

were provided to us).

4.3.3 Face Comparison Scores

Face comparison scores (similarities) were obtained from various commercial face matchers

with the aim of evaluating current state-of-the-art longitudinal performance. Two matchers

were applied to the PCSO LS database, and comparison scores were obtained from four

different matchers for the LEO LS database.8 As shown in Table 4.3, COTS-A and COTS-B

were the overall most accurate matchers. Due to space limitations, longitudinal results are

only reported for COTS-A and COTS-B throughout the remainder of the chapter. COTS-A

and COTS-B were both among the top-3 performers in the FRVT 2013 [55].

The original mugshot images were input to each COTS matcher, and a total of 26, 216 and

129, 773 genuine scores were computed for the LEO LS and PCSO LS databases, respectively,

under the scenario where each subject’s set of face images are compared to his/her enrollment

8Comparison scores and ancillary information (sex, race, age) for the LEO LS face image database were
provided by the Image Group, National Institute of Standards and Technology (NIST), http://www.nist.
gov/itl/iad/ig/.
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image. Genuine comparison scores, sij, between the enrollment and jth face images of subject

i were standardized so yij = (sij−µ)/σ, where µ and σ are the mean and standard deviation

of the genuine scores from all subjects. This standardized response, yij, is in terms of

standard deviations from the mean of the genuine distribution, which allows interpretation

of coefficients from mixed-effects regression models as quantifying the change in genuine

scores as β standard deviations per year. Fig. 4.8 shows the distributions of COTS-A and

COTS-B standardized genuine scores.

The response variable for all mixed-effects models in this study are standardized genuine

comparison scores. However, to evaluate face recognition performance, trends in genuine

scores should be considered in context with an impostor distribution. For both the LEO LS

and PCSO LS databases, we computed all possible impostor scores (5.5 million and 11.1

billion, respectively) to calculate thresholds at different fixed FAR values. The threshold at

0.01% FAR, for example, is used to determine when genuine scores drop below the threshold,

causing false rejection errors.

4.4 Mixed-Effects Models

Mixed-effects models (also known as random-effects, multilevel, and hierarchical models) are

widely used in various scientific disciplines for studying data that is hierarchically structured,

including longitudinal data of repeated observations over time [44, 118]. In our case, face

images are grouped by subject because we have repeated observations of each individual

in our study. When data is structured in such a manner, responses from the same clus-

ter/group/individual are correlated with each other and across time (for longitudinal data).

Mixed-effects models enable analysis of variation in the response (here, standardized face

comparison scores) that occurs at different levels of the data hierarchy.

Ideally, longitudinal data collection would observe all individuals in the study following

the exact same schedule over the entire duration of interest. However, longitudinal data is
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Figure 4.5 Face images of six example subjects from the PCSO LS database. The enrollment
face image (leftmost column) is the youngest image of each subject, and all query images
are in order of increasing age. In this study, genuine similarity scores are computed by
comparing the query images of each subject to his/her enrollment image.
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Figure 4.6 An example of cross-sectional vs. longitudinal analysis. In (a), a cross-sectional
approach (ordinary least squares (OLS) linear regression) is applied, which incorrectly as-
sumes that all the scores are independent. In (b), OLS is instead applied six times, separately
to each subject’s set of scores (subjects shown in Fig. 4.5). The slope estimated by cross-
sectional analysis (black dotted line) is much flatter than the slopes of subject-specific trends
in (solid colored lines in (c)). The longitudinal analysis in this work utilizes mixed-effects
models, which provide “shrunken” OLS estimates for each subject, where the OLS trends
shrink towards a population-mean trend [44,118], further accounting for the correlation that
exists between scores from the same subject.

127



8

12

16

20 30 40 50 60 70
Age Span of Subject (years)

E
la

ps
ed

 T
im

e 
(y

ea
rs

)

Figure 4.7 Age distribution of a random sample of 200 subjects from the PCSO LS database.
Each line denotes the age span of a subject (i.e., age of youngest image to age of the oldest
image), separated along the y-axis by the elapsed time for each subject (i.e., the length of
the age span).

typically not this nicely structured because it is difficult (and expensive) to collect, or it

must be analyzed retrospectively, as is the case with the mugshot databases used in this

study. Instead, longitudinal data is most often time-unstructured and unbalanced, meaning

individuals in the study population are observed at different schedules and have different

numbers of observations. For the mugshot databases, this translates to different rates of

recidivism for each subject. Fig. 4.2 shows that subjects in the LEO LS and PCSO LS

databases have anywhere from 4 to more than 20 mugshots, and Fig. 4.7 shows that the age

spans of the subjects are highly unstructured.

Mixed-effects models can handle imbalanced and time-unstructured data and are prefer-

able over other approaches because they model both the mean response (fixed effects define

the population-mean trend), as well as the covariance structure (random effects allow de-

viations of individuals from the population-mean). In longitudinal data, this covariance

structure has a complicated form which stems from the fact that error terms are not inde-

pendent (as is assumed in standard linear regression). The remainder of this section provides

details of the models and covariates of interest.

128



Table 4.4 Mixed-Effects Model Formulations

Model Level-1 Model Level-2 Model: Intercept Level-2 Model: Slope

A yij = ϕ0i + εij ϕ0i = β00 + b0i

BT yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + b0i ϕ1i = β10 + b1i

CT yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + β01AGEie + b0i ϕ1i = β10 + b1i

CA yij = ϕ0i+ϕ1iAGEij +εij ϕ0i = β00 + β01AGEie + b0i ϕ1i = β10 + b1i

D yij = ϕ0i + ϕ1i4Tij + εij ϕ0i =

β00 + β01AGEie + β02AGE2
ie + b0i

ϕ1i = β10 + β11AGEie + b1i

E yij = ϕ0i + ϕ1i4Tij + εij ϕ0i = β00 + β01AGEie + β02AGE2
ie +

β03Mi + β04Bi + b0i

ϕ1i =

β10 +β11AGEie +β12Mi +β13Bi + b1i

Q yij = ϕ0i + ϕ1i4Tij +

ϕ2iQij +ϕ3iQij4Tij + εij

ϕ0i = β00 + β01Qie + b0i ϕ1i = β10 + β11Qie + b1i,

ϕ2i = β20 + β21Qie + b2i, ϕ3i = β30

4Tij : elapsed time (years) between the enrollment and jth face image of subject i;

AGEie: age (years) of subject i in her enrollment face image;

AGEij : age (years) of subject i in her jth face image;

Mi: binary indicator of subject sex (Mi = 1 if male, 0 if female);

Bi: binary indicator of subject race (Bi = 1 if black, 0 if white)

Qie: quality (e.g., frontalness or interpupillary distance) of the enrollment image of subject i;

Qij : quality (e.g., frontalness or interpupillary distance) of the jth query image of subject i

4.4.1 Model Formulations

Given ni face images of subject i, let AGEij denote the absolute age of the ith individual for

the jth face image, where AGEij < AGEik for j = 0, . . . , ni − 2 and k = j + 1, . . . , ni − 1

(i.e., the ni images are ordered by increasing age). To begin with, assume that the youngest

image (first acquisition) of each subject is enrolled in the gallery, and let AGEie = AGEi0

denote the age of individual i at enrollment where AGEie < AGEij for j = 1, . . . , ni − 1.

