
Computer Vision Algorithms on Reconfigurable

Logic Arrays

By

Nalini K� Ratha

A DISSERTATION

Submitted to

Michigan State University

in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

Department of Computer Science

����

Professor Anil K� Jain

Abstract

Computer Vision Algorithms on Reconfigurable Logic

Arrays

By

Nalini K� Ratha

Computer vision algorithms are natural candidates for high performance com�

puting due to their inherent parallelism and intense computational demands� For

example� a simple � � � convolution on a ��� � ��� gray scale image at �	 frames

per second requires
��� million multiplications and
	 million additions to be per�

formed in one second� Computer vision tasks can be classi�ed into three categories

based on their computational complexity and communication complexity low�level�

intermediate�level and high�level� Special�purpose hardware provides better perfor�

mance compared to a general�purpose hardware for all the three levels of vision tasks�

With recent advances in very large scale integration �VLSI� technology� an application

speci�c integrated circuit �ASIC� can provide the best performance in terms of total

execution time� However� long design cycle time� high development cost and in�exi�

bility of a dedicated hardware deter design of ASICs� In contrast� �eld programmable

gate arrays �FPGAs� support lower design veri�cation time and easier design adapt�

ability at a lower cost� Hence� FPGAs with an array of recon�gurable logic blocks

can be very useful compute elements� FPGA�based custom computing machines are

playing a major role in realizing high performance application accelerators� Three

computer vision algorithms have been investigated for mapping onto custom com�

puting machines �i� template matching �convolution� � a low level vision operation

�ii� texture�based segmentation � an intermediate�level operation� and �iii� point pat�

tern matching � a high level vision algorithm� The advantages demonstrated through

these implementations are as follows� First� custom computing machines are suitable

for all the three levels of computer vision algorithms� Second� custom computing

machines can map all stages of a vision system easily� This is unlike typical hardware

platforms where a separate subsystem is dedicated to a speci�c step of the vision

algorithm� Third� custom computing approach can run a vision application at a high

speed� often very close to the speed of special�purpose hardware� The performance

of these algorithms on Splash � � a Xilinx �	�	 �eld programmable gate array�based

custom computing machine � is near ASIC level of speed� A taxonomy involving cus�

tom computing platforms� special purpose vision systems� general purpose processors

and special purpose ASICs has been constructed using several comparative features

characterizing these systems and standard hierarchical clustering algorithms� The

taxonomy provides an easy way of understanding the features of custom computing

machines�

To my parents � Thank you for your constant

encouragement for higher academic pursuits�

iv

Acknowledgments

I take this oppurtunity to express my deep sense of gratitude to my advisor Dr� Anil

K� Jain for having having recruited me into the Ph� D� program and assigning me this

wonderful thesis topic� His support� encouragement and above all constant monitoring

and guidance kept me involved in the project leading to successful completion of my

degree� I consider myself very lucky for having worked with such a great personality

and mentor�

I wish to thank my committee members Dr� Lionel M� Ni� Dr� John Weng� Dr� Di�

ane T� Rover and Dr� V� Mandrekar for serving on my committee and contributing

towards enhancing the quality of my thesis in several ways�

This research work was supported by �nancial assistance from the Department

of Defense� I acknowledge their support� In particular� help from Dr� D� A� Buell�

Dr� Je� Arnold and Mr� Brian Schott of Center for Computing Research� Bowie�

Maryland� is greatly appreciated� Several long hours of discussion with Brian and

his personal help in making me understand programming on Splash � has helped

me in a big way� In addition� I wish to thank Dr� Sea H� Choi for his assistance in

VHDL related problems� As a project investigator� Dr� Rover was very helpful� easily

v

accessible and took care of many issues to make the project very successful� I thank

her for her assistance�

The Pattern Recognition and Image Processing �PRIP� laboratory provided one of

the �nest and up�to�date computing facilities for this reseach� I thank the PRIP Lab

managers Lisa Lees� Hans Dulimarta and Karissa Miller for their dedicated e�orts in

making the PRIP lab a great place to work�

I have personally bene�ted from all the PRIPpies� both past and present� for their

help and support over my stay at MSU� I thank them all� Special thanks are due to

Aditya and Prasoon for their help in proof reading my draft version of the thesis�

Last but not the least� I thank my wife Meena for her unfailing support� under�

standing and help in successful completion of this thesis� Her encouragement kept

me motivated even during the most di�cult periods�

vi

Table of Contents

LIST OF FIGURES x

LIST OF TABLES xiii

� Introduction �

��� Computer vision methodologies �
��� Vision task hierarchy �
��� Computational characteristics of computer

vision problems �

��� Need for real�time computer vision systems � � � � � � � � � � � � � � � � � ��
��� Architectures for vision ��
����� Architectural features for vision algorithms � � � � � � � � � � � � � � � ��
��
 Recon�gurable logic arrays ��
��� Hardware�software codesign �	
��� Contribution of the thesis ��
��� Overview of the thesis ��

� Parallel Architectures and Algorithms for Computer Vision ��

��� Languages �

��� Algorithms ��
����� System design issues ��
����� Vision and image processing applications � � � � � � � � � � � � � � � � � ��
��� Special�purpose hardware ��
����� Multimedia Video Processor �MVP��	� � � � � � � � � � � � � � � � � � � ��
����� WARP and iWARP Processors ��
����� NETRA ��
����� Image Understanding Architecture �IUA� � � � � � � � � � � � � � � � � ��
����� An Integrated Vision Tri�Architecture System �VisTA� � � � � � � � � � ��
����
 Scan Line Array Processor �SLAP� ��
��� Commercial image processing accelerators � � � � � � � � � � � � � � � � � ��
����� PIPE �

����� Datacube MV���	 ��
����� Imaging Technology MVC���	 ��
����� Alacron i�
	 and Sharc multiprocessor boards � � � � � � � � � � � � � � ��
����� Data Translation DT���
� �	
��� General�purpose parallel processors �	
����� SP�� �	
����� CM�� ��

vii

viii

����� MasPar MP�� ��

��
 Summary ��

� Custom Computing Machines ��

��� Field programmable gate arrays �FPGAs� � � � � � � � � � � � � � � � � � �

��� Recent trends in FPGAs �
	

��� Survey of FPGA�based computing machines � � � � � � � � � � � � � � � �
�

��� Splash �
�

��� Programming paradigm �
�

��
 Logic synthesis �
�

��� Software environment of Splash �
�

��� Case study Image segmentation on Splash � � � � � � � � � � � � � � � � � ��

����� Sequential algorithm ��

����� Mapping of image segmentation algorithm on Splash � � � � � � � � � � ��

����� Experimental results ��

��� Summary ��

� Image Convolution ��

��� Generalized convolution ��

��� Template matching ��

��� Image morphology ��

��� Application of generalized convolution �	

����� Orientation �eld computation using ��D convolution � � � � � � � � � � �	

����� Skeleton smoothing using image morphology � � � � � � � � � � � � � � � ��

����� Background removal in document image processing � � � � � � � � � � � ��

��� Mapping onto Splash ��

����� Implementation issues �

��
 Analysis of convolution on Splash �	�

��� Discussion �	�

��� Summary �	�

� Image Segmentation ���

��� Page layout segmentation ���

��� Mapping onto Splash ���

����� Filtering ���

����� Analysis of the �lter mapping ��

����� Neural network classi�er ���

����� Analysis of neural network implementation � � � � � � � � � � � � � � � � ���

����� Scalability ��

����
 Speed evaluation for neural network implementation � � � � � � � � � � ��

��� Analysis of the whole page layout algorithm � � � � � � � � � � � � � � � � ���

��� Discussion ���

��� Summary ���

ix

� Point Pattern Matching ��	

�� Fingerprint matching ���

�� Matching algorithm ���

�� Mapping point pattern matching onto

Splash ���

���� Computations on Splash ���

�� Analysis of point pattern matching algorithm on Splash � � � � � � � � � � ���

���� Simulation and synthesis results ���

���� Performance analysis ��

�� Discussion ���

�
 Summary ���

 Building a Taxonomy of Computer Architectures ��	

��� Proposed method ���
����� Systems used for the study ���
����� Method ��

��� Results ���
����� Visualization ���
����� Hierarchical clustering �
	
��� Discussion �
�
��� Summary �
�

� Conclusions and Directions for Future Research ���

��� Directions for future research �
�

APPENDICES �
	

A Case Study� Image Segmentation �
	

B Image Segmentation� Mask Values �		

C Image Segementation� Neural Network Weights �	�

BIBLIOGRAPHY �	�

List of Figures

��� Bottom�up approach to designing a vision system� �Adapted from ������ �
��� Design of a computer vision system with a �feedback� path� �Adapted

from ������ �
��� Edge detection� �a� Input image� �b� Edge map using GNC� �c� Edge map

using Sobel operator �d� Edge map using Canny operator� � � � � � � �
��� Image segmentation� �a� Input image� �b� Segmented image� � � � � � � � �
��� Shape from stereo� �a� Left image� �b� Right image� �c� Depth �brighter

pixel means closer to the viewer�� �d� Displacement vector� � � � � � � ��
��
 Classi�cation of architectures for vision� � � � � � � � � � � � � � � � � � � ��
��� Vision task pyramid� ��

��� Architecture of MVP��	� �	
��� Architecture of NETRA� ��
��� Schematic overview of IUA� ��
��� Architecture of SLAP� ��
��� Schematic of a PIPE processor� ��
��
 Schematic of Datacube MV���	� ��
��� Architecture of SP��� ��
��� Architecture of CM��� �Adapted from ��
�� � � � � � � � � � � � � � � � � � ��
��� Architecture of MP��� ��

��� Methods for embedded system design� �

��� Structure of a Xilinx �	�	 CLB� ��
��� Splash � architecture�
�
��� A Processing Element �PE� in Splash �� � � � � � � � � � � � � � � � � � �

��� Programming �ow for Splash ��
�
��
 Steps in software development on Splash �� � � � � � � � � � � � � � � � � � �	
��� Flow chart of a simple page segmentation algorithm� � � � � � � � � � � � ��
��� Page Layout Segmentation� �a� Input gray�level image� �b� Result of the

segmentation algorithm� �c� Result after postprocessing� � � � � � � � ��
��� Simulation results of page layout segmentation on Splash �� � � � � � � � �

���	 Schematic for page layout segmentation on Splash �� � � � � � � � � � � � ��
���� Schematic for �ltering on Splash �� ��
���� Projected speed for X�� ��
���� Page Layout Segmentation using Splash �� �a� Input gray�level image with

����� pixel windows shown� �b� Result of the segmentation algorithm
running on Splash� �	

x

xi

��� A taxonomy of convolution operators� ��
��� The convolution operator� I�i�j� is the input gray image value at pixel �i�j�

and M�u�v� is the mask value at �u�v�� � � � � � � � � � � � � � � � � � ��
��� Sequential algorithm for ��dimensional convolution� I�i�j� and O�i�j� are

the input and output values� respectively� at pixel �i�j� and M�u�v� is
the mask value at �u�v�� �

��� Computation of orientation �eld� �a� input �ngerprint image ����� �����
�b� orientation �eld �for each �
 � �
 window�� �c� orientation �eld
superimposed on the input image� ��

��� Thinned ridges �a� before spike removal� �b� after spike removal� � � � � ��
��
 Background removal using �open�� �a� input binary image� �b� output of

�open�� ��
��� ��D systolic algorithm� ��
��� Systolic schemes for convolution on Splash �� �a� ��dimensional convo�

lution� �b� ��dimensional convolution using memory lookup� �c� ��
dimensional convolution with shift registers and memory lookup� � � � ��

��� A compute element� ��
���	 A shift register� ��
���� Implementation of three edge detection �lters on Splash �� �a� � �� Sobel

masks� �b� � � � Prewitt masks� �c� � � � Prewitt masks� X� � X��

denote the PEs in Splash �� �	�
���� Results of ��dimensional convolution� �a� Input image� �b� � � � Sobel

edge detector output� �c� � � � Prewitt edge detector output� �d� � �
� Prewitt edge detector output� �	�

���� Notation used in the analysis of ��D convolution algorithm� � � � � � � � � �	�
���� E�ciency versus width for various image and mask sizes� � � � � � � � � � ��	

��� Schematic of the page layout algorithm� � � � � � � � � � � � � � � � � � � ���
��� Page layout segmentation� �a� Input gray�level image� �b� Result of the

segmentation algorithm� �c� Result after postprocessing� � � � � � � � ���
��� Fixed�point multiplication� ��

��� A multilayer perceptron� ���
��� Schematic of a perceptron� ���
��
 Mapping a single layer of a MLP onto Splash �� The ith PE computes

f�
P
wijFi�� ���

��� A modular building block for ��layer MLP� � � � � � � � � � � � � � � � � � ���
��� Overall PE mapping for implementing MLP� � � � � � � � � � � � � � � � � ���
��� Synthesis speed of the two stages in segmentation algorithm� �a� Filtering�

�b� Classi�cation� ���

�� Gray level �ngerprint images of di�erent types of patterns with core ���
and delta ��� points �a� arch� �b� tented arch� �c� right loop� �d� left
loop� �e� whorl� �f� twin loop� ���

�� Two commonly used �ngerprint features �a� Ridge bifurcation� �b� Ridge
ending� ���

xii

�� Complex features as a combination of simple features �a� Short ridge� �b�
Enclosure� ���

�� Stages in an AFIS ���

�� Components of a minutia feature� ���

�
 Possible outcomes in minutia matching� ���

�� Tolerance box for X� and Y�components� � � � � � � � � � � � � � � � � � � ���

�� Sequential �ngerprint matching algorithm� � � � � � � � � � � � � � � � � � ��	

�� Data �ow in parallel point matching algorithm� � � � � � � � � � � � � � � ���

��	 Data �ow in X�� ���

��� Data �ow in a PE� ���

��� Speed projections� �a� X�� �b� other Xis � � � � � � � � � � � � � � � � � � ��

��� Principal component analysis� ���
��� Multidimensional scaling using the proposed dissimilarity measure� � � � �
	
��� Dendrograms showing taxonomy of machines based on Euclidean distance

measure� �a� Single link� �b� Complete link� � � � � � � � � � � � � � � �
�
��� Dendrograms showing taxonomy of machines based on proposed distance

measure� �a� Single link� �b� Complete link� � � � � � � � � � � � � � � �
�

List of Tables

��� Examples of vision tasks in the three�level hierarchy� � � � � � � � � � � �

��� Summary of di�erent implementations of Hough transform� � � � � � � � � ��
��� MVP��	 benchmark results� �	

��� Commercially available FPGAs� ��
��� A summary of custom computing machines� �Contd�� � � � � � � � � � � �
�
��� A summary of custom computing machines� � � � � � � � � � � � � � � � �
�

��� Generalized ��D Convolution� ���� multiplication� ��� subtraction� ���
addition�� � logical �AND� operator� �b complement of b� logical
complement� �j� logical �OR� operator� � � � � � � � � � � � � � � � � � ��

��� Comparative analysis of convolution algorithms� image size is N �N and
mask size is k � k ��

��� Timings for a � � � Sobel edge detector for a ��� � ��� image on di�erent
platforms� � Results are for an edge detector based on six � � �
convolution masks� �		

��� Run times �in milliseconds� of edge detection on Splash � for various image
and convolution mask sizes� �	�

��� Number of clock cycles and e�ciency for commonly observed values of M �
N � and k �	�

��� �� � �� Pattern matrix �shown in two tables�� � � � � � � � � � � � � � � � ���
��� Analysis of the dendrograms� �
�

xiii

Chapter �

Introduction

The goal of computer vision is to automatically construct a description of a given

scene from an analysis of the sensed images of the scene� The sensed images can be

a single image taken from a single camera� multiple views of the scene �for example�

in binocular stereo� using multiple cameras or a sequence of images of the same

scene taken over a period of time �as in video sequences or satellite images� using

single or multiple cameras� The description of the scene consists of the identity

and localization �position and orientation of an object� of the objects present in the

scene based on their measured physical attributes �features�� In this regard� the

goal of image understanding or computer vision di�ers from that of image processing

which involves image�to�image transformations without arriving at a description of

the scene� Simply stated� computer vision aims at providing visual capabilities to

a machine� It includes techniques from image processing� exploratory data analysis�

statistical pattern recognition� cognitive science and arti�cial intelligence�

Designing robust and general purpose computer vision systems is a challenging

�

�

task ���� ����� A number of di�cult imaging conditions as well as scene and object

complexities are encountered in practice� These non�ideal and confounding condi�

tions arise due to �i� improper lighting� �ii� shadow� �iii� occlusion� �iv� noise in the

sensed image� and �v� assumptions made in object representation strategies� A typical

computer vision system involves a front�end image acquisition and a preprocessor� fol�

lowed by a scene interpreter� The back�end deals with interpreting the scene from the

extracted features� One of the main problems in computer vision is to automatically

determine a salient set of features that is suitable for describing the scene explicitly�

In the literature many attempts have been made to design machine vision systems

that mimic a human vision system� But� as the human vision system is extremely

complex and not fully understood� these human vision�based models and approaches

are not very helpful in designing practical machine vision systems�

The input to a machine vision system is not limited to images in the visible band

of the spectrum� Often� infra�red and other non�conventional images are fed into

a vision system� A fusion of di�erent types of sensing modalities �e�g�� in remote

sensing� is not uncommon� The task of a computer vision system is to obtain a high�

level description from the input pixels� Depending on the task� a sequence of images or

a single image in an appropriate wavelength band is used� For example� in a document

image analysis system a single scan of the input document is used where as in motion

analysis� a sequence of images is used� Computer vision techniques are being used in

a number of practical application domains� including document analysis� bio�medical

image analysis� robotics� remote sensing� biometry and industrial inspection� The

pixel�to�symbol �scene description� mapping is the inverse of approaches taken in

�

computer graphics� where the aim is to generate an image of a scene from a given

description� Computer vision problems are di�cult to solve� because� quite often� the

solution to the desired �inverse problem� is ill�posed ���� ����� Secondly� the scene

interpretation problemmay be ill�de�ned because a real�world scene does not obey the

assumptions of the mathematicalmodels used for image representation and matching�

More commonly� the general vision problem is computationally intractable� Over the

last three decades� many approaches� theories and methodologies have been developed

for analyzing problems in computer vision� But� a general purpose computer vision

system is still a dream� In spite of these limitations� many successful machine vision

systems have been built to handle problems in speci�c domains�

��� Computer vision methodologies

In order to arrive at a symbolic description of a given scene from its sensed image�s��

many methods have been described in the literature ����� ����� The well�known Marr

paradigm is based on the �bottom�up� or data�driven approach� In this method�

image interpretation is carried out through a number of stages with an increasing

abstract representations� The lower�level features are grouped to arrive at the next

higher level scene description� The overall system approach is described in Figure ����

In this system� several �vision modules� work independently at the lowest level� The

responses of these modules are grouped together to form higher level features for the

purpose of recognition� The limitations of this approach are described in ������ In con�

trast� the other popular paradigm is that the scene description can be achieved using

�

Recognition

Image Features

S
h

ap
e

fr
o

m
 s

h
ad

in
g

S
h

ap
e

fr
o

m
 t

ex
tu

re

M
o

ti
o

n

S
te

re
o

2 1/2-D sketch
Intrinsic Images

Object Models

S
h

ap
e

fr
o

m
 X

Figure ��� Bottom�up approach to designing a vision system� �Adapted from ������

�top�down� information integration �model�driven�� Higher level goals are decom�

posed into subgoals recursively until the subgoals are reduced to atomic hypothesis

veri�cation steps� In reality� a combination of top�down and bottom�up approaches�

where top�down constraints are expressed as model�driven predictions that are ver�

i�ed by bottom�up analysis is preferred� This leads to the system design shown in

�gure ���� However� a system design with a feedback path is very di�cult to imple�

ment� A summary of other methodologies such as active vision and active perception

is given in ������

��� Vision task hierarchy

Based on the computational and communication characteristics� computer vision

tasks can be divided into a three�level hierarchy� namely� low�level� intermediate�level�

�

Recognition

Image Features

S
h

ap
e

fr
o

m
 s

h
ad

in
g

S
h

ap
e

fr
o

m
 t

ex
tu

re

M
o

ti
o

n

S
te

re
o

2 1/2-D sketch
Intrinsic Images

Object Models

Perceptual

Organization

Verification

Perceptual
Grouping

S
h

ap
e

fr
o

m
 X

Figure ��� Design of a computer vision system with a �feedback� path� �Adapted
from ������

and high�level ����� ��� ��
�� Low�level vision tasks consist of pixel�based operations

such as �ltering� and edge detection� The tasks at this level are characterized by

a large amount of data �pixels�� small neighborhood operators and relatively simple

operations �e�g�� multiply and add�� The pixel grouping operations such as segmen�

tation� and region labeling are intermediate�level vision tasks� These tasks are again

characterized by local data access� but more complex pixel operations� High�level

vision tasks are more decision�oriented such as point matching� tree matching and

graph matching� These tasks are characterized by non�local data access and non�

deterministic and complex algorithms� Several examples of vision tasks belonging to

this three�level hierarchy are shown in Table ���� The examples under each category

Task level Computational
characteristics

Examples

Low Small neighborhood data
access� simple operations�
large amount of data

Edge detection� �ltering� im�
age morphology

Intermediate Small neighborhood� more
complex operations

Hough transform� connected
component labeling�
relaxation

High Non�local data access� non�
deterministic and complex
operations

Point matching� tree match�
ing� graph matching� object
recognition

Table ��� Examples of vision tasks in the three�level hierarchy�

may not be unique� Di�erent researchers may assign the same problem into di�erent

categories� e�g�� Hough transform is often considered as a low�level task� Similarly�

there is some ambiguity about the high�level tasks� The approach taken in this thesis

is that if the primary purpose of the task is image enhancement� then it is low�level�

The tasks that operate on the pixels to produce symbols �features� are intermediate

level tasks� We call the decision making stage as high�level� This classi�cation is

purely based on computational and communication criterion described above�

��� Computational characteristics of computer

vision problems

The visual capabilities endowed to animals and humans look very simple and trivial

on the surface� but they turn out to be extremely di�cult to describe algorithmically�

The computational characteristics of vision algorithms are quite di�erent from other

compute intensive problems such as weather forecast models and human genome

�

project as can be seen by the following case studies of problems from each of the

three levels of visual tasks�

� Low�level operations

Edge detection Detection of sharp changes in intensity in a gray level input

image is an important task� Edges are necessary to describe the raw primal

sketch proposed by Marr ������ Many edge operators are described in the lit�

erature starting with simple Robert�s edge detector to complex schemes involv�

ing regularization�based surface �tting models� A simple edge detector has a

computational complexity of O�N�M�� for an N � N image with a M �M

mask� Complex optimization�based techniques� such as simulated annealing�

based edge detector ����� have a complexity of O��N
�

� for an N �N image� For

a ��� � ��� image� the total execution time of such algorithms is in the range

of several minutes on a SparcStation �	 workstation compared to the desired

time of milliseconds �for �real�time� vision applications�� A simple �� � Sobel

edge detector� on the other hand� takes only 	�� seconds of execution time on

a ��� � ��� image on a SparcStation �	� However� it produces thick edges and

for noisy images the performance of Sobel edge detector is poor� The results of

GNC�based edge detection� Sobel edge operator and Canny edge operator are

shown in Figure ��� �����

Image compression Another low�level task is compression and decompression

of an image for the purposes of storage and transmission� A commonly adopted

method of compression is the JPEG standard� Compressing a ���� ��� image

�

�a� �b�

�c� �d�

Figure ��� Edge detection� �a� Input image� �b� Edge map using GNC� �c� Edge
map using Sobel operator �d� Edge map using Canny operator�

using JPEG standard takes several seconds on a SparcStation �	 compared to

the desired time of milliseconds�

� Intermediate�level Operations

Image segmentation Obtaining homogeneous regions from an input image helps

in obtaining a scene description� Although a general�purpose image segmenta�

tion technique still eludes computer vision researchers� many successful domain�

speci�c segmentation techniques are available� A texture�based segmentation

method for page layout analysis based on texture discriminating masks has

�

�a� �b�

Figure ��� Image segmentation� �a� Input image� �b� Segmented image�

been described in ��	��� The algorithm uses a neural network�based approach

to learn the convolution masks for segmentation� The learning process involves

a gradient descent method of optimization� For a �� 	�� � �� 	�� image� this

method takes approximately ��	 seconds of execution time on a SPARCstation

�	� A three�class image segmentation result is shown in Figure ���� where white

pixels represent the graphics area� black pixels represent the background and

the gray pixels represent the text area of the input image�

Structure and motion estimation From a stereo image pair� the depth at each

image point can be estimated� A multiresolution algorithm has been proposed

by Weng et al� in ������ By constructing a six�layer pyramid from the input

image� the disparity information is estimated at every point and projected to

a lower level in the pyramid� A non�linear optimization technique is used to

provide a more stable solution in the presence of image noise� For a stereo

�	

pair of ��� � ��� images� the depth estimation takes over �	 minutes on a

SPARCstation �	� Results of this algorithm are shown in �gure ����

� High�level operations

At the highest level of visual processing� the tasks of recognition and matching

are carried out� Many knowledge�based approaches fall under this category�

Typically� the input to this stage are surfaces� lines and points represented in

terms of high�level data structures such as graphs� trees� and point vectors� The

matching and recognition tasks are expressed in terms of generic graph isomor�

phism� sub�graph isomorphism� tree matching or point vector matching� Most

of these problems fall into the NP�complete class� hence� they are highly compu�

tation intensive� For example� consider the case of matching a query �ngerprint

with the stored images in a large database� Typically� �ngerprint databases

contain millions of records and a �ngerprint image contains on an average� ap�

proximately
� minutiae features� The matching problem can be posed as a

subgraph isomorphism problem which is known to be a NP�complete problem�

Using a simple model of the minutiae features and simplifying assumptions� the

matching problem can be mapped to a point pattern matching problem� For

an average of
� points per �ngerprint� a sequential point matching algorithm

takes on the order of � hours to match a �ngerprint against one million images

in a database�

In summary� computer vision problems are often ill�posed� intractable and require

substantial computational resources� Many simplifying assumptions are made about

��

�a� �b�

�c� �d�

Figure ��� Shape from stereo� �a� Left image� �b� Right image� �c� Depth �brighter
pixel means closer to the viewer�� �d� Displacement vector�

��

the sensing geometry� light sources� surface geometry and noise sources � e�g�� smooth

surfaces� Lambertian surfaces and Gaussian noise� etc��� These assumptions make

the resulting vision system very brittle in the sense that the system�s performance

degrades rapidly when the assumptions are violated� In order to overcome these short�

comings� complex processing algorithms involving non�linear optimization techniques

are used� However� these complex algorithms demand additional computational re�

sources�

��� Need for real�time computer vision systems

A system in which the time instant at which the output is produced� after presen�

tation of the input� is critical� is called a real�time system� Shin and Ramanathan

��	�� have identi�ed three major components and their interplay that characterize

a real�time system� Loosely speaking� the system output must meet a time dead�

line since the output is related to the input changes� Brown and Terzopoulos ��	�

de�ne real�time computer vision systems as follows Real�time computer vision sys�

tems refer to computer analysis of dynamic scenes at rates su�ciently high to e�ect

practical visually�guided control or decision making in everyday situation� Another

de�nition of real�time system is that the response time of the machine vision system

may equal or be faster than the response of the human performing the same task�

These de�nitions lead to an expected processing rate of about �	��	 frames per sec�

ond� Computer vision systems are employed in many time�critical applications such

as silicon wafer inspection� Each wafer needs to be inspected and a decision made

��

before the next wafer arrives� Hence� it is essential that the vision processing be done

at the data acquisition rate �video frame rate of �	 frames!second�� For applications

based on video data� processing at this rate is an essential requirement� In military

applications such as target detection� the need for real�time processing is highly crit�

ical �

�� Many interesting applications such as automatic car license plate reading

demands a real�time processing of the moving�vehicle images� The need for real�

time processing is also very important in medical image analysis applications such

as vision�guided non�invasive surgery� Similar constraints exist in other applications

such as compression!decompression of images in multi�media applications� In order

to meet the real�time requirements� a frame of image bu�er needs to be processed in

roughly �� milliseconds� For a ������� gray level image this amounts to a data rate

of roughly ��� MHz� The vision algorithms described in the previous section demand

a very high execution time on a general�purpose computing platform compared to the

desired real�time response� Often� the large disparity between the desired response

time and actual response time is reduced by using appropriate hardware accelerators

������

��� Architectures for vision

In order to meet the high computational needs of vision systems� many special�purpose

architectures have been proposed in the literature� Machines based on Von Neumann

architecture are inadequate to meet the computational requirements of vision algo�

rithms� Hence� special�purpose hardware and parallel processing systems are com�

��

monly used to meet the computational requirements of computer vision algorithms�

Architectures for vision can be classi�ed on the basis of several variables as shown in

�gure ��
�

� The architectures for vision can be classi�ed depending on the type of vision

algorithm �e�g�� low�level� intermediate�level or high�level��

� Yet another way to classify the architectures is based on the instruction and data

streams� The two common classes are Single Instruction Multiple Data �SIMD�

and Multiple Instruction Multiple Data �MIMD�� Typically� architectures for

vision algorithms tend to be of the SIMD class for the lower�level algorithms�

Parallelism at lower levels is more obvious compared to high�level algorithms�

A taxonomy with several vision system examples from each class is given in

���	��

� A third way of classi�cation is based on the type of hardware used Application�

speci�c processor versus general�purpose hardware�

� Fine grained versus coarse grained Based on the granularity of parallelism� a

special purpose processor can be classi�ed as �ne�grained or coarse�grained�

A number of special�purpose architectures for vision are discussed in the next chapter�

��

Coarse-grained

Hardware type

Instruction and

data stream

Special-Purpose

General-Purpose

 MIMD

SIMD

High-level

Low-Level

Fine-grained
Grain size

Vision task

Level
Intermediate-Level

Vision architectures

Figure ��
 Classi�cation of architectures for vision�

����� Architectural features for vision algorithms

By analyzing several representative problems in computer vision� the following archi�

tectural requirements are observed

� Computational characteristic For low�level vision algorithms� SIMD and �ne�

grained architectures are preferred and for high�level algorithms� MIMD and

coarse�grained architectures are required�

� Communication At a lower level� communication is limited to a local neighbor�

hood� but at higher levels the communication tends to be global �non�local��

� High bandwidth I!O A typical image contains a large amount of data� therefore

a high bandwidth I!O is essential to sustain good performance�

�

� Resource allocation Speeding up only one stage of the vision system will not

result in a signi�cant speedup of the overall performance� Hence� appropriate

computational resources should be allocated to all the stages of the algorithm�

� Load balancing and task scheduling For good performance� the load on di�erent

processors should be balanced�

� Fault tolerance In a multi�processor system� failure of some processing elements

should not result in an overall system failure� Therefore� a graceful degradation

should be supported�

� Topology and data size independent mappings Often� a speci�c processor topol�

ogy is preferred for an algorithm depending on its communication characteris�

tics� Hence� �exible communication support is essential for mapping many com�

munication patterns� The algorithm mapping should be independent of data

size�

These broad characteristics of vision tasks are shown as a pyramid in �gure ����

Many novel architectural features have been incorporated in the currently available

general�purpose processors to improve their performance� Reduced�instruction set

computing �RISC� paradigm is being preferred over complex�instruction set �CISC�

computing paradigm� The RISC approach is characterized by a simple instruction

set and addressing modes� For performance improvement� pipelining is a very well�

known practice� In addition� advanced processors support the following architectural

features

��

Intermediate-level,
Less data (KBits)
MIMD, medium-grained

Global communication, MIMD, Coarse-grained
Symbolic processing

Low-level, Large amount of data (MBits)

SIMD, fine-grained

High-level, Very little data (few bytes)

Neighborhood communication

Figure ��� Vision task pyramid�

� Superscalar Issue of more than one instruction to more than one execution

unit in one clock cycle�

� Superpipeline An instruction�handling sequence with a large number of stages

to allow a faster clock�

� Out�of�order instruction issue and instruction execution�

� Speculative execution�

� Large on�chip instruction and data cache�

� On�chip support for �oating point operations and graphics operations�

The main goal of these features is to achieve the optimal level of single clock per

instruction �CPI�� Many other techniques such as hardware!software branch predic�

tion� and dynamic scheduling are also employed in modern processors� The number

of transistors has reached ten million per processor and soon 	����m technology will

��

be available� The clock rates of �		 MHz are already being experimented with and

�		 MHz processors are quite common ����� A comparative evaluation of the four

latest RISC processors �Alpha ���
�� MIPS �				� PowerPC
�	 and UltraSparc� is

given in ����� These advanced features need hardware support on the chip which can

take away a signi�cant amount of silicon space� Tredennick ����� has suggested the

following three ways to improve the performance of present day uniprocessors �i�

superscalar� �ii� multiprocessing� and �iii� use of very long instruction word �VLIW��

The various parameters in a processor architecture such as number of stages in a

pipeline� size of on�chip cache� and number of functional units in case of superscalar

processors are decided by maximizing the average performance over a wide variety of

applications� For high performance applications� this design decision is not accept�

able as the parameters are not optimized for the application at hand� Experienced

programmers often desire to tune instructions to meet their needs in order to satisfy

application demands� The undesirable overheads of general�purpose� �xed�instruction

set machine can be dispensed with for the sake of performance� Unfortunately� such

systems wherein the user can de�ne his own instructions are not yet available� Treden�

nick ����� proposes a new approach to computing wherein he suggests not to execute

low�level operating system routines on the main processor� Instead he suggests a �re�

con�gurable embedded accelerator� that can provide the low�level services for several

applications�

��

��� Recon	gurable logic arrays

There are a number of di�erent ways to increase the computational power of pro�

cessors� Many architectural re�nements described earlier� e�g�� super�scalar� super�

pipelined� high clock rate� etc� ���� �
� demand a high price for retaining the general

programmability of these processors�

The user is constrained to think of solving his!her problems within the boundaries

of the architecture of the hardware as re�ected in the programming language� The

language compilers play a major role in exploiting architectural features of the under�

lying hardware� However� in order to make the programming languages independent

of the architecture� the programmers are not exposed to the speci�c underlying ar�

chitecture� Even if the architecture is exposed to the user through machine language�

the user has never been given the freedom of designing his architecture until recently�

The system resources will be e�ectively used only if the architecture can be tuned

to the demands of the application� Until recently� it was not possible to provide ar�

chitectural speci�city coupled with user reprogrammability� Designing an application

speci�c integrated circuit �ASIC� has the advantage of designing a user�speci�c archi�

tecture� but not user reprogrammability of the architecture� The highest speed with

a given technology is achievable only if the user can program at the basic gate�level�

This is the basis of recon�gurable arrays� The recon�gurable arrays are di�erent from

recon�gurable architectures which use switching elements to achieve di�erent parallel

architectures� Recon�gurable arrays support programmability at the gate level to

support architecture customization at the instruction level� There are many types

�	

of recon�gurable hardware based on the techniques and technology used to support

recon�gurability� Custom computing machines �CCMs� ���� use recon�gurable logic

blocks as basic compute elements� Di�erent names have been given to this approach

of computing such as FPGA�based computing device� Programmable Active Memory

�PAM� ����� and Processor Recon�guration through Instruction Set Metamorphosis

�PRISM� �����

The main advantage of FPGA�based custom processors is that the logic required

for each application can be generated by an appropriate control bit stream� Hence�

many diverse applications can use the same hardware� Moreover� no instruction fetch

or decode is necessary� Once the control bit stream is loaded� the system is ready to

execute the code that is speci�c to the given application�

Recon�gurable logic arrays can support many of the features demanded by vision

algorithms� Evaluating the suitability of recon�gurable logic arrays for vision algo�

rithms is the main objective of this thesis� CCMs are slave processors to a host� so

the I!O tasks do not run on them� Often� the time consuming portion of an appli�

cation program is mapped onto the CCM instead of the whole application� The I!O

segments of the application are usually run on the host�

��
 Hardware�software codesign

The system designer has the dilemma of deciding which portions of an algorithm

should be run on a special hardware and which portions should be run on a standard

hardware �e�g�� a workstation or a microprocessor�� Ideally� an application�speci�c

��

hardware system that could be built without a high cost and without a high turn�

around time would be preferred� But� dedicated systems are always coupled with

high development time and large investments� At the other end of the spectrum one

can use a general�purpose processor at the cost of sacri�cing the performance� The

designer has to make a cost!performance analysis to arrive at an e�cient partition of

the problem� This optimization problem is the subject of hardware�software codesign

which refers to the process of simultaneously designing both hardware and software

to meet some speci�ed performance objectives� In a traditional approach� hardware�

software partitions are relatively rigid� In codesign the partition is �exible and can be

shifted to meet the changing performance criterion� It is desirable to follow a design

cycle that can support modeling complex system designs in hardware and software

to arrive at the partition for an overall optimal performance� Recently� Micheli �����

has described a framework for hardware�software codesign� An embedded system is

a system with a mix of general�purpose processors� dedicated hardware as well as

software running on one or more processors in addition to sensors to interact with

the environment� Hardware�software codesign is an important method for designing

embedded systems� Wolf ���	� surveys design of embedded systems which use software

running on programmable computers�

��� Contribution of the thesis

The main goal of this research is to demonstrate suitability and superiority of custom

computing approach for all levels of vision algorithms� For this purpose� the following

��

representative examples of computer vision tasks from low�level� intermediate�level�

and high�level vision algorithms have been used� For low�level vision algorithm� a

generalized ��D convolution has been implemented� For intermediate level vision�

a texture�based segmentation algorithm is implemented� Point pattern matching is

carried out to demonstrate the applicability of custom computing machines for high�

level vision algorithms� Special purpose architectures for vision are usually targeted

for di�erent levels� The main advantage of using recon�gurable arrays is that the

same architecture can be tailored to the demands of a speci�c level by customizing

the instruction set�

Through the design and implementation of these selected algorithms� suitability of

custom computing machines for computer vision algorithms has been demonstrated�

The other advantage of this framework is the integration of the whole machine vision

system on a single platform which is likely to meet the �real�time� requirements� The

following advantages and disadvantages have been observed

� Recon�gurability of the FPGAs can be exploited to meet the requirements of

di�erent levels of vision algorithms�

� Multiple styles of parallel programming is possible with multi�FPGA custom

computing machines�

� Near ASIC�levels of speed of operation is possible with CCMs�

� The overheads to support recon�gurability comes in the way of a more dense

logic�

��

� High density recon�gurable logic arrays are costlier�

� The CCMs need to be further evaluated for pure �oating point�based and non�

linear optimization technique�based algorithms�

In addition� a number of features that describe custom computing machines have

been studied by way of constructing a taxonomy involving several custom computing

machines� general�purpose processors and special�purpose processors�

��� Overview of the thesis

The rest of this thesis is organized as follows� Results presented in the area of paral�

lel architectures and parallel algorithms for computer vision are surveyed in Chapter

�� The di�erent design components for recon�gurable architectures are discussed

in Chapter �� The programming �ow for such a hardware is quite di�erent from

conventional programming style� The programming methods for custom computing

machines are also presented in Chapter �� Splash � is one of the earliest custom com�

puting machines� Details of Splash � and other recent CCMs are brie�y reviewed in

Chapter �� The advantages and disadvantages of these machines compared to stan�

dard hardware platforms are also presented� For the purpose of testing our approach�

representative algorithms from di�erent stages of computer vision have been chosen�

Chapter � describes mapping of generalized convolution algorithm as a representative

low�level vision task� Image segmentation applied to page layout segmentation based

on a two�stage algorithm using convolution and neural network classi�er is described

in Chapter �� The feature�based �ngerprint matching is presented in Chapter
� A

��

taxonomy involving CCMs and other well known platforms is given in chapter �� Fi�

nally� the conclusions of this research and directions for future research work in this

area are summarized in Chapter ��

Chapter �

Parallel Architectures and

Algorithms for Computer Vision

A variety of compute�intensive applications �e�g�� weather forecasting� computer vi�

sion� human genome mapping� have been the main driving force behind parallel pro�

cessing� A number of these applications are listed as �Grand Challenges� in the

Federal High Performance Computing Program ��
��� This chapter is devoted to a

survey of reported work in the area of parallel architectures and algorithms for com�

puter vision� In the area of custom computing machine for computer vision� only a

few results have been reported in the proceedings of the workshops on FPGAs for

custom computing machines �FCCM� ���� ��� �		��

The vast amount of work in parallel processing for computer vision will be surveyed

under three major sub�areas �i� algorithms� �ii� architectures� and �iii� languages� The

general design issues such as theoretical analysis� load balancing and mapping will

be brie�y reviewed under speci�c algorithms� Both special�purpose architectures and

��

�

general�purpose architectures tuned for vision tasks will be covered under the sub�area

of architectures� The most well known architecture speci�c to vision applications is

the pyramid architecture� Algorithms and architectures for pyramid�based machines

will be reviewed� Many special�purpose VLSI hardwares which have been developed

for computer vision will also be described� A large number of commercial image

processing accelerators are available in the market� A brief description of the popular

ones is included in this chapter� Recent general�purpose parallel processing systems

such as SP��� CM�� and MasPar�� are being used for many computer vision tasks� A

brief description of the architecture of these two general�purpose parallel architectures

is included� Very little work has been reported on parallel languages for computer

vision�

��� Languages

A fundamental problem in the area of parallel processing is how to express parallelism

present in a given algorithm� Many methods are employed to express parallelism ex�

plicitly to assist the language compilers� High Performance Fortran �HPF� continues

to be the most popular for this task� For image processing related tasks� Brown et al�

���� have proposed a language called I�Bol� It treats an image as a tuple of sets� A

number of low�level and intermediate�level vision tasks have been implemented using

user�de�ned neighborhood functions� I�Bol is well suited for distributed memory sys�

tems and has been implemented over a network of transputer�based processors� The

other important parallel language for vision with a particular emphasis to Splash �

��

is the dbC ����� Originally developed for workstation clusters� dbC is now being used

for special purpose machines like Terasys and Splash �� One of the main features

of dbC is its ability to express architectural features� Users can de�ne linear arrays

or multidimensional mesh structures� The compiler takes care of mapping the user

architecture on the target machine�

Languages like VHDL and Verilog can encode parallelism at various levels of

hardware design� For ASIC development� designers often use a hardware description

language� On Splash �� VHDL is the only language used for algorithm development�

In programming commercial parallel processors� vendor developed languages have

to be used� For example� C� is used for the Connection Machine and MPF and MPC

are used for the MasPar family of parallel computers� Many attached vector pro�

cessors have special library routines that are callable from most high�level languages�

Often� for the purpose of programming workstation clusters� a communication library

is available� e�g�� PVM ����� and Express ��
�� Many vision algorithms have been ex�

perimented using a workstation cluster using a communication library ����� ��
� �����

��� Algorithms

Parallel algorithms for computer vision tasks have interesting communication and

computation characteristics� Algorithms for Fast Fourier Transform �FFT�� and con�

nected component analysis have become standard text book examples� Parallel al�

gorithms for FFT� connected component analysis and Hough transform have been

very widely reported in the literature� In addition to these algorithms� parallel algo�

��

rithms for vision tasks and related system design issues such as scheduling� and load

balancing are also reviewed�

����� System design issues

Load balancing is an important issue in order to increase the speedup achieved in a

distributed memory system� Gerogiannis et al� ���� describe a load balancing method

for image feature extraction on CM�� and iPSC!�� Their redistribution algorithm

is suitable for applications involving local computations� followed by integration of

partial results� The distributed scheduling and resource allocation problems arise

when the architecture of the target machine is di�erent from the expected architecture

of the algorithm or when there are more virtual processors than the number of physical

processors� Chaudhary et al� ��
� have proposed a mapping scheme by analyzing the

communication overheads in mapping a problem graph �parallel algorithm� to a host

graph �target architecture�� Weil et al� ����� describe a dynamic intelligent scheduling

and control algorithm for recon�gurable architectures for computer vision and image

processing tasks� The dynamic scheduler attempts to balance the overall processing

scenario with the needs of the individual routines of the task�

A synchronous model for parallel image processing has been described in ������ A

high�level description of the architectural requirements of the application is analyzed

to arrive at the complexity of the components needed� Lee and Aggarwal ����� propose

a system design and scheduling strategy for a real�time image processing system by

optimizing processing speed and load�

��

����� Vision and image processing applications

� FFT One of the most widely studied image transform is the discrete Fourier

transform �DFT�� The implementation of DFT is done by the well�known Fast

Fourier Transform �FFT� algorithm� In addition to its use in image �ltering�

FFT is applicable in polynomial multiplication and integer multiplication prob�

lems� AnN�point FFT can be computed in logN steps on a N�node hypercube�

Gertner and Rofheart ���� describe a �D�FFT algorithm with no interprocessor

communication� Johnson and Krawitz ����� have presented their implementa�

tion on a Connection Machine CM��� Usually� it is assumed that the number

of data points �N� is a power of �� Swartztrauber et al� ����� describe an

algorithm for any arbitrary N on a hypercube� A hardware implementation

of FFT is presented in ����� The scalability issues with respect to the num�

ber of PEs and communication capability are analyzed by Gupta et al� �����

They conclude that a mesh connected multicomputer does scale as well as a

hypercube for FFT implementation� Parallelization of the FFT algorithm on

a shared memory MIMD machine is presented in ��
�� Approaches to parallel

implementation of FFT are presented in most text books on parallel algorithms

��	�� ���� ��	��

� Hough transform A signi�cant number of researchers have implemented the

Hough transform on various architectures� Standard algorithms are described

in ������ The Hough transform is a useful technique for the detection of para�

metric shapes such as straight lines and circles in images� The parameter space

�	

is discretized into bins and votes for each bin are counted to arrive at the dom�

inant parameter set� Ben�Tzvi et al� ���� describe an algorithm suitable for

distributed memory MIMD architectures and have achieved a real�time perfor�

mance on a custom�built MIMD machine� Ibrahim et al� ���� present their

algorithm on a SIMD machine called NON�VON� Using buses as topological

descriptors in addition to fast communication and data transfer� Olariu et al�

��
�� present an e�cient algorithm for Hough transform� Two ASIC systolic ar�

chitectures for Hough transform have been designed by Van Swaaij ���	�� Jenq

and Sahni ����� have developed an O�plog�N�p�� algorithm for a recon�gurable

mess with buses� where p is the number of quantized angles and N �N is the

size of the image� A VLSI implementation of Hough transform is presented

in ������ A real�time implementation using pipelined processors is described in

����� Little et al� ����� describe an implementation on CM��� Using the Scan

Line Array Processor �SLAP�� Fisher and Highnam describe a real�time imple�

mentation using only a linear array of processors� A modi�ed Hough transform

to check contiguity of a straight line is implemented on a systolic array by Li et

al� ���	�� A generalized VLSI curve detector is presented in ����� Abbott et al�

��� have described an implementation of Hough transform on Splash �� A sum�

mary of di�erent implementations of Hough Transform is shown in Table ����

� Connected Component labeling Another extensively studied problem in com�

puter vision is the connected component labeling ��	�� ����� A connected com�

��

Algorithm Description

Ben�Tzvi et al� ���� Custom built MIMD� synchronous
multiprocessor

Ibrahim et al� ���� Massively parallel SIMD tree machine
called NON�VON

Olariu et al� ��
�� Bus based recon�gurable mesh
Van Swaaij ���	� Two ASIC systolic architectures
Jenq and Sahni ����� Recon�gurable meshes with buses
Rhodes et al� ����� A VLSI processor
Hanahara et al� ���� Special purpose processor
Little et al� ����� CM��
Fisher and Highnam �
�� Scan Line Array Processor �SLAP�
Cheng et al� ���� A VLSI implementation for generalized

curve detector
Li et al� ���	� A systolic array
Abbott et al� ��� Splash � � a custom computing machine
Chung et al� ���� Recon�gurable mesh
Shankar et al� ��	�� Hypercube using sparse array

representation

Table ��� Summary of di�erent implementations of Hough transform�

ponent is a maximal�sized connected region where there exists a path between

any two pixels in the region� Several algorithms are described for connected

component labeling for binary and gray�level images ����� Embrechts et al� �
	�

describe a MIMD algorithm on an iPSC!� hypercube� On BLITZEN � a ��D

mesh that allows diagonal transfers� it has been shown to take O�N�logN� time

steps� Olariu ��
�� describes an O�logN� algorithm on a recon�gurable mesh�

A theoretical analysis on an EREW model is carried out in ����� A coarse

grain approach has been taken by Choudhary and Thakur ��
�� Alnuweiri and

Prasanna ��� provide a survey of di�erent algorithms for component labeling� A

constant time algorithm on a recon�gurable network of processors is presented

in �
�� A pyramid algorithm for component labeling is described by Biswas et al�

��

��
� which works for gray scale images also� With a mapping of one processor

per pixel on a mesh connected architecture� Hambrusch et al� ���� describe two

��n� algorithms for an n�n image on an n� n mesh�connected computer� For

binary images� Manohar et al� ����� describe a ��stage algorithm using a SIMD

mesh architecture� Image normalization for translation� rotation and scaling

has been attempted by Lee et al� ���
� on a mesh connected array processor�

A VLSI architecture for the same problem has been described by Cheng et al�

�����

� Low�level operations The parallelism being quite visible at the pixel level� many

algorithms are available under this category� Kim et al� ����� describe imple�

mentation of low�level algorithms on a micro�grained array processor �MGAP��

Fujita et al� �
�� describe their IMAP system and report timings of low�level op�

erators on IMAP� Filtering and convolution have been implemented on virtually

every parallel processing platform� Both ��D and ��D convolutions are popular

algorithms studied by many researchers� Non�linear �ltering needed in image

morphology has been extensively studied ����� ��� ���� ��
�� For edge detection

using regularization� Poggio ����� proposed a special�purpose parallel hardware�

A hardware�based image smoother is presented in ��	�� Data replication algo�

rithm proposed by Narayanan et al� ����� has been applied to convolution� and

histogram computation� Systolic algorithms for digital �lters and convolution

are presented in �
��� Many low�level tasks including histogram computation�

and median �ltering on recon�gurable meshes are described in ��
��� A fast

��

histogram computation on a recon�gurable mesh is described in ��	��� On a

SIMD hypercube� e�cient histogramming for an N � N image is possible in

O�logM � logN� steps using radix sort� where M is the number of gray levels�

and N is the number of PEs ������ Little et al� ����� describe their implemen�

tation of low�level algorithms on CM��� Image shrinking and expanding on a

pyramid is described in ������ A VLSI architecture for obtaining edges using

Laplacian of Gaussian is presented in ������ Image compression and decompres�

sion are emerging problems in vision for which many architectures have been

presented� Bhama et al� ���� describe a parallel implementation of K�L trans�

form for image compression� A VLSI processor based on systolic architecture

for image compression using vector quantization has been developed by Fang

et al� �
��� They report a throughput rate of �� million pixels per second with

an equivalent computing power of
		 million instructions per second� A new

architecture for motion�compensated image compression is presented in ������

Hamdi ��
� presents parallel architectures for wavelet transforms�

� Intermediate�level operations Many intermediate�level tasks such as thinning�

segmentation� clustering� image reconstruction and relaxation�based segmenta�

tion have been attempted using parallel architectures� Heydon and Weidner

���� describe performance analysis and parallelization of parallel thinning algo�

rithms on Cray supercomputers� On a pyramid architecture� parallel algorithms

for medial axis transform have been described in ��	�� A VLSI architecture for

medial axis transform has been described in ������ Khotanzad et al� �����

��

describe a parallel segmentation algorithm on a Sequent computer� A region

segmentation using gray level mean di�erence has also been carried out on Se�

quent computer ����� A special�purpose VLSI array processor has been designed

by Koufopavlou and Goutis ���
� for image reconstruction in tomographic ap�

plications� Based on a regular network of cells that can run asynchronously and

exchange messages� Lattard and Mazare ����� present a VLSI architecture for

image reconstruction� A systolic algorithm for �nding k�nearest neighbors is

described in ��	��

Relaxation is a useful algorithm in computer vision that employs a set of locally

interacting parallel processes to update pixel labels in order to achieve a glob�

ally consistent interpretation of the image data� Derin and Won ���� describe

a VLSI design for image segmentation using relaxation� Gu et al� ���� present

several VLSI architectures for speeding up the discrete relaxation algorithm� A

linear array architecture has been proposed by Chen et al� ���� for probabilistic

relaxation operations on images� An architecture based on round robin commu�

nication between PEs� a parallel architecture for relaxation� has been presented

in ���	� with applications to character recognition problem� Dixit and Moldovan

���� describe a discrete relaxation technique using a semantic network array pro�

cessor �SNAP�� Data clustering is a compute intensive problem� Li and Fang

����� describe parallel algorithms on SIMD machines� On a hypercube SIMD

machine� Zapata et al� ����� describe a fuzzy clustering algorithm� Ni and Jain

��
	� describe a VLSI architecture for pattern clustering� Using cellular algo�

��

rithms for gap �lling� and segment detection� a parallel implementation on a

��D systolic array is described in ������ A real�time distance transform processor

is described in ���
��

� High�level operations For high�level vision tasks many di�erent approaches

have been taken� The high�level tasks are characterized by non�local com�

munication and deal with symbols and strings� Cheng and Fu ���� describe a

VLSI architecture for string matching� Three�dimensional object recognition

from range images has been implemented on a Butter�y multiprocessor in �����

Using geometric hashing� object recognition has been implemented on CM�� by

Rigoutsos ����� and on CM�� by Wang et al� ������ Graph matching has been

implemented on MasPar by Allen et al� ���� Motion analysis is a compute inten�

sive job� A VLSI architecture for dynamic scene analysis is described in ������

Cheng et al� ���� present a VLSI design for hierarchical scene matching� Iconic

indexing has been implemented on CM�� using mesh and pyramid algorithms

����� Parallel algorithms for hidden Markov model on the Orthogonal Multipro�

cessor has been described in ������ A real�time face recognition system using a

custom VLSI hardware is developed by Gilbert and Yang ��
�� Tanimoto and

Kent ����� describe special architectures and algorithms for image�to�symbol

transformations�

� Neural Networks Over the last decade many special architectures and VLSI de�

signs have been proposed for implementing arti�cial neural networks �ANNs��

The research work in this area can be classi�ed into � categories of architectures

