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Abstract

Computer Vision Algorithms on Reconfigurable Logic

Arrays

By

Nalini K� Ratha

Computer vision algorithms are natural candidates for high performance com�

puting due to their inherent parallelism and intense computational demands� For

example� a simple � � � convolution on a ��� � ��� gray scale image at �	 frames

per second requires 
��� million multiplications and 
	 million additions to be per�

formed in one second� Computer vision tasks can be classi�ed into three categories

based on their computational complexity and communication complexity low�level�

intermediate�level and high�level� Special�purpose hardware provides better perfor�

mance compared to a general�purpose hardware for all the three levels of vision tasks�

With recent advances in very large scale integration �VLSI� technology� an application

speci�c integrated circuit �ASIC� can provide the best performance in terms of total

execution time� However� long design cycle time� high development cost and in�exi�

bility of a dedicated hardware deter design of ASICs� In contrast� �eld programmable

gate arrays �FPGAs� support lower design veri�cation time and easier design adapt�



ability at a lower cost� Hence� FPGAs with an array of recon�gurable logic blocks

can be very useful compute elements� FPGA�based custom computing machines are

playing a major role in realizing high performance application accelerators� Three

computer vision algorithms have been investigated for mapping onto custom com�

puting machines �i� template matching �convolution� � a low level vision operation

�ii� texture�based segmentation � an intermediate�level operation� and �iii� point pat�

tern matching � a high level vision algorithm� The advantages demonstrated through

these implementations are as follows� First� custom computing machines are suitable

for all the three levels of computer vision algorithms� Second� custom computing

machines can map all stages of a vision system easily� This is unlike typical hardware

platforms where a separate subsystem is dedicated to a speci�c step of the vision

algorithm� Third� custom computing approach can run a vision application at a high

speed� often very close to the speed of special�purpose hardware� The performance

of these algorithms on Splash � � a Xilinx �	�	 �eld programmable gate array�based

custom computing machine � is near ASIC level of speed� A taxonomy involving cus�

tom computing platforms� special purpose vision systems� general purpose processors

and special purpose ASICs has been constructed using several comparative features

characterizing these systems and standard hierarchical clustering algorithms� The

taxonomy provides an easy way of understanding the features of custom computing

machines�
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Chapter �

Introduction

The goal of computer vision is to automatically construct a description of a given

scene from an analysis of the sensed images of the scene� The sensed images can be

a single image taken from a single camera� multiple views of the scene �for example�

in binocular stereo� using multiple cameras or a sequence of images of the same

scene taken over a period of time �as in video sequences or satellite images� using

single or multiple cameras� The description of the scene consists of the identity

and localization �position and orientation of an object� of the objects present in the

scene based on their measured physical attributes �features�� In this regard� the

goal of image understanding or computer vision di�ers from that of image processing

which involves image�to�image transformations without arriving at a description of

the scene� Simply stated� computer vision aims at providing visual capabilities to

a machine� It includes techniques from image processing� exploratory data analysis�

statistical pattern recognition� cognitive science and arti�cial intelligence�

Designing robust and general purpose computer vision systems is a challenging

�



�

task ���� ����� A number of di�cult imaging conditions as well as scene and object

complexities are encountered in practice� These non�ideal and confounding condi�

tions arise due to �i� improper lighting� �ii� shadow� �iii� occlusion� �iv� noise in the

sensed image� and �v� assumptions made in object representation strategies� A typical

computer vision system involves a front�end image acquisition and a preprocessor� fol�

lowed by a scene interpreter� The back�end deals with interpreting the scene from the

extracted features� One of the main problems in computer vision is to automatically

determine a salient set of features that is suitable for describing the scene explicitly�

In the literature many attempts have been made to design machine vision systems

that mimic a human vision system� But� as the human vision system is extremely

complex and not fully understood� these human vision�based models and approaches

are not very helpful in designing practical machine vision systems�

The input to a machine vision system is not limited to images in the visible band

of the spectrum� Often� infra�red and other non�conventional images are fed into

a vision system� A fusion of di�erent types of sensing modalities �e�g�� in remote

sensing� is not uncommon� The task of a computer vision system is to obtain a high�

level description from the input pixels� Depending on the task� a sequence of images or

a single image in an appropriate wavelength band is used� For example� in a document

image analysis system a single scan of the input document is used where as in motion

analysis� a sequence of images is used� Computer vision techniques are being used in

a number of practical application domains� including document analysis� bio�medical

image analysis� robotics� remote sensing� biometry and industrial inspection� The

pixel�to�symbol �scene description� mapping is the inverse of approaches taken in



�

computer graphics� where the aim is to generate an image of a scene from a given

description� Computer vision problems are di�cult to solve� because� quite often� the

solution to the desired �inverse problem� is ill�posed ���� ����� Secondly� the scene

interpretation problemmay be ill�de�ned because a real�world scene does not obey the

assumptions of the mathematicalmodels used for image representation and matching�

More commonly� the general vision problem is computationally intractable� Over the

last three decades� many approaches� theories and methodologies have been developed

for analyzing problems in computer vision� But� a general purpose computer vision

system is still a dream� In spite of these limitations� many successful machine vision

systems have been built to handle problems in speci�c domains�

��� Computer vision methodologies

In order to arrive at a symbolic description of a given scene from its sensed image�s��

many methods have been described in the literature ����� ����� The well�known Marr

paradigm is based on the �bottom�up� or data�driven approach� In this method�

image interpretation is carried out through a number of stages with an increasing

abstract representations� The lower�level features are grouped to arrive at the next

higher level scene description� The overall system approach is described in Figure ����

In this system� several �vision modules� work independently at the lowest level� The

responses of these modules are grouped together to form higher level features for the

purpose of recognition� The limitations of this approach are described in ������ In con�

trast� the other popular paradigm is that the scene description can be achieved using
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Figure ��� Bottom�up approach to designing a vision system� �Adapted from ������

�top�down� information integration �model�driven�� Higher level goals are decom�

posed into subgoals recursively until the subgoals are reduced to atomic hypothesis

veri�cation steps� In reality� a combination of top�down and bottom�up approaches�

where top�down constraints are expressed as model�driven predictions that are ver�

i�ed by bottom�up analysis is preferred� This leads to the system design shown in

�gure ���� However� a system design with a feedback path is very di�cult to imple�

ment� A summary of other methodologies such as active vision and active perception

is given in ������

��� Vision task hierarchy

Based on the computational and communication characteristics� computer vision

tasks can be divided into a three�level hierarchy� namely� low�level� intermediate�level�
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Figure ��� Design of a computer vision system with a �feedback� path� �Adapted
from ������

and high�level ����� ��� ��
�� Low�level vision tasks consist of pixel�based operations

such as �ltering� and edge detection� The tasks at this level are characterized by

a large amount of data �pixels�� small neighborhood operators and relatively simple

operations �e�g�� multiply and add�� The pixel grouping operations such as segmen�

tation� and region labeling are intermediate�level vision tasks� These tasks are again

characterized by local data access� but more complex pixel operations� High�level

vision tasks are more decision�oriented such as point matching� tree matching and

graph matching� These tasks are characterized by non�local data access and non�

deterministic and complex algorithms� Several examples of vision tasks belonging to

this three�level hierarchy are shown in Table ���� The examples under each category






Task level Computational
characteristics

Examples

Low Small neighborhood data
access� simple operations�
large amount of data

Edge detection� �ltering� im�
age morphology

Intermediate Small neighborhood� more
complex operations

Hough transform� connected
component labeling�
relaxation

High Non�local data access� non�
deterministic and complex
operations

Point matching� tree match�
ing� graph matching� object
recognition

Table ��� Examples of vision tasks in the three�level hierarchy�

may not be unique� Di�erent researchers may assign the same problem into di�erent

categories� e�g�� Hough transform is often considered as a low�level task� Similarly�

there is some ambiguity about the high�level tasks� The approach taken in this thesis

is that if the primary purpose of the task is image enhancement� then it is low�level�

The tasks that operate on the pixels to produce symbols �features� are intermediate

level tasks� We call the decision making stage as high�level� This classi�cation is

purely based on computational and communication criterion described above�

��� Computational characteristics of computer

vision problems

The visual capabilities endowed to animals and humans look very simple and trivial

on the surface� but they turn out to be extremely di�cult to describe algorithmically�

The computational characteristics of vision algorithms are quite di�erent from other

compute intensive problems such as weather forecast models and human genome



�

project as can be seen by the following case studies of problems from each of the

three levels of visual tasks�

� Low�level operations

Edge detection Detection of sharp changes in intensity in a gray level input

image is an important task� Edges are necessary to describe the raw primal

sketch proposed by Marr ������ Many edge operators are described in the lit�

erature starting with simple Robert�s edge detector to complex schemes involv�

ing regularization�based surface �tting models� A simple edge detector has a

computational complexity of O�N�M�� for an N � N image with a M �M

mask� Complex optimization�based techniques� such as simulated annealing�

based edge detector ����� have a complexity of O��N
�

� for an N �N image� For

a ��� � ��� image� the total execution time of such algorithms is in the range

of several minutes on a SparcStation �	 workstation compared to the desired

time of milliseconds �for �real�time� vision applications�� A simple �� � Sobel

edge detector� on the other hand� takes only 	�� seconds of execution time on

a ��� � ��� image on a SparcStation �	� However� it produces thick edges and

for noisy images the performance of Sobel edge detector is poor� The results of

GNC�based edge detection� Sobel edge operator and Canny edge operator are

shown in Figure ��� �����

Image compression Another low�level task is compression and decompression

of an image for the purposes of storage and transmission� A commonly adopted

method of compression is the JPEG standard� Compressing a ���� ��� image



�

�a� �b�

�c� �d�

Figure ��� Edge detection� �a� Input image� �b� Edge map using GNC� �c� Edge
map using Sobel operator �d� Edge map using Canny operator�

using JPEG standard takes several seconds on a SparcStation �	 compared to

the desired time of milliseconds�

� Intermediate�level Operations

Image segmentation Obtaining homogeneous regions from an input image helps

in obtaining a scene description� Although a general�purpose image segmenta�

tion technique still eludes computer vision researchers� many successful domain�

speci�c segmentation techniques are available� A texture�based segmentation

method for page layout analysis based on texture discriminating masks has
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�a� �b�

Figure ��� Image segmentation� �a� Input image� �b� Segmented image�

been described in ��	��� The algorithm uses a neural network�based approach

to learn the convolution masks for segmentation� The learning process involves

a gradient descent method of optimization� For a �� 	�� � �� 	�� image� this

method takes approximately ��	 seconds of execution time on a SPARCstation

�	� A three�class image segmentation result is shown in Figure ���� where white

pixels represent the graphics area� black pixels represent the background and

the gray pixels represent the text area of the input image�

Structure and motion estimation From a stereo image pair� the depth at each

image point can be estimated� A multiresolution algorithm has been proposed

by Weng et al� in ������ By constructing a six�layer pyramid from the input

image� the disparity information is estimated at every point and projected to

a lower level in the pyramid� A non�linear optimization technique is used to

provide a more stable solution in the presence of image noise� For a stereo



�	

pair of ��� � ��� images� the depth estimation takes over �	 minutes on a

SPARCstation �	� Results of this algorithm are shown in �gure ����

� High�level operations

At the highest level of visual processing� the tasks of recognition and matching

are carried out� Many knowledge�based approaches fall under this category�

Typically� the input to this stage are surfaces� lines and points represented in

terms of high�level data structures such as graphs� trees� and point vectors� The

matching and recognition tasks are expressed in terms of generic graph isomor�

phism� sub�graph isomorphism� tree matching or point vector matching� Most

of these problems fall into the NP�complete class� hence� they are highly compu�

tation intensive� For example� consider the case of matching a query �ngerprint

with the stored images in a large database� Typically� �ngerprint databases

contain millions of records and a �ngerprint image contains on an average� ap�

proximately 
� minutiae features� The matching problem can be posed as a

subgraph isomorphism problem which is known to be a NP�complete problem�

Using a simple model of the minutiae features and simplifying assumptions� the

matching problem can be mapped to a point pattern matching problem� For

an average of 
� points per �ngerprint� a sequential point matching algorithm

takes on the order of � hours to match a �ngerprint against one million images

in a database�

In summary� computer vision problems are often ill�posed� intractable and require

substantial computational resources� Many simplifying assumptions are made about
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�a� �b�

�c� �d�

Figure ��� Shape from stereo� �a� Left image� �b� Right image� �c� Depth �brighter
pixel means closer to the viewer�� �d� Displacement vector�
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the sensing geometry� light sources� surface geometry and noise sources � e�g�� smooth

surfaces� Lambertian surfaces and Gaussian noise� etc��� These assumptions make

the resulting vision system very brittle in the sense that the system�s performance

degrades rapidly when the assumptions are violated� In order to overcome these short�

comings� complex processing algorithms involving non�linear optimization techniques

are used� However� these complex algorithms demand additional computational re�

sources�

��� Need for real�time computer vision systems

A system in which the time instant at which the output is produced� after presen�

tation of the input� is critical� is called a real�time system� Shin and Ramanathan

��	�� have identi�ed three major components and their interplay that characterize

a real�time system� Loosely speaking� the system output must meet a time dead�

line since the output is related to the input changes� Brown and Terzopoulos ��	�

de�ne real�time computer vision systems as follows Real�time computer vision sys�

tems refer to computer analysis of dynamic scenes at rates su�ciently high to e�ect

practical visually�guided control or decision making in everyday situation� Another

de�nition of real�time system is that the response time of the machine vision system

may equal or be faster than the response of the human performing the same task�

These de�nitions lead to an expected processing rate of about �	��	 frames per sec�

ond� Computer vision systems are employed in many time�critical applications such

as silicon wafer inspection� Each wafer needs to be inspected and a decision made
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before the next wafer arrives� Hence� it is essential that the vision processing be done

at the data acquisition rate �video frame rate of �	 frames!second�� For applications

based on video data� processing at this rate is an essential requirement� In military

applications such as target detection� the need for real�time processing is highly crit�

ical �

�� Many interesting applications such as automatic car license plate reading

demands a real�time processing of the moving�vehicle images� The need for real�

time processing is also very important in medical image analysis applications such

as vision�guided non�invasive surgery� Similar constraints exist in other applications

such as compression!decompression of images in multi�media applications� In order

to meet the real�time requirements� a frame of image bu�er needs to be processed in

roughly �� milliseconds� For a ������� gray level image this amounts to a data rate

of roughly ��� MHz� The vision algorithms described in the previous section demand

a very high execution time on a general�purpose computing platform compared to the

desired real�time response� Often� the large disparity between the desired response

time and actual response time is reduced by using appropriate hardware accelerators

������

��� Architectures for vision

In order to meet the high computational needs of vision systems� many special�purpose

architectures have been proposed in the literature� Machines based on Von Neumann

architecture are inadequate to meet the computational requirements of vision algo�

rithms� Hence� special�purpose hardware and parallel processing systems are com�



��

monly used to meet the computational requirements of computer vision algorithms�

Architectures for vision can be classi�ed on the basis of several variables as shown in

�gure ��
�

� The architectures for vision can be classi�ed depending on the type of vision

algorithm �e�g�� low�level� intermediate�level or high�level��

� Yet another way to classify the architectures is based on the instruction and data

streams� The two common classes are Single Instruction Multiple Data �SIMD�

and Multiple Instruction Multiple Data �MIMD�� Typically� architectures for

vision algorithms tend to be of the SIMD class for the lower�level algorithms�

Parallelism at lower levels is more obvious compared to high�level algorithms�

A taxonomy with several vision system examples from each class is given in

���	��

� A third way of classi�cation is based on the type of hardware used Application�

speci�c processor versus general�purpose hardware�

� Fine grained versus coarse grained Based on the granularity of parallelism� a

special purpose processor can be classi�ed as �ne�grained or coarse�grained�

A number of special�purpose architectures for vision are discussed in the next chapter�
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Figure ��
 Classi�cation of architectures for vision�

����� Architectural features for vision algorithms

By analyzing several representative problems in computer vision� the following archi�

tectural requirements are observed

� Computational characteristic For low�level vision algorithms� SIMD and �ne�

grained architectures are preferred and for high�level algorithms� MIMD and

coarse�grained architectures are required�

� Communication At a lower level� communication is limited to a local neighbor�

hood� but at higher levels the communication tends to be global �non�local��

� High bandwidth I!O A typical image contains a large amount of data� therefore

a high bandwidth I!O is essential to sustain good performance�
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� Resource allocation Speeding up only one stage of the vision system will not

result in a signi�cant speedup of the overall performance� Hence� appropriate

computational resources should be allocated to all the stages of the algorithm�

� Load balancing and task scheduling For good performance� the load on di�erent

processors should be balanced�

� Fault tolerance In a multi�processor system� failure of some processing elements

should not result in an overall system failure� Therefore� a graceful degradation

should be supported�

� Topology and data size independent mappings Often� a speci�c processor topol�

ogy is preferred for an algorithm depending on its communication characteris�

tics� Hence� �exible communication support is essential for mapping many com�

munication patterns� The algorithm mapping should be independent of data

size�

These broad characteristics of vision tasks are shown as a pyramid in �gure ����

Many novel architectural features have been incorporated in the currently available

general�purpose processors to improve their performance� Reduced�instruction set

computing �RISC� paradigm is being preferred over complex�instruction set �CISC�

computing paradigm� The RISC approach is characterized by a simple instruction

set and addressing modes� For performance improvement� pipelining is a very well�

known practice� In addition� advanced processors support the following architectural

features
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Intermediate-level, 
Less data (KBits)
MIMD, medium-grained

Global communication, MIMD, Coarse-grained
Symbolic processing
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High-level, Very little data (few bytes)

Neighborhood communication

Figure ��� Vision task pyramid�

� Superscalar Issue of more than one instruction to more than one execution

unit in one clock cycle�

� Superpipeline An instruction�handling sequence with a large number of stages

to allow a faster clock�

� Out�of�order instruction issue and instruction execution�

� Speculative execution�

� Large on�chip instruction and data cache�

� On�chip support for �oating point operations and graphics operations�

The main goal of these features is to achieve the optimal level of single clock per

instruction �CPI�� Many other techniques such as hardware!software branch predic�

tion� and dynamic scheduling are also employed in modern processors� The number

of transistors has reached ten million per processor and soon 	����m technology will
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be available� The clock rates of �		 MHz are already being experimented with and

�		 MHz processors are quite common ����� A comparative evaluation of the four

latest RISC processors �Alpha ���
�� MIPS �				� PowerPC 
�	 and UltraSparc� is

given in ����� These advanced features need hardware support on the chip which can

take away a signi�cant amount of silicon space� Tredennick ����� has suggested the

following three ways to improve the performance of present day uniprocessors �i�

superscalar� �ii� multiprocessing� and �iii� use of very long instruction word �VLIW��

The various parameters in a processor architecture such as number of stages in a

pipeline� size of on�chip cache� and number of functional units in case of superscalar

processors are decided by maximizing the average performance over a wide variety of

applications� For high performance applications� this design decision is not accept�

able as the parameters are not optimized for the application at hand� Experienced

programmers often desire to tune instructions to meet their needs in order to satisfy

application demands� The undesirable overheads of general�purpose� �xed�instruction

set machine can be dispensed with for the sake of performance� Unfortunately� such

systems wherein the user can de�ne his own instructions are not yet available� Treden�

nick ����� proposes a new approach to computing wherein he suggests not to execute

low�level operating system routines on the main processor� Instead he suggests a �re�

con�gurable embedded accelerator� that can provide the low�level services for several

applications�
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��� Recon	gurable logic arrays

There are a number of di�erent ways to increase the computational power of pro�

cessors� Many architectural re�nements described earlier� e�g�� super�scalar� super�

pipelined� high clock rate� etc� ���� �
� demand a high price for retaining the general

programmability of these processors�

The user is constrained to think of solving his!her problems within the boundaries

of the architecture of the hardware as re�ected in the programming language� The

language compilers play a major role in exploiting architectural features of the under�

lying hardware� However� in order to make the programming languages independent

of the architecture� the programmers are not exposed to the speci�c underlying ar�

chitecture� Even if the architecture is exposed to the user through machine language�

the user has never been given the freedom of designing his architecture until recently�

The system resources will be e�ectively used only if the architecture can be tuned

to the demands of the application� Until recently� it was not possible to provide ar�

chitectural speci�city coupled with user reprogrammability� Designing an application

speci�c integrated circuit �ASIC� has the advantage of designing a user�speci�c archi�

tecture� but not user reprogrammability of the architecture� The highest speed with

a given technology is achievable only if the user can program at the basic gate�level�

This is the basis of recon�gurable arrays� The recon�gurable arrays are di�erent from

recon�gurable architectures which use switching elements to achieve di�erent parallel

architectures� Recon�gurable arrays support programmability at the gate level to

support architecture customization at the instruction level� There are many types
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of recon�gurable hardware based on the techniques and technology used to support

recon�gurability� Custom computing machines �CCMs� ���� use recon�gurable logic

blocks as basic compute elements� Di�erent names have been given to this approach

of computing such as FPGA�based computing device� Programmable Active Memory

�PAM� ����� and Processor Recon�guration through Instruction Set Metamorphosis

�PRISM� �����

The main advantage of FPGA�based custom processors is that the logic required

for each application can be generated by an appropriate control bit stream� Hence�

many diverse applications can use the same hardware� Moreover� no instruction fetch

or decode is necessary� Once the control bit stream is loaded� the system is ready to

execute the code that is speci�c to the given application�

Recon�gurable logic arrays can support many of the features demanded by vision

algorithms� Evaluating the suitability of recon�gurable logic arrays for vision algo�

rithms is the main objective of this thesis� CCMs are slave processors to a host� so

the I!O tasks do not run on them� Often� the time consuming portion of an appli�

cation program is mapped onto the CCM instead of the whole application� The I!O

segments of the application are usually run on the host�

��
 Hardware�software codesign

The system designer has the dilemma of deciding which portions of an algorithm

should be run on a special hardware and which portions should be run on a standard

hardware �e�g�� a workstation or a microprocessor�� Ideally� an application�speci�c
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hardware system that could be built without a high cost and without a high turn�

around time would be preferred� But� dedicated systems are always coupled with

high development time and large investments� At the other end of the spectrum one

can use a general�purpose processor at the cost of sacri�cing the performance� The

designer has to make a cost!performance analysis to arrive at an e�cient partition of

the problem� This optimization problem is the subject of hardware�software codesign

which refers to the process of simultaneously designing both hardware and software

to meet some speci�ed performance objectives� In a traditional approach� hardware�

software partitions are relatively rigid� In codesign the partition is �exible and can be

shifted to meet the changing performance criterion� It is desirable to follow a design

cycle that can support modeling complex system designs in hardware and software

to arrive at the partition for an overall optimal performance� Recently� Micheli �����

has described a framework for hardware�software codesign� An embedded system is

a system with a mix of general�purpose processors� dedicated hardware as well as

software running on one or more processors in addition to sensors to interact with

the environment� Hardware�software codesign is an important method for designing

embedded systems� Wolf ���	� surveys design of embedded systems which use software

running on programmable computers�

��� Contribution of the thesis

The main goal of this research is to demonstrate suitability and superiority of custom

computing approach for all levels of vision algorithms� For this purpose� the following
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representative examples of computer vision tasks from low�level� intermediate�level�

and high�level vision algorithms have been used� For low�level vision algorithm� a

generalized ��D convolution has been implemented� For intermediate level vision�

a texture�based segmentation algorithm is implemented� Point pattern matching is

carried out to demonstrate the applicability of custom computing machines for high�

level vision algorithms� Special purpose architectures for vision are usually targeted

for di�erent levels� The main advantage of using recon�gurable arrays is that the

same architecture can be tailored to the demands of a speci�c level by customizing

the instruction set�

Through the design and implementation of these selected algorithms� suitability of

custom computing machines for computer vision algorithms has been demonstrated�

The other advantage of this framework is the integration of the whole machine vision

system on a single platform which is likely to meet the �real�time� requirements� The

following advantages and disadvantages have been observed

� Recon�gurability of the FPGAs can be exploited to meet the requirements of

di�erent levels of vision algorithms�

� Multiple styles of parallel programming is possible with multi�FPGA custom

computing machines�

� Near ASIC�levels of speed of operation is possible with CCMs�

� The overheads to support recon�gurability comes in the way of a more dense

logic�
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� High density recon�gurable logic arrays are costlier�

� The CCMs need to be further evaluated for pure �oating point�based and non�

linear optimization technique�based algorithms�

In addition� a number of features that describe custom computing machines have

been studied by way of constructing a taxonomy involving several custom computing

machines� general�purpose processors and special�purpose processors�

��� Overview of the thesis

The rest of this thesis is organized as follows� Results presented in the area of paral�

lel architectures and parallel algorithms for computer vision are surveyed in Chapter

�� The di�erent design components for recon�gurable architectures are discussed

in Chapter �� The programming �ow for such a hardware is quite di�erent from

conventional programming style� The programming methods for custom computing

machines are also presented in Chapter �� Splash � is one of the earliest custom com�

puting machines� Details of Splash � and other recent CCMs are brie�y reviewed in

Chapter �� The advantages and disadvantages of these machines compared to stan�

dard hardware platforms are also presented� For the purpose of testing our approach�

representative algorithms from di�erent stages of computer vision have been chosen�

Chapter � describes mapping of generalized convolution algorithm as a representative

low�level vision task� Image segmentation applied to page layout segmentation based

on a two�stage algorithm using convolution and neural network classi�er is described

in Chapter �� The feature�based �ngerprint matching is presented in Chapter 
� A
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taxonomy involving CCMs and other well known platforms is given in chapter �� Fi�

nally� the conclusions of this research and directions for future research work in this

area are summarized in Chapter ��



Chapter �

Parallel Architectures and

Algorithms for Computer Vision

A variety of compute�intensive applications �e�g�� weather forecasting� computer vi�

sion� human genome mapping� have been the main driving force behind parallel pro�

cessing� A number of these applications are listed as �Grand Challenges� in the

Federal High Performance Computing Program ��
��� This chapter is devoted to a

survey of reported work in the area of parallel architectures and algorithms for com�

puter vision� In the area of custom computing machine for computer vision� only a

few results have been reported in the proceedings of the workshops on FPGAs for

custom computing machines �FCCM� ���� ��� �		��

The vast amount of work in parallel processing for computer vision will be surveyed

under three major sub�areas �i� algorithms� �ii� architectures� and �iii� languages� The

general design issues such as theoretical analysis� load balancing and mapping will

be brie�y reviewed under speci�c algorithms� Both special�purpose architectures and

��
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general�purpose architectures tuned for vision tasks will be covered under the sub�area

of architectures� The most well known architecture speci�c to vision applications is

the pyramid architecture� Algorithms and architectures for pyramid�based machines

will be reviewed� Many special�purpose VLSI hardwares which have been developed

for computer vision will also be described� A large number of commercial image

processing accelerators are available in the market� A brief description of the popular

ones is included in this chapter� Recent general�purpose parallel processing systems

such as SP��� CM�� and MasPar�� are being used for many computer vision tasks� A

brief description of the architecture of these two general�purpose parallel architectures

is included� Very little work has been reported on parallel languages for computer

vision�

��� Languages

A fundamental problem in the area of parallel processing is how to express parallelism

present in a given algorithm� Many methods are employed to express parallelism ex�

plicitly to assist the language compilers� High Performance Fortran �HPF� continues

to be the most popular for this task� For image processing related tasks� Brown et al�

���� have proposed a language called I�Bol� It treats an image as a tuple of sets� A

number of low�level and intermediate�level vision tasks have been implemented using

user�de�ned neighborhood functions� I�Bol is well suited for distributed memory sys�

tems and has been implemented over a network of transputer�based processors� The

other important parallel language for vision with a particular emphasis to Splash �
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is the dbC ����� Originally developed for workstation clusters� dbC is now being used

for special purpose machines like Terasys and Splash �� One of the main features

of dbC is its ability to express architectural features� Users can de�ne linear arrays

or multidimensional mesh structures� The compiler takes care of mapping the user

architecture on the target machine�

Languages like VHDL and Verilog can encode parallelism at various levels of

hardware design� For ASIC development� designers often use a hardware description

language� On Splash �� VHDL is the only language used for algorithm development�

In programming commercial parallel processors� vendor developed languages have

to be used� For example� C� is used for the Connection Machine and MPF and MPC

are used for the MasPar family of parallel computers� Many attached vector pro�

cessors have special library routines that are callable from most high�level languages�

Often� for the purpose of programming workstation clusters� a communication library

is available� e�g�� PVM ����� and Express ��
�� Many vision algorithms have been ex�

perimented using a workstation cluster using a communication library ����� ��
� �����

��� Algorithms

Parallel algorithms for computer vision tasks have interesting communication and

computation characteristics� Algorithms for Fast Fourier Transform �FFT�� and con�

nected component analysis have become standard text book examples� Parallel al�

gorithms for FFT� connected component analysis and Hough transform have been

very widely reported in the literature� In addition to these algorithms� parallel algo�
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rithms for vision tasks and related system design issues such as scheduling� and load

balancing are also reviewed�

����� System design issues

Load balancing is an important issue in order to increase the speedup achieved in a

distributed memory system� Gerogiannis et al� ���� describe a load balancing method

for image feature extraction on CM�� and iPSC!�� Their redistribution algorithm

is suitable for applications involving local computations� followed by integration of

partial results� The distributed scheduling and resource allocation problems arise

when the architecture of the target machine is di�erent from the expected architecture

of the algorithm or when there are more virtual processors than the number of physical

processors� Chaudhary et al� ��
� have proposed a mapping scheme by analyzing the

communication overheads in mapping a problem graph �parallel algorithm� to a host

graph �target architecture�� Weil et al� ����� describe a dynamic intelligent scheduling

and control algorithm for recon�gurable architectures for computer vision and image

processing tasks� The dynamic scheduler attempts to balance the overall processing

scenario with the needs of the individual routines of the task�

A synchronous model for parallel image processing has been described in ������ A

high�level description of the architectural requirements of the application is analyzed

to arrive at the complexity of the components needed� Lee and Aggarwal ����� propose

a system design and scheduling strategy for a real�time image processing system by

optimizing processing speed and load�
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����� Vision and image processing applications

� FFT One of the most widely studied image transform is the discrete Fourier

transform �DFT�� The implementation of DFT is done by the well�known Fast

Fourier Transform �FFT� algorithm� In addition to its use in image �ltering�

FFT is applicable in polynomial multiplication and integer multiplication prob�

lems� AnN�point FFT can be computed in logN steps on a N�node hypercube�

Gertner and Rofheart ���� describe a �D�FFT algorithm with no interprocessor

communication� Johnson and Krawitz ����� have presented their implementa�

tion on a Connection Machine CM��� Usually� it is assumed that the number

of data points �N� is a power of �� Swartztrauber et al� ����� describe an

algorithm for any arbitrary N on a hypercube� A hardware implementation

of FFT is presented in ����� The scalability issues with respect to the num�

ber of PEs and communication capability are analyzed by Gupta et al� �����

They conclude that a mesh connected multicomputer does scale as well as a

hypercube for FFT implementation� Parallelization of the FFT algorithm on

a shared memory MIMD machine is presented in ��
�� Approaches to parallel

implementation of FFT are presented in most text books on parallel algorithms

��	�� ���� ��	��

� Hough transform A signi�cant number of researchers have implemented the

Hough transform on various architectures� Standard algorithms are described

in ������ The Hough transform is a useful technique for the detection of para�

metric shapes such as straight lines and circles in images� The parameter space
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is discretized into bins and votes for each bin are counted to arrive at the dom�

inant parameter set� Ben�Tzvi et al� ���� describe an algorithm suitable for

distributed memory MIMD architectures and have achieved a real�time perfor�

mance on a custom�built MIMD machine� Ibrahim et al� ���� present their

algorithm on a SIMD machine called NON�VON� Using buses as topological

descriptors in addition to fast communication and data transfer� Olariu et al�

��
�� present an e�cient algorithm for Hough transform� Two ASIC systolic ar�

chitectures for Hough transform have been designed by Van Swaaij ���	�� Jenq

and Sahni ����� have developed an O�plog�N�p�� algorithm for a recon�gurable

mess with buses� where p is the number of quantized angles and N �N is the

size of the image� A VLSI implementation of Hough transform is presented

in ������ A real�time implementation using pipelined processors is described in

����� Little et al� ����� describe an implementation on CM��� Using the Scan

Line Array Processor �SLAP�� Fisher and Highnam describe a real�time imple�

mentation using only a linear array of processors� A modi�ed Hough transform

to check contiguity of a straight line is implemented on a systolic array by Li et

al� ���	�� A generalized VLSI curve detector is presented in ����� Abbott et al�

��� have described an implementation of Hough transform on Splash �� A sum�

mary of di�erent implementations of Hough Transform is shown in Table ����

� Connected Component labeling Another extensively studied problem in com�

puter vision is the connected component labeling ��	�� ����� A connected com�
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Algorithm Description

Ben�Tzvi et al� ���� Custom built MIMD� synchronous
multiprocessor

Ibrahim et al� ���� Massively parallel SIMD tree machine
called NON�VON

Olariu et al� ��
�� Bus based recon�gurable mesh
Van Swaaij ���	� Two ASIC systolic architectures
Jenq and Sahni ����� Recon�gurable meshes with buses
Rhodes et al� ����� A VLSI processor
Hanahara et al� ���� Special purpose processor
Little et al� ����� CM��
Fisher and Highnam �
�� Scan Line Array Processor �SLAP�
Cheng et al� ���� A VLSI implementation for generalized

curve detector
Li et al� ���	� A systolic array
Abbott et al� ��� Splash � � a custom computing machine
Chung et al� ���� Recon�gurable mesh
Shankar et al� ��	�� Hypercube using sparse array

representation

Table ��� Summary of di�erent implementations of Hough transform�

ponent is a maximal�sized connected region where there exists a path between

any two pixels in the region� Several algorithms are described for connected

component labeling for binary and gray�level images ����� Embrechts et al� �
	�

describe a MIMD algorithm on an iPSC!� hypercube� On BLITZEN � a ��D

mesh that allows diagonal transfers� it has been shown to take O�N�logN� time

steps� Olariu ��
�� describes an O�logN� algorithm on a recon�gurable mesh�

A theoretical analysis on an EREW model is carried out in ����� A coarse

grain approach has been taken by Choudhary and Thakur ��
�� Alnuweiri and

Prasanna ��� provide a survey of di�erent algorithms for component labeling� A

constant time algorithm on a recon�gurable network of processors is presented

in �
�� A pyramid algorithm for component labeling is described by Biswas et al�
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��
� which works for gray scale images also� With a mapping of one processor

per pixel on a mesh connected architecture� Hambrusch et al� ���� describe two

��n� algorithms for an n�n image on an n� n mesh�connected computer� For

binary images� Manohar et al� ����� describe a ��stage algorithm using a SIMD

mesh architecture� Image normalization for translation� rotation and scaling

has been attempted by Lee et al� ���
� on a mesh connected array processor�

A VLSI architecture for the same problem has been described by Cheng et al�

�����

� Low�level operations The parallelism being quite visible at the pixel level� many

algorithms are available under this category� Kim et al� ����� describe imple�

mentation of low�level algorithms on a micro�grained array processor �MGAP��

Fujita et al� �
�� describe their IMAP system and report timings of low�level op�

erators on IMAP� Filtering and convolution have been implemented on virtually

every parallel processing platform� Both ��D and ��D convolutions are popular

algorithms studied by many researchers� Non�linear �ltering needed in image

morphology has been extensively studied ����� ��� ���� ��
�� For edge detection

using regularization� Poggio ����� proposed a special�purpose parallel hardware�

A hardware�based image smoother is presented in ��	�� Data replication algo�

rithm proposed by Narayanan et al� ����� has been applied to convolution� and

histogram computation� Systolic algorithms for digital �lters and convolution

are presented in �
��� Many low�level tasks including histogram computation�

and median �ltering on recon�gurable meshes are described in ��
��� A fast
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histogram computation on a recon�gurable mesh is described in ��	��� On a

SIMD hypercube� e�cient histogramming for an N � N image is possible in

O�logM � logN� steps using radix sort� where M is the number of gray levels�

and N is the number of PEs ������ Little et al� ����� describe their implemen�

tation of low�level algorithms on CM��� Image shrinking and expanding on a

pyramid is described in ������ A VLSI architecture for obtaining edges using

Laplacian of Gaussian is presented in ������ Image compression and decompres�

sion are emerging problems in vision for which many architectures have been

presented� Bhama et al� ���� describe a parallel implementation of K�L trans�

form for image compression� A VLSI processor based on systolic architecture

for image compression using vector quantization has been developed by Fang

et al� �
��� They report a throughput rate of �� million pixels per second with

an equivalent computing power of 
		 million instructions per second� A new

architecture for motion�compensated image compression is presented in ������

Hamdi ��
� presents parallel architectures for wavelet transforms�

� Intermediate�level operations Many intermediate�level tasks such as thinning�

segmentation� clustering� image reconstruction and relaxation�based segmenta�

tion have been attempted using parallel architectures� Heydon and Weidner

���� describe performance analysis and parallelization of parallel thinning algo�

rithms on Cray supercomputers� On a pyramid architecture� parallel algorithms

for medial axis transform have been described in ��	�� A VLSI architecture for

medial axis transform has been described in ������ Khotanzad et al� �����
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describe a parallel segmentation algorithm on a Sequent computer� A region

segmentation using gray level mean di�erence has also been carried out on Se�

quent computer ����� A special�purpose VLSI array processor has been designed

by Koufopavlou and Goutis ���
� for image reconstruction in tomographic ap�

plications� Based on a regular network of cells that can run asynchronously and

exchange messages� Lattard and Mazare ����� present a VLSI architecture for

image reconstruction� A systolic algorithm for �nding k�nearest neighbors is

described in ��	��

Relaxation is a useful algorithm in computer vision that employs a set of locally

interacting parallel processes to update pixel labels in order to achieve a glob�

ally consistent interpretation of the image data� Derin and Won ���� describe

a VLSI design for image segmentation using relaxation� Gu et al� ���� present

several VLSI architectures for speeding up the discrete relaxation algorithm� A

linear array architecture has been proposed by Chen et al� ���� for probabilistic

relaxation operations on images� An architecture based on round robin commu�

nication between PEs� a parallel architecture for relaxation� has been presented

in ���	� with applications to character recognition problem� Dixit and Moldovan

���� describe a discrete relaxation technique using a semantic network array pro�

cessor �SNAP�� Data clustering is a compute intensive problem� Li and Fang

����� describe parallel algorithms on SIMD machines� On a hypercube SIMD

machine� Zapata et al� ����� describe a fuzzy clustering algorithm� Ni and Jain

��
	� describe a VLSI architecture for pattern clustering� Using cellular algo�
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rithms for gap �lling� and segment detection� a parallel implementation on a

��D systolic array is described in ������ A real�time distance transform processor

is described in ���
��

� High�level operations For high�level vision tasks many di�erent approaches

have been taken� The high�level tasks are characterized by non�local com�

munication and deal with symbols and strings� Cheng and Fu ���� describe a

VLSI architecture for string matching� Three�dimensional object recognition

from range images has been implemented on a Butter�y multiprocessor in �����

Using geometric hashing� object recognition has been implemented on CM�� by

Rigoutsos ����� and on CM�� by Wang et al� ������ Graph matching has been

implemented on MasPar by Allen et al� ���� Motion analysis is a compute inten�

sive job� A VLSI architecture for dynamic scene analysis is described in ������

Cheng et al� ���� present a VLSI design for hierarchical scene matching� Iconic

indexing has been implemented on CM�� using mesh and pyramid algorithms

����� Parallel algorithms for hidden Markov model on the Orthogonal Multipro�

cessor has been described in ������ A real�time face recognition system using a

custom VLSI hardware is developed by Gilbert and Yang ��
�� Tanimoto and

Kent ����� describe special architectures and algorithms for image�to�symbol

transformations�

� Neural Networks Over the last decade many special architectures and VLSI de�

signs have been proposed for implementing arti�cial neural networks �ANNs��

The research work in this area can be classi�ed into � categories of architectures
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�i� using existing parallel processors and DSPs� �ii� design of special purpose

VLSI chips� and �iii� design of analog and mixed �analog and digital� architec�

tures� There are six types of parallelism available in an ANN ��
��� Out of them�

node�level and weight�level parallelism are frequently exploited� Ghosh and

Hwang ���� investigate architectural requirements for simulating ANNs using

massively parallel multiprocessors� They propose a model for mapping neural

networks onto message passing multicomputers� Liu ���
� presents an e�cient

implementation of backpropogation algorithm on the CM�� that avoids explicit

message passing� The results of CM�� implementation has been compared with

results on Cray��� Cray X�MP and Cray Y�MP� Chinn et al� ���� describe a

systolic algorithm for ANN on MasPar�� using a ��D systolic array�based de�

sign� Onuki et al� ��

� present a parallel implementation using a set of sixteen

standard ���bit DSPs connected in a hypercube� Kirsanov ����� discusses a new

architecture for ANNs using Transputers� A multi�layer perceptron implemen�

tation has been described in ��
�� using GAPP � a systolic array processor chip�

Muller ����� presents a special purpose parallel computer using a large number

of Motorola �oating point processors for ANN implementation� Architecture of

SNAP�
� � a ��dimensional ring of parallel �oating point processors is described

in ������

Several special�purpose VLSI chips have been designed and fabricated for ANN

implementation� Sato et al� ����� describe a 
��neuron chip� A neurocom�

puter consisting of ��� neurons has been built and shown to be six times faster
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than Hitachi���	 supercomputer� Connectionist network supercomputer �CNS�

�� uses a RISC CPU with a vector processor as the building block in a ���

PE CNS�� ����� Direct emulation up to a �xed size of nodes and virtual em�

ulation beyond that size is supported in a digital neurocomputer based on a

special chip supporting four neurons per chip in the design of Pechanek et al�

������ The system has been evaluated for NETTALK emulation and shown

to be approximately �� times faster than an implementation of NETTALK on

CM��� Using 
� processing nodes per chip and hardware�based multiply and

accumulate operators� a high performance and low cost ANN is presented by

Hamerstorm ����� A binary tree adder following parallel multipliers are used in

SPIN�L architecture proposed by Barber ����� Shinokawa et al� ��	�� describe

a fast ANN �billion connections per second� using �	 ASIC VLSI chips� Using

a �� � systolic PE blocks� MANTRA�I neurocomputer is described by Viredez

������ A tree of connection units with processing units at the leaf nodes has

been proposed by Kotolainen et al� ����� for mapping many common ANNs�

Asanovic et al� ���� have proposed a VLIW of ����bit instruction width and

a ��stage pipelined processor with � processors per chip� Ramacher ���
� de�

scribes the architecture of SYNAPSE � a systolic neural signal processor using

a ��D array of systolic elements�

Several stochastic neural architectures have been described in ���� �
�� ��
�� The

main advantage of this approach is that there is no need for a time consuming

and area costly �oating point multiplier which makes them very suitable for
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VLSI implementations� Using a mixed design involving both analog and digital

architecture� Masa et al� ����� describe an ANN with a single output� six hidden

layers and seventy inputs that can perform at �	 MHz input rate� There have

been many other well�known neural network chips and architectures e�g�� ANNA

from AT T ������ CNAPS ��
�� and GANGLION�����

Another line of e�ort is concerned with parallel implementation of image process�

ing tasks on images represented by special data structures� Encoding binary images as

bit strings and processing these bit streams in parallel is described by Wu et al� ������

Processing on images represented by quadtrees and region boundaries is presented in

���� �	�� �����

��� Special�purpose hardware

Many vision systems have been built around speci�c processors� Recently� MVP��	

� an advanced digital signal processor �DSP� supporting multiprocessing has been

shown to be very e�ective for developing many vision systems� This section starts

with a brief description of MVP��	�

����� Multimedia Video Processor �MVP��	


MVP��	� designed and developed by Texas Instruments� is one of the most advanced

DSPs supporting multiprocessing� This special processor has been used for many

vision applications� including video conferencing� document image processing� graph�

ics� image compression� image tracking and diagnostic imaging� The architecture of
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MVP��	 is shown in Figure ���� It contains �ve processors �� DSPs and one ���bit

RISC CPU� in a single silicon wafer� The �ve processors can execute independently

and concurrently� Each processor has its own private memory� The processors can

access other parts of memory through a crossbar concurrently� High throughput is

achieved by running all the �ve processors accessing their �KB private cache ��KB

for the RISC processor�� The RISC processor has a �oating�point unit� The on�chip

video controller can display!capture video data� The DSP CPUs have a 
��bit in�

struction width and ���bit address!data width� Two independent address buses are

available on each DSP� Each DSP has a ���bit ALU and a �
�bit multiplier� The

ALU can be con�gured as two independent �
�bit ALUs or as four ��bit ALUs� Sim�

ilarly� the �
�bit multiplier can also act as two ��bit multipliers� The RISC processor

has a ��stage pipeline� In addition� there is an on�chip memory controller� called

the Transfer Controller �TC� to interface with external memory� The �oating point

unit has a peak performance of �		 MFLOPS and so a single MVP��	 can deliver

up to � billion Operations �BOPS� per second� MVP��	 can be programmed using

a special C�compiler or Assembler!Linker� The best performance has been obtained

by programming a MVP��	 with the Algebraic Assembly Language ������

Benchmark results as reported by the manufacturer are shown in Table ���� The

timings have been scaled up from a �	 MHz MVP��	 to �	 MHz� The following

assumptions have been made while reporting the benchmark timings �i� the entire

image is available in the memory� �ii� the � parallel processors are being fully utilized�

and �iii� the RISC processor is not being utilized�
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Figure ��� Architecture of MVP��	�

Operation Speed

� � � median �ltering �� MHz
�� � convolution �� MHz
��
 � �
 multiply�
�� � convolution �	 MHz
�� � � multiply�

Table ��� MVP��	 benchmark results�



��

����� WARP and iWARP Processors

WARP and iWARP processors were designed and developed at Carnegie�Mellon Uni�

versity �CMU������ Both are examples of systolic array�based architectures for sci�

enti�c and image processing applications� As a linearly connected set of cells with

two communication channels between cells� WARP can deliver up to �	 MFLOPs per

cell� Each cell has its own program sequencer and memory� This processor is highly

suitable for low and intermediate level vision algorithms� iWARP is an extension of

WARP with more powerful individual cells� It also supports a ��D systolic array�

Both WARP and iWARP have been used for stereo vision for obstacle avoidance and

color�based road following systems developed at CMU� The tasks need about �			 op�

erations per pixel and need to process several frames per second� For this application�

approximately �		 MFLOPS of computing power has been supported by WARP�

����� NETRA

Designed and developed at the University of Illinois� Urbana� NETRA is a recur�

sively de�ned hierarchical multiprocessor system ����� It supports both distributed

as well as shared memory� It has two kinds of processors �i� processing elements

in clusters� and �ii� distributing and scheduling processors �DSPs�� The PEs carry

out the computations whereas DSPs distribute and control the tasks� The memory

subsystem has a shared global memory and a global interconnect network to link PEs

and DSPs to the global memory� The schematic block diagram of NETRA is shown

in Figure ���� The clusters of PEs can operate in either SIMD or MIMD mode� Each
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Figure ��� Architecture of NETRA�

processor in the cluster is a general purpose processor with �oating point capability�

The PEs in a cluster share a common memory� The PEs and the DSPs are connected

through a crossbar switch� More details are available in ����� For a ��
 � ��
 image�

convolution with a �	 � �	 mask takes ��
msecs on a �
 processor system� On a ��

processor system� �� � Sobel operation takes 	��� secs� For a �� � median �lter� the

performance of a �� processor system is ��� secs�

����� Image Understanding Architecture �IUA


In order to meet the computational requirements of all the three levels of vision al�

gorithms� IUA provides three di�erent levels of architectures ���
�� The three levels

communicate via parallel data control paths� At the lowest level� there is a collec�
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Figure ��� Schematic overview of IUA�

tion of ��� � ��� ��bit serial processors� called Content Addressable Array Parallel

Processor �CAAPP�� The intermediate level is an array of 
� � 
� �
�bit processors

and is known as Intermediate Communications Associative Processor �ICAP�� At the

highest level there are 
� processors capable of running LISP programs� The highest

level is called Symbolic Processing Array �SPA� which also directs the array control

unit �ACU�� A schematic adapted fromWeems et al� ���
� is shown in Figure ���� On

a ��� � ��� grayscale image� a �� � �� convolution only takes 	��msecs� Connected

component analysis on a binary image of same size is performed in 	�	� msecs� More

details are available in ���
��
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����� An Integrated Vision Tri�Architecture System �VisTA


Similar to the IUA processor� ViSTA has three distinct layers of processors ��	��� At

the lowest level is ViSTA!� which is based on a massively parallel sliding memory

plane SIMD processor with a support for low�level vision algorithms� Typically� there

are N� PEs at this level� Each PE can communicate to any other PE at this level

without interrupting that PE� I!O and computation can occur simultaneously� A

PE consists of ALU� registers� MUX� DMUX and a switching element� The second

layer supports intermediate vision tasks� It consists of N PEs with N memory blocks

connected through a communication bus� This layer is based on �exibly coupled mul�

tiprocessors ��	��� The top most layer is a tightly coupled hypercube multiprocessor�

Estimated time for ��D convolution with a �� � mask is ����secs and Sobel �� � ��

is � �secs� However� a �� � median is estimated to take ���� �secs� More details of

this system are available in ��	���

����� Scan Line Array Processor �SLAP


SLAP is a SIMD linear array for real�time image processing �
��� A system contains

a controller that selects and orders execution of modules on the sequence vector�

A sequencer and a PE vector operate in a lock step mode� The block diagram is

shown in Figure ���� The sequencer can broadcast messages to all the PEs� It also

includes registers that function as virtual PEs� neighbors to real PEs on the vector

extremes� It also has a global synchronization line� The PEs in the third stage are

��stage pipelined processors using custom VLSI processors� SLAP�s performance has
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been compared to a Cray for convolution� median �ltering and Hough transform with

signi�cant speedups� More details are available in �
�� ����

��� Commercial image processing accelerators

Several single and multi�board accelerators are used for high performance image pro�

cessing� In this section� a brief description of few popular systems is given� Typically�

these systems cater to only low�level processing and have dedicated hardware designs

for commonly used low�level operators such as point operations and convolution� Of�

ten� they are designed to deliver real�time frame rate performance� Compared to the

general�purpose parallel processing systems� these systems are relatively cheaper�
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����� PIPE

Pipelined Image Processing Engine �PIPE� is optimized to perform local neighbor�

hood operations on iconic �intrinsic� images ������ It provides easy multistage� parallel

image processing� PIPE system consists of a sequence of identical processors sand�

wiched between a special input processor and a special output processor� There can

be several identical processing stages in between the input and output stages �see

Figure ����� Each of the processing stages performs a di�erent operation on the im�

age sequence� Each stage receives three input streams and produces three output

streams� The three input streams are �i� from previous stage output stream� �ii�

from the output of the present processor� and �iii� from the output of the next pro�

cessor in the pipeline� Similarly� the three output streams are �i� to the next stage

in the pipeline� �ii� to the previous processor in the pipeline and �iii� to itself� In ad�

dition� there are four wildcard paths available for both input and output� The three

input images can be weighted and combined in any fashion before they are processed

by the processing stage� Two kinds of processing are carried out in each processing

stage �i� pointwise arithmetic and Boolean operations� and �ii� neighborhood opera�

tions� Two neighborhood operations can be performed on an image at frame rate ��	

frames!second�� Provisions exist to de�ne �regions of interest�� Di�erent operations

can be applied within each region of interest� The forward and backward paths in the

processing stage can be e�ectively used to build image pyramids� It is designed for

low�level processing� Commercial systems from ASPEX and Datacube are similar to

the PIPE design philosophy� More details about PIPE system are available in ������
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Figure ��� Schematic of a PIPE processor�

����� Datacube MV���	

One of the most popular high�end image processing accelerator is Datacube�s

MaxVideo ��	 or MV���	� Improving upon its predecessor MV��		� it uses a single

VME slot� Based on a �	 MHz pipeline� MV���	 consists of several modules as shown

in Figure ��
� In addition to a bus interface module and input!output modules� there

are two special processing stages� namely �i� arithmetic unit �AU� and �ii� advanced

processor �AP�� AU aids linear and non�linear operations on pixels with the help of

a custom ALU� four ���bit multipliers� seven �	�bit ALUs� two run length encoders

and two row and column address generators� The role of AP is to support neigh�

borhood operations such as convolution and binary morphology� Support for a 
��

one�dimensional ��bit FIR �lter that can be con�gured as a single �� � or two �� �

kernels is available using the AP� On�board processing for binary morphology is sup�

ported for �� � structuring elements� A �� � �� ��bit crossbar is available to switch

data inputs at video rate from and to computing resources available on the system�

An important aspect of MV���	 is its software environment� called �max�ow��

Max�ow consists of a set of C�callable routines for connecting di�erent stages of a
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user�de�ned pipeline� controlling attributes of the processing stages �e�g�� kernels for

convolution� and to control the overall interaction with the host� A X�window�based

GUI is provided to generate Image�ow code automatically� A convolution using ���

kernel on a ��� � ��� image takes approximately �� msecs� More details of the Max

Video systems are available in �����

����� Imaging Technology MVC���	

MVC���	 from Imaging Technology is a high performance pipelined image processing

accelerator� With a basic pipeline speed of �	 MHz� a ������� frame processing can

take ��� msecs� Many processing stages can be added in the basic pipeline�

A typical system consists of three modules� Extra memory modules can be sup�

ported by extending the ���bit internal bus� The Image Manager �IM� interfaces

with external host through a VME bus� The three modules are acquisition module
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�AM�� computation module �CM� and display manager �DM�� The CM can perform

convolutions� inter�image arithmetic� feature extraction� morphological operations�

object labeling and binary correlation� An advanced processing unit based on TI

DSP TMS��	C�� is also available� Many of the functions described earlier are car�

ried out on a special�purpose hardware�

The hardware is supported by a multi�layered software development environment�

A window based automatic code generation facility also exists� Using the base hard�

ware� a � � � convolution can be performed at �	 MHz and � � � convolution at �	

MHz� More details are available in ��	���

����� Alacron i��	 and Sharc multiprocessor boards

For defense and satellite image processing applications� Alacron has several high per�

formance accelerators on PCs as well as VME�based systems� These multiprocessor

pipelined systems are based on either Intel i��
	 or Analog Devices Sharc ��	
� DSPs�

The multiprocessors are connected on a cluster or grid in the multi�Sharc systems�

The multi�processor systems can work in SIMD or MIMD modes� The system has an

Intel i�
	 as the control processor� The i�
	 based systems have two i�
	 processors�

These systems are programmable through a set of C�callable routines� Very high

performance of the order of Giga operations per second have been reported for the

Sharc�based system� On the i�
	�based systems� a �� � convolution takes �� msecs�

More details are available in ����
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����� Data Translation DT����

At the low�end� there are many PC�based image processing accelerators that can

be interfaced to frame grabbers for direct data input� Data Translation�s DT���
�

is a popular frame processor� The processor board has three ALUs� three �
�bit

�xed point multipliers� one divider� histogram generator and several lookup tables�

Using these hardware resources� real�time frame averaging� frame arithmetic and

logic operations and histogram generation can be performed� � � � convolution and

morphological operations take close to two frame periods� i�e�� �� msecs� Several

dedicated hardware blocks are used to realize the functions� A high level language

callable set of routines are provided to interface the special hardware in applications�

More details are available in ��
��

��� General�purpose parallel processors

Many general�purpose parallel processing systems are being used for computer vision

tasks� Thinking machine corporation�s CM��� IBM�s SP�� and MasPar�s MP�� are

the three systems brie�y presented in this section� Other general�purpose parallel

processors such as Intel�s Paragon and BBN Butter�y have also been used for vision

tasks�

����� SP��

IBM�s powerparallel SP�� is a scalable parallel system which is being used for a wide

range of applications� The delivered power of SP�� has been shown to be in the range
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of Giga�ops� SP�� is based on a distributed memory� message passing architecture�

A SP�� can consist of up to ��� processing elements based on RISC System!
			�

The PEs are connected by a high performance� multistage� packet�switched network

for interprocess communication� Each node can run IBMs AIX operating system

and associated applications� Many special�purpose software packages are available to

exploit the power of a full�blown SP��� Important design issues of SP�� are explained

in ���� and the main design issues of SP�� are given below�

� A high performance scalable parallel system must utilize standard microproces�

sors�

� Small latency and high bandwidth for inter�process communication will demand

a custom interconnect network�

� System must provide high performance parallel libraries� parallel �le system�

parallel I!O facilities and state�of�the�art execution support�

� Very fast recovery from single point failures to increase the system availability

should be supported�

The architecture of SP�� is shown in Figure ���� Many standard benchmarks have

been run on SP�� ���� Judd et al� reported high performance for pattern clustering

using the earlier model SP�� ������ On SP��� Chung et al� ���� reported twice the

performance of a CM�� for linear feature extraction�
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����� CM��

Overcoming the rigid SIMD architecture of the CM��� Thinking Machines Corpora�

tion designed CM�� that combines the advantages of both SIMD and MIMD process�

ing� The CM�� uses synchronized MIMD processing to provide a good performance

for both synchronized communication and branching�

The architecture of CM�� is shown in Figure ���� A CM�� can consist of �� to

�
���� processing nodes and a vector processing unit� There can be several sequencers�

Both the sequencer and the PEs are SPARC�based processors� The I!O subsystem

consists of mass storage devices and network interfaces� These three types of building

blocks are interconnected by three networks� namely� �i� data network� �ii� control

network� and �iii� diagnostic network� Point�to�point communication is supported
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by the data network� Broadcast� synchronization and scan operators are supported

by the control network� The diagnostic network supports on�line diagnostics for the

overall system� The system has a peak performance of � T�ops� More details are

available in ��
��

����� MasPar MP��

The MasPar family of supercomputers consists of massively parallel SIMD machines

with up to �
K PEs operating synchronously on multiple data elements� An Array

Control Unit �ACU� sends out a stream of instructions to all the PEs� A PE can

either execute the instruction or decide to be passive� Each PE has a private memory

of 
�K bytes� Interprocess communication is carried out in three ways �i� broadcast
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by ACU� �ii� nearest neighbor communications through Xnet and �iii� through global

router� A �oating point unit and an integer arithmetic unit is shared between the

processor cluster� Because of its �ne grained SIMD architecture� it is suitable for

many low�level operations� A schematic of MP�� is shown in Figure ����

��� Summary

A brief summary of work in the area of parallel architectures and algorithms for

computer vision is given in this chapter� Many special�purpose hardware and general�

purpose parallel processors have been reviewed� Parallel algorithms for many vision

tasks from all the three levels of vision task hierarchy have been surveyed� For their

interesting communication and computational characteristics as well as their general

utility� algorithms for FFT� connected component analysis and Hough transform have

been widely studied� Parallel languages speci�c to vision have not received adequate

attention�



Chapter �

Custom Computing Machines

Once an appropriate computer vision algorithm has been selected for a given task�

it needs to be implemented in an e�cient way to meet the desired response time

requirements� An application�speci�c hardware design� such as application speci�c

integrated circuit �ASIC�� is the best implementation to provide the fastest execution

time� However� there are many limitations in designing an ASIC� The most important

limiting factor is the development cost and time� For low�volume applications� the

�xed costs associated with designing an ASIC are very high� Further� once an ASIC

has been designed and fabricated� it is very di�cult to make modi�cations or correc�

tions to the design� The motivation for recon�gurable hardware comes from its ability

to overcome these limitations� In this chapter� the current hardware implementation

technologies with speci�c reference to �eld�programmable gate arrays �FPGAs� will

be presented� The custom computing paradigm is based on the ability of an architec�

ture to tailor itself to the application needs� The FPGAs provide a suitable hardware

platform for custom computing by virtue of their �eld programmability�

��
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Figure ��� Methods for embedded system design�

��� Field programmable gate arrays FPGAs�

There are many methods for implementing an embedded system for computer vision�

The available options are shown in Figure ���� The fully�custom method is cost ef�

fective for high�volume applications� The semi�custom approach� though slower than

the fully�custom method� o�ers cost�e�ective solutions� In the semi�custom design

category� �eld�programmable gate arrays are of special interest as they o�er many

advantages over the standard cells or gate�arrays� FPGAs consist of electrically pro�

grammable gate arrays whose integration capabilities are like mask�programmable

gate arrays �MPGA�� They are also similar to PLA�based programmable logic de�



��

C1 C2 C3 C4

H1 EC

G4

G3

G2

G1

F4

F3

F2

F1

F’

Logic 

of

G1-G4

Logic 

Function

of

F1-F4

F’

H’

DIN

SD

RD

Q

Q

EC

D

D

EC

SD

RD

S/R

S/R

1

1

MULTIPLEXER CONTROLLED 

BY CONFIGURATION PROGRAM

F’

K

(CLOCK)

YQ

XQ

X

H’
G’

G’
H’

DIN S/R

CNTRL

CNTRL

G’

Function

G’

F’
H’
DIN

H’

and H1
F’,G’,,
of

Function 
Logic

Y

Figure ��� Structure of a Xilinx �	�	 CLB�

vices in terms of rapid development time� Sequential and combinational logic can be

implemented using multi�stage approach� Architecturally� an FPGA is characterized

by three types of building blocks� namely� �i� Con�gurable Logic Blocks �CLBs�� �ii�

Input!Output Blocks �IOBs�� and �iii� Interconnection Networks� The structure of a

CLB can be as simple as a transistor to as complex as a microprocessors ������ The

CLBs can be arranged in a row� or� more commonly� in a matrix form� A typical

CLB of Xilinx �			 series FPGA is shown in Figure ���� The total number of CLBs

on a FPGA also varies from vendor to vendor� In Xilinx �	�	� there are �		 CLBs�

The IOBs provide an interaction with the external world� The most space consuming
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component on a FPGA is the interconnection network which supports interconnec�

tions between CLBs to logic synthesis� Several di�erent programming methodologies

are used in the interconnection network� The three commonly used programming

methods are

�� SRAM�based a �pass� transistor connects two inputs if the SRAM bit is �ON��

�� Antifuse�based a fuse once blown can permanently connect two inputs� and

�� EPROM�based a �oating gate can connect two inputs based on the gate cur�

rent�

Commercially available FPGAs di�er on the basis of �i� CLB architecture� �ii� num�

ber� size and capability of CLBs� �iii� number of IOBs� and �iv� programming method�

ology� A survey of commercially available FPGAs is shown in Table ���� FPGAs

have been a topic of special interest because they support user logic programmability

without compromising speed and �exibility which is also exploited in building custom

computing machines�

The design �ow in programming FPGAs starts with the entry of logic function by

logic expressions� schematics or high�level hardware description languages �HDLs�� A

netlist is generated from the input speci�cation before logic partitioning is carried out�

Computer Aided Design �CAD� tools are used to place and route the logic on a FPGA�

This style of programming a FPGA makes it suitable for tailoring special purpose

architectures� The designer can verify the logic using logic simulators� Using the

synthesis tools� the designer can determine whether the logic can be accommodated

on a given FPGA� The delays involved in the interconnection network can be used
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Manufacturer General
Architecture

Logic Block
type

Programming
Methodology

Xilinx Symmetrical
Array

Look�up
Table

Static RAM

Actel Row�based Multiplexer�
based

Antifuse

Altera Hierarchical
PLD

PLD Block EPROM

Plessey Sea�of�gates NAND Gate Static RAM
Plus Hierarchical

PLD
PLD Block EPROM

AMD Hierarchical
PLD

PLD Block EEPROM

QuickLogic Symm� Array Multiplexer
based

Antifuse

Algotronix Sea�of�gates Multiplexers
and gates

Static RAM

Concurrent Sea�of�gates MUX and
gates

Static RAM

Crosspoint Row�based Transistor
pairs

Antifuse

AT  T ORCA Array Look�up
Table

Static RAM

Motorola MPA �			 Array Look�up
Table

Static RAM

Table ��� Commercially available FPGAs�

to estimate the peak speed for the logic� A new algorithm can be implemented on

the same FPGA assuming that it supports reprogrammability �except in the case of

antifuse�based FPGAs� by changing the control bit stream�

Xilinx �	�	 has �	�			 usable gates� To program the �		 CLBs� a control bit

stream consisting of ����	�
 bits is required� This bit stream is loaded every time in

terms of three parts �i� preamble� �ii� ��� frames of ��
 bits each and �iii� postamble

frame� For more details� refer to ������




	

The power consumption of these devices vary as per the CLB utilization and the

clock rate� At the maximum� each device dissipates ��� Watts although the actual

power dissipated is far less� Details of computing the power dissipation for each device

is available in ������

��� Recent trends in FPGAs

Since their introduction in ����� FPGAs are undergoing numerous technological ad�

vances� Some of the advances are in the directions of increased logic capacity� more

advanced features for supporting coprocessing and better routing technology� Most

SRAM based FPGAs now support dynamic partial recon�gurability� Recently� Xil�

inx has announced its XC
�		 series that supports coprocessing needs such as CPU

readable on�chip memory!registers� faster as well as partial recon�gurability and user

de�ned memory!logic allocation� Xilinx�s XC��		 is yet another powerful series of

SRAM�based FPGAs� In the XC��		 series� the CLBs are themselves a collection of

four logic cells� where each logic cell consists of a ��input function generator� a storage

device and control logic� The local routing resources have been combined with logic

resources to form a �VersaBlock�� General purpose routers connect to the VersaBlock

through general routing matrix� In addition� there is a �VersaRing� aound the chip en�

closing all the CLBs� The abundance of routing resources help the design automation

tools while placing and routing the logic� The gate count per FPGA is also on the

rise� Already� �		K gate FPGAs are being targeted �e�g�� XC
�
��� These enhanced

features will certainly have a positive impact on the future of the CCMs� In the area
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of one�time programmable FPGAs� recently both Xilinx and QuickLogic have an�

nounced a new technology for interconnection that uses a combination of SRAM and

antifuse technology� The main advantage is that these FPGAs can be �		" utilized

with guaranteed response time� However� these are not good for designing CCMs�

��� Survey of FPGA�based computing machines

A custom computing machine �CCM� is an embedded system that can be used to

build specialized architectures for di�erent applications� FPGAs have revolutionalized

custom computing by virtue of their user reprogrammability� Many experimental and

commercial FPGA�based computing machines have been reported in the literature�

BORG and BORG II ���� are based on Xilinx FPGAs running as an attached processor

on PCs� A neural network based pattern classi�er based on Xilinx �	�	 FPGAs is

reported in ����� Researchers at Brown University have developed PRISM ����� In

the commercial category� �The Virtual Computer� based on Xilinx �	�� has been

developed by Virtual Computer Corporation� Digital Equipment Corporation has

developed ��Mint� based on Xilinx �	�	s� One of the largest CCMs built so far is

Teramac� developed by Hewlett Packard ���� Teramac is based on custom FPGAs

packaged in large multi�chip modules �MCMs�� A fully con�gured Teramac has �		

MB of RAM and hardware support for large multiported registers� A comparative

analysis of some of the recent custom computing machines is given in Table ���� Many

more such machines have been reported in the proceedings of the �FPGAs for Custom

Computing Machines� workshop ���� ��� �		��
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Product name Designer Typical system
con�guration

Comments

Adaptive
Connectionist
Model Emula�
tor �ACME�

Univ� of California�
Santa Cruz

�� Xilinx �	�	� 
 Xil�
inx ����

����s are used as
programmable inter�
connect� �K dual
ported memory on
each �	�	

Con�gurable
Hardware Al�
gorithm Map�
pable Proces�
sor �CHAMP�

Lockheed Sanders�
Nashua

�
 Xilinx �	��� ���K
dual ported mem�
ory� Crossbar using
FPGAs

Hardware
prototyping

Data�Flow
Functional
Computer
�DFFC�

LIMSI�CNRS�
France

��� Custom built
Field Programmable
Opera�
tor Arrays �FPOA��
each with � con�g�
urable data path� ��
D � �� � � array of
FPGA

Real�time image
processing

DTM�� MITRE Corp��
Virginia

�
 DTM chips Each DTM chip is an
array of 
� �
� ex�
pandable gate cells�

Enable�� Universitaet
Mannheim� Germany

�
 Xilinx �	��� ��
Xilinx �		�� �� MB
RAM

Modular FPGA mul�
tiprocessor system�

Supports Systolic
Parallel C �SPC�

Functional
Memory
Computer

University of Hawaii � Xilinx �	�	� �
Xilinx �	��� � MB
SRAM

Memory�mapped
FPGA�based
interconnect

GANGLION IBM Research Divi�
sion� San Jose

�� Xilinx �	�	� ��K
PROM

Neural Network

Marc�� University of
Toronto� Toronto

�� Xilinx �		�� 
 MB
RAM

��
K�
� instruction
memory� ��
K � ��
data memory with
Weitek ��
� math
processor

MORRPH�
ISA

Virginia Polytechnic
institute� Blacksburg


 Xilinx chips �any
combination of �		��
�	�	� �	��� �	���

� � � mesh net�
work� Real�time im�
age processing

Table ��� A summary of custom computing machines� �Contd��
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Product name Designer Typical system
con�guration

Comments

Perle�� DEC� Paris Research
Lab� France

�� Xilinx �	�	 Fixed mesh� RSA
Encryption

PRISM�II Brown University�
Providence

� Xilinx �	�	 per
processing node� �	
nodes connected by a
recon�gurable inter�
connection topology�

Each
PRISM�II board is a
node in the ARM�
STRONG III parallel
processor

ProBoard NTT Optical Net�
work Systems Lab�
Japan

�� PROTEUS FPGA
�SRAM�based� cus�
tom designed�

FPGA�based
interconnect switches

Recon�gurable
Neural Net�
work Server

Norwegian
Institute of Technol�
ogy� Norway

�
 Xilinx FP�
GAs� �
 TMS��	c�	
available�

Neural networks

Rapid Proto�
typing engine
for Multipro�
cessors
�RPM�

University of South�
ern California� LA

� Xilinx �	��s per
board

Used for multipro�
cessing experiments

Spectrum Gigaops� Berkeley �� Xilinx �	��s Video com�
puting� DSP using a
C�like HDL

Splash � IDA Supercomput�
ing Research Center�
Bowie

�
 Xilinx �	�	s per
board

Variety of applica�
tions including DNA
pattern matching
and image processing

TERAMAC Hewlett�Packard�
CA

�	� custom FPGAs�
�� MB SRAM

Rapid turn around of
designs to allow in�
vestigation of alter�
nate computing ideas

Virtual
Computer

Virtual Computer
Corporation� CA

�� Xilinx �	�� General purpose
computing

Zelig University of York�
UK

�� Xilinx �	�	� Ring
topology

Cellular au�
tomaton� image mor�
phology� rank �lter�
ing� Neural Networks

Table ��� A summary of custom computing machines�
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Splash � is one of the leading FPGA�based custom computing machine designed

and developed by the Supercomputing Research Center ����� An interesting observa�

tion is the trend in the languages used for algorithm development on these platforms�

With smaller systems� the trend has been to use schematic design entry� In most

other systems� VHDL or Verilog has been used� Recently� e�orts are being made

to support subsets of C and C�� ��	�� For SIMD mode of operation� dbC is being

developed for Splash �� Note that� after the design entry stage� the other stages need

to use vendor dependent tool sets�

��� Splash �

The Splash � system consists of an array of Xilinx �	�	 FPGAs� improving on the

design of the Splash � which was based on Xilinx �	�	s ��	�� Figure ��� shows a

system�level view of the Splash � architecture� Splash � is connected to the host

through an interface board that extends the address and data buses� The Sun host

can read!write to memories and memory�mapped control registers of Splash � via

these buses� The major components of the Splash � system are described below�

Each Splash � processing board has �
 Xilinx �	�	s as PEs �X��X��� in addition to

a seventeenth Xilinx �	�	 �X�� which controls the data �ow into the processor board�

Each PE has ��� KB of memory� The Sun host can read!write this memory� The

PEs are connected through a crossbar that is programmed by X�� There is a �
�bit

linear data path �SIMD Bus� running through all the PEs� The PEs can read data

from their respective memory� A broadcast path also exists by suitably programming
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Figure ��� A Processing Element �PE� in Splash ��

X�� The processor organization for a PE is shown in Figure ���� The Splash � system

supports several models of computation� including PEs executing single instruction

on multiple data �SIMD mode� and PEs executing multiple instructions on multiple

data �MIMD mode�� It can also execute the same or di�erent instructions on single

data by receiving data through the global broadcast bus� The most common mode

of operation is systolic in which the SIMD bus is used for data transfer� Individual

memory available with each PE makes it convenient to store temporary results and

tables� One of the important aspects of Splash � is the support for symbolic hardware

debugging using the symbolic debugger� called t�� The symbolic hardware debugger

supports many useful facilities for stepping through hardware� observing bus signal

values and other functions to aid development process�
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��� Programming paradigm

Programming an FPGA�based computer is di�erent from usual high�level program�

ming in C or Fortran� The design automation process consists of two steps simulation

and synthesis� The programming �ow is shown in Figure ���� In simulation� the logic

which is designed using VHDL is veri�ed� This involves comparing the results of

the VHDL simulation with those obtained manually or by a sequential program� In

synthesis� the main concern is to achieve the best placement of the logic in an FPGA

in order to minimize the timing delay� At this point in the design process� the logic

circuit may or may not �t on a single FPGA �i�e�� being able to map it to the con�g�

urable logic blocks �CLBs� and �ip��ops which are available internal to an FPGA��

If the logic does not �t� then the designer needs to revise the logic in the VHDL

code and the process is repeated� Once the logic is mapped to CLBs� the timing for

the entire digital logic is obtained� In case this timing is not acceptable� the design

process is repeated�

To program a Splash �� we need to program each of the PEs �X�� X���� the

crossbar� and the host interface� The crossbar sets the communication paths between

PEs� In case the crossbar is used� X� needs to be programmed� The host interface

takes care of data transfers in and out of the Splash � board� A special library is

available for these facilities for VHDL programming as described in �����
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Figure ��� Programming �ow for Splash ��

��� Logic synthesis

The synthesis process involves the following stages �i� VHDL to net�list translation

to obtain a vendor speci�c net�list from the VHDL source code� �ii� partition� place�

ment and routing to �t the logic generated onto a physical PE� �iii� net�list to bit

stream translation� and �iv� bit stream to raw �le generation� As a result of the

placement� delay analysis can be carried out using the vendor model of the devices�

The partition� placement and routing stage is the most complex phase of the synthesis

stage� Often� this needs to be repeated by changing the initial random seed to get a

better placement�

In the �nal stage� the software components of the algorithm can be integrated

with the hardware� The host�interface carries out the following stages �i� loading a

raw �le onto each PE� �ii� con�guring the crossbar usage� �iii� initializing PE memory

if required� �iv� transfer data� and �v� reading the result� The host uses a set of
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routines callable by a C program�

Currently� e�orts are being made to provide a C�like language� called dbC �����

to program Splash � to keep the hardware architecture and communication issues

transparent to the end users� The programming model supported in dbC is that of

a SIMD processor array with a host processor controlling instruction sequencing for

the PEs�

��
 Software environment of Splash �

A programmer of Splash � needs to be aware of the features of the software environ�

ment of Splash �� The four phases involved in a design process are �i� simulation�

�ii� synthesis� �iii� debugging and �iv� execution from host� The steps involved are

shown in Figure ��
�

The facilities available for the four stages are described below�

� Simulation Currently� the user has to specify the designs in VHDL� Splash

has two entities declared for the X� and other Xis� The entity for X� is

named �Xilinx control part� and the entity for the other Xis is named �Xil�

inx processing part�� These entities have a prede�ned port declaration corre�

sponding to the various buses and interface signal they handle� A description

and explanation of the entities is available in ����� There are several library

packages available to the programmer� The �Splash�� package has the de�ni�

tions of constants� types and functions� A set of padding routines are provided

in the �components� package� The third package consists of Xilinx de�ned hard�
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Figure ��
 Steps in software development on Splash ��

macros� In later version of Xilinx software� these hardmacro de�nitions are

not required during synthesis� The root module for simulation is called �sys�

tem�� It instantiates two models �i� S�boards and �ii� Interface corresponding

to the processor board and the interface board in the Splash � system respec�

tively� In a prede�ned VHDL template for these two� the user is expected

to change the architecture names for the two entities �xilinx control part� and

�xilinx processing part�� The simulator can handle more than one processing

boards by properly setting the value of the generic �Number Of Boards��

� Synthesis The synthesis process uses the �Design Compiler� and �FPGA Com�

piler� from Synopsys to translate the VHDL code to Xilinx Netlist Format
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�XNF� �les� This process is carried out by a Unix shell script �vhdl�xnf�� The

next stage of synthesis is to place and route the logic and generate the control

bit stream for the Xilinx �	�	�based PEs and also obtain an estimate of the

processing speed of the processing speed using �xdelay� utility� This process is

carried out by yet another shell script �xnf�bit�� In the event the logic could be

placed and routed� an estimate of the delays can be analyzed using �xdelay��

� Debugging One of the important phases in development is debugging the bit

stream generated on the actual hardware� For this purpose� a hardware symbolic

debugger called �t�� is used� The inputs to the �t�� is a �raw� �le obtained by

associating a bit �le for each of the PEs and a de�nition for the crossbar� Using

�t��� the logic can be single stepped� so that intermediate values can be examined

on the hardware� A Unix shell�like user interface is provided�

� Execution on host After the �raw� �le has been ascertained to work on hard�

ware� a C host program interface needs to be written� For this purpose� a set

of C�callable routines are available� A run�time library needs to be linked with

the code� It should be noted that for the program to run� a device driver for

Splash hardware should be resident in the system memory�

��� Case study� Image segmentation on Splash �

The overall process of system design using Splash � is described in this section using

an algorithm for page layout segmentation� For ease of presentation� a simple im�
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age segmentation algorithm has been chosen to illustrate the various design stages

and e�ort involved in a mapping exercise involving Splash �� A more robust image

segmentation technique is described in chapter ��

����� Sequential algorithm

The sequential algorithm for page layout segmentation is based on the mean and the

variance of gray values at a pixel in a � � � window �neighborhood�� A pixel will

be assigned one of the three labels representing background� text and halftone� The

page segmentation algorithm has three stages of computation� namely� �i� mean gray

value in a window� �ii� variance of the gray value in a window� and �iii� �nal label

assignment� The �ow chart of the segmentation algorithm is shown in Figure ����

The input to the algorithm is the gray level scanned image of the document and the

output is the labeled image� where each pixel is assigned one of the three class labels�

A sample input image and the segmentation result produced by this algorithm are

shown in Figure ���� This page segmentation algorithm takes about �	 seconds of

CPU time on a SPARCstation �	 for a ��	�� � ��	�� image� The output of the

segmentation algorithm �shown in Figure ����b�� is fed into a postprocessing stage

��	�� to place boxes around regions of interest� This �block� representation of Figure

����a� is shown in Figure ����c��

There are two main phases in the segmentation algorithm� not considering the

post processing stage� The computation of mean and variance is done in a parallel

fashion� Mean value can be computed by convolving the input image with a � � �
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Figure ��� Flow chart of a simple page segmentation algorithm�

mask with all ��s� The expression for the variance ��� in a n � n window can be

written as follows

�� #
�
P

i

P
j I

�
ij��N��

N
� �����

where Iij is the gray value at pixel �i� j�� i� j # �� � � � � n� � is the mean of the gray

value in the n � n window and N # n� is the total number of pixels in the window�

From Eq� ������ it can be easily seen that the overall computation can be split into
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two stages� In the �rst stage� the sum of squares of the gray values can be computed�

In the second stage� the variance can be computed which needs the mean value� ��

as an input� The sum of squares is easily translated to a convolution operation again

with a mask of all ��s� The convolution algorithm will be explained in later chapters

in more detail� At this stage it is su�cient to assume that a Splash � implementation

for convolution is available� Subimages of ��� �� pixels are processed at a time with

a boundary of � pixels on all the sides of the subimage�

����� Mapping of image segmentation algorithm on Splash �

As described earlier� the stages in the design process are �i� VHDL code simulation�

�ii� synthesis of the bit stream �les for the PEs being used� and �iii� host interface

development� The VHDL code for the PEs is included in Appendix A� The VHDL

programs are �rst used with the Splash simulator� The �make�le� for the simulator is

also included in the appendix� During simulation� the signals described in the VHDL

programs can be traced� A sample simulation waveform for the algorithm is shown

in Figure ���� The signals of the VHDL design for X�� are traced with respect to the

system clock� X�� receives the mean from X� and the variance from X��� The �nal

label assigned to a pixel is the traced value of the signal �data��

The next phase is to synthesize the control bit streams from the VHDL code� For

this purpose� �Synopsys� and �Xilinx� CAD tools are used�
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Figure ��� Simulation results of page layout segmentation on Splash ��

The �ppr� utility produces the summary report which contains the CLB occupancy

results� A sample summary report is also enclosed in the Appendix A� The timing

analysis utility gives an estimate of the peak speed as shown in Figure ����� The

graph shows the histogram of the number of nets that can run at a given clock speed�

Hence� the lowest speed net determines the overall speed of the overall circuit� The

lowest speed in Figure ���� is ���� MHz which is also provided as a text output by

the �timing� utility�

The control bit stream �les are �rst used with the help of the on�line debugger t��

Using t�� a �raw �le� is created� This raw �le can be run on the hardware interactively

through t�� or through a C program� A sample t� session to generate the �raw� �le

from the bit streams is included in the Appendix A� The host interface program

written in C reads the input image� creates windows of �subimages� �� � �� pixels
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Figure ���	 Schematic for page layout segmentation on Splash ��
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Figure ���� Schematic for �ltering on Splash ��

and loads them on X� memory� The window size of �� � �� pixels is a restriction laid

down by the convolution stage� By running the speci�ed number of clock ticks on

Splash� the result is produced and stored in X�� memory� The host reads back this

result from Splash board� This procedure is repeated for all the possible windows in

the input image� The boundaries of the ����� windows are shown in Figure �����a��

The C code for the host interface and the �make�le� are included in the Appendix A�

����� Experimental results

The sequential algorithm has been written in C and tested on several input images�

On a SPARCstation �	 ��� MFLOPS� �� MIPS�� it takes about �	 seconds of CPU

time to segment a ��	�� � ��	�� image� The algorithm has been mapped onto Splash



��

Figure ���� Projected speed for X��

�� Running the Splash � at a clock rate of � MHz� the execution time for the page

segmentation algorithm is expected to be �
	 milliseconds� Therefore� a speedup of

close to ��	 has been achieved� The simulation results are shown for the PEs X��

X�� and X�� in Figure ���� The output of X� shows the sum of the pixels and the

output of X�� shows the sum of squares of pixels� Various signals in X�� show the

computations of mean and variance and the �nal label assignment� The �nal labels

are stored in the local memory of X�� which is read by the host at the end�

Figure �����b� shows the segmented output of the input image �Figure ����a��

generated by the Splash system� This segmented output is identical to the output

generated by the sequential algorithm �see Figure ����b���



��

��� Summary

We have introduced FPGAs as compute elements� Many custom computing machines

have been reviewed� Splash � is the platform for the work reported in this thesis� The

architecture of Splash � has been described� A simple algorithm has been chosen as

a case study for demonstrating the software development cycle for Splash ��

There are many advantages of using FPGAs� The most important aspect is the

rapid turn�around time for development and fast prototyping� The user gets the

optimal cost!performance ratio compared to designing an ASIC� The �nancial risks

are also minimal as the hardware development uses only o��the�shelf components

without involving costly design and fabrication of masks� The number of ICs used for

the glue�logic design can be reduced drastically� resulting in a more reliable system�

A complex FPGA can consist of millions of gates� Hence� manually placing and

routing the logic is not feasible� This results in limiting the performance of the system

to the capabilities of the CAD tools used� For supporting reprogrammability� we pay

the price in terms of slower speed compared to an ASIC� The CAD tools are also

costly�
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Chapter �

Image Convolution

Vision algorithms can be classi�ed into one of the three levels of vision tasks they

handle� namely� �i� low�level� �ii� intermediate�level� and �iii� high�level� The image

enhancement related activities are usually handled by the low�level operators� In

general� this class of algorithms can also be viewed as performing �ltering operations�

The �ltering algorithms can be �i� linear or �ii� non�linear� The point operation�based

�lters are usually linear and region or neighborhood�based �lters are non�linear� The

main distinction being that the linear operators are invertible� hence� the operation

can be undone by applying the inverse operator� A generalized convolution that can

be applied to template matching and morphological �ltering of images is described

in the next section� Application of convolution and image morphology in �ngerprint

feature extraction and document image processing is explained�

��
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��� Generalized convolution

Convolution is an important operator in digital signal and image processing� Many

machine vision systems use ��dimensional convolution for image �ltering� edge de�

tection� and template matching� Generalized convolution of two signals G and W is

often expressed as C # G �W � where C is the result of applying a convolution mask

W to the input signal G� For ��dimensional discrete images� generalized convolution

can be de�ned �
�� as follows

C�i� j� # �	�f�G�i� s� j � t��W �s� t��� �����

where �� 	 and f are three operators�

Table ��� shows the values the operators take for many standard operations� In this

task � 	 f�a� b�

Correlation
P

s

P
t a � b

Binary erosion �s �t a  b j b
Binary dilation �s �t a  b
Grayscale erosion Mins Mint b � a
Grayscale dilation Maxs Maxt a � b

Table ��� Generalized ��D Convolution� ���� multiplication� ��� subtraction� ���
addition�� � logical �AND� operator� �b complement of b� logical complement� �j�
logical �OR� operator�

chapter� template matching and morphological operators will be discussed further for

mapping onto Splash ��
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��� Template matching

Convolution of the ��D discrete signals f and g can be written as

h�x� y� #
�X

i���

�X
j��

f�x� i� y � j�g�i� j�� �����

For images of �nite size �say N � N�� and masks of �nite size �say k � k�� ��D

convolution can be expressed as

h�x� y� #
k��X

i��k��

k��X
j��k��

f�x� i� y � j�g�i� j�� �����

The operation described in Eq� ����� is also known as template matching� or correla�

tion� The image size and mask size need not� in general� contain a square number of

elements�

Typical use of convolution in image processing is for edge detection �e�g�� Sobel

and Prewitt masks�� computing texture coarseness� object location using template

matching� and image smoothing using Gaussian masks� The general convolution op�

erator described in Eq� ����� includes integer�valued and real�valued input images and

masks� Examples of real�valued masks include Gaussian smoothing� and computing

texture features using Gabor �lters� Most commonly used masks such as Laplacian�

Sobel� and Prewitt have not only integer mask values� but the mask values can also be

expressed as powers of two� In a typical application involving many image processing

stages� each stage should be capable of processing real�valued images� Based on this

observation� a taxonomy of convolution operations is de�ned as shown in Figure ����
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Integer-valued masks Real-valued masksReal-valued masksInteger-valued masks

Input Image 

Real-valuedInteger-valued 

General integer valuesValues are
powers of 2

Figure ��� A taxonomy of convolution operators�

Convolution on special�purpose architectures has been a topic of substantial in�

terest �
�� ��	� ����� A very simple distributed approach for convolution is to split

the input image into a set of smaller� possibly overlapping� subimages� the number of

subimages is the same as the number of processing elements �PEs�� Each PE produces

the result for the sub�image it receives� The spatial support for the convolution mask

is provided through the overlap at the boundaries or data replication� However� this

simplistic approach may not be suitable for all target architectures� For example� if

the image is being acquired line by line then this approach may not be e�cient as we

have to wait till we acquire the whole image� In order to understand the advantages

and disadvantages of various algorithms reported in the literature� we need to look at

the communication and computation pattern in ��dimensional convolution� The basic

convolution operation is shown schematically in Figure ���� Suppose the value of the

convolution operation is desired at point �x� y�� The center of the mask is placed at
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Figure ��� The convolution operator� I�i�j� is the input gray image value at pixel
�i�j� and M�u�v� is the mask value at �u�v��

�x� y�� A point�wise inner product of the image pixels and mask values is computed�

followed by a reduction sum operation� This computes the output value at �x� y��

The reduction operation can also be a pre�x sum� although the intermediate results

are not directly useful� This basic set of operations is repeated at all possible �x� y�

locations�

The sequential version of the convolution algorithm is very simple and is shown

in Figure ���� There are four loops in the algorithm and its overall complexity is

O�N�k��� The simple data partitioning approach described above can reduce the total

computation time by a factor equal to the number of available processors� ignoring

the extra computations needed in the overlapping areas by each PE�

The previous work described in the literature can be summarized based on the

target architecture on which the convolution operation is implemented�

� Systolic One of the most widely used convolution algorithm is the systolic

algorithm by Kung et al� ���	�� The algorithm is fairly straight forward and

also scalable to higher dimensions using the ��D convolution algorithm as the
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for i � � to N do
for j � � to N do

sum � 	
for u � �k
� to k
� do

for v� �k
� to k
� do
sum � sum�Ii�u�j�v��Mu�v�

Oi�j� � sum
end

end�

Figure ��� Sequential algorithm for ��dimensional convolution� I�i�j� and O�i�j� are
the input and output values� respectively� at pixel �i�j� and M�u�v� is the mask value
at �u�v��

building block� In his landmark paper �Why systolic architectures$� ������

Kung described many convolution algorithms on systolic structures� Based on

a general inner product computation� Kulkarni and Yen ����� proposed a systolic

algorithm for ��D and ��D convolutions�

� Hypercube Fang et al� �
�� have described an O�k��p� � klog�N�p� � logN �

logp� algorithm� where � � p � k� using N�k� PEs and an O�N�M��L��

algorithm using L� PEs� Using N� PEs� Prasanna Kumar and Krishnan �����

proposed an algorithm with the best time complexity of O�N��K� � logN��

With a �xed number of PEs� the time complexity changes to O�k�logk� logN��

� Mesh Many researchers ����� ���� have proposed schemes for convolution

on mesh connected architectures� Lee et al� ����� use computation along a

Hamiltonian path ending at the center of the convolution mask� called the

convolution path� Ranka and Shahni ����� do not broadcast the data values�
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thereby improving the performance of their algorithm by an order of magnitude�

� Pyramid Pyramid architectures are useful in dealing with multi�resolution

images� An O�k� � logN� time complexity algorithm is described by Chang et

al� �����

� VLSI!ASIC A number of proposed convolution algorithms are suitable for a

VLSI implementation� Chakrabarti and Jaja ���� use a linear array of processors

in their algorithm� In ����� convolution is viewed as a generalized inner product

and a VLSI implementation for ��dimensional convolution is described� Ran�

ganathan and Venugopal ���	� have described a VLSI architecture for template

matching using k� PEs and they achieve a time complexity of O�N��� �K���

��� Image morphology

Mathematical morphology is a powerful tool for image analysis� By proper selection of

a structuring element� a number of commonly used algorithms for segmentation� shape

analysis and texture can be implemented e�ciently� Mathematical morphology has

been successfully used in automated industrial inspection� nonlinear �ltering� image

compression� and biomedical image processing ����� ����

Mathematical morphology is based on set theory� An image is considered as a

discrete set of pixels� For binary images� the set of black pixels is the image set�

Gray�level images are treated in a similar way where each pixel has three dimensions�

the x� and y�coordinates and the gray value� A structuring element is a special user�
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speci�ed set� The size and shape of the structuring element totally depends on the

application� The two basic operators of morphology are de�ned as follows�

Let A be the image set and S be the structuring element� We de�ne the two basic

morphological operators� dilation and erosion� as follows�

� Dilation� denoted by the operator 	� is de�ned as follows

�� a Binary image

A	 S # fx j x # �a� b� for some a 
 A and b 
 Sg� �����

�� Gray level image

C�i� j� # max
u�v�	��M��


fA�i� u� j � v� � S�u� v�g� �����

where C is the result of gray level dilation and the size of the image is

M � M�

� Erosion� denoted by the operator 
� is de�ned as follows

�� Binary image

A
 S # fx j �x � b� 
 A for every b 
 Sg� ���
�
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�� Gray level image

C�i� j� # min
u�v�	��M��


fS�u� v��A�i� u� j � v�g� �����

Alternatively� the two operators can also be de�ned using a generalized convolution

operator as described in Table ����

� Dilation for binary images

C�i� j� #
M���
u��

M���
v��

A�i� u� j � v� S�u� v�� �����

� Dilation for gray scale images

C�i� j� # max
u�v�	��M��


fA�i� u� j � v� � S�u� v�g� �����

� Erosion for binary images

C�i� j� #
M���
u��

M���
v��

A�i� u� j � v� S�u� v��jS�u� v�� ����	�

� Erosion for gray scale images

C�i� j� # min
u�v�	��M��


fS�u� v��A�i� u� j � v�g� ������

The convolution�based de�nitions are easier to implement in parallel form� Many
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architectures have been proposed for speeding up the morphological operators� In

����� a method is presented to represent a binary image in a bit�mapped form such

that the CPU can handle more pixels at a time� Boomgaard et al� ���� also use

a decomposition scheme to express a large structuring element as a combination

of smaller structuring elements� Crabtree et al� ���
� rede�ne ��connected and ��

connected erosion and dilation operators and claim that their implementation is fast

even on personal computers� A logic gate and multiplexer based implementation is

described in ����� for gray level images� Lenders et al� ����� have proposed a ��bit

systolic processor for binary morphology�

��� Application of generalized convolution

In this section� two applications of generalized convolution are described� For compu�

tations of dominant ridge directions in a �ngerprint� the orientation �eld ����� model

is adopted� In order to remove �spiky� growths in a �ngerprint skeleton image� a

morphological �lter has been described in ������ For removing repetitive background

in document images� Liang et al� ����� proposed a morphological approach� These

three applications will be used to demonstrate the application of generalized ��D

convolution�

����� Orientation �eld computation using ��D convolution

The orientation �eld is used to compute the optimal dominant ridge direction in each

�
 � �
 window or block of the input image� Following steps are involved in the
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computation of the orientation �eld for each window�

�� Compute the gradient of the smoothed block� Let Gx�i� j� and Gy�i� j� be the

gradient magnitude in x and y directions� respectively� at pixel �i� j� obtained

using �� � Sobel masks�

�� Obtain the dominant direction in a �
� �
 block using the following equation

�d #
�

�
tan��

�
BBBBB�

��X
i��

��X
j��

�Gx�i� j�Gy�i� j�

��X
i��

��X
j��

�Gx�i� j�
� �Gy�i� j�

��

�
CCCCCA
� Gx �# 	 and Gy �# 	 ������

Note that if either Gx or Gy is zero then the estimate of the dominant direction is

trivial �	o or �	o�� The angle �d is quantized into �
 directions� The orientation �eld

obtained using this method is shown in Figure ���� The gradient magnitudes �Gx

and Gy� at a pixel are computed using an integer�valued convolution mask� This will

be implemented on Splash ��

����� Skeleton smoothing using image morphology

The binary ridge image needs further processing before the minutiae features can be

extracted� The �rst step is to thin the ridges so that they are single�pixel wide� A

skeletonization method described in ���
� and available in the HIPS library ��	��

is used� Unfortunately� the ridge boundary aberrations have an adverse impact on

the skeleton� resulting in �hairy� growths �spikes� which lead to spurious ridge bi�

furcations and endings� Hence� the skeleton needs to be smoothed before minutiae
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�a� �b�

�c�

Figure ��� Computation of orientation �eld� �a� input �ngerprint image ����� �����
�b� orientation �eld �for each �
� �
 window�� �c� orientation �eld superimposed on
the input image�
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�a� �b�

Figure ��� Thinned ridges �a� before spike removal� �b� after spike removal�

points can be extracted� The spikes are eliminated using an adaptive morphological

�ltering� The �lter used is a binary �open� operator with a box�shaped structuring

element with all ���s of size �� �� The structuring element is rotated in the direction

orthogonal to the orientation �eld in the window� The ridge skeletons before spike

removal and after spike removal are shown in Figure ���� The �open� operator is

de�ned using the two basic dilation and erosion operations�

����� Background removal in document image processing

Overlapping text and background separation is an important step in document image

processing� A morphological �ltering�based method is described in ������ By using an

�open� operator with a suitable size structuring element� repetitive background can

be removed as shown in Figure ��
�
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�a� �b�

Figure ��
 Background removal using �open�� �a� input binary image� �b� output of
�open��

��� Mapping onto Splash �

Image processing algorithms� in general� and convolution� in particular� demand high

I!O bandwidth� Most of the algorithms implemented on special purpose architectures

assume that the data are already available on the PEs� This� in a way� avoids the I!O

bandwidth problem of the convolution operation� We do not make this assumption�

Jonker ����� argues that linear arrays are better for image processing algorithms� A

linear array of PEs operating in a systolic mode o�ers two advantages �i� systolic ar�

rays can balance I!O with computations� �ii� the nearest neighbor communication can

eliminate the need for a global communication facility for some types of algorithms�

One of the preferred modes of computation on Splash � is the systolic mode� In this

mode� no assumptions are made about the availability of data in the individual PEs�

The computations needed in a PE are also fairly simple� This helps us in balancing

both the I!O bandwidth and the computation requirements of a PE� Hence� a systolic

algorithm for implementing convolution on a Splash � is preferred�
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�� Assume k PEs are available�

�� The left most PE receives input and the right most PE produces
output�

�� Partial sum� 	 for the left most PE�

�� On the ith PE� carry out the following

� Receive partial result and pixel value from the left neighbor�

� partial result� mask�i� � pixel value� left result�

� Send partial result and pixel value to the right neighbor�

Figure ��� ��D systolic algorithm�

First� the simple ��dimensional convolution algorithm is described� Let us assume

that we have k PEs� where k is the size of the �� � k� mask� Each PE receives the

pixel value and the partial result available so far from its left neighbor� The PE

multiplies the pixel value with the mask values assigned to it and adds the partial

sum to it� This result and the pixel value are passed to the right neighbor� At the end

of the systolic path� we get the convolution result after taking into account the initial

latency� The algorithm is shown in Figure ���� A schematic diagram of ��dimensional

convolution on a set of PEs connected linearly is shown in Figure ����a��

The above algorithm assumes that the PEs can implement multiplication opera�

tion� In a FPGA�based PE� this is not always true� A double precision �oating point

multiplier needs more logic than what is available in a PE� While we can use the local

PE memory to store the multiplication table indexed by the pixel value� this results

in an additional delay of one cycle necessary to reference the multiplication result

from the memory� This scheme is shown in Figure ����b��

The ��dimensional convolution is an extension of the ��dimensional convolution
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described above� The basic idea is based on the algorithm proposed by Kung et al�

���	�� The k�k mask is extended to a k�N mask with 	�s placed at locations where

no entry was present� These kN entries are serialized to get a single ��dimensional

mask of kN entries� Now� we can apply the ��dimensional convolution algorithm

outlined above� Note that there are �N � k� locations with 	�s as their mask value�

Hence� we can simply have �N � k� stages of shift registers� Secondly� for improper

positions of this new Nk�element mask we need to ignore some values which are not

really part of the output� Finally� we assume that the pixels are being communicated

in a raster scan order� Note that we can implement the ��dimensional convolution

algorithm with or without a lookup table� The scheme is shown in Figure ����c��

����� Implementation issues

The general convolution algorithm needs to be tuned to the special hardware being

used� For example� the Splash � system has only �
 PEs on a board� and therefore�

virtual PEs need to be mapped to physical PEs� The second issue is the number of

shift registers which depends on the number of rows in the image� The third issue is

the implementation of multipliers needed by the PEs� Following is a summary of our

solution to these three issues�

� Large number of mask entries If mask size �k� is greater than the number of

available PEs� then the virtual PEs are mapped to available PEs� In carrying

out the mapping� the timing model between PEs must be satis�ed�
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(c) 2-D Convolution with shift registers and memory lookup

(a) 1-D Convolution

(b) 1-D convolution with Memory lookup

Figure ��� Systolic schemes for convolution on Splash �� �a� ��dimensional convolu�
tion� �b� ��dimensional convolution using memory lookup� �c� ��dimensional convo�
lution with shift registers and memory lookup�

� Large image width A large image has to be split into smaller sub�images of

some prede�ned size� In order to handle this� the ��dimensional convolution has

been implemented with a �xed width ��� in our case�� Depending on the mask

size� the required number of rows and columns at the border are copied�

� Multiplier implementation

� Masks with integer values If mask values are of the type �p� where p is an

integer then the multiplier in each virtual PE can be replaced with simple

bit shifters�
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Pixel_in

Partial_sum_in

Delay Register

Mask
Pixel_out

Partial_sum_out

Figure ��� A compute element�

� Integer mask values but not necessarily powers of �� An iterative shift and

add algorithm to multiply two eight bit numbers can be implemented�

� Real valued masks If mask values are normalized ���� ��� then a suitable

scheme for implementation on FPGAs is needed�

The Splash PEs carry out two di�erent activities� namely� �i� additions and multi�

plications� and �ii� shift operations� We have built following two di�erent type of

elements for these activities �i� compute element� and �ii� shift element� The num�

bers of compute elements and shift registers are determined by the mask size and

image width� The schematics of a compute element is shown in Figure ��� and a

schematic of the register bank is shown in Figure ���	�

A brief summary of the analysis of several convolution algorithms is given in Ta�

ble ��� based on the communication facility available on the respective architectures�

In a systolic algorithm� the communication overhead is balanced by the computa�

tion phase� so no complex communication facility is needed� In this sense� systolic

algorithm is better in terms of the total work done and communication simplicity�

We compare our implementation on Splash � with implementations on di�erent

platforms in terms of the total execution time� The timings for � � � convolution�
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..

Pixel_in

Partial_sum_in

Pixel_out

Partial_sum_out

Shift_register

Figure ���	 A shift register�

Convolution
algorithm

Computational Complexity No� of PEs Architecture

Ranka  Sahni ����� O�k���% of bits in a pixel� �N�� Mesh
Prasanna Kumar  
Krishnan �����

O�logk� O�N�k�� Hypercube

Chang et al� ���� k� � logN O�N�� Pyramid
Kung ���	� algorithm O�N�� O�k�� Systolic
Ranganathan et al�
���	�

O�N� � k���� O�k�� VLSI

Table ��� Comparative analysis of convolution algorithms� image size is N �N and
mask size is k � k

based Sobel edge detector on a ��� � ��� image are shown in Table ���� The basic

sequential convolution algorithm �Figure ���� running on di�erent Sun host machines

has been timed� In addition� timing on a recently developed i��
	 based system from

Alacron is reported� The timing results on CM�� are for edge detection using a set

of six � � � convolution masks ������

For implementing the convolution algorithm on Splash �� three standard edge

detectors used in low�level computer vision algorithms have been chosen� These �lters

have been chosen because the mask values are powers of �� The �lters and their
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Machine Architecture Time Remarks
SPARCstation �	 Von Neumann ��
	 sec C�code� timing ob�

tained using �clock�
function

Model �	
SPARCstation �	 Von Neumann ���� sec Same as above
Model �	
SPARCstation � Von Neumann ���� sec Same as above

i��
	 Pipelined ���� ms Timings as reported
by vendor

Splash � FPGA based ����� ms Mask values are pow�
ers of �
��� pixels base
width�

Splash � FPGA based 
� ms Table lookup for
multiplication
��� pixels base
width�

CM�� MIMD ���� PEs� �	 ms Result reported in
������

CM�� MIMD ��� PEs� 
	���� ms Result reported in
������

MasPar�� SIMD ��K PEs� �� ms Result reported in
��
��� scaled to ����
��� image

Datacube Pipelined ���� ms ����
MVC���	 Pipelined �� ms ��	��
Data Translation Spl� hardware 

 msecs ��
�

Table ��� Timings for a � � � Sobel edge detector for a ��� � ��� image on di�erent
platforms� � Results are for an edge detector based on six � � � convolution masks�
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Figure ���� Implementation of three edge detection �lters on Splash �� �a� � ��
Sobel masks� �b� �� � Prewitt masks� �c� �� � Prewitt masks� X� � X�� denote the
PEs in Splash ��
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Image Size
Mask Size ��� � ��� ��
 � ��
 ��� � ���

� �� ���
 �	
�
 �����
� � � ���� ��
�
 �
���
� � � �
�
 ����� �����

Table ��� Run times �in milliseconds� of edge detection on Splash � for various image
and convolution mask sizes�

mappings on Splash � PEs are shown in Figure ����� These operators have two

convolution stages and a �nal stage to compute the edge �gradient� magnitude at

each pixel by computing the absolute sum of the two convolution output images�

Each PE accommodates the required shift registers for that stage� The gradient

magnitude outputs for the house image using a � � � Sobel edge detector� a � � �

Prewitt edge detector and a � � � Prewitt edge detector are shown in Figure �����

The timings for these edge detectors on Splash � are shown in Table ����

Our approach for implementing convolution operation on Splash � is di�erent in

many ways from the approach taken by Peterson et al� ������ The main di�erences

are �i� we are not limited by a �xed mask size of � � � as done in ������ For smaller

masks� Peterson et al� ����� have used the same � � � masks �lled with zeros� This

may be due to hard�coded model of computing on Splash �� �ii� Peterson et al� use

all the �
 PEs for implementing their algorithm� We use a fewer number of PEs

for smaller mask sizes �k � ��� Therefore� in our approach� we will have more PEs

available for implementing other image processing algorithms� and �iii� our mapping

on Splash � results in a higher performance of nearly �		 frames per second compared

to �� frames per second reported by Peterson et al� ������
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�a� �b�

�c� �d�

Figure ���� Results of ��dimensional convolution� �a� Input image� �b� � � � Sobel
edge detector output� �c� � � � Prewitt edge detector output� �d� � � � Prewitt edge
detector output�

��� Analysis of convolution on Splash �

The purpose of this analysis is two fold� First� the total number of clock cycles needed

for ��D convolution on a M �M image using a k� k mask is computed� Second� the

number of physical FPGAs needed in the operation is estimated� It can be easily seen

from the algorithm that both these quantities are deterministic and can be computed

using a general formula derived below� The number of FPGAs is being computed to

see the e�ect of number of CLBs in an FPGA on convolution algorithm� Although

our target hardware �Xilinx �	�	� has �xed number of CLBs� with advances in FPGA
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technology� more and more CLBs are becoming available in a chip� The convolution

algorithm can bene�t from a large number of CLBs as it is dependent on the number

of adders and shift registers that can be accommodated in a chip�

Following notations and assumptions are used in the analysis

�� Image size # M �M �

�� Block image size # N �M �

�� Mask size # k � k�

�� Number of CLBs needed to realize a �
�bit adder �hard macro!relatively place

macros� # a

�� Number of CLBs needed to realize a �
�bit parallel loadable shift register # r


� Total number of CLBs in a FPGA chip # c

�� Occupancy factor �" of CLBs occupied in a chip� # f

�� Partial results �sums� are �
�bit wide and the data is ��bit wide�

As described in the ��D convolution algorithm� the input image is split into equal

sized data segments of width N and height M �original height� as shown in Figure �����

The following computations show the number of cycles needed to complete the ��D

convolution on a data segment of size N �M � Note that there is an overlap of k��

pixels on all sides of the data� We de�ne

Total time # Latency � Computation time � Flush out time�
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k/2

M

M

N

k/2

k/2

k/2k/2

Figure ���� Notation used in the analysis of ��D convolution algorithm�

where

Latency # initial number of clock cycles before the �rst valid data appears�

computation time # number of clock cycles actually used in the compu�

tation� and

Flush out time # number of clock cycles to �ush out the left over data

elements of the present dataset�

Based on the above de�nitions�assumptions and notations� the following

values are arrived at�

Latency # N � k�

Flush out time # N � k�

Computation time # �N � k�� �M � k��

Wrap around loss # �k � ���M �

No� of data segments # M�N �
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Using these values� the total number of clock cycles for all the M
N
segments

can be obtained as follows�

Total number of clock cycles # M
N
��N � k � �N � k�� �M � k���

We de�ne e�ciency as the ratio of ideal number of clock cycles and actual

number of clock cycles taken by the algorithm as shown below�

e�ciency # ��M�k��M�k
Total number of cycles

�

The total number of cycles and the e�ciency values for commonly observed values

of M � N � and k are shown in Table ���� The total number of clock cycles and the

e�ciency for di�erent assigned values ofM � N and k is computed using the de�nitions

described earlier� The maximume�ciency of 	���� is possible forM # �� 	��� N # 
�

and k # ��

The communication complexity of the algorithm is simple due to the choice of the

systolic algorithm� The computation and communication steps are overlaid in each

clock� hence� no communication overheads are involved�

For estimating the number of FPGAs needed� we note that there are two subcases

�a� masks that are powers of two� and �b� general �oating point masks� Let P be the

desired number of FPGA chips� Then�

�a� No� of adders needed!virtual PE # ��

Total number of adders # k�

No� of registers # k�

No� of shift registers # N � k�

In order to be able to accommodate the desired number of CLBs� the
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M N k �M � k�� �M � k� No� of cycles E�ciency

��
 �
 � 
�	�� �	��� 	���

��
 �
 � 
���� �	��
 	����
��
 �
 � 
��
� �		�
� 	�
��
��
 �
 � �	��� ��	
	� 	�
��
��
 �� � 
�	�� ��	�
 	��	

��
 �� � 
���� ����
 	����
��
 �� � 
��
� ��
�	 	��	�
��
 �� � �	��� ����� 	��
�
��
 
� � 
�	�� �	��� 	����
��
 
� � 
���� ����
 	����
��
 
� � 
��
� ����
 	����
��
 
� � �	��� ����� 	����
��� �
 � �
���� ��
��� 	����
��� �
 � �
���� ������ 	����
��� �
 � �
��
� ������ 	�
��
��� �
 � ������ ��
	�
 	�
��
��� �� � �
���� ������ 	���	
��� �� � �
���� ������ 	����
��� �� � �
��
� ���	�� 	����
��� �� � ������ ��	��� 	����
��� 
� � �
���� ������ 	���	
��� 
� � �
���� ��	�	� 	���	
��� 
� � �
��
� �	��
	 	����
��� 
� � ������ �����	 	��


��	�� �
 � �	����� ������
 	���	
��	�� �
 � �	����� ������
 	��
	
��	�� �
 � �	
��
� �����
� 	�
��
��	�� �
 � �	
�	�� �
����� 	�
��
��	�� �� � �	����� ���
��� 	����
��	�� �� � �	����� ������
 	��
�
��	�� �� � �	
��
� ��	�	�� 	����
��	�� �� � �	
�	�� ������� 	����
��	�� 
� � �	����� ��	�	�� 	����
��	�� 
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Table ��� Number of clock cycles and e�ciency for commonly observed values of M �
N � and k
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following inequality must hold�

P � f � c � k�k � a�N � r�� ������� �i�

�b� No� of adders needed!virtual PE # �� �� bit normalized coe�� value�

Total number of adders # � � k�

No� of registers # k�

No� of shift registers # N � k�

Again� in order to accommodate the required CLBs� the following inequal�

ity must be satis�ed�

P � f � c � k�� � a � k �N � r�� ������� �ii�

For Xilinx �	�	 FPGA chip� c # �		 � a # �	 and r # �� for an easy placement

of the logic� we assume f # 	���� When k # �� and N # 
�� we can see that the

inequality �i� is satis�ed with P # � in case �a� and the inequality �ii� is satis�ed

with P # �� in case �b��

��
 Discussion

A generalized ��D convolution is of signi�cant importance for low�level vision tasks�

Most of the image processing accelerators support template matching and morpholog�

ical processing as independent functions� Although speeds up to �	 MHz are available

for convolution with � � � masks using these accelerators� they su�er from following

shortcomings� The implementations are restricted to mask sizes already de�ned by

the designer� Secondly� operations which need to be performed on the outputs of
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convolution stages cannot be performed on the same hardware at the same time� For

example� the computation of Sobel edge detection needs a computation of both Sx

and Sy �gradient magnitudes in x and y directions� at the same time� followed by

an addition of jSxj and jSyj� Similar constraints exist in computation of the domi�

nant ridge direction in �ngerprint images� This was possible using the PEs and the

crossbar communication on the processor board of Splash �� Any operation on the

output of convolution has been made possible by the other PEs available on Splash �

which could be programmed for a separate instruction after receiving the convolution

results through the crossbar� For the morphological �open� operation� the results of

the �rst stage could be fed to the second stage using the SIMD bus� There is no loss

of synchronism in connecting the two stages� On the commercial pipelined processors�

the performance of the standard accelerators drops to �	 MHz for an ��� mask size�

The performance on the Splash � remains unchanged as we increase the mask size�

��� Summary

In this chapter� sequential algorithms for low�level vision tasks� ��D convolution and

image morphology have been introduced� Applications of these basic operators have

been shown in realizing stages of minutiae feature extraction in �ngerprint images

and removing repetitive background in document image processing� The mapping of

the generalized convolution onto Splash � is described� The analysis of the algorithm

mapping has been carried out� Results in terms of synthesis speeds obtained have

been compared with several other hardware systems�
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Chapter �

Image Segmentation

The process of spatial partitioning of an image into mutually exclusive connected

image regions is known as image segmentation ��	� �
��� Each region is expected to

be homogeneous with respect to a de�ned property� Typically� image segmentation

is carried out in the early stages of a vision system to facilitate image representation

and interpretation� An image segmentation problem is analogous to the problem of

pattern clustering in the sense that we need to de�ne the similarity criterion between

pixels or pattern vectors and the number of segments or clusters ��	��� Most well

known algorithms for image segmentation are based on the following approaches �i�

thresholding or clustering� �ii� boundary detection� and �iii� region growing� The

similarity between pixels is based on the notion of homogeneity which involves gray

level� color� texture and optical �ow information�

���



���

��� Page layout segmentation

In an automated document image understanding system� page layout segmentation

plays an important role for segmenting text� graphics and background areas� Such

a segmentation allows us to apply character recognition algorithms to only text re�

gions� A number of algorithms have been reported for page layout segmentation

���	�� Haralick et al� ���� use image morphology�based techniques� Jain and Bhat�

tacharjee ��	�� have used a multi�channel �ltering approach based on Gabor �lters�

Jain and Chen ��	�� have used color information along with Gabor �lter outputs for

page layout analysis applicable to locating address labels� Recently� Jain and Karu

��	
� have proposed an algorithm to learn texture discrimination masks needed for

segmentation� The performance of this approach for page layout segmentation has

been demonstrated by Jain and Zhong ��	���

The page segmentation algorithm by Jain and Zhong ��	�� has three stages of

computation� namely� �i� feature extraction� �ii� classi�cation� and� �iii� postprocess�

ing� The feature extraction stage is based on a set of twenty masks obtained by the

learning paradigm proposed in ��	
�� The second stage is a multistage feedforward

neural network with �	 input nodes� �	 hidden nodes and three output nodes� The

connection weights and other parameters of the neural network have been learned for

document images using the approach described in ��	
�� The � � � masks for the

feature extraction stage have been shown to be �optimal� in the sense of minimizing

the classi�cation error for the three�class �text and line drawings� half�tone and back�

ground� segmentation problem� The post�processing stage involves removing small
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Input image

Output

Layer 2

 Layer 1 (masks)

. . . . . .

. . . . . .

. . .

M

M

Figure ��� Schematic of the page layout algorithm�

noisy regions and placing rectangular blocks around homogeneous identical regions�

The schematic diagram of the segmentation algorithm is shown in Figure ��� �M # �

in our implementation�� The input to the algorithm is the gray level scanned image

of the document and the output is the labeled image� where each pixel is assigned

one of the three classes� A sample input image and the segmentation result produced

by this algorithm are shown in Figure ���� The input gray level is image shown in

Figure ����a�� The three�level segmentation results obtained by the sequential algo�

rithm is shown in Figure ����b� where the background is shown by black pixels� the

text areas are shown in gray pixels and the the the graphics areas are shown in white�

Figure ����c� shows the results after postprocessing the segmentation result where the

segmented areas are enclosed in rectangular boxes� The text areas are enclosed by

black boxes and graphics areas are enclosed by white boxes� The twenty �� � masks

and the weights of the neural network stage are listed in the Appendix B� This page

segmentation algorithm takes about ��	 seconds of CPU time on a SPARCstation �	

for a ��	�� � ��	�� image�



���

�a� �b� �c�

Figure ��� Page layout segmentation� �a� Input gray�level image� �b� Result of the
segmentation algorithm� �c� Result after postprocessing�

The computational requirements of this page segmentation algorithm can be sum�

marized as follows� There are twenty � � � feature extraction masks� Each feature

vector �with �	 elements� needs �	 � �� multiplications and �� � �	 additions�

The size of a typical input document image is ��	�� � ��	�� pixels� Therefore� the

�ltering stage requires of the order of �	 billion multiplications and �	 billion addi�

tions� The neural network classi�er requires the following computations for every

�	�dimensional feature vector� we need �		 multiplications in the �rst stage and 
	

multiplications in the second stage� The �rst stage also involves �	 � �� additions

and the second stage needs � � �� additions� Note that the feature values for the

second stage are �oating point numbers compared to the integer�valued input pixels

in the feature extraction phase� For a ��	�� � ��	�� image� there are �
	 million

�oating point multiplications in the classi�cation stage�
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��� Mapping onto Splash �

The two main phases in the segmentation algorithm are �ltering and multilayer feed�

forward network� The �ltering stage is carried out �rst� The Splash � system is

then recon�gured to implement the neural network classi�er� In this section� we will

address the mapping issues for these two stages�

An important design parameter that needs to be decided is the data widths at

di�erent stages� The input is already known to be ��bits� The result of the �ltering

stage has been decided to be ���bit signed integers which is then fed to the neural

network stage� The neural network hidden layer has a ��s complement ���bit output

and� to be consistent� the output layer has the same width� The ��s complement

representation is used for the integers in all the stages�

����� Filtering

The mask values for this application have been derived using the learning paradigm

described in ��	
�� The twenty � � � feature extraction masks are real�valued� The

�ltering algorithm is implemented as a ��D convolution with �oating�point multipli�

cation� The ��D convolution presented in the previous chapter has been extended to

real�valued masks� One of the limitations with the current FPGAs is the minimal

support for �oating point operations� This disadvantage can be turned into an advan�

tage by developing suitable multiplication operators needed to carry out the �oating

point arithmetic� As the input is an ��bit gray valued image� the �oating point mul�

tiplication is converted to a �xed point multiplication using shift and add iteratively�
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�� Normalization the mask coe�cients are normalized between ���� �� by dividing
the mask values by a constant chosen to be a power of two and greater than or
equal to the largest �absolute� mask value�

�� Floating point multiplication multiplication of an integer by a fraction is con�
sidered as successive sums of partial results�

�� Renormalization the result is scaled back by the normalization constant used�

Figure ��� Fixed�point multiplication�

The algorithm is shown in Figure ���� With this approach� a general�purpose �oating

point multiplier has been replaced by a series of adders by taking advantage of the

input range being �	� ����� The overall schematic design for the ��D convolution is

already described in the previous chapter�

The algorithm needs the services of the host to do the normalization of the co�

e�cients� The fractional value is represented as an ��bit value� Thus� a maximum

of eight adders are needed� For each coe�cient in the � � � mask� the number of

adders are di�erent� As the total number of adders to realize a mask rise sharply�

more FPGAs are needed� Hence� a full Splash � processor board is dedicated for each

�lter� Each of the twenty masks is programmed separately to get a compact mapping�

����� Analysis of the �lter mapping

To realize twenty �lters� a total of twenty processor boards are required to complete

the segmentation in one pass� With a ��board system� it takes �	 passes over the

input image� The masks being �xed� this approach is acceptable� The twenty control

bit streams for the twenty �lters are available to reuse the available processor boards

dynamically� Note that the input image can reside on the X� host and the number
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of passes to realize the twenty �lters can read the image from X� instead of host�

Reprogramming the processor board with a di�erent control stream leaves the external

memory unchanged�

An on�chip multiplier approach is preferred over a look�up table mode in the

implementation to reduce the number of memory accesses to the external memory�

Recall that in the ��D implementation� a full row of mask�values are mapped to

a single physical PE� The external memory being single ported� seven accesses to

memory would require � cycles� thus� scaling down the performance linearly by ��

����� Neural network classi�er

The neural network used in the classi�cation stage is a multilayer perceptron �MLP��

The present approach concentrates on the classi�cation activity and not in the learn�

ing of connection weights which is typically done o��line� Hence� it is assumed that

the network architecture and the weights have already been determined� The weights

are assumed to be real�valued numbers in general� In our application the network

has twenty input nodes� each node corresponding to one of the texture �lter outputs

�real�valued�� The intermediate �hidden� layer has �	 nodes and the output layer

has � nodes� A MLP consists of several perceptrons interconnected in a feedforward

manner as shown in Figure ����

Arti�cial neural networks �ANNs� exhibit six types of parallelism ��
��� Most

commonly� three types of parallelism namely� layer level� node level and weight par�

allelism are exploited� Two di�erent design approaches have been taken to map a
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Figure ��� A multilayer perceptron�

MLP onto Splash �� In the �rst case� the design is modular and is capable of accom�

modating any number of layers and neurons� In contrast� the second method handles

only three layered �input� hidden and output� networks fully utilizing the hardware

capabilities� However� both the methods utilize a common building block � a neuron�

A single neuron implements a perceptron� A MLP is realized as an interconnection

of several neurons�

Many special�purpose implementations of neural networks have been described in

the literature� A survey of parallel architectures for neural networks is given in ��		��

Mueller and Hammerstrom ����� describe design and implementation of CNAPS �

a gate array based implementation of ANNs� A single CNAPS chip consists of 
�

processing nodes connected in a SIMD fashion using a broadcast interconnect� Each

processor has �K bytes of local memory� a multiplier and ALU� and dual internal

buses� The adder and multiplier can perform signed ��� �
�� or ���bit integer arith�

metic� Using Xilinx XC �	�	 FPGAs� Cox et al� describe the implementation of

GANGLION ����� A single board caters to a �xed neural architecture of �� input

nodes� �� hidden nodes and � output nodes� Using the CLBs� � � � multipliers have
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been built� A lookup table is used for the activation function� Bortos et al� ���� de�

scribe a smaller network implementation using less powerful Xilinx XC �	�� FPGAs�

Their system supports � input nodes� � hidden nodes and � output nodes� A neuron

is based on two XC �	��s and the nonlinearity is based on an �K EPROM�based

lookup table� Several other implementations have been surveyed in ��
���

In implementing a neural network classi�er on Splash �� a perceptron implementa�

tion has been used as a building block� Hence� the design of a perceptron is described

�rst� A perceptron consists of two stages namely� �i� an inner product computation�

and �ii� a non�linear function applied to the output of the previous stage as shown

in Figure ���� In our case� the perceptron is assumed to have �	 inputs which uses

a non�linear function �typically a sigmoid function� to produce a real�valued output�

We have used tanh��x� with � # 	��� as the non�linearity in our implementation�

For our mapping� two physical PEs serve as a neuron� The �rst PE handles the inner

product phase and the second PE handles the non�linerity stage and writing result

to the external memory operations� As the connection weights are �xed� an e�cient

way of handling the multiplication is to employ a lookup table� With a large external
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memory available at every PE� the lookup table can be stored� A pattern vector com�

ponent is presented at every clock cycle� The PE looks up the multiplication table to

obtain the weighted product and the sum is computed using an accumulator� Thus�

after all the components of a pattern vector have been examined� we have computed

the inner product� The non�linearity is again stored as a lookup table in the second

PE� On receiving the inner product result from the �rst PE� the second PE uses

the result as the address to the non�linearity lookup table and produces the output�

Thus� the output of a neuron is obtained� The output is written back to the external

memory of the second PE starting from a prespeci�ed location� After sending all the

pattern vectors� the host can read back the memory contents�

A layer in the neural net is nothing but a collection of neurons working syn�

chronously on the input� On Splash �� this can be easily achieved by broadcasting

the input to as many physical PEs as desired� The output of the neuron is written

into a speci�ed segment of external memory and read back by the host at the end�

For every layer in the MLP� this exercise is repeated until the output layer is

reached� Note that with change in the layers� the lookup table needs to be changed�

Thus� we have been able to achieve a MLP on Splash � utilizing the hardware resources

including the crossbar for broadcast purpose� A wavefront of computation proceeds

one layer at a time� The schematic of the mapping for a single layer is shown in

Figure ��
�

The second design approach tries to exploit the onboard crossbar to achieve a

single pass computation for both the layers �hidden and output�� Thus it attempts

to minimize the total number of clock cycles� In an ANN with n nodes in a layer�
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Figure ��� A modular building block for ��layer MLP�

O�n�� data paths are required� A divide�and�conquer approach has been adopted

in this algorithm to reduce the number of data paths� A modular ��layer network is

designed consisting of � hidden nodes and up to � output nodes as shown in Figure ����

The PEs � through � are the hidden layer neurons and the PE � serves as the physical

PE for up to � virtual output PEs� For an n�dimensional input vector� an output is

obtained every n cycles� PE � utilizes this to timemultiplex the reading of result phase

from the PEs � through �� The rest of the cycles are used to perform several lookup

operations �multiplications and non�linearity� for all the virtual PEs it handles� Thus�

every time the PEs ��� are ready� PE � is ready with the result from the previous set�

The result of several modules is cascaded through the use of a crossbar to obtain the

�nal result� The PE mapping is shown in Figure ����

The second model is not a general model but it is highly suitable when the di�

mension of the input pattern vectors is large and the number of outputs is small� It

avoids reading and writing the intermediate results as in the earlier approach� Thus�

it saves a large number of clock cycles as the number of input patterns is very large
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in our case of page layout segmentation problem� The onboard crossbar is utilized to

its maximum capability� The present crossbar on the processor board can store eight

prede�ned con�gurations and switch every clock cycle if desired� The other feature of

the crossbar is programmability at byte level� Both these features have been exten�

sively used in the design� A typical con�guration in a module with � neurons at the

�rst level and � at the second level would use the following crossbar con�guration�

��Crossbar configurations

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

� � � � �� �� �� PE � receives input from PE � and outputs �� bits to PE ��

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

� � � � �� �� �� PE � receives input from PE � and outputs �� bits to PE ��

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

� � � � �� �� �� PE � receives input from PE � and outputs �� bits to PE ��

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

� � � � �� �� �� PE � receives input from PE � and outputs �� bits to PE ��

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

�� � � �� �� � �� PE �� receives input from PE � and PE ��

Due to present hardware design limitations� if PE 	 uses the crossbar then PE �
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cannot� PE �
 can communicate with the next processor board through the SIMD

bus� Hence� PE �
 receives the input from the PE �� using the SIMD bus and passes

the partial results to PE � of the next board� This temporal parallelism of a crossbar

is very helpful in realizing the large interconnection bandwidth requirement of neural

nets�

����� Analysis of neural network implementation

For the �rst approach� let d denote the number of features �no� of input layer nodes��

K be the number of patterns to be classi�ed and l be the number of layers in the

network� In our implementation� d # �	� l # � and K is the total number of pixels

in the input image� The following analysis holds�

No� of clock cycles needed # d � k � l� For given values of d� K and l� the

no� of clock cycles # �	 � �� �	� # �	 million�

With a clock rate of �� MHz� time taken for �	 million clock ticks # ����

secs�

No� of PEs needed # No� of nodes in each layer�

For the case when the number of PEs required is larger than the available PEs�

either more processor boards need to be added or the PEs need to be time shared�

Note that the neuron outputs are produced independent of other neurons and the

algorithm waits till the computations in the whole layer is completed�
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For the second approach� only a single pass through is needed� Hence� the number

of clock cycles needed reduces linearly by the factor l �number of layers�� Based on

the above calculations� it will need only 	�� sec to complete the task of classi�cation

of one million pixels�

����� Scalability

Both the implementations scale well with an increase in the number of input nodes�

The second approach is limited by the path width on the crossbar� A MLP has a

communication complexity of O�n��� where n is number of nodes� As n grows� it will

be di�cult to get good results from a single processor system� With a large number

of processor boards� the single input data bus of �
�bits can cater to multiple input

patterns� Note that in a multi�board system� all the boards receive the same input�

This parallelism can give rise to more data streaming into the system� thus reducing

the number of clock cycles by a linear factor� For a ���bit input� the scale down factor

is ��

����� Speed evaluation for neural network implementation

For the present network with �	 input nodes� on a ��board system� we achieve ��


million connections per second �MCPS� in a layer stage by running the clock at ��

MHz� In general� for a b�processor board system� a total speed of ��
b MCPS is

achievable� Thus� a 
�board system can deliver more than a billion connections per

second�



���

�a� �b�

Figure ��� Synthesis speed of the two stages in segmentation algorithm� �a� Filtering�
�b� Classi�cation�

��� Analysis of the whole page layout algorithm

The page segmentation algorithm has been mapped onto a Splash � with � processor

boards �i�e�� at most �� PEs are available for mapping�� The functions of the PEs

are modeled using VHDL� In our page segmentation algorithm� we have two main

tasks �i� �ltering and �ii� classi�cation using neural networks� Except for the host�

interface development where C�language is used� the other two stages need VHDL�

based designs� The simulation phase con�rms the correctness of the algorithm� The

results are veri�ed using the timing diagrams obtained from the simulator� The

synthesis speed for the �ltering stage is �	�� MHz as shown in Figure ����a�� Using

t�� the synthesis results have been tested for correctness� We need �	 �lters and we

have � processor boards� Hence� we have to make a total of �	 passes over the input

image� For this purpose� we use the recon�gurability of the FPGAs to change the
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instructions dynamically� Note that each �lter has di�erent mask values� so we need

di�erent sets of adders which change the instructions for the PEs� In terms of the

number of operations per second� the clock speed re�ects the rate at which the input

pixels will be handled� i�e�� �	�� million pixels!second� Hence� a ��	�� � ��	�� image

can be processed in approximately 	�� seconds� Thus� �	 passes through an image

would take approximately one second�

The synthesis speed for the neural network stage is projected at ���	 MHz as

shown in Figure ����b�� The neural network stage is expected to take � second using

the second approach� Therefore� the total processing time on a ��board system is ���

seconds using the �rst approach� However� the classi�cation time can be reduced to

	�� secs by using the second approach�

This computation time of two seconds for the segmentation algorithm can be

compared with the computation time of ��	 seconds needed on a SPARCstation �	

��� MFlops�� In other words� �	 billion operations are carried out in two seconds

using the Splash � system�

��� Discussion

The mapping of this multi�stage algorithm brings out several advantages of the CCMs�

The masks being large� the �	 MHz pipeline commercial convolvers can work only at

�	 MHz� The Splash � synthesis speed of around �	 MHz did not put itself in any

disadvantageous position� The twenty masks could be reprogrammed on single or

multiple boards to provide a better throughput using the dynamic recon�gurability�
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The interaction of the �ltering and neural network�based classi�er is also carried

out using the same dynamic recon�gurability� Note that the whole processor board

gets recon�gured for an application� This algorithm could potentially exploit many

boards for the �ltering stage� But� the neural network stage uses a maximum of

two boards� Just like reprogramming each of the �lters� the neural network stage

is also considered as yet another stage for recon�gurable computing� As the control

bit streams have been generated for each �lter separately� any change in the �lter

mask values requires a resynthesis of that �lter� Using the resources on the processor

boards� this application demonstrates the MIMD mode of programming a Splash ��

��� Summary

This chapter dealt with a mapping of speci�c chosen image segmentation algorithm

onto Splash �� The ��D convolution operator de�ned in chapter � was used to achieve

�oating point image �ltering� An multilayer feedforward neural network algorithm has

been implemented� Two approaches for mapping a MLP on Splash � were presented

and evaluated� An important attribute of the CCMs allows us to combine various

sub�stages of an algorithm on the same system by just changing the control bit stream�

This property is useful in designing real�time complex vision systems�



Chapter �

Point Pattern Matching

Point pattern matching� i�e�� �nding the correspondence between two sets of points

in an m�dimensional space� is a fundamental problem in many computer vision tasks�

For example� feature�based rigid object recognition can be considered as an instance

of point pattern matching� In motion and stereo analysis� point pattern matching

is used to solve the correspondence problem� In remote sensing applications� point

pattern matching is used for image registration�

For the general problem of point pattern matching� where no a priori knowledge

about the two sets of points is available� a number of algorithms have been described

in the literature ���� ���� �	�� �� ���� ����� Baird�s O�n�� algorithm� where n is the

number of points in each of the two point sets� becomes more complex �O�n��� when

the number of points in the two sets are not the same� Vinod et al� ����� propose

a neural network for point pattern matching after formulating it as a 	�� integer

programming problem� A genetic algorithm has been suggested by Ansari et al� ����

Most of these algorithms do not permit elastic distortion of the points� i�e�� the points

��	
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are assumed to have undergone a rigid body transformation�

The focus of this chapter is limited to the point pattern matching problem in the

context of �ngerprint matching� The two point sets can have di�erent numbers of

points� We do not currently handle scaling and rotation in the point sets� but allow

elastic distortion� In �ngerprint matching� we are interested in the set of �paired

features� between the query �ngerprint and database �reference� �ngerprints� This

process is repeated over all the records in the �ngerprint database� Because of the

large size of the �ngerprint database� special hardware accelerators are needed for

matching� Due to the elasticity of the skin and non�ideal nature of the imaging

process in capturing the �ngerprint impressions� distortions of the feature vectors are

inevitable�

��� Fingerprint matching

Fingerprint�based personal identi�cation is the most popular biometric technique used

in automatic personal identi�cation ���
�� Law enforcement agencies use it routinely

for criminal identi�cation� Now� it is also being used in several other applications

such as access control for high security installations� credit card usage veri�cation�

and employee identi�cation ���
�� The main reason for the popularity of �ngerprints

as a form of identi�cation is that the �ngerprint of a person is unique and the features

used for matching remain invariant through age�

A �ngerprint is characterized by ridges and valleys� The ridges and valleys alter�

nate� �owing locally in a constant direction �see Figure 
���� A closer analysis of the
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�a� �b�

�c� �d�

�e� �f�

Figure 
�� Gray level �ngerprint images of di�erent types of patterns with core ���
and delta ��� points �a� arch� �b� tented arch� �c� right loop� �d� left loop� �e� whorl�
�f� twin loop�
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(a) (b)

Figure 
�� Two commonly used �ngerprint features �a� Ridge bifurcation� �b� Ridge
ending�

Ridge endings

(a)

A short ridge

(b)

Bifurcations

An enclosure

Figure 
�� Complex features as a combination of simple features �a� Short ridge�
�b� Enclosure�

�ngerprint reveals that the ridges �or the valleys� exhibit anomalies of various types�

such as ridge bifurcations� ridge endings� short ridges� and ridge crossovers� Eigh�

teen di�erent types of �ngerprint features have been enumerated in �
��� Collectively�

these features are called minutiae� For automatic feature extraction and matching�

only two types of minutiae are considered ridge endings and ridge bifurcations�

Ridge endings and bifurcations are shown in Figures 
���a� and 
���b�� No distinc�

tion between these two feature types is made during matching since data acquisition

conditions such as inking� �nger pressure� and lighting can easily change one type of

feature into another� More complex �ngerprint features can be expressed as a com�

bination of these two basic features� For example� a short ridge �see Figure 
���a��

can be considered as a collection of a pair of ridge endings� and an enclosure �see

Figure 
���b�� can be considered as a collection of two bifurcations�

A survey of commercially available automatic �ngerprint identi�cation systems
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�AFIS� is available in ������ Well�known manufacturers of automatic �ngerprint iden�

ti�cation systems include NEC Information Systems� De La Rue Printrak� North

American Morpho� and Logica� In order to provide a reasonable response time for

each query� commercial systems use dedicated hardware accelerators or application�

speci�c integrated circuits �ASICs��

An automatic �ngerprint identi�cation system �AFIS� consists of various pro�

cessing stages as shown in Figure 
��� For the purpose of automation� a suitable

representation �feature extraction� of �ngerprints is essential� This representation

should have the following desirable properties

�� Retain the discriminating power �uniqueness� of each �ngerprint at several levels

of resolution �detail��

�� Easily computable�

�� Amenable to automated matching algorithms�

�� Stable and invariant to noise and distortions�

�� E�cient and compact representation�

The compactness property of representation often constrains its discriminating power�

Clearly� the input digital image of a �ngerprint itself does not meet these represen�

tational requirements� Hence� high�level structural features are extracted from the

image for the purpose of representation and matching�

The commercially available �ngerprint systems typically use ridge bifurcations and

ridge endings as features �see Figure 
���� Because of the large size of the �ngerprint
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Figure 
�� Stages in an AFIS

database and the noisy �ngerprints encountered in practice� it is very di�cult to

achieve a reliable one�to�one matching in all test cases� Therefore� AFIS provides a

ranked list of possible matches �usually the top ten matches� which are then veri�ed

by a human expert� The matching stage uses the position and orientation of the ridge

at the minutiae point� Therefore� reliable and robust extraction of minutiae points

can simplify the matching algorithm and obviate the manual veri�cation stage�

One of the main problems in extracting �ngerprint features is the presence of noise

in the �ngerprint image� Commonly used methods for taking �ngerprint impressions

involve applying a uniform layer of ink on the �nger and rolling the �nger on paper�

This leads to the following problems� Smudgy areas in the image are created by over�

inked areas of the �nger� while breaks in ridges are created by under�inked areas�
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Additionally� the elastic nature of the skin can change the positional characteristics

of the minutiae points depending on the pressure applied on the �ngers� Although

inkless methods for taking �ngerprint impressions are now available� these methods

still su�er from the positional shifting caused by the skin elasticity� The AFIS used

for criminal identi�cation poses yet another problem� Non�cooperative attitude of

suspects or criminals in providing the impressions leads to a smearing of parts of the

�ngerprint impression� Thus� noisy features are inevitable in real �ngerprint images�

The matching module must be robust to overcome the noisy features generated by

the feature extraction module�

The feature extraction process takes the input �ngerprint gray�level image and

extracts the minutiae features described earlier� making no e�orts to distinguish be�

tween the two categories �ridge endings and ridge bifurcations�� In this section� an

algorithm for matching rolled �ngerprints against a database of rolled �ngerprints

is presented� A query �ngerprint is matched with every �ngerprint in the database�

discarding candidates whose matching scores are below a user�speci�ed threshold�

Rolled �ngerprints usually contain a large number of minutiae �between �	 and �		��

Since the main focus of this section is on the matching algorithm� we assume that the

features �minutiae points� have already been extracted from the �ngerprint images�

In particular� we assume that the core point of the �ngerprint is known and that

the �ngerprints are oriented properly� This implies that the �ngerprints have been

approximately registered�

Matching a query and a database �ngerprint is equivalent to matching their minu�

tiae sets� Each query �ngerprint minutia is examined to determine whether there is
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Figure 
�� Components of a minutia feature�

a corresponding database �ngerprint minutia� A feature vector is characterized by

its three components �x� y� �� as shown in �gure 
��� Two minutiae are said to be

paired or matched if their components �x� y� �� are in �close� proximity to each other�

Following three situations arise as shown in Figure 
�
�

�� A database �ngerprint minutia matches the query �ngerprint minutia in all the

components �paired minutiae��

�� A database �ngerprint minutia matches the query �ngerprint minutia in the x

and y coordinates� but does not match in the direction component �minutiae

with unmatched angle��

�� No database �ngerprint minutia matches the query �ngerprint minutia �un�

matched minutia��

Of the three cases described above� the minutiae are said to be paired only in the

�rst case�
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- Database fingerprint minutia

- Query fingeprint minutia

- Tolerance box

Unmatched  minutia Unmatched  minutia
(No pairing possible)

Minutiae with 
unmatched angle

Paired minutiae 

(Lying outside tolerance box)

Paired minutiae 

Figure 
�
 Possible outcomes in minutia matching�

��� Matching algorithm

The following notation is used in the sequential and parallel matching algorithms

described below� Let the query �ngerprint be represented as an n�dimensional feature

vector fq # �fq� �f
q
� ��������f

q
n�� Note that each of the n elements is a feature vector

corresponding to one minutia� and the ith feature vector fi contains three components�

fi # �fi�x�� fi�y�� fi�����

The components of a feature vector are shown geometrically in Figure 
��� The

query �ngerprint core point is located at �Cq
x� C

q
y �� Similarly� let the r

th reference

�database� �ngerprint be represented as an mr�dimensional feature vector

fr # �fr��f
r
��������f

r
mr

�� and the reference �ngerprint core point is located at �Cr
x� C

r
y ��

Let �xtq� y
t
q� and �x

b
q� y

b
q� de�ne the bounding box for the query �ngerprint� where x

t
q
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is the x�coordinate of the upper left corner of the box and xbq is the x�coordinate of the

lower right corner of the box� Quantities ytq and y
b
q are de�ned similarly� A bounding

box is the smallest rectangle that encloses all the feature points� Note that the query

�ngerprint fq may or may not belong to the �ngerprint database fD� The �ngerprints

are assumed to be registered with a known orientation� Hence� there is no need of

normalization for rotation� The matching algorithm is based on �nding the number of

paired minutiae between each database �ngerprint and the query �ngerprint� It uses

the concept of minutiae matching described earlier� In order to reduce the amount

of computation� the matching algorithm takes into account only those minutiae that

fall within a common bounding box� The common bounding box is the intersection of

the bounding box for the query and reference �database� �ngerprints� Once a count

of the matching minutiae is obtained� a matching score is computed� The matching

score is used for deciding the degree of match� Finally� a set of top scoring reference

�ngerprints is obtained as a result of matching�

X

Y

Φ

(Φ)ldcos

(Φ)ldsin

d

Core Point

Minutia point

Figure 
�� Tolerance box for X� and Y�components�

The sequential matching algorithm is described in Figure 
��� In the sequential

algorithm� the tolerance box �shown in Figure 
�� with respect to a query �ngerprint
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Input� Query feature vector fq and the rolled �ngerprint database fD�ff rgNr���
The rth database �ngerprint is represented as an mr�dimensional feature vector
and the query feature vector is n�dimensional�

Output� A list of top ten records from the database with matching scores � T�
Begin

For r�� to N do
�� Register the database �ngerprint with respect to the core point �Cq

x� C
q
y�

of the query �ngerprint�
For i�� to mr do

fri �x� � fri �x�� Cq
x

fri �y� � fri �y� �Cq
y

�� Compute the common bounding box for the query and reference �ngerprints�
Let �xtq � y

t
q� and �xbq � y

b
q� de�ne the bounding box for the query �ngerprint�

Let �xtr � y
t
r� and �xbr � y

b
r� de�ne the bounding box for the rth

reference �ngerprint� The intersection of these two boxes is the
common bounding box� Let the query print have M q

e and
reference print have N r

e minutiae in this box�
�� Compute the tolerance vector for ith feature vector fri �

If the distance from the reference core point to the current reference feature
is less than K then

tri �x� � ldcos��	

tri �y� � ldsin��	
 and
tri ��� � k�


else
tri �x� � k��

tri �y� � k�� and
tri ��� � k��

where l
 k�
 k� and k� are prespeci�ed constants determined
empirically based on the average ridge width

� is the angle of the line joining the core point
and the ith feature with the x�axis

and d is the distance of the feature from the core point�
Tolerance box is shown geometrically in Figure ����

�� Match minutiae�
Two minutiae f ri and f

q
j are said to match if

the following conditions are satis�ed�
f
q
j �x� � tri �x� � fri �x� � f

q
j �x� � tri �x��

f
q
j �y� � tri �y� � fri �y� � f

q
j �y� � tri �y�� and

f
q
j � tri ��� � fri ��� � f

q
j ��� � tri ���


where tri � �tri �x�� t
r
i �y�� t

r
i ���� is the tolerance vector�

Set the number of paired features
 mr
p � �

For all query features fqj 
 j��
�
 � � �M
q
e 
 do

If fqj matches with any feature in f ri 
 i��
�
 � � � 
 N
r
e 


then increment mr
p� Mark the corresponding feature in f r as paired�

�� Compute the matching score �MS �q
r		�

MS�q
r	 �
mr

p
�mr

p

�Mq

e�Nr
e
�
�

Sort the database �ngerprints and obtain top � scoring database �ngerprints�
End

Figure 
�� Sequential �ngerprint matching algorithm�
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minutia� is calculated for the reference �database� �ngerprint minutia� In the parallel

algorithm described in the next chapter� the tolerance box is calculated for the query

�ngerprint� A similar sequential matching algorithm is described in ������ Depending

on the desired accuracy� more than one �nger could be used in matching� In that

case� a composite score is computed for each set�

��� Mapping point pattern matching onto

Splash �

We parallelize the matching algorithm so that it utilizes the speci�c characteristics

of the Splash � architecture� While performing this mapping� we need to take into

account the limitations of the available FPGA technology� Any preprocessing needed

on the query minutiae set is an one�time operation� whereas reference �ngerprint

minutiae matching is a repetitive operation� Computing the matching score involves

a �oating point division� The �oating point operations and one�time operations are

performed in software on the host whereas the repetitive operations are delegated to

the Splash � PEs � The parallel version of the algorithm involves operations on the

host� on X�� and on each PE�

One of the main constructs in the parallel point matching algorithm is a lookup

table which consists of all possible points within the tolerance box around a feature

vector� The Splash � data paths for the parallel algorithm are shown in Figure 
���

The host processes the query and database �ngerprints as follows� The query �nger�
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0
X

Broadcast Bus (Using crossbar)

Global OR Bus

Host (Sun SPARC)

Figure 
�� Data �ow in parallel point matching algorithm�

print is read �rst and the following preprocessing is done

�� The core point is assumed to be available�

For the given query feature fq� generate a tolerance box� Enumerate a total of

�tx � ty � t�� grid points in this box� where tx is the tolerance in x� ty is the

tolerance in y and t� is tolerance in ��

�� Allocate each feature to one PE in Splash �� Repeat this cyclically� i�e�� features

���
 are allocated to PEs X� to X��� features ����� are allocated to PEs X� to

X��� and so on�

�� Initialize the lookup tables by loading the grid points within each tolerance box

in step ��� into the memory�

In this algorithm� the tolerance box is computed with respect to the query �n�

gerprint features� The host then reads the database of �ngerprints and sends their

feature vectors for matching to the Splash � board�
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For each database �ngerprint� the host performs the following operations

�� Reads the feature vectors�

�� Registers the features as described in step ��� of the sequential algorithm in

Figure 
���

�� Sends each of the feature vectors over the Broadcast Bus to all the PEs if it is

within the bounding box of the query �ngerprint�

For each database �ngerprint� the host then reads the number of paired features mr
p

that was computed by the Splash � system� r # �� � � � N � Finally� the matching score

is computed as in the sequential method�

����� Computations on Splash �

The computations carried out on each PE of Splash � are described below� As men�

tioned earlier� X� plays a special role in controlling the crossbar in Splash ��

�� Operations on X�

Each database feature vector received from the host is broadcast to all the

PEs� If it is matched with a feature in a lookup table� then the PE drives the

Global OR Bus high� When the OR Bus is high� X� increments a counter� The

host reads this counter value �mr
p� after all the feature vectors for the current

database �ngerprint have been processed� Operations on X� are highlighted in

Figure 
��	�
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Figure 
��� Data �ow in a PE�

�� Operations on each PE

On receiving the broadcasted feature� a PE computes its address in the lookup

table through a hashing function� If the data at the computed address is a

���� then the feature is paired� and the PE drives the Global OR Bus high�

Operations on a PE are highlighted in Figure 
����



���

��� Analysis of point pattern matching algorithm

on Splash �

The analysis of the parallel implementation is carried out in two respects �i� simu�

lation and synthesis results� and �ii� speed�

����� Simulation and synthesis results

The VHDL behavioral modeling code for PEs X� � X�� has been tested using the

Splash simulation environment� The simulation environment loads the lookup tables

and crossbar con�guration �le into the simulator� Note that the Splash simulator

runs independent of the Splash � hardware and runs on the host� The input data are

read from a speci�ed �le� and the data on each of the signals declared in the VHDL

code can be traced as a function of time�

The synthesis process starts by translating the VHDL code to a Xilinx netlist

format �XNF�� The vendor�speci�c �ppr� utility generates placement� partitioning�

and routing information from the XNF netlist� The �nal bit stream �le is generated

using the utility �xnf�bit�� The �timing� utility produces a graphical histogram of the

speed at which the logic can be executed� The logic synthesized for X� can run at a

clock rate of ���� MHz� and the logic for the PEs X� to X�� can run at ���� MHz�

Observe that these clock rates correspond to the longest delay �critical� paths� even

though most of the logic could be driven at higher rates� Increased processing speed

may be possible by optimizing the critical path�

The bit stream �les for Splash � are generated from the VHDL code� Using the
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�a� �b�

Figure 
��� Speed projections� �a� X�� �b� other Xis

C interface for Splash �� a host version of the �ngerprint matching application is

generated� The host version reads the �ngerprint database from the disk and obtains

the �nal list of candidates after matching�

����� Performance analysis

The sequential algorithm� described in Section 
��� executed on a Sun SPARCsta�

tion �	 performs at the rate of �		 matches per second on database and query �nger�

prints that have approximately 
� features� A match is the process of determining

the matching score between a query and a reference �ngerprint� The Splash � imple�

mentation should perform matching at the rate of ��
��	� matches per second� This

matching speed is obtained from the �timing� utility� The host interface part can run

at ���� MHz and each PE can run at ���� MHz� The speed graphs obtained from the

�timing� utility are shown in Figure 
���� Hence� the entire �ngerprint matching will

run at the slower of the two speeds� i�e�� ���� MHz� Assuming a total of 
� minutiae�
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on an average� in a database �ngerprint� the matching speed is estimated at ��
��	�

matches per second� We evaluated the matching speed using a database of �	�			

�ngerprints created from �		 real �ngerprints by randomly deleting� adding and per�

turbing minutiae� The measured speed on a Splash � system running at � MHz is

of the order of 
��		 matches per second� The prototype Splash � system which is

available to us has been run at � MHz clock rates involving data transfer from host

through the SIMD bus� Assuming a linear scaling of performance with an increase

in clock rate� we would achieve approximately ��	�			 matches per second� We feel

that the disparity in the projected and achieved speeds ���
 � �	� versus ��� � �	��

is due to di�erent tasks being timed� The time to load the data bu�ers onto Splash

� has not been taken into account in the projected speed� whereas this is included in

the time measured by the host in an actual run�

The Splash � implementation is more than ���		 times faster than a sequential

implementation on a SPARCstation �	� Another advantage of the parallel imple�

mentation on Splash � is that the matching speed is independent of the number of

minutiae in the query �ngerprint� The number of minutiae a�ects only the lookup

table initialization� which is done during preprocessing by the host� and this time is

amortized over a large number of database records�

The matching algorithm will scale well as the number of Splash � boards on the

system is increased� Multiple query �ngerprints can be loaded on di�erent Splash �

boards� each matching against the database records as they are transferred from the

host� This would result in a higher throughput from the system�

The processing speed can be further improved by replacing some of the soft macros
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on the host interface part �X�� by hard macros� To sustain the matching rate� the

data throughput should be at a rate of over ��	�			 �ngerprint records per second

�with an average of 
� minutiae per record�� This may be a bottleneck for the I!O

subsystem�

��� Discussion

The mapping of the elastic point pattern matching algorithm on Splash � brings out

the versatility of CCMs in getting recon�gured for any level of parallelism� This map�

ping also highlights bene�ts of translating computations to hashing�based lookups�

In fact� the gain in the speed of the matching algorithm can be attributed to perform�

ing arithmetic computations using lookup tables� The mapping could potentially use

many processor boards to improve the throughput of the whole system in addressing

multiple queries� The point matching algorithm used the processor boards in a SIMD

fashion for all the PEs except X�� Technically� this algorithm mapping uses a mix of

MIMD and SIMD processing modes�

��� Summary

In this chapter a high�level vision algorithm of point pattern matching was introduced�

Its mapping on Splash � was described and the performance analyzed� When applied

to �ngerprint feature vector matching� a signi�cant speedup has been observed� The

main idea behind the mapping is to utilize lookup tables� In contrast to other mapping
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algorithms� this algorithm seeks a signi�cant help from the host� Though a formal

hardware�software codesign technique has not been applied� the principles of the task

partitioning between Splash � �hardware� and software �host� have been similar to

those used in codesign techniques�



Chapter �

Building a Taxonomy of Computer

Architectures

Custom computing machines �CCMs� di�er from general�purpose processors and ap�

plication speci�c integrated circuits �ASICs� in several ways� By constructing a tax�

onomy of the available architectures to build an embedded system� one can better

understand their similarities and dissimilarities� This chapter aims at building a

taxonomy of processors!co�processors based on many commonly observed features

and performance measures for several CCMs and other well known compute engines�

A multi�dimensional data analysis technique of hierarchical clustering is applied to

construct a taxonomy of several platforms� Both the single�link and complete�link

cluster�based taxonomies provide an appropriate way to classify the platforms�

Organizing objects into a taxonomy is an important step in the development of

science and technology� especially as an aid to paradigmatic clarity and the devel�

opment of prescriptive terminology ������ Consider the range of systems available

��	



���

for information processing applications� A general�purpose uniprocessor such as the

PowerPC� P
 or Alpha ���
� has a pre�designed instruction set which is used to write

programs for given applications� A new application can be written by rearranging

the sequence of instructions� However� the performance of these applications on the

general�purpose processors is always limited in several ways� e�g�� every instruction

needs to be fetched and decoded before execution� In contrast� an application�speci�c

integrated circuit �ASIC� provides an �optimal� performance for the problem for which

it has been designed� but lacks the �exibility of being used for any other application�

This trade o� between generality vs� performance has been observed to be the main

driving force in the development of �eld programmable gate array �FPGA��based

custom computing machines �FCCMs������ Several FCCMs have been built ���� and

many applications have been designed using them with performance that is often

comparable to supercomputers� A designer has this new option of using a FCCM in

his embedded system designs� Often� the information about what is an FCCM and

how does it di�er from a general�purpose processor� an ASIC or a supercomputer is

not available to the designer� In the spectrum of processor!co�processors� FCCMs

have not yet been placed at their appropriate location� In this chapter� an e�ort

to appropriately place FCCMs in the domain of processors is made by building a

taxonomy�

Several taxonomies of computer architecture and processors exist in the literature�

For example� based on the instruction set� a uniprocessor can be classi�ed as a RISC

or a CISC processor� Based on Flynn�s taxonomy ��
�� processors have been classi�ed

on the basis of their instruction and data streams into four classes� namely� SISD�
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SIMD� MISD and MIMD� For MIMD parallel processors� Bell�s taxonomy ��
� is based

on message passing or shared memory� Parallel processors can also be classi�ed as

�ne�grained or coarse�grained depending on the type of processing elements and their

interconnection capabilities�

A classi�cation scheme can use benchmark results to characterize the hardware

systems� Several benchmarks �e�g�� Whetstone� Dhrystone� have been used to char�

acterize complex computing systems� The problem with using benchmarks is that

they are restricted to a class of machines which are �similar� to each other� For

example� MIPS rating does not re�ect the �oating point capabilities of a processor�

Many other indices such as sizeup ��	��� redundancy� utilization and quality of par�

allelism have been de�ned in ��
�� For a VLSI designer� the performance criteria are

quite di�erent� The factors for comparing di�erent VLSI systems can include �i� the

technology used �e�g�� nMOS� CMOS� ECL�� �ii� silicon area� and �iii� speed� Many

other criteria such as packing density or number of I!O pins are often employed�

Like uniprocessors� FPGAs can not be characterized by a single index� Number of

equivalent gates� number of I!O pins� and number of CLBs have been used in the

past� Recently� many vendors have decided to accept PREP benchmark results as a

performance evaluation criterion� The PREP benchmark suite consists of designing

and implementing several standard digital circuits and measuring the performance

in terms of capacity and speed� More details about the PREP benchmark tests are

available in ���	��

Most of the available taxonomies are typically based on fewer than four factors or

features of the systems� A complex system is based on a large number of subsystems�
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hence a small number of features do not always re�ect the overall characteristics of

the system� Borrowing ideas from exploratory analysis of multi�dimensional data�

we have built a complete taxonomy involving CCMs� A wide range of hardware

platforms have been chosen and several factors characterizing these systems have been

identi�ed� Using a hierarchical clustering technique� a taxonomy has been developed�

The technique used has the capability to handle a very large number of features�

CCM is a new concept and it needs to be compared and contrasted with exist�

ing concepts like parallel processors� uniprocessors� and special�purpose processors�

Conceptual clustering arranges objects into classes representing certain descriptive

concepts using symbolic and numerical attributes in contrast to numerical clustering

where the features take only numerical values and a numerical distance measure is

computed between a pair of patterns� Michalski and Stepp ����� proposed the use of

conceptual clustering to build automated classi�cation trees� They classi�ed several

computer systems based on the attributes used for describing them� Levine �����

describes a method of classifying several sports based on their attributes� Although

Michalski and Stepp ����� argue superiority of conceptual clustering� Srivastava and

Murthy ��	
� have shown the equivalence of conceptual clustering with conventional

numerical clustering� Hence� we use numerical clustering techniques in our experi�

ments�
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�� Proposed method

In order to carry out a comparative analysis across a wide range of platforms based

on di�erent computing paradigms and architectures� the following set of twelve fea�

tures are de�ned� These features describe the characteristics of the systems� The

feature values have been chosen on a scale of � to �	 for relative comparison� This

���dimensional feature space will be used to represent the performance of various ar�

chitectures for our analysis� The features and their range of values is explained below�

As some of these features and assigned values �the author assigned these values� are

subjective� an interactive tool can be developed to experiment with di�erent feature

sets and values�

�� Programmability Poor instruction set �e�g�� a single instruction �go�� � �� �xed

instruction set � �� user programmable instruction � �	�

�� Ease of use Di�cult to use � �� Medium di�culty of use � �� Easy to use � �	�

�� Speed of computation General purpose uniprocessors � �� General�purpose

parallel processors��� Vector processors � �� Special�purpose parallel processors

� 
� FPGAs � �� ASICs � �	�

�� Modes of parallelism Pipelined � �� Vector Processing support � �� SIMD � ��

MIMD � �� Flexible � �	�

�� Scalability ASICs � Not Applicable ���� Limited �Uniprocessors� Fixed�system

boards� � �� Special purpose parallel processor � 
� Recon�gurable logic arrays

� �� General Purpose Parallel Processors � �	�
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� Design Cycle time Long �� Medium � �� Short � �� Fast � �	�

�� Inter�processor Communication Uniprocessors � Not applicable ���� Cross�

bar�Systolic�limited o��board communication � 
� Multi�stage Interconnec�

tion Network � �� Hierarchical � �� Crossbar � �	�

�� Hardware support for �oating�point operations Unavailable��� Available��	�

�� Dynamic recon�gurability of instructions Not Possible � �� possible � �	�

�	� I!O bandwidth for image!video support Minimum � �� Provision for large

amount of data transfer � �� Special provision � �	�

��� Support for three levels of computer vision tasks �i� No support � �� �ii� rea�

sonable � �� �iii� Special features � �	�

��� Cost High cost �&�		�			� � �� Medium � &�	�			 � &�	�			� � �� Low

��&�	�			� � �	�

���� Systems used for the study

The following classes of machines have been chosen for the comparative analysis�

�� Custom Computing Machines �CCMs� Splash �� Virtual Computer �VC��

MORPH�

�� Futuristic FPGA�based CCMs Based on XC 
�		

�� General�purpose parallel processors SP��� CM�� ��
��
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�� Special�purpose computer vision systems NETRA ����� IUA ���
�� VisTA ��	���

�� State�of�the�art microprocessors SuperSPARC� PowerPC


� Accelerator boards i�
	�based Alacron

�� Special�purpose processor for computer vision tasks MVP��	 ������

�� Special�purpose ASIC No speci�c ASIC has been identi�ed� but generic ASIC

properties will be used�

���� Method

To obtain a taxonomy� the following steps are involved

�� Obtain the ����� pattern matrix by assigning suitable values to the �� features

for the �� platforms chosen for the study�

�� Compute the �� � �� dissimilarity matrix of the platforms from the pattern

matrix using a suitable dissimilarity measure� In our case� we have chosen two

types of dissimilarity measures �i� the standard Euclidean distance and �ii�

a weighted distance measure computed as follows� The maximum value of an

attribute is �	� hence we divide the absolute di�erence of the attribute value

between two patterns by �	 to get a fractional weighted distance with respect

to an attribute� A sum of all the attribute distances divided by the number

of attributes de�nes the overall distance between the two patterns� Note that

the maximum possible distance between two platforms is ��	 �totally di�erent

patterns� and minimum distance is 	�	 �identical patterns�� For example� let
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three ���dimensional feature vectors be

f� � 
 � �	 � �	 �	 � �	 � �	g�

f� �	 � � � �	 �	 �	 � � � �g�

f�	 � � �	 � � � � �	 
 �	 �g�

The distance between the �rst two patterns #

�!���	!�	��!�	��!�	��!�	��!�	��!�	�	!�	�	!�		!�	��!�	��!�	��!�	�

# ��!��	 or 	�����

Similarly� the distance between patterns � and � #

�!����!�	��!�	��!�	��!�	�
!�	��!�	��!�	�
!�	��!�	��!�	��!�	��!�	�

# �	!��	 # 	����

�� Apply single�link and complete�link hierarchical clustering algorithms to obtain

the taxonomies�

�� Cutting the tree to obtain a partition�


�� Results

For the �� platforms listed in the previous section� the pattern matrix is shown in

Table ���� On this pattern matrix� principal component analysis and hierarchical

clustering have been carried out�
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Platform Id�
number

User
program�

Ease of
use

Comp�
speed

Mode of
parallelism

Scalability Design
cycle

time

Splash � � �� � � �� � �

MORPH � �� � � �� 	 �

VC � �� � � �� � �

	���
based � �� � � �� 	 �

CM
� � � � � �  �

SP
� 	 � � 	 � �� �

NETRA � � 	 	 � � �

IUA � � � � � � �

VisTA  � � 	 � 	 �

SSPARC �� � �� � � � ��

PPC �� � �� � � � ��

i�	� �� � � � � � �

MVP
�� �� � � 	 � � �

ASIC �� � �� �� � � �

First six features of the pattern matrix�

Platform Id�
number

PE to PE
comm�

FP
support

Dynamic
recon�g�

I�O
Bandwidth

Vision
task
support

Cost

Splash � � � � �� 	 �� �

MORPH � � � �� 	 � �

VC � � � �� 	 �� 	

	���
based � 	 	 �� � 	 �

CM
� � �� �� � �� � ��

SP
� 	 �� �� � �� � ��

NETRA � � � � �� �� ��

IUA � � � � �� �� ��

VisTA  � � � �� �� ��

SSPARC �� �� �� � � � �

PPC �� �� �� � � � �

i�	� �� �� �� � � � �

MVP
�� �� � � � � � �

ASIC �� 	 �� � � �� �

Table ��� �� � �� Pattern matrix �shown in two tables��
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Figure ��� Principal component analysis�

���� Visualization

It is not possible to visualize a ���dimensional data set� A popular technique for

visualization purposes is to project the high dimensional data onto a �rst few principal

axes� The data spread is shown in Figure ��� after projecting the ���dimensional

data onto its �rst two principal axes� The �rst two principal axes de�ne the axes of

maximumvariances� The percentage of variance retained by the �rst two components

is �
" as against ��" by the �rst component alone� When projected to this ��

dimensional plane� some of the patterns may overlap �for example� patterns �	 and

��� and � and � in Figure ����� It can be easily seen that the distinct machine

classes have clustered together �e�g�� machines f�� �� �� and �g� and f�	� �� and

��g�� Using multidimensional scaling� the proximity matrix has been represented in

two dimensions in Figure ���� Again� we can see several similar patterns grouping

together �e�g�� f�� �� � and �g� f�� 
� �� and �g� and f�� �	� and ��g�� The �goodness

of �t� in terms of a stress value for this case is 	�	���
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Figure ��� Multidimensional scaling using the proposed dissimilarity measure�

���� Hierarchical clustering

The two proximitymatrices obtained using the di�erent distance measures �Euclidean

and weighted distance described earlier� are subjected to hierarchical clustering� The

output of a hierarchical clustering algorithm is a dendrogram� Using Euclidean dis�

tance measure as the dissimilarity measure between the platforms� the single�link and

complete�link dendrograms are shown in Figure ��� and using the weighted dissimilar�

ity measure are shown in Figure ���� The fourteen platforms have been numbered �

through �� as shown in the table ���� A dendrogram can be used to obtain a partition

�clusters� at various levels of dissimilarity� At the highest level of dissimilarity� each

pattern is in its own class� and at the lowest level of dissimilarity� all the patterns

are clustered into one class� By cutting the dendrogram at a suitable level of dissim�

ilarity� various clusterings �partitions� can be obtained� For example� if we cut the

dendrogram shown in Figure ����a� at a dissimilarity value of approximately � units�

we get four clusters� Similarly� cutting the dendrogram at a level of �� units� we get

only two clusters�
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Figure Level Classes and the members

Figure ����a� � �� � � �� �� 
� �� � �� ��	 �� ��� ���� ����
Figure ����b� 
 �� � � �� �� 
� �� � �� ��	 �� ��� ���� ����
Figure ����a� 	��
 �� � � �� �� 
 � � ��� �� �	 ��� ���� ����
Figure ����b� 	�� �� � � �� �� 
 � � ��� �� �	 ��� ���� ����

Table ��� Analysis of the dendrograms�

Table ��� shows the suggested dissimilarity levels of cutting the dendrogram for

the four cases and the cluster membership� Note that the levels can be di�erent and

still give rise to the same clusters� There are �ve distinct groups of the �� di�erent

platforms visible in the hierarchy� The major groups are custom computing machines

consisting of patterns numbered �� �� �� and �� general�purpose parallel machines

consisting of patterns � and 
� special�purpose parallel machine for vision consisting

of patterns �� � and �� general�purpose uniprocessors consisting of patterns �	� �� and

��� and special purpose processors such as MVP��	 and ASICs� However� some group

members have changed their membership when using the weighted dissimilarity mea�

sure� For example� uniprocessor i�
	 joined the parallel processor group� The major

groups remain unchanged in the four dendrograms� In a sense� this demonstrates

that the feature values assigned to these machines are distinctive enough to form the

separate groups�


�� Discussion

Using the proposed approach a new hardware platform can be examined for its class

membership by assigning appropriate values to the twelve features and building a

new dendrogram� This can be easily seen in case of the new hypothetical CCM based