We can compute mi = ni − 1 genuine comparison scores by comparing every other image to

the enrollment image. Hence, in this scenario, yij (j = 1, . . . , mi) is the comparison score

between the jth face image of individual i and his/her enrollment image. AGEij is the age

of the jth query/probe image of subject i, so the elapsed time between enrollment and query

image is 4Tij = AGEij − AGEie.

When studying age-related effects on automatic face recognition performance, there are

two different, albeit closely related, time-varying covariates which are of primary interest:

(i) the elapsed time between image acquisitions and (ii) the absolute ages of the subject in
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the two face images being compared. Below, we discuss mixed-effects models which include

these and other covariates.

4.4.1.1 Function of Elapsed Time

The simplest notion of face recognition performance over time is a function of the elapsed

time between a subject’s enrollment and query face images, f(4Tij). A linear mixed-effects

model with two levels (to account for subject-specific trends) and a single covariate for

elapsed time can be formulated as follows. At level-1, the comparison score yij between the

enrollment and jth query image of subject i can be modeled as a linear function of 4Tij:

yij = ϕ0i + ϕ1i4Tij + εij, (4.1)

where the ith individual’s intercept, ϕ0i, and slope, ϕ1i, are

ϕ0i = β00 + b0i,

ϕ1i = β10 + b1i.

(4.2)

The level-1 equation in (4.1) models within-subject longitudinal change in yij where a sub-

ject’s scores can vary around his/her linear trend by εij (level-1 residual variation). The level-

2 model in (4.2) accounts for between-subject variation in comparison scores because each

subject’s intercept and slope parameters, ϕ0i and ϕ1i, respectively, are modeled as a combi-

nation of fixed and random effects. The fixed effects, β00 and β10, are the grand means of the

population intercepts and slopes, respectively, and define the overall population-mean trend,

while the random effects, b0i and b1i, are subject-specific deviations from the population-

mean parameters. Since each subject can have his/her own intercept and slope parameters,

mixed-effects models are flexible in handling/allowing for biometric zoo effects [41,144] (some

subjects generally have higher or lower scores). Fig. 4.5 shows six example subjects from

the PCSO LS database at different ages, with their subject-specific trends in genuine scores
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over time shown in Fig. 4.6(b).

The random structure of the above two-level model includes the level-1 residuals, {εij},

as well as the random effects, b0i and b1i, which can be thought of as level-2 residuals. The

distributional assumptions of these two error terms are:

εij ∼ N(0, σ2
ε) (4.3)

and b0i

b1i

 ∼ N


0

0

 ,
σ2

0 σ01

σ10 σ2
1


 , (4.4)

where N(., .) denotes a Gaussian distribution.

Substituting the level-2 equations for subject-specific intercepts and slopes into the level-1

model in (4.1), the composite form of the two-level mixed-effects model is:

yij =
[
β00 + b0i

]
+
[
β10 + b1i

]
4Tij + εij. (4.5)

Here, the model terms inside the two brackets in (4.5) correspond to all coefficients for the

intercept and slope terms.

When the error terms are equal to their assumed means of zero, (6) reduces to the

population-mean trend of yij = β00 + β104Tij. The grand mean intercept β00 quantifies the

expected marginal mean comparison score when 4Tij = 0. Note that this intercept is not

particularly meaningful, as our data does not contain any same-day comparisons. However,

interpretation of β00 does give us some notion of differences in subject’s comparison scores at

a projected baseline of zero years elapsed time. The primary coefficient we are interested in

is β10 which quantifies the expected change in mean comparison score per one-year increase

in elapsed time since enrollment. Because this model, as well as all others considered in this

work, include random terms for both intercepts and slopes (b0i and b1i), we can also analyze

the variation in the population parameters (i.e., differences in the trends of individuals in
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the population).

4.4.1.2 Function of Elapsed Time and Age at Enrollment

If rates of change in comparison scores are steeper or flatter throughout an individual’s

lifetime, then face recognition performance may also be a function of absolute age. If we add

the age of the enrollment image to (4.5):

yij =
[
β00 + β01AGEie + b0i

]
+
[
β10 + b1i

]
4Tij + εij. (4.6)

Because AGEie is a fixed effect for each subject (time-invariant), the above composite model

actually has a two-level specification with the same level-1 model in (4.1). Hence, AGEie

cannot improve the model fit at level-1 (within-subject); it can only influence the level-2

subject-specific variations.9 The population-mean trend for (4.6) is:

E(yij) = β00 + β01AGEie + β104Tij

= β00 + β01AGEie + β10(AGEij − AGEie).
(4.7)

By definition, 4Tij is a centered version of AGEij, where the centering term (AGEie) is

subject-specific. Hence, the model for aging as a function of elapsed time and age at enroll-

ment, f(4Tij, AGEie), is mathematically equivalent to a model for aging as a function of

the age of the query image and age at enrollment, f(AGEij, AGEie):

E(yij) = β00 + β01AGEie + β10AGEij. (4.8)

The two models in (4.7) and (4.8) will result in the same estimate for longitudinal change,

β10. What distinguishes them is the interpretation of the coefficient β01 quantifying the effect

of AGEie. Note the relationship between the two models: β
(4.8)
01 = β

(4.7)
01 −β(4.7)

10 . Hence, β
(4.8)
01

9Comparing all images of a given subject to her fixed enrollment image means that AGEij and 4Tij
are perfectly correlated at level-1 (within-subject) of the model. Hence, we cannot include both of these
covariates; the effect of age must be added as a level-2 covariate.
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is the “contextual” effect that models the difference between the within- and between-subject

effects of aging [14].10 The significance of subject age at enrollment in (4.8) is tested with

the null hypothesis of H0 : β01 = 0, whereas restricted inference is needed to test significance

in (4.7) because the null hypothesis must instead be H0 : β01 = β10.