�

�i� using existing parallel processors and DSPs� �ii� design of special purpose

VLSI chips� and �iii� design of analog and mixed �analog and digital� architec�

tures� There are six types of parallelism available in an ANN ��
��� Out of them�

node�level and weight�level parallelism are frequently exploited� Ghosh and

Hwang ���� investigate architectural requirements for simulating ANNs using

massively parallel multiprocessors� They propose a model for mapping neural

networks onto message passing multicomputers� Liu ���
� presents an e�cient

implementation of backpropogation algorithm on the CM�� that avoids explicit

message passing� The results of CM�� implementation has been compared with

results on Cray��� Cray X�MP and Cray Y�MP� Chinn et al� ���� describe a

systolic algorithm for ANN on MasPar�� using a ��D systolic array�based de�

sign� Onuki et al� ��

� present a parallel implementation using a set of sixteen

standard ���bit DSPs connected in a hypercube� Kirsanov ����� discusses a new

architecture for ANNs using Transputers� A multi�layer perceptron implemen�

tation has been described in ��
�� using GAPP � a systolic array processor chip�

Muller ����� presents a special purpose parallel computer using a large number

of Motorola �oating point processors for ANN implementation� Architecture of

SNAP�
� � a ��dimensional ring of parallel �oating point processors is described

in ������

Several special�purpose VLSI chips have been designed and fabricated for ANN

implementation� Sato et al� ����� describe a
��neuron chip� A neurocom�

puter consisting of ��� neurons has been built and shown to be six times faster

��

than Hitachi���	 supercomputer� Connectionist network supercomputer �CNS�

�� uses a RISC CPU with a vector processor as the building block in a ���

PE CNS�� ����� Direct emulation up to a �xed size of nodes and virtual em�

ulation beyond that size is supported in a digital neurocomputer based on a

special chip supporting four neurons per chip in the design of Pechanek et al�

������ The system has been evaluated for NETTALK emulation and shown

to be approximately �� times faster than an implementation of NETTALK on

CM��� Using
� processing nodes per chip and hardware�based multiply and

accumulate operators� a high performance and low cost ANN is presented by

Hamerstorm ����� A binary tree adder following parallel multipliers are used in

SPIN�L architecture proposed by Barber ����� Shinokawa et al� ��	�� describe

a fast ANN �billion connections per second� using �	 ASIC VLSI chips� Using

a �� � systolic PE blocks� MANTRA�I neurocomputer is described by Viredez

������ A tree of connection units with processing units at the leaf nodes has

been proposed by Kotolainen et al� ����� for mapping many common ANNs�

Asanovic et al� ���� have proposed a VLIW of ����bit instruction width and

a ��stage pipelined processor with � processors per chip� Ramacher ���
� de�

scribes the architecture of SYNAPSE � a systolic neural signal processor using

a ��D array of systolic elements�

Several stochastic neural architectures have been described in ���� �
�� ��
�� The

main advantage of this approach is that there is no need for a time consuming

and area costly �oating point multiplier which makes them very suitable for

��

VLSI implementations� Using a mixed design involving both analog and digital

architecture� Masa et al� ����� describe an ANN with a single output� six hidden

layers and seventy inputs that can perform at �	 MHz input rate� There have

been many other well�known neural network chips and architectures e�g�� ANNA

from AT T ������ CNAPS ��
�� and GANGLION�����

Another line of e�ort is concerned with parallel implementation of image process�

ing tasks on images represented by special data structures� Encoding binary images as

bit strings and processing these bit streams in parallel is described by Wu et al� ������

Processing on images represented by quadtrees and region boundaries is presented in

���� �	�� �����

��� Special�purpose hardware

Many vision systems have been built around speci�c processors� Recently� MVP��	

� an advanced digital signal processor �DSP� supporting multiprocessing has been

shown to be very e�ective for developing many vision systems� This section starts

with a brief description of MVP��	�

����� Multimedia Video Processor �MVP��	

MVP��	� designed and developed by Texas Instruments� is one of the most advanced

DSPs supporting multiprocessing� This special processor has been used for many

vision applications� including video conferencing� document image processing� graph�

ics� image compression� image tracking and diagnostic imaging� The architecture of

��

MVP��	 is shown in Figure ���� It contains �ve processors �� DSPs and one ���bit

RISC CPU� in a single silicon wafer� The �ve processors can execute independently

and concurrently� Each processor has its own private memory� The processors can

access other parts of memory through a crossbar concurrently� High throughput is

achieved by running all the �ve processors accessing their �KB private cache ��KB

for the RISC processor�� The RISC processor has a �oating�point unit� The on�chip

video controller can display!capture video data� The DSP CPUs have a
��bit in�

struction width and ���bit address!data width� Two independent address buses are

available on each DSP� Each DSP has a ���bit ALU and a �
�bit multiplier� The

ALU can be con�gured as two independent �
�bit ALUs or as four ��bit ALUs� Sim�

ilarly� the �
�bit multiplier can also act as two ��bit multipliers� The RISC processor

has a ��stage pipeline� In addition� there is an on�chip memory controller� called

the Transfer Controller �TC� to interface with external memory� The �oating point

unit has a peak performance of �		 MFLOPS and so a single MVP��	 can deliver

up to � billion Operations �BOPS� per second� MVP��	 can be programmed using

a special C�compiler or Assembler!Linker� The best performance has been obtained

by programming a MVP��	 with the Algebraic Assembly Language ������

Benchmark results as reported by the manufacturer are shown in Table ���� The

timings have been scaled up from a �	 MHz MVP��	 to �	 MHz� The following

assumptions have been made while reporting the benchmark timings �i� the entire

image is available in the memory� �ii� the � parallel processors are being fully utilized�

and �iii� the RISC processor is not being utilized�

�	

DSP 0 DSP 1 DSP 2 DSP 3 RISC

FPU

VIDEO

SRAM SRAMSRAM SRAM SRAM

C R O S S B A R

Controller

Transfer

32 32 32 32 32 32 3232 64 64 64 64 64

64 64

32

Figure ��� Architecture of MVP��	�

Operation Speed

� � � median �ltering �� MHz
�� � convolution �� MHz
��
 � �
 multiply�
�� � convolution �	 MHz
�� � � multiply�

Table ��� MVP��	 benchmark results�

��

����� WARP and iWARP Processors

WARP and iWARP processors were designed and developed at Carnegie�Mellon Uni�

versity �CMU������ Both are examples of systolic array�based architectures for sci�

enti�c and image processing applications� As a linearly connected set of cells with

two communication channels between cells� WARP can deliver up to �	 MFLOPs per

cell� Each cell has its own program sequencer and memory� This processor is highly

suitable for low and intermediate level vision algorithms� iWARP is an extension of

WARP with more powerful individual cells� It also supports a ��D systolic array�

Both WARP and iWARP have been used for stereo vision for obstacle avoidance and

color�based road following systems developed at CMU� The tasks need about �			 op�

erations per pixel and need to process several frames per second� For this application�

approximately �		 MFLOPS of computing power has been supported by WARP�

����� NETRA

Designed and developed at the University of Illinois� Urbana� NETRA is a recur�

sively de�ned hierarchical multiprocessor system ����� It supports both distributed

as well as shared memory� It has two kinds of processors �i� processing elements

in clusters� and �ii� distributing and scheduling processors �DSPs�� The PEs carry

out the computations whereas DSPs distribute and control the tasks� The memory

subsystem has a shared global memory and a global interconnect network to link PEs

and DSPs to the global memory� The schematic block diagram of NETRA is shown

in Figure ���� The clusters of PEs can operate in either SIMD or MIMD mode� Each

��

DSP

DSP DSPDSPDSP

DSP

DSP

C C C C C C C C

M MM M M M M

G L O B A L I N T E R C O N N E C T I O N

S E C O N D A R Y S T O R A G E D E V I C E S

DSP : Distributing and Scheduling Processor

C: Memory ModuleProcessor Cluster M:

Figure ��� Architecture of NETRA�

processor in the cluster is a general purpose processor with �oating point capability�

The PEs in a cluster share a common memory� The PEs and the DSPs are connected

through a crossbar switch� More details are available in ����� For a ��
 � ��
 image�

convolution with a �	 � �	 mask takes ��
msecs on a �
 processor system� On a ��

processor system� �� � Sobel operation takes 	��� secs� For a �� � median �lter� the

performance of a �� processor system is ��� secs�

����� Image Understanding Architecture �IUA

In order to meet the computational requirements of all the three levels of vision al�

gorithms� IUA provides three di�erent levels of architectures ���
�� The three levels

communicate via parallel data control paths� At the lowest level� there is a collec�

��

Content Addressable Array Parallel Processor (CAAPP)

Symbolic Processing Array (SPA)

512 MB Global Shared Memory

Intermediate and Communications Associative Processor

1 GB Shared Memory (CAAPP-ICAP)

(ICAP)

DataSensory

Figure ��� Schematic overview of IUA�

tion of ��� � ��� ��bit serial processors� called Content Addressable Array Parallel

Processor �CAAPP�� The intermediate level is an array of
� �
� �
�bit processors

and is known as Intermediate Communications Associative Processor �ICAP�� At the

highest level there are
� processors capable of running LISP programs� The highest

level is called Symbolic Processing Array �SPA� which also directs the array control

unit �ACU�� A schematic adapted fromWeems et al� ���
� is shown in Figure ���� On

a ��� � ��� grayscale image� a �� � �� convolution only takes 	��msecs� Connected

component analysis on a binary image of same size is performed in 	�	� msecs� More

details are available in ���
��

��

����� An Integrated Vision Tri�Architecture System �VisTA

Similar to the IUA processor� ViSTA has three distinct layers of processors ��	��� At

the lowest level is ViSTA!� which is based on a massively parallel sliding memory

plane SIMD processor with a support for low�level vision algorithms� Typically� there

are N� PEs at this level� Each PE can communicate to any other PE at this level

without interrupting that PE� I!O and computation can occur simultaneously� A

PE consists of ALU� registers� MUX� DMUX and a switching element� The second

layer supports intermediate vision tasks� It consists of N PEs with N memory blocks

connected through a communication bus� This layer is based on �exibly coupled mul�

tiprocessors ��	��� The top most layer is a tightly coupled hypercube multiprocessor�

Estimated time for ��D convolution with a �� � mask is ����secs and Sobel �� � ��

is � �secs� However� a �� � median is estimated to take ���� �secs� More details of

this system are available in ��	���

����� Scan Line Array Processor �SLAP

SLAP is a SIMD linear array for real�time image processing �
��� A system contains

a controller that selects and orders execution of modules on the sequence vector�

A sequencer and a PE vector operate in a lock step mode� The block diagram is

shown in Figure ���� The sequencer can broadcast messages to all the PEs� It also

includes registers that function as virtual PEs� neighbors to real PEs on the vector

extremes� It also has a global synchronization line� The PEs in the third stage are

��stage pipelined processors using custom VLSI processors� SLAP�s performance has

��

S E Q U E N C E R

LEND REND

PE PE PE PE PE PE

Video

Response Line

Data

Data

Data

Instructions

Figure ��� Architecture of SLAP�

been compared to a Cray for convolution� median �ltering and Hough transform with

signi�cant speedups� More details are available in �
�� ����

��� Commercial image processing accelerators

Several single and multi�board accelerators are used for high performance image pro�

cessing� In this section� a brief description of few popular systems is given� Typically�

these systems cater to only low�level processing and have dedicated hardware designs

for commonly used low�level operators such as point operations and convolution� Of�

ten� they are designed to deliver real�time frame rate performance� Compared to the

general�purpose parallel processing systems� these systems are relatively cheaper�

�

����� PIPE

Pipelined Image Processing Engine �PIPE� is optimized to perform local neighbor�

hood operations on iconic �intrinsic� images ������ It provides easy multistage� parallel

image processing� PIPE system consists of a sequence of identical processors sand�

wiched between a special input processor and a special output processor� There can

be several identical processing stages in between the input and output stages �see

Figure ����� Each of the processing stages performs a di�erent operation on the im�

age sequence� Each stage receives three input streams and produces three output

streams� The three input streams are �i� from previous stage output stream� �ii�

from the output of the present processor� and �iii� from the output of the next pro�

cessor in the pipeline� Similarly� the three output streams are �i� to the next stage

in the pipeline� �ii� to the previous processor in the pipeline and �iii� to itself� In ad�

dition� there are four wildcard paths available for both input and output� The three

input images can be weighted and combined in any fashion before they are processed

by the processing stage� Two kinds of processing are carried out in each processing

stage �i� pointwise arithmetic and Boolean operations� and �ii� neighborhood opera�

tions� Two neighborhood operations can be performed on an image at frame rate ��	

frames!second�� Provisions exist to de�ne �regions of interest�� Di�erent operations

can be applied within each region of interest� The forward and backward paths in the

processing stage can be e�ectively used to build image pyramids� It is designed for

low�level processing� Commercial systems from ASPEX and Datacube are similar to

the PIPE design philosophy� More details about PIPE system are available in ������

��

WITHIN
STAGE

RECURSION

STAGE CONTROL UNITS

P R O C E S S I N G S T A G E S

FEEDBACK PATH

Figure ��� Schematic of a PIPE processor�

����� Datacube MV���	

One of the most popular high�end image processing accelerator is Datacube�s

MaxVideo ��	 or MV���	� Improving upon its predecessor MV��		� it uses a single

VME slot� Based on a �	 MHz pipeline� MV���	 consists of several modules as shown

in Figure ��
� In addition to a bus interface module and input!output modules� there

are two special processing stages� namely �i� arithmetic unit �AU� and �ii� advanced

processor �AP�� AU aids linear and non�linear operations on pixels with the help of

a custom ALU� four ���bit multipliers� seven �	�bit ALUs� two run length encoders

and two row and column address generators� The role of AP is to support neigh�

borhood operations such as convolution and binary morphology� Support for a
��

one�dimensional ��bit FIR �lter that can be con�gured as a single �� � or two �� �

kernels is available using the AP� On�board processing for binary morphology is sup�

ported for �� � structuring elements� A �� � �� ��bit crossbar is available to switch

data inputs at video rate from and to computing resources available on the system�

An important aspect of MV���	 is its software environment� called �max�ow��

Max�ow consists of a set of C�callable routines for connecting di�erent stages of a

��

AU AP
AS

AD

AG

Analog

Input

Analog

Output

VME

VSIM

(AB)Architectural Adapter
+

Crosspoint Switch

AS - Analog Scanner; AD - Acquire Digital;

AP - Advanced Processor;
AG - Analog Generator; AU - Arthmetic Unit;

VSIM - Virtual Surface Image Memory

Figure ��
 Schematic of Datacube MV���	�

user�de�ned pipeline� controlling attributes of the processing stages �e�g�� kernels for

convolution� and to control the overall interaction with the host� A X�window�based

GUI is provided to generate Image�ow code automatically� A convolution using ���

kernel on a ��� � ��� image takes approximately �� msecs� More details of the Max

Video systems are available in �����

����� Imaging Technology MVC���	

MVC���	 from Imaging Technology is a high performance pipelined image processing

accelerator� With a basic pipeline speed of �	 MHz� a ������� frame processing can

take ��� msecs� Many processing stages can be added in the basic pipeline�

A typical system consists of three modules� Extra memory modules can be sup�

ported by extending the ���bit internal bus� The Image Manager �IM� interfaces

with external host through a VME bus� The three modules are acquisition module

��

�AM�� computation module �CM� and display manager �DM�� The CM can perform

convolutions� inter�image arithmetic� feature extraction� morphological operations�

object labeling and binary correlation� An advanced processing unit based on TI

DSP TMS��	C�� is also available� Many of the functions described earlier are car�

ried out on a special�purpose hardware�

The hardware is supported by a multi�layered software development environment�

A window based automatic code generation facility also exists� Using the base hard�

ware� a � � � convolution can be performed at �	 MHz and � � � convolution at �	

MHz� More details are available in ��	���

����� Alacron i��	 and Sharc multiprocessor boards

For defense and satellite image processing applications� Alacron has several high per�

formance accelerators on PCs as well as VME�based systems� These multiprocessor

pipelined systems are based on either Intel i��
	 or Analog Devices Sharc ��	
� DSPs�

The multiprocessors are connected on a cluster or grid in the multi�Sharc systems�

The multi�processor systems can work in SIMD or MIMD modes� The system has an

Intel i�
	 as the control processor� The i�
	 based systems have two i�
	 processors�

These systems are programmable through a set of C�callable routines� Very high

performance of the order of Giga operations per second have been reported for the

Sharc�based system� On the i�
	�based systems� a �� � convolution takes �� msecs�

More details are available in ����

�	

����� Data Translation DT����

At the low�end� there are many PC�based image processing accelerators that can

be interfaced to frame grabbers for direct data input� Data Translation�s DT���
�

is a popular frame processor� The processor board has three ALUs� three �
�bit

�xed point multipliers� one divider� histogram generator and several lookup tables�

Using these hardware resources� real�time frame averaging� frame arithmetic and

logic operations and histogram generation can be performed� � � � convolution and

morphological operations take close to two frame periods� i�e�� �� msecs� Several

dedicated hardware blocks are used to realize the functions� A high level language

callable set of routines are provided to interface the special hardware in applications�

More details are available in ��
��

��� General�purpose parallel processors

Many general�purpose parallel processing systems are being used for computer vision

tasks� Thinking machine corporation�s CM��� IBM�s SP�� and MasPar�s MP�� are

the three systems brie�y presented in this section� Other general�purpose parallel

processors such as Intel�s Paragon and BBN Butter�y have also been used for vision

tasks�

����� SP��

IBM�s powerparallel SP�� is a scalable parallel system which is being used for a wide

range of applications� The delivered power of SP�� has been shown to be in the range

��

of Giga�ops� SP�� is based on a distributed memory� message passing architecture�

A SP�� can consist of up to ��� processing elements based on RISC System!
			�

The PEs are connected by a high performance� multistage� packet�switched network

for interprocess communication� Each node can run IBMs AIX operating system

and associated applications� Many special�purpose software packages are available to

exploit the power of a full�blown SP��� Important design issues of SP�� are explained

in ���� and the main design issues of SP�� are given below�

� A high performance scalable parallel system must utilize standard microproces�

sors�

� Small latency and high bandwidth for inter�process communication will demand

a custom interconnect network�

� System must provide high performance parallel libraries� parallel �le system�

parallel I!O facilities and state�of�the�art execution support�

� Very fast recovery from single point failures to increase the system availability

should be supported�

The architecture of SP�� is shown in Figure ���� Many standard benchmarks have

been run on SP�� ���� Judd et al� reported high performance for pattern clustering

using the earlier model SP�� ������ On SP��� Chung et al� ���� reported twice the

performance of a CM�� for linear feature extraction�

��

PE PE PE PE

I/O I/O I/O I/O I/O I/O

Gateway

Gateway

Standard file server nodes

Compute nodes

Gateway nodes

H I G H P E R F O R M A N C E S W I T C H

I/O SERVER NODES

. . .

Parallel File System Server nodes

Figure ��� Architecture of SP���
�

����� CM��

Overcoming the rigid SIMD architecture of the CM��� Thinking Machines Corpora�

tion designed CM�� that combines the advantages of both SIMD and MIMD process�

ing� The CM�� uses synchronized MIMD processing to provide a good performance

for both synchronized communication and branching�

The architecture of CM�� is shown in Figure ���� A CM�� can consist of �� to

�
���� processing nodes and a vector processing unit� There can be several sequencers�

Both the sequencer and the PEs are SPARC�based processors� The I!O subsystem

consists of mass storage devices and network interfaces� These three types of building

blocks are interconnected by three networks� namely� �i� data network� �ii� control

network� and �iii� diagnostic network� Point�to�point communication is supported

��

NI NI NI NI NI NI NI

P
I/O

MM

PP

M M

P

MM

P

D
ia

g
n

o
st

ic
 n

et
w

o
rk

Control Network

Data Network

Processing nodes

P

Control processors I/O interfaces

Figure ��� Architecture of CM��� �Adapted from ��
��

by the data network� Broadcast� synchronization and scan operators are supported

by the control network� The diagnostic network supports on�line diagnostics for the

overall system� The system has a peak performance of � T�ops� More details are

available in ��
��

����� MasPar MP��

The MasPar family of supercomputers consists of massively parallel SIMD machines

with up to �
K PEs operating synchronously on multiple data elements� An Array

Control Unit �ACU� sends out a stream of instructions to all the PEs� A PE can

either execute the instruction or decide to be passive� Each PE has a private memory

of
�K bytes� Interprocess communication is carried out in three ways �i� broadcast

��

H
ig

h
 S

p
ee

d
 I/

O

U
n

ix
 S

u
b

sy
st

em

Standard I/O

Array Control Unit

PE Array

Figure ��� Architecture of MP���

by ACU� �ii� nearest neighbor communications through Xnet and �iii� through global

router� A �oating point unit and an integer arithmetic unit is shared between the

processor cluster� Because of its �ne grained SIMD architecture� it is suitable for

many low�level operations� A schematic of MP�� is shown in Figure ����

��� Summary

A brief summary of work in the area of parallel architectures and algorithms for

computer vision is given in this chapter� Many special�purpose hardware and general�

purpose parallel processors have been reviewed� Parallel algorithms for many vision

tasks from all the three levels of vision task hierarchy have been surveyed� For their

interesting communication and computational characteristics as well as their general

utility� algorithms for FFT� connected component analysis and Hough transform have

been widely studied� Parallel languages speci�c to vision have not received adequate

attention�

Chapter �

Custom Computing Machines

Once an appropriate computer vision algorithm has been selected for a given task�

it needs to be implemented in an e�cient way to meet the desired response time

requirements� An application�speci�c hardware design� such as application speci�c

integrated circuit �ASIC�� is the best implementation to provide the fastest execution

time� However� there are many limitations in designing an ASIC� The most important

limiting factor is the development cost and time� For low�volume applications� the

�xed costs associated with designing an ASIC are very high� Further� once an ASIC

has been designed and fabricated� it is very di�cult to make modi�cations or correc�

tions to the design� The motivation for recon�gurable hardware comes from its ability

to overcome these limitations� In this chapter� the current hardware implementation

technologies with speci�c reference to �eld�programmable gate arrays �FPGAs� will

be presented� The custom computing paradigm is based on the ability of an architec�

ture to tailor itself to the application needs� The FPGAs provide a suitable hardware

platform for custom computing by virtue of their �eld programmability�

��

�

System Design Implementation Techniques

Fully Custom Semi-Custom

Gate ArrayUser-Programmable

PLDs FPGAs

Standard Cells

General-Purpose

Figure ��� Methods for embedded system design�

��� Field programmable gate arrays FPGAs�

There are many methods for implementing an embedded system for computer vision�

The available options are shown in Figure ���� The fully�custom method is cost ef�

fective for high�volume applications� The semi�custom approach� though slower than

the fully�custom method� o�ers cost�e�ective solutions� In the semi�custom design

category� �eld�programmable gate arrays are of special interest as they o�er many

advantages over the standard cells or gate�arrays� FPGAs consist of electrically pro�

grammable gate arrays whose integration capabilities are like mask�programmable

gate arrays �MPGA�� They are also similar to PLA�based programmable logic de�

��

C1 C2 C3 C4

H1 EC

G4

G3

G2

G1

F4

F3

F2

F1

F’