�
�

on XC 
�		 which grouped with the CCM class� A tool can also be built to assign

di�erent values to the features and analyze the dendrograms interactively�


�� Summary

Using techniques from multidimensional data analysis� we have been able to build a

meaningful hierarchy of several computing platforms� including CCMs� As expected�

all the CCMs grouped themselves into a single category or cluster� The ASICs and

general�purpose processors are quite di�erent from a CCM� Many special�purpose

systems are also grouped together� Using these ���features� a new hardware platform

can be assigned to one of these �ve classes by constructing a dendrogram�
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Chapter 	

Conclusions and Directions for

Future Research

The main goal of this research has been to evaluate suitability of custom comput�

ing approach in meeting computational needs of computer vision algorithms� The

experiments carried out by way of mapping several representative vision algorithms

onto Splash � have shown the usefulness of CCMs for computer vision� In addition

to achieving high speeds of operation� several other bene�ts of employing CCMs for

computer vision algorithms are listed below

� Custom computing machines are suitable for all the three levels of computer

vision algorithms �low�level� intermediate�level and high�level� by appropriate

recon�guration when required�

� All the stages of a vision algorithm can be implemented on custom computing

machines� but an optimal interaction between software and hardware is neces�

�
�



�



sary for best performance�

� The execution speeds achieved on Splash � are close to ASIC�level speeds�

� Using the recon�gurability property of the FPGAs� it is easy to reuse the hard�

ware for more than one application at run�time�

� Design revisions are easily supported�

� The PEs can be programmed for systolic� SIMD� MIMD and pipelined mode�

� PE to PE communication patterns can also be programmed�

� Cost performance ratio is signi�cantly low�

Many of the above�mentioned bene�ts are a result of using FPGAs as the ba�

sic compute element� Recent trends in the FPGA technology are directed towards

supporting partial recon�gurability and faster recon�gurability� These features will

further enhance the utility of CCMs for an easier mapping of complex multi�stage

operators�

In mapping the sequential algorithms to a parallel machine� several changes take

place in the algorithm to exploit the target architecture characteristics� For example�

on a sequential machine� convolution is implemented in a di�erent way than on Splash

� where we chose a systolic algorithm� In mapping the text segmentation algorithm

onto Splash �� one of the main changes carried out is in the number representation

scheme� We have chosen a smaller word length ��
�bits� instead of typical ��� or


��bit representation for �oating point numbers� This results in a loss of accuracy�



�
�

But� after verifying during simulation that this does not a�ect the output� it was

adopted� In the �ngerprint matching algorithm� we have converted computations to

a lookup operation� There is no need for computing the common bounding box as

the parallel algorithm can tolerate a few extra minutia checks�

It is not true that CCMs are a panacea for all compute�intensive problems� The

available technology poses a number of limitations� The limitations of the currently

available CCMs are as follows�

� By design� the FPGAs are not meant for complex �oating point operations�

Complex operators involving multi�stage �oating point operations end up with

a large number of gates and long delay lines of interconnections� However�

recent trends in FPGA technology are encouraging in terms of a larger number

of gates per FPGA� This will enable us to synthesize more complex �oating

point operations at acceptable speeds�

� The FPGA building blocks �CLBs� IOBs and Interconnects� are not fully uti�

lized during the synthesis process� Often� the routing resources get consumed

quickly resulting in a low utilization of the CLBs� Better placement tools are

being released by the FPGA vendors to overcome this problem� Alternate

technologies are being worked out to overcome this problem with the present

SRAM�based FPGAs�

� The design process being very complex� the users tend not to accept CCMs as an

alternative to high performance computing� Many researchers have attempted

to remove this barrier by making the design process transparent through pro�
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gramming in C or C��� But� for best performance� as in a typical parallel

processing system� an understanding of the underlying architecture is necessary

to optimize the mapping� With low�resource FPGAs� the high language over�

heads make it di�cult to map a complex algorithm� With the availability of

large density FPGAs� programming using a high�level language like C or C��

will become feasible�

� Algorithms requiring a large number of gates are di�cult to map onto low logic

density devices� Vendors are working on FPGAs with �		K gates which will

enable mapping of many common applications�

� Often� a partitioning of the problem is done manually� This demands the de�

signer to carry out a detailed analysis of the problem in terms of computation

and communication complexity� Researchers are working on automatic tech�

niques for partitioning large designs onto multichip modules�

��� Directions for future research

Custom computing machines are currently going through a major evolution� Hence�

there are many research issues that need to be addressed� Several research issues are

given below�

� The available CCMs lack a user�friendly programming environment� For exam�

ple� an integrated development environment that can aid a designer to quickly

prototype his computer vision algorithm and a more e�cient mapping for actual



�
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usage will be helpful� A layered interface for di�erent types of users is necessary

starting with a total transparent mode to a more detailed and e�cient mode�

� The dynamic partial recon�gurability might have a signi�cant impact on design

of computer vision systems� This needs to be studied�

� The impact of latest architectural features such as direct memory access by

host processor and dedicated bus interface logic may change many computation

paradigms� A detailed analysis is needed�

� The formal design approach of hardware�software codesign has not been inves�

tigated� This is a promising area of future research�
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Appendix A

Case Study
 Image Segmentation

This appendix contains the C�language code for the text segmentation algorithm

explained in Chapter �� VHDL source code� and the C�language interface code for

Splash � along with sample ppr report and sample make �les� It includes the following�

� C�code for image segmentation

� VHDL code for image segmentation

� PPR Summary

� Host C�interface code

� Make�les

��	



���

	


C�program for the simple image segmentation algorithm described in

Chapter �� The program needs an image file name� rows� cols and output

file name� The input file is assumed to be in raw format and the output

file is a sequence of raw bytes�


	

include �stdio�h�

include �stdlib�h�

define MAX�ROWS ����

define MAX�COLS ����

define MAX�WIN ��

define MAX�MASK �

unsigned char input�buf�MAX�ROWS��MAX�COLS��

unsigned char output�buf�MAX�ROWS��MAX�COLS��

int mval�MAX�MASK��MAX�MASK��

FILE 
input� 
output�

int im�width�im�height�window�mask�rows�cols�

long clock���

int debug���

main�argc�argv�

int argc�

char 
argv���

�

int i�j�

if �argc���

�

printf��usage is calgo in�image i�row i�col out�image�n���

exit����

�

if ��input�fopen�argv�����rb�����NULL�

�

printf��Error in opening image file �s�n��argv�����

exit����

�

im�height � atoi�argv�����

im�width� atoi�argv�����

if ��im�height������ �� �im�width�������

�



���

printf��Error in image size �d �d�n��im�width�im�height��

exit����

�

if ��output�fopen�argv�����wb�����NULL�

�

printf��Error in writing image file �s�n��argv�����

exit����

�

window����

mask���

rows�im�height�

cols�im�width�

for �i���i�mask�i���

for �j���j�mask�j���

mval�i��j� � ��

read�image�input�im�width�im�height��

printf��Time now��ld�n��clock����

compute�output�rows�cols�window�mask��

printf��Time now��ld�n��clock����

write�image�output�im�width�im�height��

�

	
end of main
	

read�image�infile�incol�inrow�

FILE 
infile�

int incol� inrow�

�

int i�

if �debug�

printf��read�image Rows��d�cols��d�n��inrow�incol��

for �i���i�inrow�i���

fread�!input�buf�i��incol���infile��

�

	
end of read�image
	

compute�output�rows�cols�window�mask�

int rows�cols�window�mask�

�

int i�j�

int k�l�k��sum�

float var��mean��

k� � mask	��

for �i�window	��i�rows�window	��i���

for �j�window	��j�cols�window	��j���



���

�

sum � ��

var� � ��

for �k��k��k��k��k���

�

for �l��k��l��k��l���

�

sum �� input�buf�i�k��j�l�
mval�k�k���l�k���

var� �� input�buf�i�k��j�l�
input�buf�i�k��j�l��

�

�

mean� � sum�

mean� � mean�	�mask
mask��

var� � var� � mean�
mean�
mask
mask�	
total elements�msize
msize
	

var� � var�	�mask
mask��

if �var������ output�buf�i��j� � ��

else if ��var������� !! �mean� � ����� output�buf�i��j� � ��

else output�buf�i��j� � ��

�

�

	
end of compute�output
	

write�image�outfile�incol�inrow�

FILE 
outfile�

int incol� inrow�

�

int i�

if �debug�

printf��write�image Rows��d�cols��d�n��inrow�incol��

for �i���i�inrow�i���

fwrite�output�buf�i��incol���outfile��

�

	
end of write�image
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���������������������������������������������������������������������

��

�� PROGRAM X��XBAR�BROADCAST

��

�� DATE �� Apr ��

��

�� AUTHOR Nalini Ratha

��

�� DESCRIPTION This design broadcasts the data read from memory

�� onto the crossbar� �To X��

��

���������������������������������������������������������������������

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

use SPLASH��ARITHMETIC�all�

library IEEE�

USE IEEE�std�logic������all�

entity Xilinx�Control�Part is

Generic�

BD�ID  Integer  � �� �� Splash Board

�� ID

PE�ID  Integer  � � �� Processing

�� Element ID

��

Port �

X��SIMD  inout DataPath� �� SIMD Data

�� Bus

X��XB�Data  inout DataPath� �� Crossbar Data

�� Bus

X��Mem�A  inout MemAddr� �� Splash Memory

�� Address Bus

X��Mem�D  inout MemData� �� Splash Memory

�� Data Bus

X��Mem�RD�L  inout RBit�� �� Splash Memory Read

�� Signal �low�true�

X��Mem�WR�L  inout RBit�� �� Splash Memory Write

�� Signal �low�true�

X��Mem�Disable  in Bit� �� Splash Memory

�� Disable Signal



���

X��GOR�Result�In  inout RBit��Vector�� to XILINX�PER�BOARD��

X��GOR�Valid�In  inout RBit��Vector�� to XILINX�PER�BOARD��

X��GOR�Result  out Bit� �� Global OR

�� Result Signal

X��GOR�Valid  out Bit� �� Global OR

�� Valid Signal

X��Clk  in Bit� �� Splash System

�� Clock

X��XBar�Set  out Bit�Vector�� to ����� Crossbar Set

�� Signals

X��X���Disable  out Bit� �� X�� Disable

X��XBar�Send  out Bit� �� X� broadcasts

X��Int  out Bit� �� Interrupt Signal

X��Broadcast�In  in Bit� �� Broadcast Input

X��Broadcast�Out  out Bit� �� Broadcast Output

X��Reset  in Bit� �� Reset Signal

X��HS�  inout RBit�� �� Handshake Signal

X��HS�  in Bit� �� Handshake Signal

X��XBar�EN�L  out Bit� �� Crossbar Enable

�� �low�true�

X��LED  out Bit �� LED Signal

��

end Xilinx�Control�Part�

architecture X��XBAR�BROADCAST of Xilinx�Control�Part is

��������������������������������������������������������������

�� Signal Declarations

��������������������������������������������������������������

SIGNAL Xbar�Out  Bit�Vector��� downto ���

SIGNAL Data  Bit�Vector��� downto ���

SIGNAL Address  Bit�Vector��� downto ���

SIGNAL ONE  Bit�Vector��� downto ���

SIGNAL out�  Bit�Vector�� downto ���

SIGNAL out�  Bit�Vector�� downto ���

SIGNAL out�  Bit�Vector�� downto ���

SIGNAL result  Bit�Vector��� downto ���

��������������������������������������������������������������

�� Architecture Behavior

��������������������������������������������������������������



��


BEGIN

�� set X� to broadcast and disable X��

X��XBar�Set �� ������

X��X���Disable �� "�"�

X��xbar�send �� "�"�

�� Memory read settings

X��Mem�RD�L �� "�"�

X��Mem�WR�L �� "�"�

ONE �� ���������������������

PROCESS

BEGIN

WAIT until X��Clk"event AND X��Clk � "�"�

�� connections to I	O pads

pad�output �X��Mem�A� Address��

pad�input �X��Mem�D� Data��

Pad�Output �X��XB�Data� Xbar�Out��

out��� downto �� �� data�� downto ���

out��� downto �� �� data�� downto ���

out� �� out��

result �� out� �� downto �� 
 out� �� downto ���

Xbar�out�� downto �� �� out��� downto ���

Xbar�out��� downto #� �� result��� downto ���

Address �� Address�one�

END PROCESS �

X��Int �� "�"�

X��Broadcast�Out �� "�"�

end X��XBAR�BROADCAST�



���

����������������������������������������������������������������������

��

�� PROGRAM ��D averaging� stage�

��

�� DATE �� Apr� ����

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION First row for �x� mask �� � � � � � ��

��

��

���������������������������������������������������������������������

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

����������������������������������������������������������������������

�� Splash � Simulator v��� Xilinx�Processing�Part Entity Declaration

����������������������������������������������������������������������

entity Xilinx�Processing�Part is

Generic�

BD�ID  Integer  � �� �� Splash Board

�� ID

PE�ID  Integer  � � �� Processing

�� Element ID

��

Port �

XP�Left  inout DataPath� �� Left Data

�� Bus

XP�Right  inout DataPath� �� Right Data

�� Bus

XP�Xbar  inout DataPath� �� Crossbar Data

�� Bus

XP�Xbar�EN�L  out Bit�Vector�� downto ���

�� Crossbar Enable

�� �low�true�

XP�Clk  in Bit� �� System Clock

XP�Int  out Bit� �� Interrupt Signal

XP�Mem�A  inout MemAddr� �� Memory Address Bus



���

XP�Mem�D  inout MemData� �� Memory Data Bus

XP�Mem�RD�L  inout RBit�� �� Memory Read

�� �low� true�

XP�Mem�WR�L  inout RBit�� �� Memory Write Signal

�� �low�true�

XP�Mem�Disable  in Bit� �� Memory Disable

XP�Broadcast  in Bit� �� Broadcast Signal

XP�Reset  in Bit� �� Reset Signal

XP�HS�  inout RBit�� �� Handshake Signal

XP�HS�  in Bit� �� Handshake Signal

XP�GOR�Result  inout RBit�� �� Global OR Result

XP�GOR�Valid  inout RBit�� �� Global OR Valid

XP�LED  out Bit �� LED Signal

��

end Xilinx�Processing�Part�

����������������������������������������������������������������������

�� Architecture

����������������������������������������������������������������������

ARCHITECTURE conv�s��f� OF Xilinx�Processing�Part IS

Constant STAGES integer � ��

Constant REGS integer ����

type bvarray is array �� to REGS� of Bit�vector��� downto ���

type pixarray is array �� to STAGES� of Bit�vector��� downto ���

type sumarray is array �� to STAGES� of Bit�vector��� downto ���

�����������������������������������������������������������������������

�� Signal Declarations

�����������������������������������������������������������������������

Signal datain bvarray� ���sum partial

SIGNAL left�in  pixarray�

SIGNAL tsum sumarray�

SIGNAL tsum� sumarray�

SIGNAL part�sum sumarray�

SIGNAL left�sum Bit�Vector ��� downto ���

SIGNAL right�out Bit�Vector��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���

SIGNAL add� sub�ofl��ofl��ofl��ofl��ofl��ofl��ofl� Bit�

������������������������������������������������������������������������

�� Architecture Behavior

������������������������������������������������������������������������

BEGIN



���

XP�Xbar�En�L �� ��������

add �� "�"�

sub �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Xbar� input�left��

Pad�output �XP�Right� right�out��

for i in � to STAGES loop

left�in�i��� downto �� �� left�in�i����� downto ���

end loop�

left�in����� downto �� �� input�left�� downto ���

left�sum �� itobv�������

�� partial sums to be computed here using hardmacros

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� Shifters

for i in � to REGS loop

datain�i� �� datain�i����

end loop�

datain������ downto �� �� part�sum����

right�out��� downto #� �� datain�REGS���� downto ���

right�out�� downto �� �� left�in�STAGES��� downto ���



��	

END PROCESS�

addsub� 

adsu��h

port map�left�in����left�sum�add�tsum����ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum����ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

END conv�s��f��



���

�������������������������������������������������������������������

��

�� PROGRAM ��D convolution� stage�

��

�� DATE �� Apr ����

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION First row for �x� mask �Averaging � � � � � � ��

��

��

��������������������������������������������������������������������

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

��������������������������������������������������������������������

�� Architecture of Self Diagnostic

��������������������������������������������������������������������

ARCHITECTURE conv�s��f� OF Xilinx�Processing�Part IS

Constant STAGES integer � ��

Constant REGS integer ����

type bvarray is array �� to REGS� of Bit�vector��� downto ���

type pixarray is array �� to STAGES� of Bit�vector��� downto ���

type sumarray is array �� to STAGES� of Bit�vector��� downto ���

��������������������������������������������������������������������

�� Signal Declarations

��������������������������������������������������������������������

Signal datain bvarray� ���sum partial

SIGNAL left�in  pixarray�

SIGNAL tsum sumarray�

SIGNAL tsum� sumarray�

SIGNAL part�sum sumarray�

SIGNAL left�sum Bit�Vector ��� downto ���

SIGNAL right�out Bit�Vector��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���



���

SIGNAL add� sub�ofl��ofl��ofl��ofl��ofl��ofl��ofl� Bit�

��������������������������������������������������������������������

�� Architecture Behavior

��������������������������������������������������������������������

BEGIN

XP�Xbar�En�L �� ��������

add �� "�"�

sub �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Left� input�left��

Pad�output �XP�Right� right�out��

for i in � to STAGES loop

left�in�i��� downto �� �� left�in�i����� downto ���

end loop�

left�in����� downto �� �� input�left�� downto ���

left�sum �� input�left��� downto #��

�� partial sums to be computed here using hardmacros

�� PE �

�� tsum��� �� left�in����left�sum�

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����



���

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� Shifters

for i in � to REGS loop

datain�i� �� datain�i����

end loop�

datain������ downto �� �� part�sum����

right�out��� downto #� �� datain�REGS���� downto ���

right�out�� downto �� �� left�in�STAGES��� downto ���

END PROCESS�

addsub� 

adsu��h

port map�left�in����left�sum�add�tsum����ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum����ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

END conv�s��f��



���

��������������������������������������������������������������

��

�� PROGRAM ��D convolution� stage�

��

�� DATE �� April ����

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION Seventh row for �x� mask �� � � � � � ��

��

��

��������������������������������������������������������������

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

��������������������������������������������������������������

�� Architecture of Self Diagnostic

��������������������������������������������������������������

ARCHITECTURE conv�s��f� OF Xilinx�Processing�Part IS

Constant STAGES integer � ��

Constant REGS integer ����

type bvarray is array �� to REGS� of Bit�vector��� downto ���

type pixarray is array �� to STAGES� of Bit�vector��� downto ���

type sumarray is array �� to STAGES� of Bit�vector��� downto ���

��������������������������������������������������������������

�� Signal Declarations

��������������������������������������������������������������

Signal datain bvarray� ���sum partial

SIGNAL left�in  pixarray�

SIGNAL tsum sumarray�

SIGNAL tsum� sumarray�

SIGNAL part�sum sumarray�

SIGNAL left�sum Bit�Vector ��� downto ���

SIGNAL right�out Bit�Vector��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���



���

SIGNAL add� sub�ofl��ofl��ofl��ofl��ofl��ofl��ofl� Bit�

��������������������������������������������������������������

�� Architecture Behavior

��������������������������������������������������������������

BEGIN

�� XP�Xbar�En�L �� ��������

XP�Xbar�En�L �� ��������

add �� "�"�

sub �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Left� input�left��

Pad�output �XP�Xbar� right�out��

for i in � to STAGES loop

left�in�i��� downto �� �� left�in�i����� downto ���

end loop�

left�in����� downto �� �� input�left�� downto ���

left�sum �� input�left��� downto #��

�� partial sums to be computed here using hardmacros

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� Shifters



��


for i in � to REGS loop

datain�i� �� datain�i����

end loop�

datain������ downto �� �� part�sum����

right�out��� downto �� �� datain�REGS���� downto ���

right�out��� downto ��� �� left�in�STAGES��� downto ���

END PROCESS�

addsub� 

adsu��h

port map�left�in����left�sum�add�tsum����ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum����ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

END conv�s��f��



���

�����������������������������������������������������������������

��

�� PROGRAM ��D convolution� stage�

��

�� DATE �� Apr ����

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION First row for �x� mask �� � � � � � ��

��

��

�����������������������������������������������������������������

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

�����������������������������������������������������������������

�� Architecture of Self Diagnostic

�����������������������������������������������������������������

ARCHITECTURE conv�s��f� OF Xilinx�Processing�Part IS

Constant STAGES integer � ��

Constant REGS integer ����

type bvarray is array �� to REGS� of Bit�vector��� downto ���

type pixarray is array �� to STAGES� of Bit�vector��� downto ���

type sumarray is array �� to STAGES� of Bit�vector��� downto ���

�����������������������������������������������������������������

�� Signal Declarations

�����������������������������������������������������������������

Signal datain bvarray� ���sum partial

SIGNAL left�in  pixarray�

SIGNAL tsum sumarray�

SIGNAL tsum� sumarray�

SIGNAL part�sum sumarray�

SIGNAL left�sum Bit�Vector ��� downto ���

SIGNAL right�out Bit�Vector��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���

SIGNAL add� sub�ofl��ofl��ofl��ofl��ofl��ofl��ofl� Bit�

�����������������������������������������������������������������



���

�� Architecture Behavior

�����������������������������������������������������������������

BEGIN

XP�Xbar�En�L �� ��������

add �� "�"�

sub �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Xbar� input�left��

Pad�output �XP�Right� right�out��

for i in � to STAGES loop

left�in�i��� downto �� �� left�in�i����� downto ���

end loop�

left�in����� downto �� �� input�left��� downto ����

�� �� bit x$�	��� value

�� left�sum �� itobv�������

�� partial sums to be computed here using hardmacros�

�� tsum and tsum� are to be used accordingly

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� Shifters



���

for i in � to REGS loop

datain�i� �� datain�i����

end loop�

datain������ downto �� �� part�sum����

right�out��� downto #� �� datain�REGS���� downto ���

right�out�� downto �� �� left�in�STAGES��� downto ���

END PROCESS�

addsub� 

adsu��h

port map�left�in����left�sum�add�tsum����ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum����ofl���

addsub� 

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub� 

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

END conv�s��f��



��	

����������������������������������������������������������������������

��

�� PROGRAM ��D convolution� result stage

��

�� DATE �	��	��

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION From sigma x and sigma X$�� compute variance and

�� decide the pixel class label

��

��

����������������������������������������������������������������������

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

����������������������������������������������������������������������

�� Architecture of Self Diagnostic

����������������������������������������������������������������������

ARCHITECTURE conv�s�� OF Xilinx�Processing�Part IS

����������������������������������������������������������������������

�� Signal Declarations

����������������������������������������������������������������������

SIGNAL Data  Bit�Vector��� downto ���

SIGNAL Address  Bit�Vector��� downto ���

SIGNAL right Bit�Vector ��� downto ���

SIGNAL left Bit�Vector ��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���

SIGNAL p� Bit�Vector �� downto ���

SIGNAL p� Bit�vector ��� downto ���

SIGNAL mean�sum Bit�vector��� downto ���

SIGNAL mean�sumold� mean�sumold� Bit�vector��� downto ���

SIGNAL mean�sqr Bit�vector��� downto ���

SIGNAL x��sum�x��sum�old Bit�vector��� downto ���

SIGNAL x��sum�old� Bit�vector��� downto ���



���

SIGNAL variance Bit�vector ��� downto ���

SIGNAL const��const� Bit�Vector ��� downto ���

SIGNAL one�mean� Bit�vector��� downto ���

SIGNAL temp�mean�mean Bit�Vector�� downto ���

SIGNAL tmp�mean�tmean Bit�vector�� downto ���

�����������������������������������������������������������������������

�� Architecture Behavior

�����������������������������������������������������������������������

BEGIN

const� �� ��������������������� ���
�� ��FDA�

const� �� ��������������������� ���
�� ���#��

one �� �������������������

XP�Xbar�En�L �� ��������

xp�mem�rd�l �� "�"�

xp�mem�wr�l �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Left� input�left��

Pad�Input �XP�Xbar� left��

pad�output �XP�RIGHT� right��

Pad�output�xp�mem�a� address��

Pad�output�xp�mem�d� data��

p� �� downto �� �� left��� downto ����

mean�sum ��� downto �� �� left��� downto ���

temp�mean �� downto �� �� left��� downto ��� �� mean�sum	��

tmp�mean �� downto �� �� left��� downto #�� �� mean�sum	���

tmean �� downto �� �� left ��� downto ���� ��mean�sum	����

mean �� temp�mean�tmp�mean�tmean� �� mean�sum	��

mean� �� mean�sum�

mean�sumold �� mean��

mean�sumold� �� mean�sumold�

mean�sqr ��� downto �� �� mean 
 mean��

right�� downto �� �� p��� downto ���

right��� downto #� �� p��� downto ���

right��� downto ��� �� mean�� downto ���

p� �� downto �� �� input�left�� downto ���

x��sum�old���� downto ��� �� one�� downto #��

x��sum�old���� downto #� �� x��sum�old ��� downto ���

x��sum�old��� downto �� �� one�� downto ���

x��sum�old �� x��sum �

x��sum��� downto �� �� input�left��� downto #��



���

if �x��sum�old��mean�sqr� then �� resolution loss error

variance��itobv�������

else

variance �� x��sum�old� � mean�sqr�

end if�

if �variance�const�� then

data�� downto �� �� �����

elsif �mean�sumold��const�� then

data�� downto �� �� �����

else data�� downto �� �� �����

end if�

Address �� Address � one�

END PROCESS�

END conv�s���
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Number of unrouted connections �
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PPR Parameters

Design � pe����xtf

Parttype � ����PG�����

Guide�cell �

Seed � �����

Estimate � FALSE

Complete � TRUE

Placer�effort � �

Router�effort � �

Path�timing � TRUE

Stop�on�miss � FALSE

DC�S � none

DP�S � none

DC�P � none

DP�P � none

Guide�only � FALSE

Ignore�maps � FALSE

Ignore�rlocs � FALSE

Outfile � �design name�
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Xact Performance Summary
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Deadline Actual�
� Specification

�������� ��������� �������������

�
� ����ns �����ns TS��clock to setup 

�auto� ����ns �default� pad to setup

����ns ����ns TS�#�pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Left����



���

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS�#�pad to setup XP�Left��#�

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS�#�pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar�#�

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS�#�pad to setup XP�Xbar��#�

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS��pad to setup XP�Left���

����ns ����ns TS#�pad to setup XP�Xbar���

����ns ����ns TS��pad to setup XP�Left����

����ns ����ns TS��pad to setup XP�Left����

����ns ����ns TS��pad to setup XP�Xbar����

����ns ����ns TS��pad to setup XP�Left�#�

����ns ����ns TS��pad to setup XP�Xbar����

����ns ����ns TS��pad to setup XP�Left���



��


����ns ����ns TS��pad to setup XP�Xbar���

�auto� ���ns DEFAULT�FROM�FFS�TO�PADS�FROM ffs TO pads

�
� Note the actual path delays computed by PPR indicate that � of

�� timing specifications you provided was not met� To confirm this

result� please use the �FailedSpec and	or �TSMaxpaths options of the

������������Reprt has been truncated here for brievity �������������



���

	