The relationship between these two models (CT and CA) is similar to common approaches

for decoupling the longitudinal and cross-sectional effects of a time-varying covariate. A time-

varying covariate at level-1 (e.g., age or elapsed time) exhibits variability within, but also

between individuals; models which assume that the within- and between-individual effects

are equal do not properly estimate either of these effects [12,14,44,95]. Typically, the time-

varying covariate is “centered” on subject-specific means, so as to remove between-subject

variation at level-1 of the model.

4.4.2 Model Comparison and Evaluation

The goal of statistical modeling is to find a model that includes substantive predictors and

excludes unnecessary ones (parsimony). A common approach is to fit increasingly complex

models to successively evaluate the impact of adding different covariates [118]. Models can be

compared using goodness-of-fit measures based on log-likelihood statistics: deviance, Akaike

Information Criterion (AIC), and Bayesian Information Criterion (BIC). Deviance quantifies

how much worse the current model is compared to the (hypothetical) saturated model that

includes all possible covariates to perfectly fit the data. Because the log-likelihood (LL) of

the saturated model is zero,

Deviance = −2[LLcurrent − LLsaturated] = −2LLcurrent. (4.9)

Deviance can be used to compare nested models (i.e., the more complex model can be

reduced to the simpler model by placing constraints on its parameters) that are fit to the

10The equality β
(4.8)
01 = β

(4.7)
01 − β

(4.7)
10 holds for mixed-effects models with random intercepts, and is

approximately true for models with both random intercepts and random slopes.
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same data. To compare non-nested models, AIC and BIC penalize the log-likelihood based

on the complexity of the models11 and the sample size. Smaller values indicate better fit for

all three goodness-of-fit measures.12

Further comparisons of models depend on whether the successive model has included

a time-invariant (e.g., sex, race) or time-varying (e.g., face image quality) covariate to the

baseline model. For both cases, pseudo-R2 statistics can be used to measure the propor-

tional reduction in level-2 variance (σ2
0, σ2

1) and level-1 residual variance (σ2
ε) attributable to

inclusion of time-invariant and time-variant covariates, respectively.

4.5 Results

We first focus on analysis of the PCSO LS database, starting with simpler models

(i.e., Model A and BT) and progressing to more complex models including covariates for

subject sex/race and face image quality. We then present results for the LEO LS database.

Recall that models are discussed in Section 4.4 and equations are provided in Table 4.4. All

models in our analysis are fit with full maximum likelihood (ML) estimation via iterative

generalized least-squares (GLS) using the lme4 package (v1.1-9) [11] for R (v3.2.2).

4.5.1 Model Assumptions

While mixed-effects models are capable of handling non-Gaussian response distributions

(e.g., COTS-A genuine scores in Fig. 4.8(a)), the error terms must follow Gaussian distri-

bution. Fig. 4.9(a) shows normal probability plots of the level-1 residuals, εij, from fitting

Model BT to genuine scores from the PCSO LS database. Since significant departure from

linearity is observed at the tails, we cannot verify that the model assumptions hold; nor-

mal probability plots of random effects, b0i and b1i, also depart from linearity (Figs. 4.9(b),

11For full ML estimation, the number of parameters includes both the fixed effects and the variance
components.

12For AIC and BIC, the magnitude of the reduction in model fit is difficult to interpret.

134



0

2000

4000

6000

8000

−5.0 −2.5 0.0 2.5
Standardized Genuine Score

N
um

be
r 

of
 C

om
pa

ris
on

s

PCSO_LS Database

(a) PCSO LS

0

300

600

900

−4 −2 0 2 4
Standardized Genuine Score

N
um

be
r 

of
 C

om
pa

ris
on

s

LEO_LS Database

(b) LEO LS

Figure 4.8 Distributions of standardized genuine comparison scores from the two longitudinal
face databases used in this study: (a) COTS-A on PCSO LS and (b) COTS-B on LEO LS.
There are a total of 129, 773 and 26, 216 genuine scores in (a) and (b), respectively.

4.9(c)). This behavior was observed for other models as well, precluding the use of standard

errors for formal hypothesis tests of parameters [134].

When parametric model assumptions are violated, it is common to resort to non-

parametric bootstrap to establish confidence intervals for the parameter estimates, as fol-

lowed in Yoon and Jain [149]. Hence, for the PCSO LS database, we conduct a non-

parametric bootstrap by case resampling [134]; 1, 000 bootstrap replicates are generated

by sampling 18, 007 subjects with replacement. Multilevel models are fit to each bootstrap

replicate, and the mean parameter estimates over all 1, 000 bootstraps are reported. Tests

for fixed effects parameters can be conducted by examining the bootstrap confidence inter-

vals.13 Table 4.5 gives the bootstrap parameter estimates (with 95% confidence intervals),

variance components, and goodness-of-fit for the models in Table 4.4.

13The null hypothesis of the parameter equal to 0 can be rejected at significance of 0.05 if the 95%
confidence interval does not contain 0.
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(a) (b) (c)

(d) (e) (f)

Figure 4.9 Normal probability plots of ((a) and (d)) level-1 residuals, εij, and level-2 random
effects for ((b) and (e)) intercepts, b0i, and ((c) and (f)) slopes, b1i, from Model BT on
the PCSO LS and LEO LS databases (top and bottom rows, respectively). Departure from
normality at the tails of the distributions is likely due to low quality face images or errors
in subject IDs.
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Table 4.5 Bootstrap results for mixed-effects models on the PCSO LS database and COTS-A
genuine scores.