Logic

of

G1-G4

Logic

Function

of

F1-F4

F’

H’

DIN

SD

RD

Q

Q

EC

D

D

EC

SD

RD

S/R

S/R

1

1

MULTIPLEXER CONTROLLED

BY CONFIGURATION PROGRAM

F’

K

(CLOCK)

YQ

XQ

X

H’
G’

G’
H’

DIN S/R

CNTRL

CNTRL

G’

Function

G’

F’
H’
DIN

H’

and H1
F’,G’,,
of

Function
Logic

Y

Figure ��� Structure of a Xilinx �	�	 CLB�

vices in terms of rapid development time� Sequential and combinational logic can be

implemented using multi�stage approach� Architecturally� an FPGA is characterized

by three types of building blocks� namely� �i� Con�gurable Logic Blocks �CLBs�� �ii�

Input!Output Blocks �IOBs�� and �iii� Interconnection Networks� The structure of a

CLB can be as simple as a transistor to as complex as a microprocessors ������ The

CLBs can be arranged in a row� or� more commonly� in a matrix form� A typical

CLB of Xilinx �			 series FPGA is shown in Figure ���� The total number of CLBs

on a FPGA also varies from vendor to vendor� In Xilinx �	�	� there are �		 CLBs�

The IOBs provide an interaction with the external world� The most space consuming

��

component on a FPGA is the interconnection network which supports interconnec�

tions between CLBs to logic synthesis� Several di�erent programming methodologies

are used in the interconnection network� The three commonly used programming

methods are

�� SRAM�based a �pass� transistor connects two inputs if the SRAM bit is �ON��

�� Antifuse�based a fuse once blown can permanently connect two inputs� and

�� EPROM�based a �oating gate can connect two inputs based on the gate cur�

rent�

Commercially available FPGAs di�er on the basis of �i� CLB architecture� �ii� num�

ber� size and capability of CLBs� �iii� number of IOBs� and �iv� programming method�

ology� A survey of commercially available FPGAs is shown in Table ���� FPGAs

have been a topic of special interest because they support user logic programmability

without compromising speed and �exibility which is also exploited in building custom

computing machines�

The design �ow in programming FPGAs starts with the entry of logic function by

logic expressions� schematics or high�level hardware description languages �HDLs�� A

netlist is generated from the input speci�cation before logic partitioning is carried out�

Computer Aided Design �CAD� tools are used to place and route the logic on a FPGA�

This style of programming a FPGA makes it suitable for tailoring special purpose

architectures� The designer can verify the logic using logic simulators� Using the

synthesis tools� the designer can determine whether the logic can be accommodated

on a given FPGA� The delays involved in the interconnection network can be used

��

Manufacturer General
Architecture

Logic Block
type

Programming
Methodology

Xilinx Symmetrical
Array

Look�up
Table

Static RAM

Actel Row�based Multiplexer�
based

Antifuse

Altera Hierarchical
PLD

PLD Block EPROM

Plessey Sea�of�gates NAND Gate Static RAM
Plus Hierarchical

PLD
PLD Block EPROM

AMD Hierarchical
PLD

PLD Block EEPROM

QuickLogic Symm� Array Multiplexer
based

Antifuse

Algotronix Sea�of�gates Multiplexers
and gates

Static RAM

Concurrent Sea�of�gates MUX and
gates

Static RAM

Crosspoint Row�based Transistor
pairs

Antifuse

AT T ORCA Array Look�up
Table

Static RAM

Motorola MPA �			 Array Look�up
Table

Static RAM

Table ��� Commercially available FPGAs�

to estimate the peak speed for the logic� A new algorithm can be implemented on

the same FPGA assuming that it supports reprogrammability �except in the case of

antifuse�based FPGAs� by changing the control bit stream�

Xilinx �	�	 has �	�			 usable gates� To program the �		 CLBs� a control bit

stream consisting of ����	�
 bits is required� This bit stream is loaded every time in

terms of three parts �i� preamble� �ii� ��� frames of ��
 bits each and �iii� postamble

frame� For more details� refer to ������

	

The power consumption of these devices vary as per the CLB utilization and the

clock rate� At the maximum� each device dissipates ��� Watts although the actual

power dissipated is far less� Details of computing the power dissipation for each device

is available in ������

��� Recent trends in FPGAs

Since their introduction in ����� FPGAs are undergoing numerous technological ad�

vances� Some of the advances are in the directions of increased logic capacity� more

advanced features for supporting coprocessing and better routing technology� Most

SRAM based FPGAs now support dynamic partial recon�gurability� Recently� Xil�

inx has announced its XC
�		 series that supports coprocessing needs such as CPU

readable on�chip memory!registers� faster as well as partial recon�gurability and user

de�ned memory!logic allocation� Xilinx�s XC��		 is yet another powerful series of

SRAM�based FPGAs� In the XC��		 series� the CLBs are themselves a collection of

four logic cells� where each logic cell consists of a ��input function generator� a storage

device and control logic� The local routing resources have been combined with logic

resources to form a �VersaBlock�� General purpose routers connect to the VersaBlock

through general routing matrix� In addition� there is a �VersaRing� aound the chip en�

closing all the CLBs� The abundance of routing resources help the design automation

tools while placing and routing the logic� The gate count per FPGA is also on the

rise� Already� �		K gate FPGAs are being targeted �e�g�� XC
�
��� These enhanced

features will certainly have a positive impact on the future of the CCMs� In the area

�

of one�time programmable FPGAs� recently both Xilinx and QuickLogic have an�

nounced a new technology for interconnection that uses a combination of SRAM and

antifuse technology� The main advantage is that these FPGAs can be �		" utilized

with guaranteed response time� However� these are not good for designing CCMs�

��� Survey of FPGA�based computing machines

A custom computing machine �CCM� is an embedded system that can be used to

build specialized architectures for di�erent applications� FPGAs have revolutionalized

custom computing by virtue of their user reprogrammability� Many experimental and

commercial FPGA�based computing machines have been reported in the literature�

BORG and BORG II ���� are based on Xilinx FPGAs running as an attached processor

on PCs� A neural network based pattern classi�er based on Xilinx �	�	 FPGAs is

reported in ����� Researchers at Brown University have developed PRISM ����� In

the commercial category� �The Virtual Computer� based on Xilinx �	�� has been

developed by Virtual Computer Corporation� Digital Equipment Corporation has

developed ��Mint� based on Xilinx �	�	s� One of the largest CCMs built so far is

Teramac� developed by Hewlett Packard ���� Teramac is based on custom FPGAs

packaged in large multi�chip modules �MCMs�� A fully con�gured Teramac has �		

MB of RAM and hardware support for large multiported registers� A comparative

analysis of some of the recent custom computing machines is given in Table ���� Many

more such machines have been reported in the proceedings of the �FPGAs for Custom

Computing Machines� workshop ���� ��� �		��

�

Product name Designer Typical system
con�guration

Comments

Adaptive
Connectionist
Model Emula�
tor �ACME�

Univ� of California�
Santa Cruz

�� Xilinx �	�	�
 Xil�
inx ����

����s are used as
programmable inter�
connect� �K dual
ported memory on
each �	�	

Con�gurable
Hardware Al�
gorithm Map�
pable Proces�
sor �CHAMP�

Lockheed Sanders�
Nashua

�
 Xilinx �	��� ���K
dual ported mem�
ory� Crossbar using
FPGAs

Hardware
prototyping

Data�Flow
Functional
Computer
�DFFC�

LIMSI�CNRS�
France

��� Custom built
Field Programmable
Opera�
tor Arrays �FPOA��
each with � con�g�
urable data path� ��
D � �� � � array of
FPGA

Real�time image
processing

DTM�� MITRE Corp��
Virginia

�
 DTM chips Each DTM chip is an
array of
� �
� ex�
pandable gate cells�

Enable�� Universitaet
Mannheim� Germany

�
 Xilinx �	��� ��
Xilinx �		�� �� MB
RAM

Modular FPGA mul�
tiprocessor system�

Supports Systolic
Parallel C �SPC�

Functional
Memory
Computer

University of Hawaii � Xilinx �	�	� �
Xilinx �	��� � MB
SRAM

Memory�mapped
FPGA�based
interconnect

GANGLION IBM Research Divi�
sion� San Jose

�� Xilinx �	�	� ��K
PROM

Neural Network

Marc�� University of
Toronto� Toronto

�� Xilinx �		��
 MB
RAM

��
K�
� instruction
memory� ��
K � ��
data memory with
Weitek ��
� math
processor

MORRPH�
ISA

Virginia Polytechnic
institute� Blacksburg

 Xilinx chips �any
combination of �		��
�	�	� �	��� �	���

� � � mesh net�
work� Real�time im�
age processing

Table ��� A summary of custom computing machines� �Contd��

�

Product name Designer Typical system
con�guration

Comments

Perle�� DEC� Paris Research
Lab� France

�� Xilinx �	�	 Fixed mesh� RSA
Encryption

PRISM�II Brown University�
Providence

� Xilinx �	�	 per
processing node� �	
nodes connected by a
recon�gurable inter�
connection topology�

Each
PRISM�II board is a
node in the ARM�
STRONG III parallel
processor

ProBoard NTT Optical Net�
work Systems Lab�
Japan

�� PROTEUS FPGA
�SRAM�based� cus�
tom designed�

FPGA�based
interconnect switches

Recon�gurable
Neural Net�
work Server

Norwegian
Institute of Technol�
ogy� Norway

�
 Xilinx FP�
GAs� �
 TMS��	c�	
available�

Neural networks

Rapid Proto�
typing engine
for Multipro�
cessors
�RPM�

University of South�
ern California� LA

� Xilinx �	��s per
board

Used for multipro�
cessing experiments

Spectrum Gigaops� Berkeley �� Xilinx �	��s Video com�
puting� DSP using a
C�like HDL

Splash � IDA Supercomput�
ing Research Center�
Bowie

�
 Xilinx �	�	s per
board

Variety of applica�
tions including DNA
pattern matching
and image processing

TERAMAC Hewlett�Packard�
CA

�	� custom FPGAs�
�� MB SRAM

Rapid turn around of
designs to allow in�
vestigation of alter�
nate computing ideas

Virtual
Computer

Virtual Computer
Corporation� CA

�� Xilinx �	�� General purpose
computing

Zelig University of York�
UK

�� Xilinx �	�	� Ring
topology

Cellular au�
tomaton� image mor�
phology� rank �lter�
ing� Neural Networks

Table ��� A summary of custom computing machines�

�

Splash � is one of the leading FPGA�based custom computing machine designed

and developed by the Supercomputing Research Center ����� An interesting observa�

tion is the trend in the languages used for algorithm development on these platforms�

With smaller systems� the trend has been to use schematic design entry� In most

other systems� VHDL or Verilog has been used� Recently� e�orts are being made

to support subsets of C and C�� ��	�� For SIMD mode of operation� dbC is being

developed for Splash �� Note that� after the design entry stage� the other stages need

to use vendor dependent tool sets�

��� Splash �

The Splash � system consists of an array of Xilinx �	�	 FPGAs� improving on the

design of the Splash � which was based on Xilinx �	�	s ��	�� Figure ��� shows a

system�level view of the Splash � architecture� Splash � is connected to the host

through an interface board that extends the address and data buses� The Sun host

can read!write to memories and memory�mapped control registers of Splash � via

these buses� The major components of the Splash � system are described below�

Each Splash � processing board has �
 Xilinx �	�	s as PEs �X��X��� in addition to

a seventeenth Xilinx �	�	 �X�� which controls the data �ow into the processor board�

Each PE has ��� KB of memory� The Sun host can read!write this memory� The

PEs are connected through a crossbar that is programmed by X�� There is a �
�bit

linear data path �SIMD Bus� running through all the PEs� The PEs can read data

from their respective memory� A broadcast path also exists by suitably programming

�

X0

X1 X2 X3

X16 X15 X14

X4 X5 X6 X7 X8

X9X10X11X12X13

Crossbar

X0

X1 X2 X3

X16 X15 X14

X4 X5 X6 X7 X8

X9X10X11X12X13

Crossbar

X0

X1 X2 X3

X16 X15 X14

X4 X5 X6 X7 X8

X9X10X11X12X13

Crossbar

XL

XR

SIMD

RBus

SBus
Extension

Input
DMA

Output
DMA

Bus

Interface Board

Splash Boards

Sparc
Station
Host

Figure ��� Splash � architecture�

Processing

36 36

18 16

DataAddress

32

32

Processor

To Right

36

To Crossbar

RD

WR WR

RD

SBus

SBus

Inhibit

To Left

Element (PE)

Memory
SBus Read

SBus Write

Data

Neighbor Neighbor

Address

Xilinx 4010

256K 16-bit

Figure ��� A Processing Element �PE� in Splash ��

X�� The processor organization for a PE is shown in Figure ���� The Splash � system

supports several models of computation� including PEs executing single instruction

on multiple data �SIMD mode� and PEs executing multiple instructions on multiple

data �MIMD mode�� It can also execute the same or di�erent instructions on single

data by receiving data through the global broadcast bus� The most common mode

of operation is systolic in which the SIMD bus is used for data transfer� Individual

memory available with each PE makes it convenient to store temporary results and

tables� One of the important aspects of Splash � is the support for symbolic hardware

debugging using the symbolic debugger� called t�� The symbolic hardware debugger

supports many useful facilities for stepping through hardware� observing bus signal

values and other functions to aid development process�

�

��� Programming paradigm

Programming an FPGA�based computer is di�erent from usual high�level program�

ming in C or Fortran� The design automation process consists of two steps simulation

and synthesis� The programming �ow is shown in Figure ���� In simulation� the logic

which is designed using VHDL is veri�ed� This involves comparing the results of

the VHDL simulation with those obtained manually or by a sequential program� In

synthesis� the main concern is to achieve the best placement of the logic in an FPGA

in order to minimize the timing delay� At this point in the design process� the logic

circuit may or may not �t on a single FPGA �i�e�� being able to map it to the con�g�

urable logic blocks �CLBs� and �ip��ops which are available internal to an FPGA��

If the logic does not �t� then the designer needs to revise the logic in the VHDL

code and the process is repeated� Once the logic is mapped to CLBs� the timing for

the entire digital logic is obtained� In case this timing is not acceptable� the design

process is repeated�

To program a Splash �� we need to program each of the PEs �X�� X���� the

crossbar� and the host interface� The crossbar sets the communication paths between

PEs� In case the crossbar is used� X� needs to be programmed� The host interface

takes care of data transfers in and out of the Splash � board� A special library is

available for these facilities for VHDL programming as described in �����

�

Splash 2

VHDL

Partition, Place

Source

Timing of
Logic

Simulation

Logic Synthesis

and Route

(Gate level
description)

(Logic placement)

Figure ��� Programming �ow for Splash ��

��� Logic synthesis

The synthesis process involves the following stages �i� VHDL to net�list translation

to obtain a vendor speci�c net�list from the VHDL source code� �ii� partition� place�

ment and routing to �t the logic generated onto a physical PE� �iii� net�list to bit

stream translation� and �iv� bit stream to raw �le generation� As a result of the

placement� delay analysis can be carried out using the vendor model of the devices�

The partition� placement and routing stage is the most complex phase of the synthesis

stage� Often� this needs to be repeated by changing the initial random seed to get a

better placement�

In the �nal stage� the software components of the algorithm can be integrated

with the hardware� The host�interface carries out the following stages �i� loading a

raw �le onto each PE� �ii� con�guring the crossbar usage� �iii� initializing PE memory

if required� �iv� transfer data� and �v� reading the result� The host uses a set of

�

routines callable by a C program�

Currently� e�orts are being made to provide a C�like language� called dbC �����

to program Splash � to keep the hardware architecture and communication issues

transparent to the end users� The programming model supported in dbC is that of

a SIMD processor array with a host processor controlling instruction sequencing for

the PEs�

��
 Software environment of Splash �

A programmer of Splash � needs to be aware of the features of the software environ�

ment of Splash �� The four phases involved in a design process are �i� simulation�

�ii� synthesis� �iii� debugging and �iv� execution from host� The steps involved are

shown in Figure ��
�

The facilities available for the four stages are described below�

� Simulation Currently� the user has to specify the designs in VHDL� Splash

has two entities declared for the X� and other Xis� The entity for X� is

named �Xilinx control part� and the entity for the other Xis is named �Xil�

inx processing part�� These entities have a prede�ned port declaration corre�

sponding to the various buses and interface signal they handle� A description

and explanation of the entities is available in ����� There are several library

packages available to the programmer� The �Splash�� package has the de�ni�

tions of constants� types and functions� A set of padding routines are provided

in the �components� package� The third package consists of Xilinx de�ned hard�

�	

Tools:

Simulation: Synopsys VHDL S

Synthesis: Synopsys Design C

XilinxXACT

Debugging: t2 from SRC

Partition, Place and Route

Generate control bits

Integration

Debugging

Delay Analysis

Verified Design

Integration: C-callable library

Functional Verification

Design Entry (VHDL)

S
yn

th
es

is

S
im

u
la

ti
o

n

Host-Splash 2 Executable code

H
o

st
 in

te
rf

ac
e

D
ev

el
o

p
m

en
t

Figure ��
 Steps in software development on Splash ��

macros� In later version of Xilinx software� these hardmacro de�nitions are

not required during synthesis� The root module for simulation is called �sys�

tem�� It instantiates two models �i� S�boards and �ii� Interface corresponding

to the processor board and the interface board in the Splash � system respec�

tively� In a prede�ned VHDL template for these two� the user is expected

to change the architecture names for the two entities �xilinx control part� and

�xilinx processing part�� The simulator can handle more than one processing

boards by properly setting the value of the generic �Number Of Boards��

� Synthesis The synthesis process uses the �Design Compiler� and �FPGA Com�

piler� from Synopsys to translate the VHDL code to Xilinx Netlist Format

��

�XNF� �les� This process is carried out by a Unix shell script �vhdl�xnf�� The

next stage of synthesis is to place and route the logic and generate the control

bit stream for the Xilinx �	�	�based PEs and also obtain an estimate of the

processing speed of the processing speed using �xdelay� utility� This process is

carried out by yet another shell script �xnf�bit�� In the event the logic could be

placed and routed� an estimate of the delays can be analyzed using �xdelay��

� Debugging One of the important phases in development is debugging the bit

stream generated on the actual hardware� For this purpose� a hardware symbolic

debugger called �t�� is used� The inputs to the �t�� is a �raw� �le obtained by

associating a bit �le for each of the PEs and a de�nition for the crossbar� Using

�t��� the logic can be single stepped� so that intermediate values can be examined

on the hardware� A Unix shell�like user interface is provided�

� Execution on host After the �raw� �le has been ascertained to work on hard�

ware� a C host program interface needs to be written� For this purpose� a set

of C�callable routines are available� A run�time library needs to be linked with

the code� It should be noted that for the program to run� a device driver for

Splash hardware should be resident in the system memory�

��� Case study� Image segmentation on Splash �

The overall process of system design using Splash � is described in this section using

an algorithm for page layout segmentation� For ease of presentation� a simple im�

��

age segmentation algorithm has been chosen to illustrate the various design stages

and e�ort involved in a mapping exercise involving Splash �� A more robust image

segmentation technique is described in chapter ��

����� Sequential algorithm

The sequential algorithm for page layout segmentation is based on the mean and the

variance of gray values at a pixel in a � � � window �neighborhood�� A pixel will

be assigned one of the three labels representing background� text and halftone� The

page segmentation algorithm has three stages of computation� namely� �i� mean gray

value in a window� �ii� variance of the gray value in a window� and �iii� �nal label

assignment� The �ow chart of the segmentation algorithm is shown in Figure ����

The input to the algorithm is the gray level scanned image of the document and the

output is the labeled image� where each pixel is assigned one of the three class labels�

A sample input image and the segmentation result produced by this algorithm are

shown in Figure ���� This page segmentation algorithm takes about �	 seconds of

CPU time on a SPARCstation �	 for a ��	�� � ��	�� image� The output of the

segmentation algorithm �shown in Figure ����b�� is fed into a postprocessing stage

��	�� to place boxes around regions of interest� This �block� representation of Figure

����a� is shown in Figure ����c��

There are two main phases in the segmentation algorithm� not considering the

post processing stage� The computation of mean and variance is done in a parallel

fashion� Mean value can be computed by convolving the input image with a � � �

��

Input Image

foregroundbackground

half-tone region

Segmented Page Image

No

No Yes

Yes

is mean < 120?

For each

For each pixel
is variance < 250?

Calculate the mean and variance of

the gray values at each pixel

in a 7 X 7 window

foreground pixel

belonging to
Classify pixel as

belonging to
Classify pixel as

belonging to
Classify pixel as

text region
belonging to

Classify pixel as

Figure ��� Flow chart of a simple page segmentation algorithm�

mask with all ��s� The expression for the variance ��� in a n � n window can be

written as follows

�� #
�
P

i

P
j I

�
ij��N��

N
� �����

where Iij is the gray value at pixel �i� j�� i� j # �� � � � � n� � is the mean of the gray

value in the n � n window and N # n� is the total number of pixels in the window�

From Eq� ������ it can be easily seen that the overall computation can be split into

��

two stages� In the �rst stage� the sum of squares of the gray values can be computed�

In the second stage� the variance can be computed which needs the mean value� ��

as an input� The sum of squares is easily translated to a convolution operation again

with a mask of all ��s� The convolution algorithm will be explained in later chapters

in more detail� At this stage it is su�cient to assume that a Splash � implementation

for convolution is available� Subimages of ��� �� pixels are processed at a time with

a boundary of � pixels on all the sides of the subimage�

����� Mapping of image segmentation algorithm on Splash �

As described earlier� the stages in the design process are �i� VHDL code simulation�

�ii� synthesis of the bit stream �les for the PEs being used� and �iii� host interface

development� The VHDL code for the PEs is included in Appendix A� The VHDL

programs are �rst used with the Splash simulator� The �make�le� for the simulator is

also included in the appendix� During simulation� the signals described in the VHDL

programs can be traced� A sample simulation waveform for the algorithm is shown

in Figure ���� The signals of the VHDL design for X�� are traced with respect to the

system clock� X�� receives the mean from X� and the variance from X��� The �nal

label assigned to a pixel is the traced value of the signal �data��

The next phase is to synthesize the control bit streams from the VHDL code� For

this purpose� �Synopsys� and �Xilinx� CAD tools are used�

��

�a
�

�b
�

�c
�

F
ig
u
re
��
�
P
ag
e
L
ay
ou
t
S
eg
m
en
ta
ti
on
�
�a
�
In
p
u
t
gr
ay
�l
ev
el
im
ag
e�
�b
�
R
es
u
lt
of
th
e
se
gm
en
ta
ti
on
al
go
ri
th
m
�
�c
�
R
es
u
lt
af
te
r

p
os
tp
ro
ce
ss
in
g�

�

Figure ��� Simulation results of page layout segmentation on Splash ��

The �ppr� utility produces the summary report which contains the CLB occupancy

results� A sample summary report is also enclosed in the Appendix A� The timing

analysis utility gives an estimate of the peak speed as shown in Figure ����� The

graph shows the histogram of the number of nets that can run at a given clock speed�

Hence� the lowest speed net determines the overall speed of the overall circuit� The

lowest speed in Figure ���� is ���� MHz which is also provided as a text output by

the �timing� utility�

The control bit stream �les are �rst used with the help of the on�line debugger t��

Using t�� a �raw �le� is created� This raw �le can be run on the hardware interactively

through t�� or through a C program� A sample t� session to generate the �raw� �le

from the bit streams is included in the Appendix A� The host interface program

written in C reads the input image� creates windows of �subimages� �� � �� pixels

��

X

X
1

X X X X X X

0

2 3 4 5 6 7

X
8

X X X X X

X

9 10 11
X

12 13 14

15

Σ

Σ

Class (0, 1, 2)

ij

2

ij

2

ij

ijI

I

I

I

Figure ���	 Schematic for page layout segmentation on Splash ��

PE-1 PE-2
pixel_in

Psum(t-1) Psum(t-1)

pixel_in pixel_in

Psum(t-1)

PE-k N-k SRs
Pixel_inpixel_in

Psum(t-1) Result

PE-k*k

Figure ���� Schematic for �ltering on Splash ��

and loads them on X� memory� The window size of �� � �� pixels is a restriction laid

down by the convolution stage� By running the speci�ed number of clock ticks on

Splash� the result is produced and stored in X�� memory� The host reads back this

result from Splash board� This procedure is repeated for all the possible windows in

the input image� The boundaries of the ����� windows are shown in Figure �����a��

The C code for the host interface and the �make�le� are included in the Appendix A�

����� Experimental results

The sequential algorithm has been written in C and tested on several input images�

On a SPARCstation �	 ��� MFLOPS� �� MIPS�� it takes about �	 seconds of CPU

time to segment a ��	�� � ��	�� image� The algorithm has been mapped onto Splash

��

Figure ���� Projected speed for X��

�� Running the Splash � at a clock rate of � MHz� the execution time for the page

segmentation algorithm is expected to be �
	 milliseconds� Therefore� a speedup of

close to ��	 has been achieved� The simulation results are shown for the PEs X��

X�� and X�� in Figure ���� The output of X� shows the sum of the pixels and the

output of X�� shows the sum of squares of pixels� Various signals in X�� show the

computations of mean and variance and the �nal label assignment� The �nal labels

are stored in the local memory of X�� which is read by the host at the end�

Figure �����b� shows the segmented output of the input image �Figure ����a��

generated by the Splash system� This segmented output is identical to the output

generated by the sequential algorithm �see Figure ����b���

��

��� Summary

We have introduced FPGAs as compute elements� Many custom computing machines

have been reviewed� Splash � is the platform for the work reported in this thesis� The

architecture of Splash � has been described� A simple algorithm has been chosen as

a case study for demonstrating the software development cycle for Splash ��

There are many advantages of using FPGAs� The most important aspect is the

rapid turn�around time for development and fast prototyping� The user gets the

optimal cost!performance ratio compared to designing an ASIC� The �nancial risks

are also minimal as the hardware development uses only o��the�shelf components

without involving costly design and fabrication of masks� The number of ICs used for

the glue�logic design can be reduced drastically� resulting in a more reliable system�

A complex FPGA can consist of millions of gates� Hence� manually placing and

routing the logic is not feasible� This results in limiting the performance of the system

to the capabilities of the CAD tools used� For supporting reprogrammability� we pay

the price in terms of slower speed compared to an ASIC� The CAD tools are also

costly�

�	

�a
�

�b
�

F
ig
u
re
��
��

P
ag
e
L
ay
ou
t
S
eg
m
en
ta
ti
on
u
si
n
g
S
p
la
sh
��
�a
�
In
p
u
t
gr
ay
�l
ev
el
im
ag
e
w
it
h
��
�
��
p
ix
el
w
in
d
ow
s
sh
ow
n
�
�b
�
R
es
u
lt

of
th
e
se
gm
en
ta
ti
on
al
go
ri
th
m
ru
n
n
in
g
on
S
p
la
sh
�

Chapter �

Image Convolution

Vision algorithms can be classi�ed into one of the three levels of vision tasks they

handle� namely� �i� low�level� �ii� intermediate�level� and �iii� high�level� The image

enhancement related activities are usually handled by the low�level operators� In

general� this class of algorithms can also be viewed as performing �ltering operations�

The �ltering algorithms can be �i� linear or �ii� non�linear� The point operation�based

�lters are usually linear and region or neighborhood�based �lters are non�linear� The

main distinction being that the linear operators are invertible� hence� the operation

can be undone by applying the inverse operator� A generalized convolution that can

be applied to template matching and morphological �ltering of images is described

in the next section� Application of convolution and image morphology in �ngerprint

feature extraction and document image processing is explained�

��

��

��� Generalized convolution

Convolution is an important operator in digital signal and image processing� Many

machine vision systems use ��dimensional convolution for image �ltering� edge de�

tection� and template matching� Generalized convolution of two signals G and W is

often expressed as C # G �W � where C is the result of applying a convolution mask

W to the input signal G� For ��dimensional discrete images� generalized convolution

can be de�ned �
�� as follows

C�i� j� # �	�f�G�i� s� j � t��W �s� t��� �����

where �� 	 and f are three operators�

Table ��� shows the values the operators take for many standard operations� In this

task � 	 f�a� b�

Correlation
P

s

P
t a � b

Binary erosion �s �t a b j b
Binary dilation �s �t a b
Grayscale erosion Mins Mint b � a
Grayscale dilation Maxs Maxt a � b

Table ��� Generalized ��D Convolution� ���� multiplication� ��� subtraction� ���
addition�� � logical �AND� operator� �b complement of b� logical complement� �j�
logical �OR� operator�

chapter� template matching and morphological operators will be discussed further for

mapping onto Splash ��

��

��� Template matching

Convolution of the ��D discrete signals f and g can be written as

h�x� y� #
�X

i���

�X
j��

f�x� i� y � j�g�i� j�� �����

For images of �nite size �say N � N�� and masks of �nite size �say k � k�� ��D

convolution can be expressed as

h�x� y� #
k��X

i��k��

k��X
j��k��

f�x� i� y � j�g�i� j�� �����

The operation described in Eq� ����� is also known as template matching� or correla�

tion� The image size and mask size need not� in general� contain a square number of

elements�

Typical use of convolution in image processing is for edge detection �e�g�� Sobel

and Prewitt masks�� computing texture coarseness� object location using template

matching� and image smoothing using Gaussian masks� The general convolution op�

erator described in Eq� ����� includes integer�valued and real�valued input images and

masks� Examples of real�valued masks include Gaussian smoothing� and computing

texture features using Gabor �lters� Most commonly used masks such as Laplacian�

Sobel� and Prewitt have not only integer mask values� but the mask values can also be

expressed as powers of two� In a typical application involving many image processing

stages� each stage should be capable of processing real�valued images� Based on this

observation� a taxonomy of convolution operations is de�ned as shown in Figure ����

��

Integer-valued masks Real-valued masksReal-valued masksInteger-valued masks

Input Image

Real-valuedInteger-valued

General integer valuesValues are
powers of 2

Figure ��� A taxonomy of convolution operators�

Convolution on special�purpose architectures has been a topic of substantial in�

terest �
�� ��	� ����� A very simple distributed approach for convolution is to split

the input image into a set of smaller� possibly overlapping� subimages� the number of

subimages is the same as the number of processing elements �PEs�� Each PE produces

the result for the sub�image it receives� The spatial support for the convolution mask

is provided through the overlap at the boundaries or data replication� However� this

simplistic approach may not be suitable for all target architectures� For example� if

the image is being acquired line by line then this approach may not be e�cient as we

have to wait till we acquire the whole image� In order to understand the advantages

and disadvantages of various algorithms reported in the literature� we need to look at

the communication and computation pattern in ��dimensional convolution� The basic

convolution operation is shown schematically in Figure ���� Suppose the value of the

convolution operation is desired at point �x� y�� The center of the mask is placed at

��

.

.

.

.

.

.
(x, y)

. . . .

. . . .
I (x+k/2, y+k/2)

I (x+k/2, y-k/2)

I (x-k/2, y+k/2)

I (x-k/2, y-k/2)

M (k/2, -k/2) M (k/2, -k/2)

M (-k/2, k/2) M (k/2, k/2)

Figure ��� The convolution operator� I�i�j� is the input gray image value at pixel
�i�j� and M�u�v� is the mask value at �u�v��

�x� y�� A point�wise inner product of the image pixels and mask values is computed�

followed by a reduction sum operation� This computes the output value at �x� y��

The reduction operation can also be a pre�x sum� although the intermediate results

are not directly useful� This basic set of operations is repeated at all possible �x� y�

locations�

The sequential version of the convolution algorithm is very simple and is shown

in Figure ���� There are four loops in the algorithm and its overall complexity is

O�N�k��� The simple data partitioning approach described above can reduce the total

computation time by a factor equal to the number of available processors� ignoring

the extra computations needed in the overlapping areas by each PE�

The previous work described in the literature can be summarized based on the

target architecture on which the convolution operation is implemented�

� Systolic One of the most widely used convolution algorithm is the systolic

algorithm by Kung et al� ���	�� The algorithm is fairly straight forward and

also scalable to higher dimensions using the ��D convolution algorithm as the

�

for i � � to N do
for j � � to N do

sum � 	
for u � �k
� to k
� do

for v� �k
� to k
� do
sum � sum�Ii�u�j�v��Mu�v�

Oi�j� � sum
end

end�

Figure ��� Sequential algorithm for ��dimensional convolution� I�i�j� and O�i�j� are
the input and output values� respectively� at pixel �i�j� and M�u�v� is the mask value
at �u�v��

building block� In his landmark paper �Why systolic architectures$� ������

Kung described many convolution algorithms on systolic structures� Based on

a general inner product computation� Kulkarni and Yen ����� proposed a systolic

algorithm for ��D and ��D convolutions�

� Hypercube Fang et al� �
�� have described an O�k��p� � klog�N�p� � logN �

logp� algorithm� where � � p � k� using N�k� PEs and an O�N�M��L��

algorithm using L� PEs� Using N� PEs� Prasanna Kumar and Krishnan �����

proposed an algorithm with the best time complexity of O�N��K� � logN��

With a �xed number of PEs� the time complexity changes to O�k�logk� logN��

� Mesh Many researchers ����� ���� have proposed schemes for convolution

on mesh connected architectures� Lee et al� ����� use computation along a

Hamiltonian path ending at the center of the convolution mask� called the

convolution path� Ranka and Shahni ����� do not broadcast the data values�

��

thereby improving the performance of their algorithm by an order of magnitude�

� Pyramid Pyramid architectures are useful in dealing with multi�resolution

images� An O�k� � logN� time complexity algorithm is described by Chang et

al� �����

� VLSI!ASIC A number of proposed convolution algorithms are suitable for a

VLSI implementation� Chakrabarti and Jaja ���� use a linear array of processors

in their algorithm� In ����� convolution is viewed as a generalized inner product

and a VLSI implementation for ��dimensional convolution is described� Ran�

ganathan and Venugopal ���	� have described a VLSI architecture for template

matching using k� PEs and they achieve a time complexity of O�N��� �K���

��� Image morphology

Mathematical morphology is a powerful tool for image analysis� By proper selection of

a structuring element� a number of commonly used algorithms for segmentation� shape

analysis and texture can be implemented e�ciently� Mathematical morphology has

been successfully used in automated industrial inspection� nonlinear �ltering� image

compression� and biomedical image processing ����� ����

Mathematical morphology is based on set theory� An image is considered as a

discrete set of pixels� For binary images� the set of black pixels is the image set�

Gray�level images are treated in a similar way where each pixel has three dimensions�

the x� and y�coordinates and the gray value� A structuring element is a special user�

��

speci�ed set� The size and shape of the structuring element totally depends on the

application� The two basic operators of morphology are de�ned as follows�

Let A be the image set and S be the structuring element� We de�ne the two basic

morphological operators� dilation and erosion� as follows�

� Dilation� denoted by the operator 	� is de�ned as follows

�� a Binary image

A	 S # fx j x # �a� b� for some a
 A and b
 Sg� �����

�� Gray level image

C�i� j� # max
u�v�	��M��

fA�i� u� j � v� � S�u� v�g� �����

where C is the result of gray level dilation and the size of the image is

M � M�

� Erosion� denoted by the operator
� is de�ned as follows

�� Binary image

A
 S # fx j �x � b�
 A for every b
 Sg� ���
�

��

�� Gray level image

C�i� j� # min
u�v�	��M��

fS�u� v��A�i� u� j � v�g� �����

Alternatively� the two operators can also be de�ned using a generalized convolution

operator as described in Table ����

� Dilation for binary images

C�i� j� #
M���
u��

M���
v��

A�i� u� j � v� S�u� v�� �����

� Dilation for gray scale images

C�i� j� # max
u�v�	��M��

fA�i� u� j � v� � S�u� v�g� �����

� Erosion for binary images

C�i� j� #
M���
u��

M���
v��

A�i� u� j � v� S�u� v��jS�u� v�� ����	�

� Erosion for gray scale images

C�i� j� # min
u�v�	��M��

fS�u� v��A�i� u� j � v�g� ������

The convolution�based de�nitions are easier to implement in parallel form� Many

�	

architectures have been proposed for speeding up the morphological operators� In

����� a method is presented to represent a binary image in a bit�mapped form such

that the CPU can handle more pixels at a time� Boomgaard et al� ���� also use

a decomposition scheme to express a large structuring element as a combination

of smaller structuring elements� Crabtree et al� ���
� rede�ne ��connected and ��

connected erosion and dilation operators and claim that their implementation is fast

even on personal computers� A logic gate and multiplexer based implementation is

described in ����� for gray level images� Lenders et al� ����� have proposed a ��bit

systolic processor for binary morphology�

��� Application of generalized convolution

In this section� two applications of generalized convolution are described� For compu�

tations of dominant ridge directions in a �ngerprint� the orientation �eld ����� model

is adopted� In order to remove �spiky� growths in a �ngerprint skeleton image� a

morphological �lter has been described in ������ For removing repetitive background

in document images� Liang et al� ����� proposed a morphological approach� These

three applications will be used to demonstrate the application of generalized ��D

convolution�

����� Orientation �eld computation using ��D convolution

The orientation �eld is used to compute the optimal dominant ridge direction in each

�
 � �
 window or block of the input image� Following steps are involved in the

��

computation of the orientation �eld for each window�

�� Compute the gradient of the smoothed block� Let Gx�i� j� and Gy�i� j� be the

gradient magnitude in x and y directions� respectively� at pixel �i� j� obtained

using �� � Sobel masks�

�� Obtain the dominant direction in a �
� �
 block using the following equation

�d #
�

�
tan��

�
BBBBB�

��X
i��

��X
j��

�Gx�i� j�Gy�i� j�

��X
i��

��X
j��

�Gx�i� j�
� �Gy�i� j�

��

�
CCCCCA
� Gx �# 	 and Gy �# 	 ������

Note that if either Gx or Gy is zero then the estimate of the dominant direction is

trivial �	o or �	o�� The angle �d is quantized into �
 directions� The orientation �eld

obtained using this method is shown in Figure ���� The gradient magnitudes �Gx

and Gy� at a pixel are computed using an integer�valued convolution mask� This will

be implemented on Splash ��

����� Skeleton smoothing using image morphology

The binary ridge image needs further processing before the minutiae features can be

extracted� The �rst step is to thin the ridges so that they are single�pixel wide� A

skeletonization method described in ���
� and available in the HIPS library ��	��

is used� Unfortunately� the ridge boundary aberrations have an adverse impact on

the skeleton� resulting in �hairy� growths �spikes� which lead to spurious ridge bi�

furcations and endings� Hence� the skeleton needs to be smoothed before minutiae

��

�a� �b�

�c�

Figure ��� Computation of orientation �eld� �a� input �ngerprint image ����� �����
�b� orientation �eld �for each �
� �
 window�� �c� orientation �eld superimposed on
the input image�

��

�a� �b�

Figure ��� Thinned ridges �a� before spike removal� �b� after spike removal�

points can be extracted� The spikes are eliminated using an adaptive morphological

�ltering� The �lter used is a binary �open� operator with a box�shaped structuring

element with all ���s of size �� �� The structuring element is rotated in the direction

orthogonal to the orientation �eld in the window� The ridge skeletons before spike

removal and after spike removal are shown in Figure ���� The �open� operator is

de�ned using the two basic dilation and erosion operations�

����� Background removal in document image processing

Overlapping text and background separation is an important step in document image

processing� A morphological �ltering�based method is described in ������ By using an

�open� operator with a suitable size structuring element� repetitive background can

be removed as shown in Figure ��
�

��

�a� �b�

Figure ��
 Background removal using �open�� �a� input binary image� �b� output of
�open��

��� Mapping onto Splash �

Image processing algorithms� in general� and convolution� in particular� demand high

I!O bandwidth� Most of the algorithms implemented on special purpose architectures

assume that the data are already available on the PEs� This� in a way� avoids the I!O

bandwidth problem of the convolution operation� We do not make this assumption�

Jonker ����� argues that linear arrays are better for image processing algorithms� A

linear array of PEs operating in a systolic mode o�ers two advantages �i� systolic ar�

rays can balance I!O with computations� �ii� the nearest neighbor communication can

eliminate the need for a global communication facility for some types of algorithms�

One of the preferred modes of computation on Splash � is the systolic mode� In this

mode� no assumptions are made about the availability of data in the individual PEs�

The computations needed in a PE are also fairly simple� This helps us in balancing

both the I!O bandwidth and the computation requirements of a PE� Hence� a systolic

algorithm for implementing convolution on a Splash � is preferred�

��

�� Assume k PEs are available�

�� The left most PE receives input and the right most PE produces
output�

�� Partial sum� 	 for the left most PE�

�� On the ith PE� carry out the following

� Receive partial result and pixel value from the left neighbor�

� partial result� mask�i� � pixel value� left result�

� Send partial result and pixel value to the right neighbor�

Figure ��� ��D systolic algorithm�

First� the simple ��dimensional convolution algorithm is described� Let us assume

that we have k PEs� where k is the size of the �� � k� mask� Each PE receives the

pixel value and the partial result available so far from its left neighbor� The PE

multiplies the pixel value with the mask values assigned to it and adds the partial

sum to it� This result and the pixel value are passed to the right neighbor� At the end

of the systolic path� we get the convolution result after taking into account the initial

latency� The algorithm is shown in Figure ���� A schematic diagram of ��dimensional

convolution on a set of PEs connected linearly is shown in Figure ����a��

The above algorithm assumes that the PEs can implement multiplication opera�

tion� In a FPGA�based PE� this is not always true� A double precision �oating point

multiplier needs more logic than what is available in a PE� While we can use the local

PE memory to store the multiplication table indexed by the pixel value� this results

in an additional delay of one cycle necessary to reference the multiplication result

from the memory� This scheme is shown in Figure ����b��

The ��dimensional convolution is an extension of the ��dimensional convolution

�

described above� The basic idea is based on the algorithm proposed by Kung et al�

���	�� The k�k mask is extended to a k�N mask with 	�s placed at locations where

no entry was present� These kN entries are serialized to get a single ��dimensional

mask of kN entries� Now� we can apply the ��dimensional convolution algorithm

outlined above� Note that there are �N � k� locations with 	�s as their mask value�

Hence� we can simply have �N � k� stages of shift registers� Secondly� for improper

positions of this new Nk�element mask we need to ignore some values which are not

really part of the output� Finally� we assume that the pixels are being communicated

in a raster scan order� Note that we can implement the ��dimensional convolution

algorithm with or without a lookup table� The scheme is shown in Figure ����c��

����� Implementation issues

The general convolution algorithm needs to be tuned to the special hardware being

used� For example� the Splash � system has only �
 PEs on a board� and therefore�

virtual PEs need to be mapped to physical PEs� The second issue is the number of

shift registers which depends on the number of rows in the image� The third issue is

the implementation of multipliers needed by the PEs� Following is a summary of our

solution to these three issues�

� Large number of mask entries If mask size �k� is greater than the number of

available PEs� then the virtual PEs are mapped to available PEs� In carrying

out the mapping� the timing model between PEs must be satis�ed�

��

Lookup

Table

PE-k*k

Psum(t-1)

N-k SRs

LookupLookup

Table

Lookup

Table Table

Psum(t-1)

pixel_in
PE-kPE-2

Psum(t-1)

pixel_in

Psum(t-1)

pixel_in pixel_in
PE-1

Result

Pixel_in

Lookup

Table

Psum(t-1) Result

Pixel_in
PE-3

Lookup

Table

Lookup

Table
Lookup

Table

PE-1 PE-2 PE-k

Psum(t-1) Psum(t-1)

pixel_in

Psum(t-1)

pixel_inpixel_in pixel_in

PE-3PE-2PE-1

Psum(t-1) Result

Pixel_in

Psum(t-1)

pixel_in

Psum(t-1)

pixel_in pixel_in

Psum(t-1)

PE-k
pixel_in

(c) 2-D Convolution with shift registers and memory lookup

(a) 1-D Convolution

(b) 1-D convolution with Memory lookup

Figure ��� Systolic schemes for convolution on Splash �� �a� ��dimensional convolu�
tion� �b� ��dimensional convolution using memory lookup� �c� ��dimensional convo�
lution with shift registers and memory lookup�

� Large image width A large image has to be split into smaller sub�images of

some prede�ned size� In order to handle this� the ��dimensional convolution has

been implemented with a �xed width ��� in our case�� Depending on the mask

size� the required number of rows and columns at the border are copied�

� Multiplier implementation

� Masks with integer values If mask values are of the type �p� where p is an

integer then the multiplier in each virtual PE can be replaced with simple

bit shifters�

��

Pixel_in

Partial_sum_in

Delay Register

Mask
Pixel_out

Partial_sum_out

Figure ��� A compute element�

� Integer mask values but not necessarily powers of �� An iterative shift and

add algorithm to multiply two eight bit numbers can be implemented�

� Real valued masks If mask values are normalized ���� ��� then a suitable

scheme for implementation on FPGAs is needed�

The Splash PEs carry out two di�erent activities� namely� �i� additions and multi�

plications� and �ii� shift operations� We have built following two di�erent type of

elements for these activities �i� compute element� and �ii� shift element� The num�

bers of compute elements and shift registers are determined by the mask size and

image width� The schematics of a compute element is shown in Figure ��� and a

schematic of the register bank is shown in Figure ���	�

A brief summary of the analysis of several convolution algorithms is given in Ta�

ble ��� based on the communication facility available on the respective architectures�

In a systolic algorithm� the communication overhead is balanced by the computa�

tion phase� so no complex communication facility is needed� In this sense� systolic

algorithm is better in terms of the total work done and communication simplicity�

We compare our implementation on Splash � with implementations on di�erent

platforms in terms of the total execution time� The timings for � � � convolution�

��

..

Pixel_in

Partial_sum_in

Pixel_out

Partial_sum_out

Shift_register

Figure ���	 A shift register�

Convolution
algorithm

Computational Complexity No� of PEs Architecture

Ranka Sahni ����� O�k���% of bits in a pixel� �N�� Mesh
Prasanna Kumar
Krishnan �����

O�logk� O�N�k�� Hypercube

Chang et al� ���� k� � logN O�N�� Pyramid
Kung ���	� algorithm O�N�� O�k�� Systolic
Ranganathan et al�
���	�

O�N� � k���� O�k�� VLSI

Table ��� Comparative analysis of convolution algorithms� image size is N �N and
mask size is k � k

based Sobel edge detector on a ��� � ��� image are shown in Table ���� The basic

sequential convolution algorithm �Figure ���� running on di�erent Sun host machines

has been timed� In addition� timing on a recently developed i��
	 based system from

Alacron is reported� The timing results on CM�� are for edge detection using a set

of six � � � convolution masks ������

For implementing the convolution algorithm on Splash �� three standard edge

detectors used in low�level computer vision algorithms have been chosen� These �lters

have been chosen because the mask values are powers of �� The �lters and their

�		

Machine Architecture Time Remarks
SPARCstation �	 Von Neumann ��
	 sec C�code� timing ob�

tained using �clock�
function

Model �	
SPARCstation �	 Von Neumann ���� sec Same as above
Model �	
SPARCstation � Von Neumann ���� sec Same as above

i��
	 Pipelined ���� ms Timings as reported
by vendor

Splash � FPGA based ����� ms Mask values are pow�
ers of �
��� pixels base
width�

Splash � FPGA based
� ms Table lookup for
multiplication
��� pixels base
width�

CM�� MIMD ���� PEs� �	 ms Result reported in
������

CM�� MIMD ��� PEs�
	���� ms Result reported in
������

MasPar�� SIMD ��K PEs� �� ms Result reported in
��
��� scaled to ����
��� image

Datacube Pipelined ���� ms ����
MVC���	 Pipelined �� ms ��	��
Data Translation Spl� hardware

 msecs ��
�

Table ��� Timings for a � � � Sobel edge detector for a ��� � ��� image on di�erent
platforms� � Results are for an edge detector based on six � � � convolution masks�

�	�

0
0
0
0
0

-

1
1
0
1
1

-
-

1
1
0
1
1

-
-

1
1
0
1
1

-
-

1
1
0
1
1

-
-

1
1
0
1
1

-

0
0
0
0
0
0
0

1
1
1
0
1
1
1

-
-
-

1
1
1
0
1
1
1

-
-
-

1
1
1
0
1
1
1

-
-
-

1
1
1
0
1
1
1

-
-
-

1
1
1
0
1
1
1

-
-
-

1
1
1
0
1
1
1

-
-
-

1
1
1
0
1
1
1

-
-
-

X

X X X X X

X

XXXXX

X

XXX

X

X X X

0

0

1 2 3

4 5 6

7

1 2 3 4 5

6 7 8 9 10

11

1 2 1

1 0 1

0
1

0
2-

0

2
1

0
0 1

-1
-1

-1
-1
-1

-1
-1

-1
-1
-1

+1
+1
+1
+1
+1

+1
+1
+1
+1
+1

- 1

2
-

-
-

-

(a) 3 X 3 Sobel masks

(b) 5 X 5 Prewitt masks

X X X X X X X

XXXXXXX

X
0

1 2 3 4 5 6 7

8 9 10 11 12 13 14

X
15

-1
-1

-1
-1
-1

-1
-1

-1
-1

-1
-1
-1

-1
-1

-1
-1

-1
-1
-1

-1
-1

+1
+1
+1
+1
+1
+1
+1

+1
+1
+1
+1
+1
+1
+1

+1
+1
+1
+1
+1
+1
+1

(C) 7 X 7 Prewitt masks

Figure ���� Implementation of three edge detection �lters on Splash �� �a� � ��
Sobel masks� �b� �� � Prewitt masks� �c� �� � Prewitt masks� X� � X�� denote the
PEs in Splash ��

�	�

Image Size
Mask Size ��� � ��� ��
 � ��
 ��� � ���

� �� ���
 �	
�
 �����
� � � ���� ��
�
 �
���
� � � �
�
 ����� �����

Table ��� Run times �in milliseconds� of edge detection on Splash � for various image
and convolution mask sizes�

mappings on Splash � PEs are shown in Figure ����� These operators have two

convolution stages and a �nal stage to compute the edge �gradient� magnitude at

each pixel by computing the absolute sum of the two convolution output images�

Each PE accommodates the required shift registers for that stage� The gradient

magnitude outputs for the house image using a � � � Sobel edge detector� a � � �

Prewitt edge detector and a � � � Prewitt edge detector are shown in Figure �����

The timings for these edge detectors on Splash � are shown in Table ����

Our approach for implementing convolution operation on Splash � is di�erent in

many ways from the approach taken by Peterson et al� ������ The main di�erences

are �i� we are not limited by a �xed mask size of � � � as done in ������ For smaller

masks� Peterson et al� ����� have used the same � � � masks �lled with zeros� This

may be due to hard�coded model of computing on Splash �� �ii� Peterson et al� use

all the �
 PEs for implementing their algorithm� We use a fewer number of PEs

for smaller mask sizes �k � ��� Therefore� in our approach� we will have more PEs

available for implementing other image processing algorithms� and �iii� our mapping

on Splash � results in a higher performance of nearly �		 frames per second compared

to �� frames per second reported by Peterson et al� ������

�	�

�a� �b�

�c� �d�

Figure ���� Results of ��dimensional convolution� �a� Input image� �b� � � � Sobel
edge detector output� �c� � � � Prewitt edge detector output� �d� � � � Prewitt edge
detector output�

��� Analysis of convolution on Splash �

The purpose of this analysis is two fold� First� the total number of clock cycles needed

for ��D convolution on a M �M image using a k� k mask is computed� Second� the

number of physical FPGAs needed in the operation is estimated� It can be easily seen

from the algorithm that both these quantities are deterministic and can be computed

using a general formula derived below� The number of FPGAs is being computed to

see the e�ect of number of CLBs in an FPGA on convolution algorithm� Although

our target hardware �Xilinx �	�	� has �xed number of CLBs� with advances in FPGA

�	�

technology� more and more CLBs are becoming available in a chip� The convolution

algorithm can bene�t from a large number of CLBs as it is dependent on the number

of adders and shift registers that can be accommodated in a chip�

Following notations and assumptions are used in the analysis

�� Image size # M �M �

�� Block image size # N �M �

�� Mask size # k � k�

�� Number of CLBs needed to realize a �
�bit adder �hard macro!relatively place

macros� # a

�� Number of CLBs needed to realize a �
�bit parallel loadable shift register # r

� Total number of CLBs in a FPGA chip # c

�� Occupancy factor �" of CLBs occupied in a chip� # f

�� Partial results �sums� are �
�bit wide and the data is ��bit wide�

As described in the ��D convolution algorithm� the input image is split into equal

sized data segments of width N and height M �original height� as shown in Figure �����

The following computations show the number of cycles needed to complete the ��D

convolution on a data segment of size N �M � Note that there is an overlap of k��

pixels on all sides of the data� We de�ne

Total time # Latency � Computation time � Flush out time�

�	�

k/2

M

M

N

k/2

k/2

k/2k/2

Figure ���� Notation used in the analysis of ��D convolution algorithm�

where

Latency # initial number of clock cycles before the �rst valid data appears�

computation time # number of clock cycles actually used in the compu�

tation� and

Flush out time # number of clock cycles to �ush out the left over data

elements of the present dataset�

Based on the above de�nitions�assumptions and notations� the following

values are arrived at�

Latency # N � k�

Flush out time # N � k�

Computation time # �N � k�� �M � k��

Wrap around loss # �k � ���M �

No� of data segments # M�N �

�	

Using these values� the total number of clock cycles for all the M
N
segments

can be obtained as follows�

Total number of clock cycles # M
N
��N � k � �N � k�� �M � k���

We de�ne e�ciency as the ratio of ideal number of clock cycles and actual

number of clock cycles taken by the algorithm as shown below�

e�ciency # ��M�k��M�k
Total number of cycles

�

The total number of cycles and the e�ciency values for commonly observed values

of M � N � and k are shown in Table ���� The total number of clock cycles and the

e�ciency for di�erent assigned values ofM � N and k is computed using the de�nitions

described earlier� The maximume�ciency of 	���� is possible forM # �� 	��� N #
�

and k # ��

The communication complexity of the algorithm is simple due to the choice of the

systolic algorithm� The computation and communication steps are overlaid in each

clock� hence� no communication overheads are involved�

For estimating the number of FPGAs needed� we note that there are two subcases

�a� masks that are powers of two� and �b� general �oating point masks� Let P be the

desired number of FPGA chips� Then�

�a� No� of adders needed!virtual PE # ��

Total number of adders # k�

No� of registers # k�

No� of shift registers # N � k�

In order to be able to accommodate the desired number of CLBs� the

�	�

M N k �M � k�� �M � k� No� of cycles E�ciency

��
 �
 �
�	�� �	��� 	���

��
 �
 �
���� �	��
 	����
��
 �
 �
��
� �		�
� 	�
��
��
 �
 � �	��� ��	
	� 	�
��
��
 �� �
�	�� ��	�
 	��	

��
 �� �
���� ����
 	����
��
 �� �
��
� ��
�	 	��	�
��
 �� � �	��� ����� 	��
�
��

� �
�	�� �	��� 	����
��

� �
���� ����
 	����
��

� �
��
� ����
 	����
��

� � �	��� ����� 	����
��� �
 � �
���� ��
��� 	����
��� �
 � �
���� ������ 	����
��� �
 � �
��
� ������ 	�
��
��� �
 � ������ ��
	�
 	�
��
��� �� � �
���� ������ 	���	
��� �� � �
���� ������ 	����
��� �� � �
��
� ���	�� 	����
��� �� � ������ ��	��� 	����
���
� � �
���� ������ 	���	
���
� � �
���� ��	�	� 	���	
���
� � �
��
� �	��
	 	����
���
� � ������ �����	 	��

��	�� �
 � �	����� ������
 	���	
��	�� �
 � �	����� ������
 	��
	
��	�� �
 � �	
��
� �����
� 	�
��
��	�� �
 � �	
�	�� �
����� 	�
��
��	�� �� � �	����� ���
��� 	����
��	�� �� � �	����� ������
 	��
�
��	�� �� � �	
��
� ��	�	�� 	����
��	�� �� � �	
�	�� ������� 	����
��	��
� � �	����� ��	�	�� 	����
��	��
� � �	����� ���
��
 	����
��	��
� � �	
��
� ������� 	����
��	��
� � �	
�	�� ������
 	����

Table ��� Number of clock cycles and e�ciency for commonly observed values of M �
N � and k

�	�

following inequality must hold�

P � f � c � k�k � a�N � r�� ������� �i�

�b� No� of adders needed!virtual PE # �� �� bit normalized coe�� value�

Total number of adders # � � k�

No� of registers # k�

No� of shift registers # N � k�

Again� in order to accommodate the required CLBs� the following inequal�

ity must be satis�ed�

P � f � c � k�� � a � k �N � r�� ������� �ii�

For Xilinx �	�	 FPGA chip� c # �		 � a # �	 and r # �� for an easy placement

of the logic� we assume f # 	���� When k # �� and N #
�� we can see that the

inequality �i� is satis�ed with P # � in case �a� and the inequality �ii� is satis�ed

with P # �� in case �b��

��
 Discussion

A generalized ��D convolution is of signi�cant importance for low�level vision tasks�

Most of the image processing accelerators support template matching and morpholog�

ical processing as independent functions� Although speeds up to �	 MHz are available

for convolution with � � � masks using these accelerators� they su�er from following

shortcomings� The implementations are restricted to mask sizes already de�ned by

the designer� Secondly� operations which need to be performed on the outputs of

�	�

convolution stages cannot be performed on the same hardware at the same time� For

example� the computation of Sobel edge detection needs a computation of both Sx

and Sy �gradient magnitudes in x and y directions� at the same time� followed by

an addition of jSxj and jSyj� Similar constraints exist in computation of the domi�

nant ridge direction in �ngerprint images� This was possible using the PEs and the

crossbar communication on the processor board of Splash �� Any operation on the

output of convolution has been made possible by the other PEs available on Splash �

which could be programmed for a separate instruction after receiving the convolution

results through the crossbar� For the morphological �open� operation� the results of

the �rst stage could be fed to the second stage using the SIMD bus� There is no loss

of synchronism in connecting the two stages� On the commercial pipelined processors�

the performance of the standard accelerators drops to �	 MHz for an ��� mask size�

The performance on the Splash � remains unchanged as we increase the mask size�

��� Summary

In this chapter� sequential algorithms for low�level vision tasks� ��D convolution and

image morphology have been introduced� Applications of these basic operators have

been shown in realizing stages of minutiae feature extraction in �ngerprint images

and removing repetitive background in document image processing� The mapping of

the generalized convolution onto Splash � is described� The analysis of the algorithm

mapping has been carried out� Results in terms of synthesis speeds obtained have

been compared with several other hardware systems�

��	

60
0

65
0

70
0

75
0

80
0

85
0

90
0

95
0

10
00

15
20

25
30

35
40

45
50

55
60

65

Efficiency

N

"2
56

.3
"

"2
56

.5
"

"2
56

.7
"

"2
56

.9
"

"5
12

.3
"

"5
12

.5
"

"5
12

.7
"

"5
12

.9
"

"1
02

4.
3"

"1
02

4.
5"

"1
02

4.
7"

"1
02

4.
9"

F
ig
u
re
��
��

E
�
ci
en
cy
v
er
su
s
w
id
th
fo
r
va
ri
ou
s
im
ag
e
an
d
m
as
k
si
ze
s�

Chapter �

Image Segmentation

The process of spatial partitioning of an image into mutually exclusive connected

image regions is known as image segmentation ��	� �
��� Each region is expected to

be homogeneous with respect to a de�ned property� Typically� image segmentation

is carried out in the early stages of a vision system to facilitate image representation

and interpretation� An image segmentation problem is analogous to the problem of

pattern clustering in the sense that we need to de�ne the similarity criterion between

pixels or pattern vectors and the number of segments or clusters ��	��� Most well

known algorithms for image segmentation are based on the following approaches �i�

thresholding or clustering� �ii� boundary detection� and �iii� region growing� The

similarity between pixels is based on the notion of homogeneity which involves gray

level� color� texture and optical �ow information�

���

���

��� Page layout segmentation

In an automated document image understanding system� page layout segmentation

plays an important role for segmenting text� graphics and background areas� Such

a segmentation allows us to apply character recognition algorithms to only text re�

gions� A number of algorithms have been reported for page layout segmentation

���	�� Haralick et al� ���� use image morphology�based techniques� Jain and Bhat�

tacharjee ��	�� have used a multi�channel �ltering approach based on Gabor �lters�

Jain and Chen ��	�� have used color information along with Gabor �lter outputs for

page layout analysis applicable to locating address labels� Recently� Jain and Karu

��	
� have proposed an algorithm to learn texture discrimination masks needed for

segmentation� The performance of this approach for page layout segmentation has

been demonstrated by Jain and Zhong ��	���

The page segmentation algorithm by Jain and Zhong ��	�� has three stages of

computation� namely� �i� feature extraction� �ii� classi�cation� and� �iii� postprocess�

ing� The feature extraction stage is based on a set of twenty masks obtained by the

learning paradigm proposed in ��	
�� The second stage is a multistage feedforward

neural network with �	 input nodes� �	 hidden nodes and three output nodes� The

connection weights and other parameters of the neural network have been learned for

document images using the approach described in ��	
�� The � � � masks for the

feature extraction stage have been shown to be �optimal� in the sense of minimizing

the classi�cation error for the three�class �text and line drawings� half�tone and back�

ground� segmentation problem� The post�processing stage involves removing small

���

Input image

Output

Layer 2

 Layer 1 (masks)

.

.

. . .

M

M

Figure ��� Schematic of the page layout algorithm�

noisy regions and placing rectangular blocks around homogeneous identical regions�

The schematic diagram of the segmentation algorithm is shown in Figure ��� �M # �

in our implementation�� The input to the algorithm is the gray level scanned image

of the document and the output is the labeled image� where each pixel is assigned

one of the three classes� A sample input image and the segmentation result produced

by this algorithm are shown in Figure ���� The input gray level is image shown in

Figure ����a�� The three�level segmentation results obtained by the sequential algo�

rithm is shown in Figure ����b� where the background is shown by black pixels� the

text areas are shown in gray pixels and the the the graphics areas are shown in white�

Figure ����c� shows the results after postprocessing the segmentation result where the

segmented areas are enclosed in rectangular boxes� The text areas are enclosed by

black boxes and graphics areas are enclosed by white boxes� The twenty �� � masks

and the weights of the neural network stage are listed in the Appendix B� This page

segmentation algorithm takes about ��	 seconds of CPU time on a SPARCstation �	

for a ��	�� � ��	�� image�

���

�a� �b� �c�

Figure ��� Page layout segmentation� �a� Input gray�level image� �b� Result of the
segmentation algorithm� �c� Result after postprocessing�

The computational requirements of this page segmentation algorithm can be sum�

marized as follows� There are twenty � � � feature extraction masks� Each feature

vector �with �	 elements� needs �	 � �� multiplications and �� � �	 additions�

The size of a typical input document image is ��	�� � ��	�� pixels� Therefore� the

�ltering stage requires of the order of �	 billion multiplications and �	 billion addi�

tions� The neural network classi�er requires the following computations for every

�	�dimensional feature vector� we need �		 multiplications in the �rst stage and
	

multiplications in the second stage� The �rst stage also involves �	 � �� additions

and the second stage needs � � �� additions� Note that the feature values for the

second stage are �oating point numbers compared to the integer�valued input pixels

in the feature extraction phase� For a ��	�� � ��	�� image� there are �
	 million

�oating point multiplications in the classi�cation stage�

���

��� Mapping onto Splash �

The two main phases in the segmentation algorithm are �ltering and multilayer feed�

forward network� The �ltering stage is carried out �rst� The Splash � system is

then recon�gured to implement the neural network classi�er� In this section� we will

address the mapping issues for these two stages�

An important design parameter that needs to be decided is the data widths at

di�erent stages� The input is already known to be ��bits� The result of the �ltering

stage has been decided to be ���bit signed integers which is then fed to the neural

network stage� The neural network hidden layer has a ��s complement ���bit output

and� to be consistent� the output layer has the same width� The ��s complement

representation is used for the integers in all the stages�

����� Filtering

The mask values for this application have been derived using the learning paradigm

described in ��	
�� The twenty � � � feature extraction masks are real�valued� The

�ltering algorithm is implemented as a ��D convolution with �oating�point multipli�

cation� The ��D convolution presented in the previous chapter has been extended to

real�valued masks� One of the limitations with the current FPGAs is the minimal

support for �oating point operations� This disadvantage can be turned into an advan�

tage by developing suitable multiplication operators needed to carry out the �oating

point arithmetic� As the input is an ��bit gray valued image� the �oating point mul�

tiplication is converted to a �xed point multiplication using shift and add iteratively�

��

�� Normalization the mask coe�cients are normalized between ���� �� by dividing
the mask values by a constant chosen to be a power of two and greater than or
equal to the largest �absolute� mask value�

�� Floating point multiplication multiplication of an integer by a fraction is con�
sidered as successive sums of partial results�

�� Renormalization the result is scaled back by the normalization constant used�

Figure ��� Fixed�point multiplication�

The algorithm is shown in Figure ���� With this approach� a general�purpose �oating

point multiplier has been replaced by a series of adders by taking advantage of the

input range being �	� ����� The overall schematic design for the ��D convolution is

already described in the previous chapter�

The algorithm needs the services of the host to do the normalization of the co�

e�cients� The fractional value is represented as an ��bit value� Thus� a maximum

of eight adders are needed� For each coe�cient in the � � � mask� the number of

adders are di�erent� As the total number of adders to realize a mask rise sharply�

more FPGAs are needed� Hence� a full Splash � processor board is dedicated for each

�lter� Each of the twenty masks is programmed separately to get a compact mapping�

����� Analysis of the �lter mapping

To realize twenty �lters� a total of twenty processor boards are required to complete

the segmentation in one pass� With a ��board system� it takes �	 passes over the

input image� The masks being �xed� this approach is acceptable� The twenty control

bit streams for the twenty �lters are available to reuse the available processor boards

dynamically� Note that the input image can reside on the X� host and the number

���

of passes to realize the twenty �lters can read the image from X� instead of host�

Reprogramming the processor board with a di�erent control stream leaves the external

memory unchanged�

An on�chip multiplier approach is preferred over a look�up table mode in the

implementation to reduce the number of memory accesses to the external memory�

Recall that in the ��D implementation� a full row of mask�values are mapped to

a single physical PE� The external memory being single ported� seven accesses to

memory would require � cycles� thus� scaling down the performance linearly by ��

����� Neural network classi�er

The neural network used in the classi�cation stage is a multilayer perceptron �MLP��

The present approach concentrates on the classi�cation activity and not in the learn�

ing of connection weights which is typically done o��line� Hence� it is assumed that

the network architecture and the weights have already been determined� The weights

are assumed to be real�valued numbers in general� In our application the network

has twenty input nodes� each node corresponding to one of the texture �lter outputs

�real�valued�� The intermediate �hidden� layer has �	 nodes and the output layer

has � nodes� A MLP consists of several perceptrons interconnected in a feedforward

manner as shown in Figure ����

Arti�cial neural networks �ANNs� exhibit six types of parallelism ��
��� Most

commonly� three types of parallelism namely� layer level� node level and weight par�

allelism are exploited� Two di�erent design approaches have been taken to map a

���

Input Hidden Output

Layer Layer Layer

F
 e

 a
 t

 u
 r

 e

V
 e

 c
 t

 o
 r

. .
 .

.. . .

. . .

X

X

X

X

X

0

1

2

d

d-1

Figure ��� A multilayer perceptron�

MLP onto Splash �� In the �rst case� the design is modular and is capable of accom�

modating any number of layers and neurons� In contrast� the second method handles

only three layered �input� hidden and output� networks fully utilizing the hardware

capabilities� However� both the methods utilize a common building block � a neuron�

A single neuron implements a perceptron� A MLP is realized as an interconnection

of several neurons�

Many special�purpose implementations of neural networks have been described in

the literature� A survey of parallel architectures for neural networks is given in ��		��

Mueller and Hammerstrom ����� describe design and implementation of CNAPS �

a gate array based implementation of ANNs� A single CNAPS chip consists of
�

processing nodes connected in a SIMD fashion using a broadcast interconnect� Each

processor has �K bytes of local memory� a multiplier and ALU� and dual internal

buses� The adder and multiplier can perform signed ��� �
�� or ���bit integer arith�

metic� Using Xilinx XC �	�	 FPGAs� Cox et al� describe the implementation of

GANGLION ����� A single board caters to a �xed neural architecture of �� input

nodes� �� hidden nodes and � output nodes� Using the CLBs� � � � multipliers have

���

w

w

w

w

y
Non-Linearityi i

wΣ

X 0
X
1

X
3

2

Xd+1

0w
1

2

3
d+1

X
X

Figure ��� Schematic of a perceptron�

been built� A lookup table is used for the activation function� Bortos et al� ���� de�

scribe a smaller network implementation using less powerful Xilinx XC �	�� FPGAs�

Their system supports � input nodes� � hidden nodes and � output nodes� A neuron

is based on two XC �	��s and the nonlinearity is based on an �K EPROM�based

lookup table� Several other implementations have been surveyed in ��
���

In implementing a neural network classi�er on Splash �� a perceptron implementa�

tion has been used as a building block� Hence� the design of a perceptron is described

�rst� A perceptron consists of two stages namely� �i� an inner product computation�

and �ii� a non�linear function applied to the output of the previous stage as shown

in Figure ���� In our case� the perceptron is assumed to have �	 inputs which uses

a non�linear function �typically a sigmoid function� to produce a real�valued output�

We have used tanh��x� with � # 	��� as the non�linearity in our implementation�

For our mapping� two physical PEs serve as a neuron� The �rst PE handles the inner

product phase and the second PE handles the non�linerity stage and writing result

to the external memory operations� As the connection weights are �xed� an e�cient

way of handling the multiplication is to employ a lookup table� With a large external

��	

memory available at every PE� the lookup table can be stored� A pattern vector com�

ponent is presented at every clock cycle� The PE looks up the multiplication table to

obtain the weighted product and the sum is computed using an accumulator� Thus�

after all the components of a pattern vector have been examined� we have computed

the inner product� The non�linearity is again stored as a lookup table in the second

PE� On receiving the inner product result from the �rst PE� the second PE uses

the result as the address to the non�linearity lookup table and produces the output�

Thus� the output of a neuron is obtained� The output is written back to the external

memory of the second PE starting from a prespeci�ed location� After sending all the

pattern vectors� the host can read back the memory contents�

A layer in the neural net is nothing but a collection of neurons working syn�

chronously on the input� On Splash �� this can be easily achieved by broadcasting

the input to as many physical PEs as desired� The output of the neuron is written

into a speci�ed segment of external memory and read back by the host at the end�

For every layer in the MLP� this exercise is repeated until the output layer is

reached� Note that with change in the layers� the lookup table needs to be changed�

Thus� we have been able to achieve a MLP on Splash � utilizing the hardware resources

including the crossbar for broadcast purpose� A wavefront of computation proceeds

one layer at a time� The schematic of the mapping for a single layer is shown in

Figure ��
�

The second design approach tries to exploit the onboard crossbar to achieve a

single pass computation for both the layers �hidden and output�� Thus it attempts

to minimize the total number of clock cycles� In an ANN with n nodes in a layer�

���

X
1

X
2

X
3

X
4

X
15

X
16

Lookup
Table

LookupLookup

Lookup Lookup

SIMD

SIMD

SIMD

C
 R

 O
 S

 S
 B

 A
 R

C
 R

 O
 S

 S
 B

 A
 R

X
0

Lookup
Table

Table Table

TableTable

Figure ��
 Mapping a single layer of a MLP onto Splash �� The ith PE computes
f�
P
wijFi��

���

XbarXbar

Xbar

1

2

3

4

5

Figure ��� A modular building block for ��layer MLP�

O�n�� data paths are required� A divide�and�conquer approach has been adopted

in this algorithm to reduce the number of data paths� A modular ��layer network is

designed consisting of � hidden nodes and up to � output nodes as shown in Figure ����

The PEs � through � are the hidden layer neurons and the PE � serves as the physical

PE for up to � virtual output PEs� For an n�dimensional input vector� an output is

obtained every n cycles� PE � utilizes this to timemultiplex the reading of result phase

from the PEs � through �� The rest of the cycles are used to perform several lookup

operations �multiplications and non�linearity� for all the virtual PEs it handles� Thus�

every time the PEs ��� are ready� PE � is ready with the result from the previous set�

The result of several modules is cascaded through the use of a crossbar to obtain the

�nal result� The PE mapping is shown in Figure ����

The second model is not a general model but it is highly suitable when the di�

mension of the input pattern vectors is large and the number of outputs is small� It

avoids reading and writing the intermediate results as in the earlier approach� Thus�

it saves a large number of clock cycles as the number of input patterns is very large

���

XbarXbar

Xbar

XbarXbar

Xbar
5

6

7

8

9

10

11

12

13

14

15 16
SIMD

Board

To Next

XbarXbar

XbarXbar

7

8

9

10

1

11

2

3

4

5

6

Xbar Xbar

Processor Board 1 Processor Board 2

XbarXbar

1

2

3

4

Figure ��� Overall PE mapping for implementing MLP�

���

in our case of page layout segmentation problem� The onboard crossbar is utilized to

its maximum capability� The present crossbar on the processor board can store eight

prede�ned con�gurations and switch every clock cycle if desired� The other feature of

the crossbar is programmability at byte level� Both these features have been exten�

sively used in the design� A typical con�guration in a module with � neurons at the

�rst level and � at the second level would use the following crossbar con�guration�

��Crossbar configurations

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

� � � � �� �� �� PE � receives input from PE � and outputs �� bits to PE ��

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

� � � � �� �� �� PE � receives input from PE � and outputs �� bits to PE ��

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

� � � � �� �� �� PE � receives input from PE � and outputs �� bits to PE ��

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

� � � � �� �� �� PE � receives input from PE � and outputs �� bits to PE ��

�� Configuration �

� � � � �� �� �� PE ��� receive ���bits from PE �

� � � � �� ��

� � � � �� ��

� � � � �� ��

�� � � �� �� � �� PE �� receives input from PE � and PE ��

Due to present hardware design limitations� if PE 	 uses the crossbar then PE �

���

cannot� PE �
 can communicate with the next processor board through the SIMD

bus� Hence� PE �
 receives the input from the PE �� using the SIMD bus and passes

the partial results to PE � of the next board� This temporal parallelism of a crossbar

is very helpful in realizing the large interconnection bandwidth requirement of neural

nets�

����� Analysis of neural network implementation

For the �rst approach� let d denote the number of features �no� of input layer nodes��

K be the number of patterns to be classi�ed and l be the number of layers in the

network� In our implementation� d # �	� l # � and K is the total number of pixels

in the input image� The following analysis holds�

No� of clock cycles needed # d � k � l� For given values of d� K and l� the

no� of clock cycles # �	 � �� �	� # �	 million�

With a clock rate of �� MHz� time taken for �	 million clock ticks # ����

secs�

No� of PEs needed # No� of nodes in each layer�

For the case when the number of PEs required is larger than the available PEs�

either more processor boards need to be added or the PEs need to be time shared�

Note that the neuron outputs are produced independent of other neurons and the

algorithm waits till the computations in the whole layer is completed�

��

For the second approach� only a single pass through is needed� Hence� the number

of clock cycles needed reduces linearly by the factor l �number of layers�� Based on

the above calculations� it will need only 	�� sec to complete the task of classi�cation

of one million pixels�

����� Scalability

Both the implementations scale well with an increase in the number of input nodes�

The second approach is limited by the path width on the crossbar� A MLP has a

communication complexity of O�n��� where n is number of nodes� As n grows� it will

be di�cult to get good results from a single processor system� With a large number

of processor boards� the single input data bus of �
�bits can cater to multiple input

patterns� Note that in a multi�board system� all the boards receive the same input�

This parallelism can give rise to more data streaming into the system� thus reducing

the number of clock cycles by a linear factor� For a ���bit input� the scale down factor

is ��

����� Speed evaluation for neural network implementation

For the present network with �	 input nodes� on a ��board system� we achieve ��

million connections per second �MCPS� in a layer stage by running the clock at ��

MHz� In general� for a b�processor board system� a total speed of ��
b MCPS is

achievable� Thus� a
�board system can deliver more than a billion connections per

second�

���

�a� �b�

Figure ��� Synthesis speed of the two stages in segmentation algorithm� �a� Filtering�
�b� Classi�cation�

��� Analysis of the whole page layout algorithm

The page segmentation algorithm has been mapped onto a Splash � with � processor

boards �i�e�� at most �� PEs are available for mapping�� The functions of the PEs

are modeled using VHDL� In our page segmentation algorithm� we have two main

tasks �i� �ltering and �ii� classi�cation using neural networks� Except for the host�

interface development where C�language is used� the other two stages need VHDL�

based designs� The simulation phase con�rms the correctness of the algorithm� The

results are veri�ed using the timing diagrams obtained from the simulator� The

synthesis speed for the �ltering stage is �	�� MHz as shown in Figure ����a�� Using

t�� the synthesis results have been tested for correctness� We need �	 �lters and we

have � processor boards� Hence� we have to make a total of �	 passes over the input

image� For this purpose� we use the recon�gurability of the FPGAs to change the

���

instructions dynamically� Note that each �lter has di�erent mask values� so we need

di�erent sets of adders which change the instructions for the PEs� In terms of the

number of operations per second� the clock speed re�ects the rate at which the input

pixels will be handled� i�e�� �	�� million pixels!second� Hence� a ��	�� � ��	�� image

can be processed in approximately 	�� seconds� Thus� �	 passes through an image

would take approximately one second�

The synthesis speed for the neural network stage is projected at ���	 MHz as

shown in Figure ����b�� The neural network stage is expected to take � second using

the second approach� Therefore� the total processing time on a ��board system is ���

seconds using the �rst approach� However� the classi�cation time can be reduced to

	�� secs by using the second approach�

This computation time of two seconds for the segmentation algorithm can be

compared with the computation time of ��	 seconds needed on a SPARCstation �	

��� MFlops�� In other words� �	 billion operations are carried out in two seconds

using the Splash � system�

��� Discussion

The mapping of this multi�stage algorithm brings out several advantages of the CCMs�

The masks being large� the �	 MHz pipeline commercial convolvers can work only at

�	 MHz� The Splash � synthesis speed of around �	 MHz did not put itself in any

disadvantageous position� The twenty masks could be reprogrammed on single or

multiple boards to provide a better throughput using the dynamic recon�gurability�

���

The interaction of the �ltering and neural network�based classi�er is also carried

out using the same dynamic recon�gurability� Note that the whole processor board

gets recon�gured for an application� This algorithm could potentially exploit many

boards for the �ltering stage� But� the neural network stage uses a maximum of

two boards� Just like reprogramming each of the �lters� the neural network stage

is also considered as yet another stage for recon�gurable computing� As the control

bit streams have been generated for each �lter separately� any change in the �lter

mask values requires a resynthesis of that �lter� Using the resources on the processor

boards� this application demonstrates the MIMD mode of programming a Splash ��

��� Summary

This chapter dealt with a mapping of speci�c chosen image segmentation algorithm

onto Splash �� The ��D convolution operator de�ned in chapter � was used to achieve

�oating point image �ltering� An multilayer feedforward neural network algorithm has

been implemented� Two approaches for mapping a MLP on Splash � were presented

and evaluated� An important attribute of the CCMs allows us to combine various

sub�stages of an algorithm on the same system by just changing the control bit stream�

This property is useful in designing real�time complex vision systems�

Chapter �

Point Pattern Matching

Point pattern matching� i�e�� �nding the correspondence between two sets of points

in an m�dimensional space� is a fundamental problem in many computer vision tasks�

For example� feature�based rigid object recognition can be considered as an instance

of point pattern matching� In motion and stereo analysis� point pattern matching

is used to solve the correspondence problem� In remote sensing applications� point

pattern matching is used for image registration�

For the general problem of point pattern matching� where no a priori knowledge

about the two sets of points is available� a number of algorithms have been described

in the literature ���� ���� �	�� �� ���� ����� Baird�s O�n�� algorithm� where n is the

number of points in each of the two point sets� becomes more complex �O�n��� when

the number of points in the two sets are not the same� Vinod et al� ����� propose

a neural network for point pattern matching after formulating it as a 	�� integer

programming problem� A genetic algorithm has been suggested by Ansari et al� ����

Most of these algorithms do not permit elastic distortion of the points� i�e�� the points

��	

���

are assumed to have undergone a rigid body transformation�

The focus of this chapter is limited to the point pattern matching problem in the

context of �ngerprint matching� The two point sets can have di�erent numbers of

points� We do not currently handle scaling and rotation in the point sets� but allow

elastic distortion� In �ngerprint matching� we are interested in the set of �paired

features� between the query �ngerprint and database �reference� �ngerprints� This

process is repeated over all the records in the �ngerprint database� Because of the

large size of the �ngerprint database� special hardware accelerators are needed for

matching� Due to the elasticity of the skin and non�ideal nature of the imaging

process in capturing the �ngerprint impressions� distortions of the feature vectors are

inevitable�

��� Fingerprint matching

Fingerprint�based personal identi�cation is the most popular biometric technique used

in automatic personal identi�cation ���
�� Law enforcement agencies use it routinely

for criminal identi�cation� Now� it is also being used in several other applications

such as access control for high security installations� credit card usage veri�cation�

and employee identi�cation ���
�� The main reason for the popularity of �ngerprints

as a form of identi�cation is that the �ngerprint of a person is unique and the features

used for matching remain invariant through age�

A �ngerprint is characterized by ridges and valleys� The ridges and valleys alter�

nate� �owing locally in a constant direction �see Figure
���� A closer analysis of the

���

�a� �b�

�c� �d�

�e� �f�

Figure
�� Gray level �ngerprint images of di�erent types of patterns with core ���
and delta ��� points �a� arch� �b� tented arch� �c� right loop� �d� left loop� �e� whorl�
�f� twin loop�

���

(a) (b)

Figure
�� Two commonly used �ngerprint features �a� Ridge bifurcation� �b� Ridge
ending�

Ridge endings

(a)

A short ridge

(b)

Bifurcations

An enclosure

Figure
�� Complex features as a combination of simple features �a� Short ridge�
�b� Enclosure�

�ngerprint reveals that the ridges �or the valleys� exhibit anomalies of various types�

such as ridge bifurcations� ridge endings� short ridges� and ridge crossovers� Eigh�

teen di�erent types of �ngerprint features have been enumerated in �
��� Collectively�

these features are called minutiae� For automatic feature extraction and matching�

only two types of minutiae are considered ridge endings and ridge bifurcations�

Ridge endings and bifurcations are shown in Figures
���a� and
���b�� No distinc�

tion between these two feature types is made during matching since data acquisition

conditions such as inking� �nger pressure� and lighting can easily change one type of

feature into another� More complex �ngerprint features can be expressed as a com�

bination of these two basic features� For example� a short ridge �see Figure
���a��

can be considered as a collection of a pair of ridge endings� and an enclosure �see

Figure
���b�� can be considered as a collection of two bifurcations�

A survey of commercially available automatic �ngerprint identi�cation systems

���

�AFIS� is available in ������ Well�known manufacturers of automatic �ngerprint iden�

ti�cation systems include NEC Information Systems� De La Rue Printrak� North

American Morpho� and Logica� In order to provide a reasonable response time for

each query� commercial systems use dedicated hardware accelerators or application�

speci�c integrated circuits �ASICs��

An automatic �ngerprint identi�cation system �AFIS� consists of various pro�

cessing stages as shown in Figure
��� For the purpose of automation� a suitable

representation �feature extraction� of �ngerprints is essential� This representation

should have the following desirable properties

�� Retain the discriminating power �uniqueness� of each �ngerprint at several levels

of resolution �detail��

�� Easily computable�

�� Amenable to automated matching algorithms�

�� Stable and invariant to noise and distortions�

�� E�cient and compact representation�

The compactness property of representation often constrains its discriminating power�

Clearly� the input digital image of a �ngerprint itself does not meet these represen�

tational requirements� Hence� high�level structural features are extracted from the

image for the purpose of representation and matching�

The commercially available �ngerprint systems typically use ridge bifurcations and

ridge endings as features �see Figure
���� Because of the large size of the �ngerprint

���

Matching

Feature Extraction

Image Acquisition

Verification
Manual

Feature Editing
(Optional)

Manual

Figure
�� Stages in an AFIS

database and the noisy �ngerprints encountered in practice� it is very di�cult to

achieve a reliable one�to�one matching in all test cases� Therefore� AFIS provides a

ranked list of possible matches �usually the top ten matches� which are then veri�ed

by a human expert� The matching stage uses the position and orientation of the ridge

at the minutiae point� Therefore� reliable and robust extraction of minutiae points

can simplify the matching algorithm and obviate the manual veri�cation stage�

One of the main problems in extracting �ngerprint features is the presence of noise

in the �ngerprint image� Commonly used methods for taking �ngerprint impressions

involve applying a uniform layer of ink on the �nger and rolling the �nger on paper�

This leads to the following problems� Smudgy areas in the image are created by over�

inked areas of the �nger� while breaks in ridges are created by under�inked areas�

��

Additionally� the elastic nature of the skin can change the positional characteristics

of the minutiae points depending on the pressure applied on the �ngers� Although

inkless methods for taking �ngerprint impressions are now available� these methods

still su�er from the positional shifting caused by the skin elasticity� The AFIS used

for criminal identi�cation poses yet another problem� Non�cooperative attitude of

suspects or criminals in providing the impressions leads to a smearing of parts of the

�ngerprint impression� Thus� noisy features are inevitable in real �ngerprint images�

The matching module must be robust to overcome the noisy features generated by

the feature extraction module�

The feature extraction process takes the input �ngerprint gray�level image and

extracts the minutiae features described earlier� making no e�orts to distinguish be�

tween the two categories �ridge endings and ridge bifurcations�� In this section� an

algorithm for matching rolled �ngerprints against a database of rolled �ngerprints

is presented� A query �ngerprint is matched with every �ngerprint in the database�

discarding candidates whose matching scores are below a user�speci�ed threshold�

Rolled �ngerprints usually contain a large number of minutiae �between �	 and �		��

Since the main focus of this section is on the matching algorithm� we assume that the

features �minutiae points� have already been extracted from the �ngerprint images�

In particular� we assume that the core point of the �ngerprint is known and that

the �ngerprints are oriented properly� This implies that the �ngerprints have been

approximately registered�

Matching a query and a database �ngerprint is equivalent to matching their minu�

tiae sets� Each query �ngerprint minutia is examined to determine whether there is

���

X

minutia (x,y)

ridge lines

Y

y

x

Figure
�� Components of a minutia feature�

a corresponding database �ngerprint minutia� A feature vector is characterized by

its three components �x� y� �� as shown in �gure
��� Two minutiae are said to be

paired or matched if their components �x� y� �� are in �close� proximity to each other�

Following three situations arise as shown in Figure
�
�

�� A database �ngerprint minutia matches the query �ngerprint minutia in all the

components �paired minutiae��

�� A database �ngerprint minutia matches the query �ngerprint minutia in the x

and y coordinates� but does not match in the direction component �minutiae

with unmatched angle��

�� No database �ngerprint minutia matches the query �ngerprint minutia �un�

matched minutia��

Of the three cases described above� the minutiae are said to be paired only in the

�rst case�

���

- Database fingerprint minutia

- Query fingeprint minutia

- Tolerance box

Unmatched minutia Unmatched minutia
(No pairing possible)

Minutiae with
unmatched angle

Paired minutiae

(Lying outside tolerance box)

Paired minutiae

Figure
�
 Possible outcomes in minutia matching�

��� Matching algorithm

The following notation is used in the sequential and parallel matching algorithms

described below� Let the query �ngerprint be represented as an n�dimensional feature

vector fq # �fq� �f
q
� ��������f

q
n�� Note that each of the n elements is a feature vector

corresponding to one minutia� and the ith feature vector fi contains three components�

fi # �fi�x�� fi�y�� fi�����

The components of a feature vector are shown geometrically in Figure
��� The

query �ngerprint core point is located at �Cq
x� C

q
y �� Similarly� let the r

th reference

�database� �ngerprint be represented as an mr�dimensional feature vector

fr # �fr��f
r
��������f

r
mr

�� and the reference �ngerprint core point is located at �Cr
x� C

r
y ��

Let �xtq� y
t
q� and �x

b
q� y

b
q� de�ne the bounding box for the query �ngerprint� where x

t
q

���

is the x�coordinate of the upper left corner of the box and xbq is the x�coordinate of the

lower right corner of the box� Quantities ytq and y
b
q are de�ned similarly� A bounding

box is the smallest rectangle that encloses all the feature points� Note that the query

�ngerprint fq may or may not belong to the �ngerprint database fD� The �ngerprints

are assumed to be registered with a known orientation� Hence� there is no need of

normalization for rotation� The matching algorithm is based on �nding the number of

paired minutiae between each database �ngerprint and the query �ngerprint� It uses

the concept of minutiae matching described earlier� In order to reduce the amount

of computation� the matching algorithm takes into account only those minutiae that

fall within a common bounding box� The common bounding box is the intersection of

the bounding box for the query and reference �database� �ngerprints� Once a count

of the matching minutiae is obtained� a matching score is computed� The matching

score is used for deciding the degree of match� Finally� a set of top scoring reference

�ngerprints is obtained as a result of matching�

X

Y

Φ

(Φ)ldcos

(Φ)ldsin

d

Core Point

Minutia point

Figure
�� Tolerance box for X� and Y�components�

The sequential matching algorithm is described in Figure
��� In the sequential

algorithm� the tolerance box �shown in Figure
�� with respect to a query �ngerprint

��	

Input� Query feature vector fq and the rolled �ngerprint database fD�ff rgNr���
The rth database �ngerprint is represented as an mr�dimensional feature vector
and the query feature vector is n�dimensional�

Output� A list of top ten records from the database with matching scores � T�
Begin

For r�� to N do
�� Register the database �ngerprint with respect to the core point �Cq

x� C
q
y�

of the query �ngerprint�
For i�� to mr do

fri �x� � fri �x�� Cq
x

fri �y� � fri �y� �Cq
y

�� Compute the common bounding box for the query and reference �ngerprints�
Let �xtq � y

t
q� and �xbq � y

b
q� de�ne the bounding box for the query �ngerprint�

Let �xtr � y
t
r� and �xbr � y

b
r� de�ne the bounding box for the rth

reference �ngerprint� The intersection of these two boxes is the
common bounding box� Let the query print have M q

e and
reference print have N r

e minutiae in this box�
�� Compute the tolerance vector for ith feature vector fri �

If the distance from the reference core point to the current reference feature
is less than K then

tri �x� � ldcos��	

tri �y� � ldsin��	
 and
tri ��� � k�

else
tri �x� � k��

tri �y� � k�� and
tri ��� � k��

where l
 k�
 k� and k� are prespeci�ed constants determined
empirically based on the average ridge width

� is the angle of the line joining the core point
and the ith feature with the x�axis

and d is the distance of the feature from the core point�
Tolerance box is shown geometrically in Figure ����

�� Match minutiae�
Two minutiae f ri and f

q
j are said to match if

the following conditions are satis�ed�
f
q
j �x� � tri �x� � fri �x� � f

q
j �x� � tri �x��

f
q
j �y� � tri �y� � fri �y� � f

q
j �y� � tri �y�� and

f
q
j � tri ��� � fri ��� � f

q
j ��� � tri ���

where tri � �tri �x�� t
r
i �y�� t

r
i ���� is the tolerance vector�

Set the number of paired features
 mr
p � �

For all query features fqj
 j��
�
 � � �M
q
e
 do

If fqj matches with any feature in f ri
 i��
�
 � � �
 N
r
e

then increment mr
p� Mark the corresponding feature in f r as paired�

�� Compute the matching score �MS �q
r		�

MS�q
r	 �
mr

p
�mr

p

�Mq

e�Nr
e
�
�

Sort the database �ngerprints and obtain top � scoring database �ngerprints�
End

Figure
�� Sequential �ngerprint matching algorithm�

���

minutia� is calculated for the reference �database� �ngerprint minutia� In the parallel

algorithm described in the next chapter� the tolerance box is calculated for the query

�ngerprint� A similar sequential matching algorithm is described in ������ Depending

on the desired accuracy� more than one �nger could be used in matching� In that

case� a composite score is computed for each set�

��� Mapping point pattern matching onto

Splash �

We parallelize the matching algorithm so that it utilizes the speci�c characteristics

of the Splash � architecture� While performing this mapping� we need to take into

account the limitations of the available FPGA technology� Any preprocessing needed

on the query minutiae set is an one�time operation� whereas reference �ngerprint

minutiae matching is a repetitive operation� Computing the matching score involves

a �oating point division� The �oating point operations and one�time operations are

performed in software on the host whereas the repetitive operations are delegated to

the Splash � PEs � The parallel version of the algorithm involves operations on the

host� on X�� and on each PE�

One of the main constructs in the parallel point matching algorithm is a lookup

table which consists of all possible points within the tolerance box around a feature

vector� The Splash � data paths for the parallel algorithm are shown in Figure
���

The host processes the query and database �ngerprints as follows� The query �nger�

���

X

θ) from Database(X, Y,

Fingerprint Database

Count)
(Paired Minutiae

X

Table

LookupLookup

Table

X
1 2

Table

Lookup

3
X

16

Lookup

Table

0
X

Broadcast Bus (Using crossbar)

Global OR Bus

Host (Sun SPARC)

Figure
�� Data �ow in parallel point matching algorithm�

print is read �rst and the following preprocessing is done

�� The core point is assumed to be available�

For the given query feature fq� generate a tolerance box� Enumerate a total of

�tx � ty � t�� grid points in this box� where tx is the tolerance in x� ty is the

tolerance in y and t� is tolerance in ��

�� Allocate each feature to one PE in Splash �� Repeat this cyclically� i�e�� features

���
 are allocated to PEs X� to X��� features ����� are allocated to PEs X� to

X��� and so on�

�� Initialize the lookup tables by loading the grid points within each tolerance box

in step ��� into the memory�

In this algorithm� the tolerance box is computed with respect to the query �n�

gerprint features� The host then reads the database of �ngerprints and sends their

feature vectors for matching to the Splash � board�

���

For each database �ngerprint� the host performs the following operations

�� Reads the feature vectors�

�� Registers the features as described in step ��� of the sequential algorithm in

Figure
���

�� Sends each of the feature vectors over the Broadcast Bus to all the PEs if it is

within the bounding box of the query �ngerprint�

For each database �ngerprint� the host then reads the number of paired features mr
p

that was computed by the Splash � system� r # �� � � � N � Finally� the matching score

is computed as in the sequential method�

����� Computations on Splash �

The computations carried out on each PE of Splash � are described below� As men�

tioned earlier� X� plays a special role in controlling the crossbar in Splash ��

�� Operations on X�

Each database feature vector received from the host is broadcast to all the

PEs� If it is matched with a feature in a lookup table� then the PE drives the

Global OR Bus high� When the OR Bus is high� X� increments a counter� The

host reads this counter value �mr
p� after all the feature vectors for the current

database �ngerprint have been processed� Operations on X� are highlighted in

Figure
��	�

���

X

Memory

Fingerprint Databas

Global OR Bus

Broadcast Bus

X
0

0

(3) Check for paired feature

(2) Broadcast feature vector

‘0’ or ‘1’

r
m

p

features processed.

Host (Sun SPARC)

(5) Host reads count from

(4) Increment counter if paired feature;
store in memory and reset after all

θ)(X, Y, (1) Feature vector received from host

Figure
��	 Data �ow in X��

 Bus to ‘1’.

0
(1) Receive feature from X

Table

X
16

Global OR Bus

Lookup Lookup Lookup

TableTableTable

X X X
321

Broadcast Bus

Lookup

(3) If paired, drive OR

 at the address of feature vector;
 indicates paired.

(2) Check Lookup Table for ‘1’

(X, Y, θ) from Database

Figure
��� Data �ow in a PE�

�� Operations on each PE

On receiving the broadcasted feature� a PE computes its address in the lookup

table through a hashing function� If the data at the computed address is a

���� then the feature is paired� and the PE drives the Global OR Bus high�

Operations on a PE are highlighted in Figure
����

���

��� Analysis of point pattern matching algorithm

on Splash �

The analysis of the parallel implementation is carried out in two respects �i� simu�

lation and synthesis results� and �ii� speed�

����� Simulation and synthesis results

The VHDL behavioral modeling code for PEs X� � X�� has been tested using the

Splash simulation environment� The simulation environment loads the lookup tables

and crossbar con�guration �le into the simulator� Note that the Splash simulator

runs independent of the Splash � hardware and runs on the host� The input data are

read from a speci�ed �le� and the data on each of the signals declared in the VHDL

code can be traced as a function of time�

The synthesis process starts by translating the VHDL code to a Xilinx netlist

format �XNF�� The vendor�speci�c �ppr� utility generates placement� partitioning�

and routing information from the XNF netlist� The �nal bit stream �le is generated

using the utility �xnf�bit�� The �timing� utility produces a graphical histogram of the

speed at which the logic can be executed� The logic synthesized for X� can run at a

clock rate of ���� MHz� and the logic for the PEs X� to X�� can run at ���� MHz�

Observe that these clock rates correspond to the longest delay �critical� paths� even

though most of the logic could be driven at higher rates� Increased processing speed

may be possible by optimizing the critical path�

The bit stream �les for Splash � are generated from the VHDL code� Using the

��

�a� �b�

Figure
��� Speed projections� �a� X�� �b� other Xis

C interface for Splash �� a host version of the �ngerprint matching application is

generated� The host version reads the �ngerprint database from the disk and obtains

the �nal list of candidates after matching�

����� Performance analysis

The sequential algorithm� described in Section
��� executed on a Sun SPARCsta�

tion �	 performs at the rate of �		 matches per second on database and query �nger�

prints that have approximately
� features� A match is the process of determining

the matching score between a query and a reference �ngerprint� The Splash � imple�

mentation should perform matching at the rate of ��
��	� matches per second� This

matching speed is obtained from the �timing� utility� The host interface part can run

at ���� MHz and each PE can run at ���� MHz� The speed graphs obtained from the

�timing� utility are shown in Figure
���� Hence� the entire �ngerprint matching will

run at the slower of the two speeds� i�e�� ���� MHz� Assuming a total of
� minutiae�

���

on an average� in a database �ngerprint� the matching speed is estimated at ��
��	�

matches per second� We evaluated the matching speed using a database of �	�			

�ngerprints created from �		 real �ngerprints by randomly deleting� adding and per�

turbing minutiae� The measured speed on a Splash � system running at � MHz is

of the order of
��		 matches per second� The prototype Splash � system which is

available to us has been run at � MHz clock rates involving data transfer from host

through the SIMD bus� Assuming a linear scaling of performance with an increase

in clock rate� we would achieve approximately ��	�			 matches per second� We feel

that the disparity in the projected and achieved speeds ���
 � �	� versus ��� � �	��

is due to di�erent tasks being timed� The time to load the data bu�ers onto Splash

� has not been taken into account in the projected speed� whereas this is included in

the time measured by the host in an actual run�

The Splash � implementation is more than ���		 times faster than a sequential

implementation on a SPARCstation �	� Another advantage of the parallel imple�

mentation on Splash � is that the matching speed is independent of the number of

minutiae in the query �ngerprint� The number of minutiae a�ects only the lookup

table initialization� which is done during preprocessing by the host� and this time is

amortized over a large number of database records�

The matching algorithm will scale well as the number of Splash � boards on the

system is increased� Multiple query �ngerprints can be loaded on di�erent Splash �

boards� each matching against the database records as they are transferred from the

host� This would result in a higher throughput from the system�

The processing speed can be further improved by replacing some of the soft macros

���

on the host interface part �X�� by hard macros� To sustain the matching rate� the

data throughput should be at a rate of over ��	�			 �ngerprint records per second

�with an average of
� minutiae per record�� This may be a bottleneck for the I!O

subsystem�

��� Discussion

The mapping of the elastic point pattern matching algorithm on Splash � brings out

the versatility of CCMs in getting recon�gured for any level of parallelism� This map�

ping also highlights bene�ts of translating computations to hashing�based lookups�

In fact� the gain in the speed of the matching algorithm can be attributed to perform�

ing arithmetic computations using lookup tables� The mapping could potentially use

many processor boards to improve the throughput of the whole system in addressing

multiple queries� The point matching algorithm used the processor boards in a SIMD

fashion for all the PEs except X�� Technically� this algorithm mapping uses a mix of

MIMD and SIMD processing modes�

��� Summary

In this chapter a high�level vision algorithm of point pattern matching was introduced�

Its mapping on Splash � was described and the performance analyzed� When applied

to �ngerprint feature vector matching� a signi�cant speedup has been observed� The

main idea behind the mapping is to utilize lookup tables� In contrast to other mapping

���

algorithms� this algorithm seeks a signi�cant help from the host� Though a formal

hardware�software codesign technique has not been applied� the principles of the task

partitioning between Splash � �hardware� and software �host� have been similar to

those used in codesign techniques�

Chapter �

Building a Taxonomy of Computer

Architectures

Custom computing machines �CCMs� di�er from general�purpose processors and ap�

plication speci�c integrated circuits �ASICs� in several ways� By constructing a tax�

onomy of the available architectures to build an embedded system� one can better

understand their similarities and dissimilarities� This chapter aims at building a

taxonomy of processors!co�processors based on many commonly observed features

and performance measures for several CCMs and other well known compute engines�

A multi�dimensional data analysis technique of hierarchical clustering is applied to

construct a taxonomy of several platforms� Both the single�link and complete�link

cluster�based taxonomies provide an appropriate way to classify the platforms�

Organizing objects into a taxonomy is an important step in the development of

science and technology� especially as an aid to paradigmatic clarity and the devel�

opment of prescriptive terminology ������ Consider the range of systems available

��	

���

for information processing applications� A general�purpose uniprocessor such as the