Sample host interface program for Splash �� This C�code uses the

raw file generated by t� for the simple page layout segmentation

algorithm explained in Chapter �� The makefile to compile this file

given separately�


	

include �stdio�h�

include �string�h�

include �csplash�h�

SPLASH 
splash�

Stream 
stream�

stepfile 
in�
out�

int simd�data������� tag�������

long clock���

main�argc�argv�

int argc�

char 
argv���

�

int unit��� board � ��

int i�j�

FILE 
fp� 
fp��
fp��

int sim�val�sim�tag�

int start�skip�elem�row�elem�col�

int rbus�rbustag�cycles�

char 
infile��image�dat��


outfile��output�conv��


rawfile��mult�raw��

memfile �����


xbarfile��broadcast�bar��

char fname�����count�

EnvInit���

SetMessageLevel����

if ��splash � OpenAndInit�unit�� �� NULL� exit���

if �LoadRaw�splash�board�rawfile� %��� exit���

if �ConfigArray�splash�board� %��� exit���

ConfigXBar�splash���xbarfile��

ClearMem�splash������

if �argc����

strcpy�fname�argv�����

else

strcpy�fname�infile��



���

printf���d �s �s�n��argc�infile�argv�����

if �argc����

start�atoi�argv�����

else start���

skip���

if �argc����

elem�row�atoi�argv�����

else elem�row����

elem�col����

if �argc����

cycles�atoi�argv�����

else cycles���

LoadMem�splash�����fname��

ClearMem�splash�������

printf��Clock� �ld�n��clock����

Step�splash�cycles��

DumpMem�splash�board�������������
	

j��#
�#�

fp� � fopen��output�conv���w���

count � ��

for �i�start�i�start�j�i���

�

int result�result��

if �i ! ��

�

result � CEMEM�splash������i��

result� � result ! �xffff�����

result� � result� �� ���

result� � result� ! �xffff�

fprintf�fp����d �d ��result ! �xffff� result���

count ����

�

if �count��elem�row�

�

fprintf�fp����n���

i � i�skip�

count � ��

�

�

fprintf�fp����n���

�

	
end of main
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SIMULATOR�&�SPLASH��	simulator

TYPES�&�SPLASH��	lib	sim	SPLASH��sim &�SPLASH��	lib	sim	TYPES�sim

MODULES�&�SIMULATOR�	s�board	SPLASH��BOARD�sim �

&�SIMULATOR�	interface	INTERFACE�BOARD�sim

LIB�DEFAULT

TOP�sim &�SPLASH�� &�MODULES� SPLASH�SYSTEM�sim pe���vhd �

pe���vhd pe���vhd pe���vhd pe�#�vhd pe���vhd �

pe����vhd pe����vhd

vhdlan �nc pe���vhd

vhdlan �nc pe���vhd

vhdlan �nc pe���vhd

vhdlan �nc pe���vhd

vhdlan �nc pe�#�vhd

vhdlan �nc pe���vhd

vhdlan �nc pe����vhd

vhdlan �nc pe����vhd

vhdlan �w &�LIB� �nc config

SPLASH�SYSTEM�sim &�SPLASH�� &�MODULES� system�vhd

vhdlan �w &�LIB� �nc system

gcc �I	home	pixel	l��	splash	include �g �w �fvolatile �o cver �

cver�c 	home	pixel	l��	splash	lib	libsplash�a �lm



Appendix B

Image Segmentation
 Mask Values
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Appendix C

Image Segementation
 Neural

Network Weights
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���� K� Hanahara� T� Maruyama� and T� Uchiyama� A real�time processor for the
Hough transform� IEEE Trans� on Pattern Analysis and Machine Intelligence�
�	����������� January �����

���� R� M� Haralick� Document image undestanding geometric and logical layout�
In Proc� of IEEE Computer Vision and Pattern Recognition� Seattle� pages
������	� June� �����



���

��	� R� M� Haralick and L� G� Shapiro� Image segmentation techniques� Computer
Vision� Graphics� and Image Processing� ������		����� January �����

���� R� M� Haralick and L� G� Shapiro� Computer and Robot Vision� Addison�Wesley�
Reading� Masschusetts� �����

���� R� M� Haralick� S� R� Sternberg� and X� Zhuang� Image analysis using math�
ematical morphology� IEEE Trans� on Pattern Analysis and Machine Intelli�
gence� ����������	� July �����

���� D� Helman and J� Jaja� E�cient image processing algorithms on the scan line
array processor� IEEE Trans� on Pattern Analysis and Machine Intelligence�
���������
� January �����

���� J� L� Hennessy and D� A� Patterson� Computer Architecture� A Quantitative
Approach� Morgan Kaufman� San Mateo� California� ���	�

���� S� Heydorn and P� Weinder� Optimization and performance analysis of thinning
algorithms on parallel computers� Parallel Computing� ����������� April �����

��
� K� Hwang� Advnaced Computer Architecture� Parallelism� Scalability� Pro�
grammability� McGraw�Hill� New York� �����

���� H� A� H� Ibrahim� J� R� Kender� and D� E� Shaw� On the application of massively
parallel simd tree machines to certain intermediate�level vision tasks� Computer
Vision� Graphics� and Image Processing� �
��������� October ���
�

���� IEEE Computer Society Press� Los Alamitos� California� Proc� of FPGAs for
custom computing machines� Napa Valley� California� April� �����

���� IEEE Computer Society Press� Los Alamitos� California� Proc� of FPGAs for
custom computing machines� Napa Valley� California� April� �����

��		� IEEE Computer Society Press� Los Alamitos� California� Proc� of FPGAs for
custom computing machines� Napa Valley� California� April� �����

��	�� Imaging Technology� Bedford� Massachusetts� MVC ��	� ���
�

��	�� A� K� Jain� Fundamentals of Digital Image Processing� Prentice Hall� Englewood
Cli�s� New Jersey� �����

��	�� A� K� Jain and S� Bhattacharjee� Text segmentation using Gabor �lters for
automatic document processing� Machine Vision and Applications� ��
������
�����

��	�� A� K� Jain and Y� Chen� Address block location using color and texture analysis�
CVGIP� Image Understanding� 
	���������	� September �����

��	�� A� K� Jain and R� C� Dubes� Algorithms for Clustering Data� Prentice�Hall�
Englewood Cli�s� New Jersy� �����



��


��	
� A� K� Jain and K� Karu� Learning texture discrimination masks� IEEE Trans�
on Pattern Analysis and Machine Intelligence� ����������	�� February ���
�

��	�� A� K� Jain and Y� Zhong� Page layout segmentaion based on texture analysis� In
Proc� �nd International Conf� on Image Processing� Washington� D� C�� pages
�	������ October� �����

��	�� J� Jaja� An Introduction to Parallel Algorithms� Addison�Wesley� Reading�
Masschusetts� �����

��	�� J� W� Jang� H� Park� and V� K� Prasanna� A fast algorithm for computing his�
togram on recon�gurable mesh� IEEE Trans� on Pattern Analysis and Machine
Intelligence� ���������	
� February �����

���	� J� H� Jenkins� Designing with FPGAs and CPLDs� Prentice Hall� Englewood
Cli�s� New Jersey� �����

����� J��F� Jenq and S� Sahni� Image shrinking and expanding on a pyramid� IEEE
Trans� on Parallel and Distributed Systems� �������������
� November �����

����� J��F� Jenq and S� Sahni� Recon�gurable mesh algorithms for the Hough trans�
form� Journal of Parallel and Distributed Computing� �	���
����� January
�����

����� S� L� Johnson and R� L� Krawitz� Cooley�Tukey FFT on the connection machine�
Parallel Computing� ��������	������� November �����

����� J��M� Jolion� Computer vision methodologies� CVGIP� Image Understanding�
����������� January �����

����� P� P� Jonker� Why linear arrays are better image processors$ In Proc� of ��th
Int�l� Conf� on Pattern Recognition� Jerusalem� pages �������� �����

���
� S� J� C� Jr�� L��P� Yuan� and R� Ehrlich� A fast and accurate erosion�dilation
method suitable for microcomputers� CVGIP� Graphical Models and Image
Processing� �����������	� May �����

����� D� Judd� N� K� Ratha� P� K� McKinley� J� Weng� and A� K� Jain� Parallel
implementation of vision algorithms on workstation clusters� In Proc� of ��th
Intl� Conf� of Pattern Recognition� Jerusalem� pages �������� �����

����� P� Kahn� Building blocks for computer vision systems� IEEE Expert� ��
��	��	�
December �����

����� A� Kalavade and E� A� Lee� A hardware�software codesign methodology for
DSP applications� IEEE Design and Test of Computers� pages �
���� December
�����

���	� M� Kamada� K� Toraichi� R� Mori� K� Yamamoto� and H� Yamada� A parallel
architecture for relaxation operation� Pattern Recognition� ������������� �����



���

����� E� W� Kent� M� O� Shneier� and R� Lumia� PIPE� Journal of Parallel and
Distributed Computing� ��	���� �����

����� A� Khotanzad and A� Bourfa� Image segementation by a parallel� non�
parametric histogram based clustering algorithm� Pattern Recognition�
������
������ September ���	�

����� H� N� Kim� M� J� Irwin� and R� M� Owens� MGAP applications in machine
perception� In Proc� of IEEE Workshop on Computer Architecture for Machine
Perception� Como� Italy� pages 
����� September� �����

����� D� V� Kirsanov� Digital architecture for neural networks� In Proc� Intl� Joint
Conference on Neural Networks� pages ���������� Nagoya� Japan� October
�����

����� P� Kotilainen� J� Saarinen� and K� Kaski� Neural network computation in a
parallel multiprocessor architecture� In Proc� Intl� Joint Conference on Neural
Networks� pages ���������� Nagoya� Japan� October �����

���
� O� G� Koufopavlou and C� E� Goutis� Image reconstruction on a special purpose
array processor� Image and Vision Computing� �	����������� September �����

����� A� V� Kulkarni and D� W� L� Yen� Systolic processing and implementation for
signal and image processing� IEEE Trans� on Computers� ����	��			��		��
October �����

����� V� K� P� Kumar and V� Krishnan� E�cient parallel algorithm for image template
matching on hypercube SIMD machines� IEEE Trans� on Pattern Analysis and
Machine Intelligence� ���
�

��

�� June �����

����� H� T� Kung� Why systolic architectures$ IEEE Computer� ���������
� January
�����

���	� H� T� Kung� L� M� Ruane� and D� W� L� Yen� A two�level pipelined systolic
array for convolutions� In H� T� Kung� B� Sproull� and G� Steele� editors� VLSI
Systems and Computations� pages �����
�� Computer Science Press� Maryland�
�����

����� D� Lattard and G�Mazare� A VLSI implementation of parallel image reconstruc�
tion� CVGIP� Graphical Models and Image Processing� ���
��������� Novem�
ber �����

����� H� C� Lee and R� E� Gaensslen� editors� Advances in Fingerprint Technology�
Elsevier� New York� �����

����� S��W� Lee and W��H� Hsu� Parallel algorithms for hidden markov models on
the orthogonal multiprocessor� Pattern Recognition� ������������� Feb �����



���

����� S� Y� Lee and J� K� Aggarwal� Parallel ��D convolution on a mesh connected
array processor� IEEE Trans� on Pattern Analysis and Machine Intelligence�
������	����� July �����

����� S��Y� Lee and J� K� Aggarwal� A system design!scheduling strategy for parallel
image processing� IEEE Trans� on Pattern Analysis and Machine Intelligence�
����������	�� February ���	�

���
� S� Y� Lee� S� Yalamanchili� and J� K� Aggarwal� Parallel image normalization
on a mesh connected array processor� Pattern Recognition� �	����������� �����

����� F� T� Leighton� Introduction to Parallel Algorithms and Architectures� Arrays�
Trees� Hypercubes� Morgan Kaufman� San Mateo� California� �����

����� P� Lenders and H� Schroder� A programmable systolic device for image process�
ing based on mathematical morphology� Parallel Computing� �������������
March ���	�

����� M� D� Levine� Nonmetric multidimensional scaling and hierarchical clustering �
procedure for investigations of perception of sports� Research Quarterly� ������
���� �����

���	� H� F� Li� R� Jayakumar� and M� Youssef� Parallel algorithms for recognizing
handwritten characters using shape features� Pattern Recognition� ���
�
���

��� �����

����� X� Li and Z� Fang� Parallel clustering algorithms� Parallel Computing�
�����������	� August �����

����� S� Liang� M� Ahmadi� and M� Shridhar� A morphological approach to text string
extraction from regular periodic overlapping text background images� CVGIP�
Graphical Models and Image Processing� �
����	������ September �����

����� R� Lin and E� K� Wong� Logic gate implementation for gray�scale morphology�
Pattern Recognition Letters� ������������� July �����

����� W��M� Lin and V� K� P� Kumar� E�cient histogramming on hypercube SIMD
machines� Computer Vision� Graphics� and Image Processing� ���	����	� ���	�

����� J� J� Little� G� E� Blelloch� and T� A� Cass� Algorithmic techniques for computer
vision on a �ne�grained parallel machine� IEEE Trans� on Pattern Analysis and
Machine Intelligence� ������������� March �����

���
� X� Liu and G� L� Wilcox� Benchmarking of the CM�� and Cray machines with
a very large backpropagation neural network� In Proc� Intl� Joint Conference
on Neural Networks� pages ������ Orlando� Florida� June �����

����� D� G� Lowe� Perceptual Organization and Visual Recognition� Kluwer Academic
Publishers� Massachussets� �����



���

����� M� Manohar and H� K� Ramapriyan� Connected component labeling of binary
images on a mesh connected massively parallel processor� Computer Vision�
Graphics� and Image Processing� ���������� �����

����� P� Maragos� Tutorial on advances in morphological image processing and anal�
ysis� Optical Engineering� �
���
���
��� July �����

���	� M� Maresca� M� A� Lavin� and H� Li� Parallel architectures for vision� Proceed�
ings of the IEEE� �
�����	����� August �����

����� D� Marr� Vision� W� H� Freeman and Co�� San Francsisco� �����

����� P� Mass� K� Hoen� and H� Wallinga� �	 input� �	 nanosecond pattern classi�er�
In Proc� Intl� Joint Conference on Neural Networks� pages ���������� Orlando�
Florida� June �����

����� R� W� Means� High speed parallel hardware performance issues for neural
network applications� In Proc� Intl� Joint Conference on Neural Networks� pages
�	��
� Orlando� Florida� June �����

����� R� S� Michaleski and R� E� Stepp� Automated construction of classi�cations
Conceptual clustering versus numerical taxonomy� IEEE Trans� on Pattern
Analysis and Machine Intelligence� ������
��	�� July �����

����� G� D� Micheli� Computer�aided Hardware�Software codesign� IEEE Micro�
pages �	��
� August �����

���
� B� Miller� Vital signs of identity� IEEE Spectrum� ���������	� February �����

����� D� Mueller and D� Hammerstorm� A neural network system component� In
Proc� Intl� Joint Conference on Neural Networks� pages �������
�� Baltimore�
June �����

����� U� A� Muller� A high performance neural net simulation� In Proc� Intl� Joint
Conference on Neural Networks� pages ���� Orlando� Florida� June �����

����� P� J� Narayanan and L� S� Davis� Replicated data algorithms in image process�
ing� CVGIP� Image Understanding� �
��������
�� November �����

��
	� L� M� Ni and A� K� Jain� A VLSI systolic architecture for pattern clustering�
IEEE Trans� on Pattern Analysis and Machine Intelligence� PAMI������	����
January �����

��
�� T� Nordstrom and B� Svensson� Using and designing massively parallel comput�
ers for arti�cial neural networks� Journal of Parallel and Distributed Computing�
���
	����� �����



��	

��
�� NSF� Grand Challenge� High�Performance Computing and Communications�
Report of the Committee on Physical� Mathematical� and Engineering sciences�
U� S� O�ce of Science and Technology Policy� National Science Foundation�
Washington� D� C�� �����

��
�� S� Olariu� J� L� Schwing� and J� Zhang� Fast computer vision algorithms for
recon�gurable meshes� Image and Vision Computing� �	���
�	�
�
� November
�����

��
�� S� Olariu� J� L� Schwing� and J� Zhang� Computing the Hough transform on re�
con�gurable meshes� Image and Vision Computing� ����	�
���
��� December
�����

��
�� S� Olariu� J� L� Schwing� and J� Zhang� Fast component labeling and con�
vex hull computation on recon�gurable meshes� Image and Vision Computing�
������������� September �����

��

� J� Onuki� T� Maenosono� M� Shibata� N� Iijima� H� Mitsui� and Y� Yoshida� ANN
accelarotor by parallel processor based on DSP� In Proc� Intl� Joint Conference
on Neural Networks� pages ��������
� Nagoya� Japan� October �����

��
�� S� Oteki� A� Hashimoto� T� Furuta� S� Motomura� T� Wantanabe� D� G� Stork�
and H� Eguichi� A digital neural network VLSI with on�chip learning using
stochastic pulse encoding� In Proc� Intl� Joint Conference on Neural Networks�
pages �	����	��� Nagoya� Japan� October �����

��
�� N� R� Pal and S� K� Pal� A review on image segmentation techniques� Pattern
Recognition� �
������������� September �����

��
�� J� N� Patel� A� A� Khokhar� and L� H� Jameison� Implementation of parallel
image processing algorithms in the CLONER environment� In Proc� of IEEE
Workshop on VLSI signal processing� La Jolla� California� pages ������ Oct��
�����

���	� T� Pavlidis and J� Zhou� Page segmentation and classi�cation� CVGIP� Image
Understanding� ���
�������
� November �����

����� G� G� Pechanek� S� Vassiliadis� J� G� Delgado�Frias� and G� Triantafyllos� Scal�
able completely connected digital neural network� In Proc� Intl� Joint Confer�
ence on Neural Networks� pages �	����	��� Orlando� Florida� June �����

����� J� B� Peterson and P� M� Athanas� Addressing the computational needs of high�
speed image processing with a custom computing machine� Journal of VLSI
Signal Processing� Under review�

����� T� D� S� Pierre and M� Milgram� New and e�cient cellular algorithms for image
processing� CVGIP� Image Understanding� ������
������ May �����



���

����� T� Poggio� Early vision From computational structure to algorithms and paral�
lel hardware� Computer Vision� Graphics� and Image Processing� �������������
August �����

����� V� K� Prasanna� C��L� Wang� and A� A� Khokhar� Low level vision process�
ing on connection machine CM��� In Proc� of IEEE Workshop on Computer
Architecture for Machine Perception� New Orleans� pages ������
� December�
�����

���
� U� Ramacher� SYNAPSE'a neurocomputer that synthesizes neural algorithms
on a parallel systolic engine� Journal of Parallel and Distributed Computing�
���	
����� �����

����� N� Ranganathan and K� B� Doreswamy� A VLSI chip for computing medial axis
transform of an image� In Proc� of IEEE Workshop on Computer Architecture
for Machine Perception� Como� Italy� pages �
���� September� �����

����� N� Ranganathan and R� Mehrotra� A VLSI architecture for dynamic scene
analysis� CVGIP� Image Understanding� ������������� March �����

����� N� Ranganathan and M� Shah� A VLSI architecture for computing scale space�
Computer Vision� Graphics� and Image Processing� �������	�� �����

���	� N� Ranganathan and S� Venugopal� An e�cient VLSI architecture for template
matching based on momemt preserving pattern matching� In Proc� of ��th Int�l�
Conf� on Pattern Recognition� Jerusalem� pages ������	� �����

����� S� Ranka and S� Sahni� Convolution on mesh connected multicomputers� IEEE
Trans� on Pattern Analysis and Machine Intelligence� ������������� March
���	�

����� A� R� Rao� A Taxonomy for Texture Description and Identi�cation� Springer�
Verlag� New York� ���	�

����� N� K� Ratha� T� Acar� M� Gokmen� and A� K� Jain� A distrbuted edge detection
and surface reconstruction algorithm based on weak membrane modeling� In
Proc� of IEEE Workshop on Computer Architecture for Machine Perception�
Como� Italy� pages �������� September� �����

����� N� K� Ratha� S� Chen� and A� K� Jain� Adaptive �ow orientation based tex�
ture extraction in �ngerprint images� Pattern Recognition� �������
����
���
November �����

����� N� K� Ratha and A� K� Jain� High performance custom computing for image
segmentation� In High Performance Computing Conference� New Delhi� pages

����� December� �����



���

���
� N� K� Ratha� A� K� Jain� and M� J� Chung� Clustering using coarse�grained
parallel genetic algorithm a preliminary study� In Proc� of IEEE Workshop on
Computer Architecture for Machine Perception� Como� Italy� pages ��������
September� �����

����� N� K� Ratha� A� K� Jain� and D� T� Rover� Convolution on Splash �� In Proc�
of the IEEE Symposium on FPGAs for Custom Computing Machines� Napa
Valley� California� pages �	������ �����

����� N� K� Ratha� A� K� Jain� and D� T� Rover� Fpga�based high performance page
layout segmentation� In Proc� of the IEEE Great Lakes Symposium on VLSI�
Ames� Iowa� pages ������ March� ���
�

����� N� K� Ratha� A� K� Jain� and D� T� Rover� An FPGA�based point pattern
matching coprocessor with application to �ngerprint matching� In Proc� of
IEEE Workshop on Computer Architecture for Machine Perception� Como�
Italy� pages �����	�� September� �����

���	� J� H� Reif� editor� Synthesis of Parallel Algorithms� Morgan Kaufman� San
Mateo� California� �����

����� F� M� Rhodes� J� J� Dituri� G� H� Chapman� B� E� Emerson� A� M� Soares� and
J� I� Ra�el� A monolithic Hough transform processor based on restructurable
VLSI� IEEE Trans� on Pattern Analysis and Machine Intelligence� �	����	
�
��	� January �����

����� I� Rigoutsos and R� Hummel� Massively parallel model matching� IEEE Com�
puter� ����������� February �����

����� J� Rose� A� E� Gammal� and A� Sangiovanni�Vincentelli� Architecture of �eld�
programmable gate arrays� Proceedings of the IEEE� ������	����	��� July
�����

����� A� Rosenfeld� Computer vision Basic principles� Proceedings of the IEEE�
�
����
���
�� August �����

����� E� Sackinger and H��P� Graf� A board system for high�speed image analysis
and neural networks� IEEE Trans� on Neural Networks� ������������ January
���
�

���
� T� Sakai� M� Nagao� and H� Matsushima� Extraction of invariant picture sub�
structures by computer� Computer Graphics and Image Processing� ��������
�
�����

����� A� Sangiovanni�Vincentelli� A� E� Gamal� and J� Rose� Synthesis methods for
�eld programmable gate arrays� Proceedings of the IEEE� ������	����	��� July
�����



���

����� Y� Sato� K� Shibata� M� Asai� M� Ohki� M� sugie� T� Sakaguchi� M� Hashimoto�
and Y� Kuwabara� Development of a high�performance general purpose neuro�
computer composed of ��� digital neurons� In Proc� Intl� Joint Conference on
Neural Networks� pages ��
�����	� Nagoya� Japan� October �����

����� R� J� Schalko�� Digital Image Processing and Computer Vision� John Wiley�
New York� �����

��		� N� B� Serbedzija� Simulating arti�cial neural networks on parallel architecture�
IEEE Computer� ������
�
�� March ���
�

��	�� R� V� Shankar and S� Ranka� Parallel vision algorithms using sparse array
presentations� Pattern Recognition� �
��	����������� October �����

��	�� SharpImage Software� New York� The HIPS Image Processing Software� �����

��	�� Y� Shimokawa� Y� Fuwa� and N� Aramaki� A parallel ASIC VLSI neural com�
puter for a large number of neurons and billion connections per second speed�
In Proc� Intl� Joint Conference on Neural Networks� pages ��
����
�� Seattle�
July �����

��	�� K� G� Shin and P� Ramanathan� Real�time computing a new discipline of
computer science and engineering� Proceedings of the IEEE� �����
���� January
�����

��	�� D� Skea� I� Barrodale� R� Kuwahara� and R� Poecker� A control point matching
algorithm� Pattern Recognition� �
����
����
� Feb �����

��	
� A� Srivastava� A comparison between conceptual clustering and conventional
clustering� Pattern Recognition� ������������� September ���	�

��	�� X��H� Sun and J� L� Gustafson� Toward a better parallel performance metric�
Parallel Computing� ���	�����	�� �����

��	�� M� H� Sunwoo and J� K� Aggarwal� Flexibly coupled multiprocessors for image
processing� Journal of Parallel and Distributed Computing� �	����������� ���	�

��	�� M� H� Sunwoo and J� K� Aggarwal� VisTA � An image understanding archi�
tecture� In V� K� P� Kumar� editor� Parallel Architectures and Algorithms for
Image Understanding� pages �������� Academic Press� San Diego� �����

���	� M� F� X� B� V� Swaaij� F� V� M� Catthoor� and H� J� DeMan� Deriving ASIC
architectures for the Hough transform� Parallel Computing� �
�����������
November ���	�

����� P� N� Swartztrauber� R� A� Sweet� W� L� Briggs� V� E� Henson� and J� Otto�
Bluestein�s FFT for arbitrary n on the hypercube� Parallel Computing� ���
�
��
	��
��� September �����



���

����� H� L� Tan� S� B� Gelfand� and E� J� Delp� A cost minimization approach to
edge detection using simulated annealing� IEEE Trans� on Pattern Analysis
and Machine Intelligence� ���������� January �����

����� S� L� Tanimoto and E� W� Kent� Architectures and algorithms for iconic�to�
symbol transformation� Pattern Recognition� ���������������� December ���	�

����� Texas Instruments� Texas� Designer�s workbook � MVP��	 training manual�
�����

����� D� E� Thomas� J� K� Adams� and H� Schmit� A model and methodology for
hardware�software codesign� IEEE Design and Test of Computers� pages 
����
September �����

���
� M� S� Tomlinson� D� J� Walker� and M� A� Sivilotti� A digital neural network
architecture for VLSI� In Proc� Intl� Joint Conference on Neural Networks�
pages II�����II���	� San Diego� ���	�

����� J� Ton and A� K� Jain� Registering Landsat images by point matching� IEEE
Trans� on Geoscience and Remote Sensing� �����
���
��� September �����

����� A� Torrabla� A systolic array with applications to image processing and wire�
routing in VLSI circuits� Parallel Computing� ����������� April �����

����� N� Tredennick� Technology and business forces driving microprocessor evolu�
tion� Proceedings of the IEEE� �������
����
��� December �����

���	� S� Trimberger� A reprogrammable gate array and applications� Proceedings of
the IEEE� ������	�	��	��� July �����

����� S� Umeyama� Parameterized point pattern matching and its application to
recognition of object families� IEEE Trans� on Pattern Analysis and Machine
Intelligence� �������
����� February �����

����� V� V� Vinod and S� Ghose� Point matching using asymmetrical neural networks�
Pattern Recognition� ���
���	������� August �����

����� M� A� Viredaz and P� Ienne� MANTRA I a systolic neuro�computer� In Proc�
Intl� Joint Conference on Neural Networks� pages �	����	
�� Nagoya� Japan�
October �����

����� C��L� Wang� V� K� Prasanna� H� J� Kim� and A� A� Khokhar� Scalable data
parallel implementations of object recognition using geometric hashing� Journal
of Parallel and Distributed Computing� ������
��	�� April �����

����� C� C� Weems� Architectural requirements of image understanding with respect
to parallel processing� Proceedings of the IEEE� ������������� April �����



���

���
� C� C� Weems� S� P� Levitan� A� R� Hanson� E� M� Riseman� D� B� Shu� and
J� G� Nash� The image understanding architecture� International Journal of
Computer Vision� ������������ �����

����� J� H� Wegstein� An automated �ngerprint identi�cation system� Technical
Report �		���� National Bureau of Standards� Bethesda� Maryland� �����

����� F� Weil� L� H� Jamieson� and E� J� Delp� Dynamic intelligent scheduling and
control of recon�gurable parallel architectures for computer vision!image pro�
cessing� Journal of Parallel and Distributed Computing� ������������� Novem�
ber �����

����� J� Weng� N� Ahuja� and T� S� Huang� Matching two perspective views� IEEE
Trans� on Pattern Analysis and Machine Intelligence� ������	
����� August
�����

���	� W� H� Wolf� Hardware�software co�design of embedded systems� Proceedings of
the IEEE� ������
������ July �����

����� J� Worlton� Toward a taxonomy of performance metrics� Parallel Computing�
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