Model A Model BT Model CT Model D

Fixed Effects (95% confidence intervals):

Intercept β00
0.0274 0.6734 0.7226 0.5158

(0.0171, 0.0376) (0.6624, 0.6849) (0.6905, 0.7556) (0.4073, 0.6239)

Time β10
−0.1364 −0.1364 −0.1372

(−0.1379,−0.1349) (−0.1379,−0.1349) (−0.1426,−0.1316)

Age Group β01
−0.0016 0.0120

(−0.0027,−0.0006) (0.0047, 0.0189)

Age Group

× Time
β11

0.0000#

(−0.0002, 0.0002)

Age Group2 β02
−0.0002

(−0.0003,−0.0001)

Variance Components:a

Level-1 Residual σ2
ε 0.6076 0.3912 0.3912 0.3912

Random Intercepts σ2
0 0.3841 0.3243 0.3239 0.3231

Random Slopes σ2
1 0.0028 0.0028 0.0028

Covariance σ01 −0.0039 −0.0039 −0.0038

Goodness-of-Fit:b

AIC 333433 287016 287006 286985

BIC 333462 287074 287075 287073

Deviance 333427 287004 286992 286967

aConfidence intervals for variance components have been omitted due to space limitations.
bGoodness-of-fit values are the mean values of the 1, 000 bootstrap samples.
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4.5.2 Unconditional Means Model (Model A)

The simplest mixed-effects model is the unconditional means model, which partitions the

total variation in comparison scores by subject. Denoted Model A in Table 4.4, and with

composite form of yij = β00 + b0i + εij, b0i is the subject-specific mean and β00 is the grand

mean. Similar to analysis of variance (ANOVA), Model A provides initial estimates of

the within-subject variance σ2
ε (i.e., deviations around each subject’s own mean comparison

score) and the between-subject variance σ2
0 (i.e., deviations of subject-specific means around

the grand mean). The intraclass correlation coefficient (ICC) quantifies the proportion of

between-subject variation in the response, ρ = σ2
0/(σ

2
0 + σ2

ε). Variance components for

Model A shown in Table 4.5 indicate that between-subject differences in genuine scores

(i.e., biometric zoo) account for 38.7% (ρ = 0.3873) of the total variation in genuine scores

from the PCSO LS database. Baseline goodness-of-fit measures are also shown in Table 4.5.

4.5.3 Unconditional Growth Model (Model BT)

The next model to consider in longitudinal analysis is the unconditional growth model that

includes the time-related covariate. In our case, we add elapsed time, 4Tij, as well as

random effects for slopes, b1i, to Model A, resulting in Model BT. Table 4.5 shows that

Model BT estimates that PCSO LS genuine scores decrease by 0.1364 standard deviations

per one-year increase in elapsed time (see solid black line in Fig. 4.10). Comparing the level-1

residual variation of Models A and BT, elapsed time explains 35.6% of the variation in a

given subject’s genuine scores around his/her own average genuine score.14

Longitudinal change estimated by Model BT implies that the population-mean trend will

drop below the thresholds for 0.01% and 0.1% FAR after 19.1 and 24.0 years elapsed time,

respectively, but this only provides insight into performance on subjects in the population

with average (or higher) genuine scores over time. A reliable face recognition system must

be able to recognize much more than just 50% of the population it encounters, so we are also

14Using pseudo-R2 = (σ2
ε(A)− σ2

ε(BT ))/σ2
ε(A).
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interested in the spread of the population around the population-mean trend. Do all subjects

closely follow the population-mean trend, or is there large variability between subjects? Do

biometric zoo effects extend to rates of change over time?

Using the estimated variance components for slopes and intercepts (σ2
0, σ2

1, and σ01), we

compute a 2D confidence ellipse (random effects are assumed to be 2D Gaussian distributed)

to define a region that contains, for example, 95% of the estimated subject-specific parame-

ters. In order to translate from the 2D space of intercepts and slopes to obtain a confidence

region for genuine scores versus elapsed time, we sample 100 combinations of intercept and

slope parameters along the contour of the confidence ellipse, compute the predicted genuine

scores for each of the 100 trends, and define the confidence region as between the minimum

and maximum predicted scores for different values of elapsed time. Results are shown in

Fig. 4.10.

From the confidence bands of subject variations in Fig. 4.10, we infer that genuine scores

for 99% of the population will remain above the threshold at 0.01% FAR for up to approxi-

mately 5.5 years elapsed time, which reduces to 95% of the population after 7 years (i.e., false

reject errors would occur, on average, for 5% of subjects after 7 years since enrollment). Sim-

ilarly, at a higher FAR of 0.1%, 99% of subjects can be recognized up to 8.5 years elapsed

time, which reduces to 95% after 10.5 years. Fig. 4.11 shows face images from six exam-

ple outlier subjects whose estimated trends lie outside the 99% region of confidence due to

extreme intercepts and/or slopes; subjects significantly deviate from the population spread

due to alignment errors, face quality issues (illumination, facial occlusion), and changes to

facial hair, for example.

4.5.4 Age at Enrollment (Models CT and D)

We next investigate whether the population-mean trends in genuine scores over time depend

on a subject’s absolute age (i.e., whether variation in subject-specific trends observed in

Model BT can be explained by differences in subject age). The significance of the AGEie
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Figure 4.10 Results from Model BT on COTS-A genuine scores from the PCSO LS database.
The bootstrap-estimated population-mean trend is shown in black (bootstrap confidence
intervals are too small to be visible). The blue and green bands plot regions of 95% and 99%
confidence, respectively, for subject-specific variations around the population-mean trend.
Grey dotted lines additionally add one standard deviation of estimated residual variation,
σε. Hence, Model BT estimates that 95% and 99% of the subject trends fall within the blue
and green bands, but scores can vary around their trends, extending to the grey dotted lines.
Thresholds at 0.01% and 0.1% FAR for COTS-A are shown as dashed red lines.
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Enrollment

Image

Query Images

(in order of increasing age in years old)

19.9 21.7 22.0 24.4 24.7 25.1 25.3

31.1 31.3 34.5 34.7 34.8 35.7 37.0

69.1 69.3 70.8 72.4 73.2 73.4 82.3

31.5 33.2 34.6 35.7 38.2 43.5 45.3

20.6 20.8 21.3 22.7 23.1 23.5 27.9

Figure 4.11 Example outlier subjects, i.e., subjects whose subject-specific trends, estimated
by Model BT, significantly deviate from the spread of the population in the PCSO LS
database. All images were aligned using COTS-A eye locations.
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term in Model CT suggests a negative linear relationship between age at enrollment and

genuine scores, but the magnitude of β01 is relatively small.

To further test the complexity of the effects of age at enrollment, we add additional terms

associated with AGEie, resulting in Model D (see Table 4.4). The hypotheses of interest are

1) older subjects are easier to recognize than younger subjects, and 2) younger subjects

age at faster rates than older subjects. These two hypotheses manifest in younger subjects

having lower genuine scores, on average, and steeper negative rates of change. Table 4.5

shows that the interaction term AGEie×4Tij in Model D is not significantly different from

zero because the 95% confidence interval for β11 contains zero; hence, we cannot conclude

that subject enrollment age has a linear effect on rates of change in COTS-A genuine scores.

The statistically significant β02 coefficient indicates a quadratic relationship between subject

enrollment age and intercepts, and goodness-of-fit measures are lower compared to Model BT.

However, further comparing to Model BT, level-2 variation in random effects for intercepts

(σ2
0) is only reduced by 0.4% after including AGEie terms. The differences between scores for

different ages at enrollment are marginal compared to the change in scores due to elapsed

time; the change in score between a 20 year-old and a 30 or 50 year-old (at enrollment)

is equivalent to only 7 and 5 months of elapsed time (within-subject longitudinal change),

respectively.

4.5.5 Sex and Race (Model E)

Model E in Table 4.4 is used to test the effects of subject sex and race. First, we observed that

Model E results in better model fit than Model D (deviance for Model E is 285, 712 compared

to 286, 967 for Model D). The main effect of subject sex is statistically non-zero at signifi-

cance level of 0.05, but the main effect of subject race is not (the 95% bootstrap confidence

interval contains 0). Male genuine scores at baseline (4Tij = 0 years) are 0.3987 standard

deviations higher than female scores. Significant interactions with elapsed time indicate that

rates of change in genuine scores depend on both sex and race; population-mean slopes are
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Figure 4.12 Model E fit to COTS-A genuine scores from the PCSO LS database. Population-
mean trends are plotted by subject demographics of sex and race. Each trend line represents
seven years of elapsed time since enrollment at five different ages (20–60 years old). For
example, the solid blue line beginning at AGEij = 20 years represents the average decrease
in genuine scores for white males enrolled at age 20 with query images until age 27.

−0.0113 and −0.0267 standard deviations steeper for males and black subjects, respectively.

Population-mean trends separated by subject demographics are shown in Fig. 4.12 for differ-

ent ages at enrollment. while male genuine scores decrease at slightly faster rates than female

scores, males are clearly easier to recognize with higher genuine scores overall. Fig. 4.12 also

shows that the differences between subject race are minor compared to differences between

males and females.

4.5.6 Face Image Quality (Model Q)

Adding level-2 covariates (i.e., time-invariant values for each subject, such as AGEie) cannot

improve the fit of the model at level-1 (within-subject). Table 4.5 shows that the level-1

residual variation σ2
ε (i.e., deviation of scores around each subject’s own linear trend) is quite

large when time is the only level-1 covariate for all models considered thus far. One standard

deviation of level-1 residual variation estimated by Model BT (and similarly Models CT and
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D) is equivalent to 4.6 years of elapsed time (calculated as
√
σ2
ε/β10 =

√
0.3912/−0.1372).

This is visually shown by the dotted grey lines in Fig. 4.10.

Level-1 residual variation can only be reduced by level-1 time-varying covariates

(i.e., image-specific); in this section we investigate whether face image quality measures

can be used to improve the model fit. The quality measures considered are interpupillary

distance (IPD) and a “frontal” score, both of which are output by COTS-A. While higher

frontalness indicates better quality, the range of the frontal score has little meaning, since

its computation is proprietary. We standardize (z-score) the frontalness score so we can

interpret model parameters as standard deviations from the mean of the frontalness scores

from all images in PCSO LS.

After finding that neither of the quality measures alone explain variation in genuine

scores as well as Model BT with only elapsed time as covariate (details are omitted due to

space limitations), we then added the quality measures to Model BT, resulting in Model

Q in Table 4.4. Table 4.6 gives estimated level-1 residual variation and goodness-of-fit for

models with frontalness, IPD, and both frontalness and IPD (Model QF, QI, and QFI, re-

spectively). Model QF has a better overall fit than Model QI. Table 4.7 gives the elapsed

times for when population-mean scores cross thresholds at 0.001% and 0.01% FAR for dif-

ferent values of frontalness and IPD. Note how changing frontalness has a greater impact on

when population-mean genuine scores cross the thresholds than changes in IPD. Model QFI

with both measures of quality further reduces both the level-1 residual variation and values

of goodness-of-fit values.

The values of 100 and 120 pixels for IPD in Table 4.7 were chosen because we observed

systematic changes in IPDs over time (see Fig. 4.13); in particular, mean IPD varies around

100 pixels from 1994–2002 but increases to a consistent ∼120 pixels starting in 2003. This

observation, along with correspondence with Pinellas County Sheriff’s Office, suggests that

booking agencies began to adhere to imaging standards around this time. To investigate

whether this aspect of the data confounds the estimation of longitudinal effects (face images
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Figure 4.13 A boxplot of interpupillary distances (IPDs) versus year of acquisition shows
that mean IPDs systematically changed over time for the PCSO LS database, likely due to
booking stations adhering to face imaging standards only in more recent years.

Table 4.6 Bootstrap results for mixed-effects models with elapsed time and face quality
covariates for the PCSO LS database and COTS-A genuine scores.

Model QF Model QI Model QFI

σ2
ε 0.3302 0.3539 0.3218

AIC 275108 281296 273643

BIC 275283 281471 273848

Deviance 275072 281260 273601

Table 4.7 Elapsed times (in years) for when population-mean trends in genuine scores drop
below the decision thresholds at 0.001% and 0.01% FAR for different measures related to
face quality (frontalness and IPD) of the enrollment image Qie and the query image Qij.

Qie Qij 0.001% FAR 0.01% FAR

F
ro

n
ta

l −1σ −1σ 10.9 15.6

µ µ 13.0 18.4

1σ 1σ 16.8 23.0

IP
D

100 pixels 100 pixels 13.8 19.4

100 pixels 120 pixels 14.0 20.0

120 pixels 120 pixels 13.0 18.4
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Table 4.8 Mixed-effects model results for the LEO LS database and COTS-B genuine scores.

Model A Model BT Model CT Model D

Fixed Effects (standard errors):

(Intercept) β00
0.0037 0.5395 0.5468 0.0894

(0.0098) (0.0127) (0.0325) (0.1057)

Time β10
−0.1699 −0.1699 −0.1980

(0.0023) (0.0023) (0.0076)

Age Group β01
−0.0003 0.0346

(0.0011) (0.0068)

Age Group

× Time
β11

0.0010

(0.0003)

Age Group2 β02
−0.0006

(0.0001)

Variance Components:

Level-1 Residual σ2
ε 0.5985 0.4276 0.4276 0.4275

Intercepts σ2
0 0.4009 0.5543 0.5542 0.5516

Slopes σ2
1 0.0059 0.0058 0.0058

Covariance σ01 −0.0317 −0.0317 −0.0316

Goodness-of-Fit:

AIC 68705 62647 62649 62606

BIC 68730 62697 62707 62679

Deviance 68699 62635 62635 62588

in later years may be of higher quality), we also tested for a difference in slope prior to 2003

versus after 2003 by using a piecewise linear formulation for the mixed-effects model (with a

breakpoint at 2003). We found that slope after 2003 was significantly flatter (less negative).

Additional face quality factors known to cause changes in face recognition performance

are illumination, expression, and occlusions. However, there are no widely accepted methods

for quantifying such variations in face images and doing so is beyond the scope of this work.

4.5.7 LEO LS Database

Table 4.8 gives results for the models in Table 4.4 fit to COTS-B genuine scores from the

LEO LS database. Fixed-effects parameter estimates are given with standard errors; boot-

strapping was not conducted for LEO LS models because the error terms better follow Gaus-
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sian distributions (see Fig. 4.9). Model results are summarized as follows.

Model A estimates that 40% of the total variation in genuine scores is due to between-

subject differences. The longitudinal change in genuine scores estimated by both Model BT

and Model CT indicates that a one year increase in elapsed time decreases genuine scores

by β10 = −0.1699 standard deviations. From the confidence bands of subject variations in

Fig. 4.14 (estimated by Model BT), we infer that genuine scores for 99% of the population

will remain above the threshold at 0.01% FAR for up to approximately 6.5 years elapsed

time, which reduces to 95% of the population after 8.5 years (i.e., false reject errors would

occur, on average, for 5% of subjects after 8.5 years since enrollment). Similarly, at a higher

FAR of 0.1%, 99% of subjects can be recognized up to 8.0 years, which reduces to 95% after

9.5 years elapsed time.

Although the between-subject effect of age at enrollment (β01) is significantly different

from β10 in Model CT, the effect is not significantly different from zero, indicating that there

is no linear relationship between subject enrollment age and average genuine scores. However,

additional terms involving AGEie result in significant effects of enrollment age in Model D.

The significant β02 coefficient indicates a downward quadratic relationship between age at

enrollment and average genuine scores (similar to COTS-A on PCSO LS). Furthermore,

the significant interaction term AGEie × 4Tij indicates that longitudinal change in scores

tends to vary with subject’s age at enrollment; a 10-year increase in subject age results in

a longitudinal slope that is β11 = −0.0098 standard deviations steeper. Population-mean

rates of change range from −0.1784 to −0.1490 standard deviations per year for subjects

with age at enrollment of 20 to 50 years (calculated as β10 + β11AGEie). Recall that age at

enrollment had no effect on rates of change for COTS-A on PCSO LS.

Model E results indicate that intercepts are 0.0565 and 0.4238 standard deviations higher

for black and male subjects, respectively (so, black-male subjects have intercepts that are

0.4803 standard deviations higher than white-female subjects). Slopes are not statistically

different for black and white subjects, but the population-mean slope for males is steeper
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(i.e., more negative) than for females. These population-mean trends are shown in Fig. 4.15

for different ages at enrollment. Fig. 4.15 also shows that the differences between subject

race are minor compared to differences between males and females, as was also the case for

COTS-A on the PCSO LS database.

4.6 Conclusions

We presented a longitudinal study of automatic face recognition, utilizing two large opera-

tional databases of mugshots, PCSO LS (147, 784 images of 18, 007 subjects, avg. 8 images

per subject over avg. 8.5 years) and LEO LS (31, 852 images of 5, 636 subjects, avg. 6

images per subject over avg. 5.8 years), where each subject has at least four face images

acquired over at least a five-year time span. Linear mixed-effects regression models were

used to analyze variation in genuine scores due to elapsed time, age, sex, and race, as well

as subject-specific differences in scores (i.e., biometric zoo effects). Face similarity scores

were obtained from state-of-the-art COTS matchers for both the PCSO LS and LEO LS

databases. Based on our analysis, we make the following observations (statements apply to

both databases and matchers):

F Population-mean trends indicate that genuine scores significantly decrease with in-

creasing elapsed time between enrollment (gallery) and query (probe) images, as expected.

However, population-mean trends (average genuine scores) do not fall below thresholds at

0.01% FAR until after 15 years elapsed time. This suggests that in a practical application,

an average individual’s genuine scores decrease at a rate that will not affect the recognition

accuracy at 0.01% FAR until more than 15 years since enrollment.

F Significant subject-specific variability around the population-mean trends is observed;

genuine scores for some subjects decline at much faster rates than the population-mean.

Analysis of the estimated variance in subject-specific parameters (intercepts and slopes)

allowed for estimation of subject-based accuracies (i.e., how many subjects are estimated to

148



−5.0

−2.5

0.0

2.5

0 5 10 15
Elapsed Time (years)

S
ta

nd
ar

di
ze

d 
G

en
ui

ne
 S

co
re

0.01% FAR
0.10% FAR

Figure 4.14 Results from Model BT on COTS-B genuine scores from the LEO LS database.
The population-mean trend is shown in black. The blue and green bands plot regions of
95% and 99% confidence, respectively, for subject-specific variations around the population-
mean trend. Grey dotted lines additionally add one standard deviation of estimated residual
variation, σε. Hence, Model BT estimates that 95% and 99% of the subject trends fall within
the blue and green bands, but scores can vary around their trends, extending to the grey
dotted lines. Thresholds at 0.01% and 0.1% FAR for COTS-B are shown as dashed red lines.
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Figure 4.15 Model E for COTS-B genuine scores from the LEO LS database. Population-
mean trends are plotted by subject demographics of sex and race, in addition to five different
ages at enrollment (20 to 60 years). Each trend line represents seven years of elapsed time
since enrollment. For example, the solid blue line beginning at AGEij = 20 years represents
the average decrease in genuine scores for white males enrolled at age 20 with query images
until age 27.
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be falsely rejected, rather than standard image-based accuracy calculations). For example,

the models estimate that genuine scores for 99% of the population will remain above the

threshold at 0.01% FAR until 6.5 years elapsed time for PCSO LS and 5.5 years for LEO LS.

Other calculations (e.g. 95% of the population) are also within approximately one year for

both databases.

F Subject-specific variance in rates of change (i.e., linear slopes) is only marginally at-

tributable to subject age at enrollment, sex, and race. Subject sex was the most significant

factor for between-subject differences in genuine scores, with males having significantly higher

genuine scores than females. The magnitude of the difference suggests that false reject errors

may occur approximately two years earlier for females than for males (assuming that a global

threshold is used operationally).

F While the model fit improved for more complex models incorporating simple measures

of face quality (for the PCSO LS database), the models are still limited for prediction pur-

poses. The within-subject variability (i.e., level-1 residual variance) is still quite large. All

models considered in this study indicate that one standard deviation in genuine scores due

to short-term variations (e.g., illumination, hairstyle, etc.) is approximately equivalent to

the change in genuine scores due to ±4 years of elapsed time (for these particular databases

and matchers).

Longitudinal analysis, in general, is an important, yet very difficult, problem. To the

best of our knowledge, no proper statistical analysis has yet been conducted for studying

face recognition performance on a large population over periods of time longer than five

years. In this work, we attempted to analyze the covariates of interest that were available

to us (elapsed time, age, sex, race, some measures of quality), but there are additional

covariates that cannot be accounted for because we do not have the information (e.g., camera

characteristics, IPD for the LEO LS database, expression variations, etc.). Despite this, the

longitudinal study on automatic face recognition presented here utilizes two of the largest,

deepest, and longest (in terms of number of subjects, number of images per subject, and
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time spans of subject images, respectively) face image databases studied to date, and the

COTS matchers are representative of current state-of-the-art. Given that the performance

of face recognition systems continues to improve, longitudinal analysis should be conducted

periodically to reevaluate robustness to facial aging (and other covariates).
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Chapter 5

Summary and Future Work

This thesis has addressed some of the important challenges associated with automatic face

recognition. The primary contributions involve the role of quality covariates present in

unconstrained face images and the effect of facial aging on face recognition performance.

5.1 Contributions

In Chapter 2, we studied operational scenarios for recognition of unconstrained face media.

The contributions include:

• A framework for matching a collection of face media (i.e., images, videos, 3D models,

demographics) was provided for scenarios where multiple instances of a subject’s face

are available (e.g., to identify a person of interest). This is particularly of value to

forensic investigations, as matching the collection of face media outputs a single can-

didate list for a human operator to review, rather than multiple candidate lists (one

for each of the face samples available on the person of interest). This work is one of

the first baselines provided for “template-based” matching which is rapidly gaining

interest (e.g., the NIST IJB-A protocol [72]).
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Table 5.1 Published works which have reported results using the experimental protocols
introduced in Chapter 2 for the LFW database [62] (single-image matching). COTS results
were reported in Chapter 2.

Method Rank-1
Accuracy (%)

DIR (%) @
1% FAR

COTS-A 56.7 27.0

COTS-A (s1+s4) 66.5 36.0

DeepFace [128] 64.9 44.5

WST Fusion [129] 82.5 61.9

DeepID2+ [123] 95.0 80.7

DeepID3+ [120] 96.0 81.4

• Evaluation protocols introduced in Chapter 2 were publicly released1 for closed-set

and open-set identification of unconstrained face images and videos in the LFW [62]

and YTF [141] databases. While our work focused on matching a collection of uncon-

strained face media, we also reported baseline results for single-image matching. At

the time of release, identification protocols for unconstrained face images were lack-

ing in the research community, as efforts were focused on maximizing performance on

the LFW verification protocol [62] (which has some limitations, see Chapter 1). Ta-

ble 5.1 shows that our evaluation protocols introduced in Chapter 2 have since been

adopted by other published works for comparisons and have encouraged competition,

particularly for the more challenging open-set identification problem.2

Chapter 3 focused on the important and challenging problem of automatic face image

quality. This chapter offers the following contributions:

• The first study on human assessments of unconstrained face image quality. To the best

of our knowledge, there have been no other work on human assessment of face quality

since preliminary studies on mugshot quality by Adler et al. [2] and Hsu et al. [60]

1Evaluation protocols are available at: http://biometrics.cse.msu.edu/pub/databases.html
2The BLUFR protocol [85] was released around the same time and is also a valuable benchmark for

unconstrained face recognition algorithms.
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in 2006. Relative pairwise comparisons of face image quality (i.e., “Which face image

has better quality?”) were collected via crowdsourcing on Amazon Mechanical Turk3.

With a relatively small number of pairwise responses per “worker” (<1,000 pairs), a

matrix completion approach [148] was utilized to obtain face quality ratings from each

worker for all 13,233 images in the LFW database. The resulting human quality ratings

were shown to be correlated with automatic face recognition performance.

• An automatic method was proposed to predict either (i) human face quality rating or

(ii) similarity score-based face quality value. The proposed method uses image features

extracted prior to matching and does not require any comparisons to reference high

quality images.

• Evaluation of the proposed automatic face image quality measure showed efficiency in

reducing false non-match errors by removing low quality face images from a database

(i.e., operational reject option).

• Visual inspections of face images rank-ordered by the predicted quality values

demonstrated the effectiveness of the approach in separating high quality face im-

ages (e.g., frontal, uniform illumination, no occlusion) from low quality face images

(e.g., out-of-plane rotation, low resolution, occluded facial regions).

Lastly, the contributions of the longitudinal study on automatic face recognition in Chap-

ter 4 are summarized as follows:

• First large-scale statistical analysis of the longitudinal effects of facial aging on the per-

formance of automatic face recognition. The study involved two operational mugshot

databases consisting of (i) 147,784 images of 18,007 subjects and (ii) 31,852 images of

5,636 subjects with a minimum of 4 mugshots per subject collected over an average of

8.5 and 5.8 years for the two databases, respectively.

3https://www.mturk.com/mturk/
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• Mixed-effects regression models were used to analyze trends in genuine scores over time

(i.e., as subjects age) and quantify the subject-specific variability in the longitudinal

trends of a large population of subjects. As such, estimates were provided for how

many years of aging are tolerated by commercial face matchers before recognition

errors are attributable to be expected. For example, we showed that a state-of-the-art

face matcher operating at a threshold of 0.1% FAR can recognize 95% of the population

until 10.5 years elapsed time between enrollment and query face images.

• Demographics (age, gender, race) and face image quality were shown to only marginally

affect the longitudinal trends in genuine scores.

• A methodology for the longitudinal evaluation of face recognition performance was

detailed which will ideally be conducted periodically to reevaluate state-of-the-art sys-

tems as robustness to facial aging continues to evolve.

5.2 Future Work

In conducting the studies on face recognition included in this dissertation, a number of areas

for future work have been realized. This section concludes the dissertation by suggesting

extensions to the work presented in the previous chapters that can be explored by researchers

in automatic face recognition.

Template-based matching is still an open research problem, indicated by the recognition

accuracies reported in Chapter 2 for matching collections of face media, as well as the

current leaderboard4 accuracies for the IJB-A face challenge [72]. Score-level fusion of all

face samples in the collection, as was explored in Chapter 2, is not computationally efficient,

especially for 1:N matching scenarios. Face representations which can extract information

from multiple face samples to result in a single template are preferable. This template-to-

template matching reduces comparisons to the same complexity as image-to-image matching

4https://www.nist.gov/programs-projects/face-challenges
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while still leveraging the multiple face samples of a subject.

Research in automatic face image quality assessment is still in its infancy. While a

very challenging problem due to the large facial variations that are possible, particularly in

unconstrained scenarios, face image quality has many important operational applications.

The work presented in Chapter 3 suggests the following next steps for face image quality.

• Face quality may need to be distinguished as three scenarios: (i) determining face

vs. non-face (flagging face detection failures), (ii) assessment of the accuracy of face

alignment, and (iii) given an aligned face image, now what is the quality? These

three modules of a face image quality algorithm may allow for the integration of face

matcher-dependent properties (e.g., IPD, alignment errors) with more generalizable

face image quality measures.

• A hierarchical prediction approach may improve the prediction accuracy. For example,

face quality of an image could first be classified as low, medium, or high (where the

bins are defined to be highly correlated with recognition performance), followed by

regression within each bin for a fine-tuned ranking (useful for visual purposes and

other ranking applications).

• The current image features extracted from a deep convNet [136] show promising results

for face image quality. However, the deep convNet in [136] was trained for face recog-

nition purposes, so the representation should ideally be robust to face quality factors.

It would be desirable to retrain a deep convNet for prediction of face image quality,

rather than identity.

• More extensive evaluation of face image quality measures in the context of face recog-

nition performance are needed. A methodical evaluation of the pairwise quality factor

may offer new insights.

Persistence (or permanence) of a biometric trait is one of two fundamental premises of

biometrics (uniqueness being the other) [82]. Our systematic longitudinal study in Chapter 4
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offered significant insights about the persistence property of automatic face recognition sys-

tems. The following related avenues of research could be pursued in future. (i) Development

of a single face quality measure for mugshot images would be beneficial for longitudinal

study. Incorporating individual face quality factors (e.g., IPD and pose) into the mixed-

effects regression model quickly increases the complexity and interpretation of the results.

(ii) Longitudinal analysis could be conducted on different face cropping (particularly, pre-

cropped images to exclude most of the hair region) to investigate the impact of changing

hairstyle over time. (iii) The longitudinal capabilities of face recognition for children (0–18

years old) is still relatively unknown. Operational mugshot databases do not contain this

population, and longitudinal face images of young children are difficult to obtain. Recogni-

tion of child face images is an important application for law enforcement agencies seeking

to analyze digital media containing faces of exploited children (see the Child Exploitation

Image Analysis (CHEXIA) face challenge5). (iv) The stability of impostor scores should be

investigated, as recognition errors can also manifest in increased impostor similarity scores.

A longitudinal study of impostor scores over time will help to quantitatively address ques-

tions related to the second fundamental premise of uniqueness, such as: Does the probability

of false acceptance depend on the age of the two subjects in question? The hypothesis is that

younger individuals are more likely to falsely match to other younger individuals because

distinctive characteristics such as wrinkles and spots have not yet formed. Mixed-effects re-

gression models applied to impostor scores may additionally be useful for location of duplicate

identities in a large operational database of subjects. Lastly, the methodology detailed in

Chapter 4 can and should be used to periodically reevaluate the longitudinal robustness of

state-of-the-art face recognition systems.

5https://www.nist.gov/programs-projects/chexia-face-recognition

157

https://www.nist.gov/programs-projects/chexia-face-recognition


BIBLIOGRAPHY

158



Bibliography

[1] A. Abaza, M. A. Harrison, T. Bourlai, and A. Ross. Design and evaluation of photomet-
ric image quality measures for effective face recognition. IET Biometrics, 3(4):314–324,
Dec. 2014.

[2] A. Adler and T. Dembinsky. Human vs. automatic measurement of biometric sample
quality. In Canadian Conf. on Electrical and Computer Engineering (CCECE), 2006.

[3] G. Aggarwal, S. Biswas, P. J. Flynn, and K. W. Bowyer. Predicting performance of face
recognition systems: An image characterization approach. In Proc. CVPR Workshops,
2011.

[4] T. Ahonen, A. Hadid, and M. Pietikainen. Face description with local binary pat-
terns: Application to face recognition. IEEE Trans. Pattern Analysis and Machine
Intelligence (PAMI), 28(12):2037–2041, Dec. 2006.

[5] F. Alonso-Fernandez, J. Fierrez, and J. Ortega-Garcia. Quality measures in biometric
systems. IEEE Security Privacy, 10(6):52–62, Nov. 2012.

[6] O. Arandjelovic and R. Cipolla. A manifold approach to face recognition from low
quality video across illumination and pose using implicit super-resolution. In Proc.
ICCV, 2007.

[7] S. R. Arashloo and J. Kittler. Class-specific kernel fusion of multiple descriptors for
face verification using multiscale binarised statistical image features. IEEE Trans.
Information Forensics and Security (TIFS), 9:2100–2109, Dec. 2014.

[8] A. Asthana, T.K. Marks, M.J. Jones, K.H. Tieu, and M. Rohith. Fully automatic
pose-invariant face recognition via 3D pose normalization. In Proc. ICCV, 2011.

[9] M. Ballantyne, R. S. Boyer, and L. Hines. Woody Bledsoe: His life and legacy. AI
Magazine, 17(1):7–20, Spr. 1996.

[10] J. H. Barr, K. W. Boyer, P. J. Flynn, and S. Biswas. Face recognition from video: A
review. Int. Journal of Pattern Recognition and Artificial Intelligence, 26(05), 2012.
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