PowerPC� P
 or Alpha ���
� has a pre�designed instruction set which is used to write

programs for given applications� A new application can be written by rearranging

the sequence of instructions� However� the performance of these applications on the

general�purpose processors is always limited in several ways� e�g�� every instruction

needs to be fetched and decoded before execution� In contrast� an application�speci�c

integrated circuit �ASIC� provides an �optimal� performance for the problem for which

it has been designed� but lacks the �exibility of being used for any other application�

This trade o� between generality vs� performance has been observed to be the main

driving force in the development of �eld programmable gate array �FPGA��based

custom computing machines �FCCMs������ Several FCCMs have been built ���� and

many applications have been designed using them with performance that is often

comparable to supercomputers� A designer has this new option of using a FCCM in

his embedded system designs� Often� the information about what is an FCCM and

how does it di�er from a general�purpose processor� an ASIC or a supercomputer is

not available to the designer� In the spectrum of processor!co�processors� FCCMs

have not yet been placed at their appropriate location� In this chapter� an e�ort

to appropriately place FCCMs in the domain of processors is made by building a

taxonomy�

Several taxonomies of computer architecture and processors exist in the literature�

For example� based on the instruction set� a uniprocessor can be classi�ed as a RISC

or a CISC processor� Based on Flynn�s taxonomy ��
�� processors have been classi�ed

on the basis of their instruction and data streams into four classes� namely� SISD�

���

SIMD� MISD and MIMD� For MIMD parallel processors� Bell�s taxonomy ��
� is based

on message passing or shared memory� Parallel processors can also be classi�ed as

�ne�grained or coarse�grained depending on the type of processing elements and their

interconnection capabilities�

A classi�cation scheme can use benchmark results to characterize the hardware

systems� Several benchmarks �e�g�� Whetstone� Dhrystone� have been used to char�

acterize complex computing systems� The problem with using benchmarks is that

they are restricted to a class of machines which are �similar� to each other� For

example� MIPS rating does not re�ect the �oating point capabilities of a processor�

Many other indices such as sizeup ��	��� redundancy� utilization and quality of par�

allelism have been de�ned in ��
�� For a VLSI designer� the performance criteria are

quite di�erent� The factors for comparing di�erent VLSI systems can include �i� the

technology used �e�g�� nMOS� CMOS� ECL�� �ii� silicon area� and �iii� speed� Many

other criteria such as packing density or number of I!O pins are often employed�

Like uniprocessors� FPGAs can not be characterized by a single index� Number of

equivalent gates� number of I!O pins� and number of CLBs have been used in the

past� Recently� many vendors have decided to accept PREP benchmark results as a

performance evaluation criterion� The PREP benchmark suite consists of designing

and implementing several standard digital circuits and measuring the performance

in terms of capacity and speed� More details about the PREP benchmark tests are

available in ���	��

Most of the available taxonomies are typically based on fewer than four factors or

features of the systems� A complex system is based on a large number of subsystems�

���

hence a small number of features do not always re�ect the overall characteristics of

the system� Borrowing ideas from exploratory analysis of multi�dimensional data�

we have built a complete taxonomy involving CCMs� A wide range of hardware

platforms have been chosen and several factors characterizing these systems have been

identi�ed� Using a hierarchical clustering technique� a taxonomy has been developed�

The technique used has the capability to handle a very large number of features�

CCM is a new concept and it needs to be compared and contrasted with exist�

ing concepts like parallel processors� uniprocessors� and special�purpose processors�

Conceptual clustering arranges objects into classes representing certain descriptive

concepts using symbolic and numerical attributes in contrast to numerical clustering

where the features take only numerical values and a numerical distance measure is

computed between a pair of patterns� Michalski and Stepp ����� proposed the use of

conceptual clustering to build automated classi�cation trees� They classi�ed several

computer systems based on the attributes used for describing them� Levine �����

describes a method of classifying several sports based on their attributes� Although

Michalski and Stepp ����� argue superiority of conceptual clustering� Srivastava and

Murthy ��	
� have shown the equivalence of conceptual clustering with conventional

numerical clustering� Hence� we use numerical clustering techniques in our experi�

ments�

���

�� Proposed method

In order to carry out a comparative analysis across a wide range of platforms based

on di�erent computing paradigms and architectures� the following set of twelve fea�

tures are de�ned� These features describe the characteristics of the systems� The

feature values have been chosen on a scale of � to �	 for relative comparison� This

���dimensional feature space will be used to represent the performance of various ar�

chitectures for our analysis� The features and their range of values is explained below�

As some of these features and assigned values �the author assigned these values� are

subjective� an interactive tool can be developed to experiment with di�erent feature

sets and values�

�� Programmability Poor instruction set �e�g�� a single instruction �go�� � �� �xed

instruction set � �� user programmable instruction � �	�

�� Ease of use Di�cult to use � �� Medium di�culty of use � �� Easy to use � �	�

�� Speed of computation General purpose uniprocessors � �� General�purpose

parallel processors��� Vector processors � �� Special�purpose parallel processors

�
� FPGAs � �� ASICs � �	�

�� Modes of parallelism Pipelined � �� Vector Processing support � �� SIMD � ��

MIMD � �� Flexible � �	�

�� Scalability ASICs � Not Applicable ���� Limited �Uniprocessors� Fixed�system

boards� � �� Special purpose parallel processor �
� Recon�gurable logic arrays

� �� General Purpose Parallel Processors � �	�

���

� Design Cycle time Long �� Medium � �� Short � �� Fast � �	�

�� Inter�processor Communication Uniprocessors � Not applicable ���� Cross�

bar�Systolic�limited o��board communication �
� Multi�stage Interconnec�

tion Network � �� Hierarchical � �� Crossbar � �	�

�� Hardware support for �oating�point operations Unavailable��� Available��	�

�� Dynamic recon�gurability of instructions Not Possible � �� possible � �	�

�	� I!O bandwidth for image!video support Minimum � �� Provision for large

amount of data transfer � �� Special provision � �	�

��� Support for three levels of computer vision tasks �i� No support � �� �ii� rea�

sonable � �� �iii� Special features � �	�

��� Cost High cost �&�		�			� � �� Medium � &�	�			 � &�	�			� � �� Low

��&�	�			� � �	�

���� Systems used for the study

The following classes of machines have been chosen for the comparative analysis�

�� Custom Computing Machines �CCMs� Splash �� Virtual Computer �VC��

MORPH�

�� Futuristic FPGA�based CCMs Based on XC
�		

�� General�purpose parallel processors SP��� CM�� ��
��

��

�� Special�purpose computer vision systems NETRA ����� IUA ���
�� VisTA ��	���

�� State�of�the�art microprocessors SuperSPARC� PowerPC

� Accelerator boards i�
	�based Alacron

�� Special�purpose processor for computer vision tasks MVP��	 ������

�� Special�purpose ASIC No speci�c ASIC has been identi�ed� but generic ASIC

properties will be used�

���� Method

To obtain a taxonomy� the following steps are involved

�� Obtain the ����� pattern matrix by assigning suitable values to the �� features

for the �� platforms chosen for the study�

�� Compute the �� � �� dissimilarity matrix of the platforms from the pattern

matrix using a suitable dissimilarity measure� In our case� we have chosen two

types of dissimilarity measures �i� the standard Euclidean distance and �ii�

a weighted distance measure computed as follows� The maximum value of an

attribute is �	� hence we divide the absolute di�erence of the attribute value

between two patterns by �	 to get a fractional weighted distance with respect

to an attribute� A sum of all the attribute distances divided by the number

of attributes de�nes the overall distance between the two patterns� Note that

the maximum possible distance between two platforms is ��	 �totally di�erent

patterns� and minimum distance is 	�	 �identical patterns�� For example� let

���

three ���dimensional feature vectors be

f� �
 � �	 � �	 �	 � �	 � �	g�

f� �	 � � � �	 �	 �	 � � � �g�

f�	 � � �	 � � � � �	
 �	 �g�

The distance between the �rst two patterns #

�!���	!�	��!�	��!�	��!�	��!�	��!�	�	!�	�	!�		!�	��!�	��!�	��!�	�

# ��!��	 or 	�����

Similarly� the distance between patterns � and � #

�!����!�	��!�	��!�	��!�	�
!�	��!�	��!�	�
!�	��!�	��!�	��!�	��!�	�

# �	!��	 # 	����

�� Apply single�link and complete�link hierarchical clustering algorithms to obtain

the taxonomies�

�� Cutting the tree to obtain a partition�

�� Results

For the �� platforms listed in the previous section� the pattern matrix is shown in

Table ���� On this pattern matrix� principal component analysis and hierarchical

clustering have been carried out�

���

Platform Id�
number

User
program�

Ease of
use

Comp�
speed

Mode of
parallelism

Scalability Design
cycle

time

Splash � � �� � � �� � �

MORPH � �� � � �� 	 �

VC � �� � � �� � �

	���
based � �� � � �� 	 �

CM
� � � � � � �

SP
� 	 � � 	 � �� �

NETRA � � 	 	 � � �

IUA � � � � � � �

VisTA � � 	 � 	 �

SSPARC �� � �� � � � ��

PPC �� � �� � � � ��

i�	� �� � � � � � �

MVP
�� �� � � 	 � � �

ASIC �� � �� �� � � �

First six features of the pattern matrix�

Platform Id�
number

PE to PE
comm�

FP
support

Dynamic
recon�g�

I�O
Bandwidth

Vision
task
support

Cost

Splash � � � � �� 	 �� �

MORPH � � � �� 	 � �

VC � � � �� 	 �� 	

	���
based � 	 	 �� � 	 �

CM
� � �� �� � �� � ��

SP
� 	 �� �� � �� � ��

NETRA � � � � �� �� ��

IUA � � � � �� �� ��

VisTA � � � �� �� ��

SSPARC �� �� �� � � � �

PPC �� �� �� � � � �

i�	� �� �� �� � � � �

MVP
�� �� � � � � � �

ASIC �� 	 �� � � �� �

Table ��� �� � �� Pattern matrix �shown in two tables��

���

Principal Components

comp1

co
m

p2

-5 0 5 10
0

2
4

6
8

10
12

1

2

3

4

56
789

1011

12

13

14

Figure ��� Principal component analysis�

���� Visualization

It is not possible to visualize a ���dimensional data set� A popular technique for

visualization purposes is to project the high dimensional data onto a �rst few principal

axes� The data spread is shown in Figure ��� after projecting the ���dimensional

data onto its �rst two principal axes� The �rst two principal axes de�ne the axes of

maximumvariances� The percentage of variance retained by the �rst two components

is �
" as against ��" by the �rst component alone� When projected to this ��

dimensional plane� some of the patterns may overlap �for example� patterns �	 and

��� and � and � in Figure ����� It can be easily seen that the distinct machine

classes have clustered together �e�g�� machines f�� �� �� and �g� and f�	� �� and

��g�� Using multidimensional scaling� the proximity matrix has been represented in

two dimensions in Figure ���� Again� we can see several similar patterns grouping

together �e�g�� f�� �� � and �g� f��
� �� and �g� and f�� �	� and ��g�� The �goodness

of �t� in terms of a stress value for this case is 	�	���

�
	

cmdscale(dist1)[,1]

cm
ds

ca
le

(d
is

t1
)[

,2
]

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3
-0

.2
-0

.1
0.

0
0.

1
0.

2
0.

3

1

2

3

4

5
6

78

910
11

12

13

14

Figure ��� Multidimensional scaling using the proposed dissimilarity measure�

���� Hierarchical clustering

The two proximitymatrices obtained using the di�erent distance measures �Euclidean

and weighted distance described earlier� are subjected to hierarchical clustering� The

output of a hierarchical clustering algorithm is a dendrogram� Using Euclidean dis�

tance measure as the dissimilarity measure between the platforms� the single�link and

complete�link dendrograms are shown in Figure ��� and using the weighted dissimilar�

ity measure are shown in Figure ���� The fourteen platforms have been numbered �

through �� as shown in the table ���� A dendrogram can be used to obtain a partition

�clusters� at various levels of dissimilarity� At the highest level of dissimilarity� each

pattern is in its own class� and at the lowest level of dissimilarity� all the patterns

are clustered into one class� By cutting the dendrogram at a suitable level of dissim�

ilarity� various clusterings �partitions� can be obtained� For example� if we cut the

dendrogram shown in Figure ����a� at a dissimilarity value of approximately � units�

we get four clusters� Similarly� cutting the dendrogram at a level of �� units� we get

only two clusters�

�
�

Figure Level Classes and the members

Figure ����a� � �� � � �� ��
� �� � �� ��	 �� ��� ���� ����
Figure ����b�
 �� � � �� ��
� �� � �� ��	 �� ��� ���� ����
Figure ����a� 	��
 �� � � �� ��
 � � ��� �� �	 ��� ���� ����
Figure ����b� 	�� �� � � �� ��
 � � ��� �� �	 ��� ���� ����

Table ��� Analysis of the dendrograms�

Table ��� shows the suggested dissimilarity levels of cutting the dendrogram for

the four cases and the cluster membership� Note that the levels can be di�erent and

still give rise to the same clusters� There are �ve distinct groups of the �� di�erent

platforms visible in the hierarchy� The major groups are custom computing machines

consisting of patterns numbered �� �� �� and �� general�purpose parallel machines

consisting of patterns � and
� special�purpose parallel machine for vision consisting

of patterns �� � and �� general�purpose uniprocessors consisting of patterns �	� �� and

��� and special purpose processors such as MVP��	 and ASICs� However� some group

members have changed their membership when using the weighted dissimilarity mea�

sure� For example� uniprocessor i�
	 joined the parallel processor group� The major

groups remain unchanged in the four dendrograms� In a sense� this demonstrates

that the feature values assigned to these machines are distinctive enough to form the

separate groups�

�� Discussion

Using the proposed approach a new hardware platform can be examined for its class

membership by assigning appropriate values to the twelve features and building a

new dendrogram� This can be easily seen in case of the new hypothetical CCM based

�
�

on XC
�		 which grouped with the CCM class� A tool can also be built to assign

di�erent values to the features and analyze the dendrograms interactively�

�� Summary

Using techniques from multidimensional data analysis� we have been able to build a

meaningful hierarchy of several computing platforms� including CCMs� As expected�

all the CCMs grouped themselves into a single category or cluster� The ASICs and

general�purpose processors are quite di�erent from a CCM� Many special�purpose

systems are also grouped together� Using these ���features� a new hardware platform

can be assigned to one of these �ve classes by constructing a dendrogram�

�
�

�a
�

�b
�

F
ig
u
re
��
�
D
en
d
ro
gr
am
s
sh
ow
in
g
ta
x
on
om
y
of
m
ac
h
in
es
b
as
ed
on
E
u
cl
id
ea
n
d
is
ta
n
ce
m
ea
su
re
�
�a
�
S
in
gl
e
li
n
k
�
�b
�
C
om
p
le
te

li
n
k
�

�
�

�a
�

�b
�

F
ig
u
re
��
�
D
en
d
ro
gr
am
s
sh
ow
in
g
ta
x
on
om
y
of
m
ac
h
in
es
b
as
ed
on
p
ro
p
os
ed
d
is
ta
n
ce
m
ea
su
re
�
�a
�
S
in
gl
e
li
n
k
�
�b
�
C
om
p
le
te

li
n
k
�

Chapter 	

Conclusions and Directions for

Future Research

The main goal of this research has been to evaluate suitability of custom comput�

ing approach in meeting computational needs of computer vision algorithms� The

experiments carried out by way of mapping several representative vision algorithms

onto Splash � have shown the usefulness of CCMs for computer vision� In addition

to achieving high speeds of operation� several other bene�ts of employing CCMs for

computer vision algorithms are listed below

� Custom computing machines are suitable for all the three levels of computer

vision algorithms �low�level� intermediate�level and high�level� by appropriate

recon�guration when required�

� All the stages of a vision algorithm can be implemented on custom computing

machines� but an optimal interaction between software and hardware is neces�

�
�

�

sary for best performance�

� The execution speeds achieved on Splash � are close to ASIC�level speeds�

� Using the recon�gurability property of the FPGAs� it is easy to reuse the hard�

ware for more than one application at run�time�

� Design revisions are easily supported�

� The PEs can be programmed for systolic� SIMD� MIMD and pipelined mode�

� PE to PE communication patterns can also be programmed�

� Cost performance ratio is signi�cantly low�

Many of the above�mentioned bene�ts are a result of using FPGAs as the ba�

sic compute element� Recent trends in the FPGA technology are directed towards

supporting partial recon�gurability and faster recon�gurability� These features will

further enhance the utility of CCMs for an easier mapping of complex multi�stage

operators�

In mapping the sequential algorithms to a parallel machine� several changes take

place in the algorithm to exploit the target architecture characteristics� For example�

on a sequential machine� convolution is implemented in a di�erent way than on Splash

� where we chose a systolic algorithm� In mapping the text segmentation algorithm

onto Splash �� one of the main changes carried out is in the number representation

scheme� We have chosen a smaller word length ��
�bits� instead of typical ��� or

��bit representation for �oating point numbers� This results in a loss of accuracy�

�
�

But� after verifying during simulation that this does not a�ect the output� it was

adopted� In the �ngerprint matching algorithm� we have converted computations to

a lookup operation� There is no need for computing the common bounding box as

the parallel algorithm can tolerate a few extra minutia checks�

It is not true that CCMs are a panacea for all compute�intensive problems� The

available technology poses a number of limitations� The limitations of the currently

available CCMs are as follows�

� By design� the FPGAs are not meant for complex �oating point operations�

Complex operators involving multi�stage �oating point operations end up with

a large number of gates and long delay lines of interconnections� However�

recent trends in FPGA technology are encouraging in terms of a larger number

of gates per FPGA� This will enable us to synthesize more complex �oating

point operations at acceptable speeds�

� The FPGA building blocks �CLBs� IOBs and Interconnects� are not fully uti�

lized during the synthesis process� Often� the routing resources get consumed

quickly resulting in a low utilization of the CLBs� Better placement tools are

being released by the FPGA vendors to overcome this problem� Alternate

technologies are being worked out to overcome this problem with the present

SRAM�based FPGAs�

� The design process being very complex� the users tend not to accept CCMs as an

alternative to high performance computing� Many researchers have attempted

to remove this barrier by making the design process transparent through pro�

�
�

gramming in C or C��� But� for best performance� as in a typical parallel

processing system� an understanding of the underlying architecture is necessary

to optimize the mapping� With low�resource FPGAs� the high language over�

heads make it di�cult to map a complex algorithm� With the availability of

large density FPGAs� programming using a high�level language like C or C��

will become feasible�

� Algorithms requiring a large number of gates are di�cult to map onto low logic

density devices� Vendors are working on FPGAs with �		K gates which will

enable mapping of many common applications�

� Often� a partitioning of the problem is done manually� This demands the de�

signer to carry out a detailed analysis of the problem in terms of computation

and communication complexity� Researchers are working on automatic tech�

niques for partitioning large designs onto multichip modules�

��� Directions for future research

Custom computing machines are currently going through a major evolution� Hence�

there are many research issues that need to be addressed� Several research issues are

given below�

� The available CCMs lack a user�friendly programming environment� For exam�

ple� an integrated development environment that can aid a designer to quickly

prototype his computer vision algorithm and a more e�cient mapping for actual

�
�

usage will be helpful� A layered interface for di�erent types of users is necessary

starting with a total transparent mode to a more detailed and e�cient mode�

� The dynamic partial recon�gurability might have a signi�cant impact on design

of computer vision systems� This needs to be studied�

� The impact of latest architectural features such as direct memory access by

host processor and dedicated bus interface logic may change many computation

paradigms� A detailed analysis is needed�

� The formal design approach of hardware�software codesign has not been inves�

tigated� This is a promising area of future research�

Appendices

Appendix A

Case Study
 Image Segmentation

This appendix contains the C�language code for the text segmentation algorithm

explained in Chapter �� VHDL source code� and the C�language interface code for

Splash � along with sample ppr report and sample make �les� It includes the following�

� C�code for image segmentation

� VHDL code for image segmentation

� PPR Summary

� Host C�interface code

� Make�les

��	

���

	

C�program for the simple image segmentation algorithm described in

Chapter �� The program needs an image file name� rows� cols and output

file name� The input file is assumed to be in raw format and the output

file is a sequence of raw bytes�

	

include �stdio�h�

include �stdlib�h�

define MAX�ROWS ����

define MAX�COLS ����

define MAX�WIN ��

define MAX�MASK �

unsigned char input�buf�MAX�ROWS��MAX�COLS��

unsigned char output�buf�MAX�ROWS��MAX�COLS��

int mval�MAX�MASK��MAX�MASK��

FILE
input�
output�

int im�width�im�height�window�mask�rows�cols�

long clock���

int debug���

main�argc�argv�

int argc�

char
argv���

�

int i�j�

if �argc���

�

printf��usage is calgo in�image i�row i�col out�image�n���

exit����

�

if ��input�fopen�argv�����rb�����NULL�

�

printf��Error in opening image file �s�n��argv�����

exit����

�

im�height � atoi�argv�����

im�width� atoi�argv�����

if ��im�height������ �� �im�width�������

�

���

printf��Error in image size �d �d�n��im�width�im�height��

exit����

�

if ��output�fopen�argv�����wb�����NULL�

�

printf��Error in writing image file �s�n��argv�����

exit����

�

window����

mask���

rows�im�height�

cols�im�width�

for �i���i�mask�i���

for �j���j�mask�j���

mval�i��j� � ��

read�image�input�im�width�im�height��

printf��Time now��ld�n��clock����

compute�output�rows�cols�window�mask��

printf��Time now��ld�n��clock����

write�image�output�im�width�im�height��

�

	
end of main
	

read�image�infile�incol�inrow�

FILE
infile�

int incol� inrow�

�

int i�

if �debug�

printf��read�image Rows��d�cols��d�n��inrow�incol��

for �i���i�inrow�i���

fread�!input�buf�i��incol���infile��

�

	
end of read�image
	

compute�output�rows�cols�window�mask�

int rows�cols�window�mask�

�

int i�j�

int k�l�k��sum�

float var��mean��

k� � mask	��

for �i�window	��i�rows�window	��i���

for �j�window	��j�cols�window	��j���

���

�

sum � ��

var� � ��

for �k��k��k��k��k���

�

for �l��k��l��k��l���

�

sum �� input�buf�i�k��j�l�
mval�k�k���l�k���

var� �� input�buf�i�k��j�l�
input�buf�i�k��j�l��

�

�

mean� � sum�

mean� � mean�	�mask
mask��

var� � var� � mean�
mean�
mask
mask�	
total elements�msize
msize
	

var� � var�	�mask
mask��

if �var������ output�buf�i��j� � ��

else if ��var������� !! �mean� � ����� output�buf�i��j� � ��

else output�buf�i��j� � ��

�

�

	
end of compute�output
	

write�image�outfile�incol�inrow�

FILE
outfile�

int incol� inrow�

�

int i�

if �debug�

printf��write�image Rows��d�cols��d�n��inrow�incol��

for �i���i�inrow�i���

fwrite�output�buf�i��incol���outfile��

�

	
end of write�image
	

���

���

��

�� PROGRAM X��XBAR�BROADCAST

��

�� DATE �� Apr ��

��

�� AUTHOR Nalini Ratha

��

�� DESCRIPTION This design broadcasts the data read from memory

�� onto the crossbar� �To X��

��

���

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

use SPLASH��ARITHMETIC�all�

library IEEE�

USE IEEE�std�logic������all�

entity Xilinx�Control�Part is

Generic�

BD�ID Integer � �� �� Splash Board

�� ID

PE�ID Integer � � �� Processing

�� Element ID

��

Port �

X��SIMD inout DataPath� �� SIMD Data

�� Bus

X��XB�Data inout DataPath� �� Crossbar Data

�� Bus

X��Mem�A inout MemAddr� �� Splash Memory

�� Address Bus

X��Mem�D inout MemData� �� Splash Memory

�� Data Bus

X��Mem�RD�L inout RBit�� �� Splash Memory Read

�� Signal �low�true�

X��Mem�WR�L inout RBit�� �� Splash Memory Write

�� Signal �low�true�

X��Mem�Disable in Bit� �� Splash Memory

�� Disable Signal

���

X��GOR�Result�In inout RBit��Vector�� to XILINX�PER�BOARD��

X��GOR�Valid�In inout RBit��Vector�� to XILINX�PER�BOARD��

X��GOR�Result out Bit� �� Global OR

�� Result Signal

X��GOR�Valid out Bit� �� Global OR

�� Valid Signal

X��Clk in Bit� �� Splash System

�� Clock

X��XBar�Set out Bit�Vector�� to ����� Crossbar Set

�� Signals

X��X���Disable out Bit� �� X�� Disable

X��XBar�Send out Bit� �� X� broadcasts

X��Int out Bit� �� Interrupt Signal

X��Broadcast�In in Bit� �� Broadcast Input

X��Broadcast�Out out Bit� �� Broadcast Output

X��Reset in Bit� �� Reset Signal

X��HS� inout RBit�� �� Handshake Signal

X��HS� in Bit� �� Handshake Signal

X��XBar�EN�L out Bit� �� Crossbar Enable

�� �low�true�

X��LED out Bit �� LED Signal

��

end Xilinx�Control�Part�

architecture X��XBAR�BROADCAST of Xilinx�Control�Part is

��

�� Signal Declarations

��

SIGNAL Xbar�Out Bit�Vector��� downto ���

SIGNAL Data Bit�Vector��� downto ���

SIGNAL Address Bit�Vector��� downto ���

SIGNAL ONE Bit�Vector��� downto ���

SIGNAL out� Bit�Vector�� downto ���

SIGNAL out� Bit�Vector�� downto ���

SIGNAL out� Bit�Vector�� downto ���

SIGNAL result Bit�Vector��� downto ���

��

�� Architecture Behavior

��

��

BEGIN

�� set X� to broadcast and disable X��

X��XBar�Set �� ������

X��X���Disable �� "�"�

X��xbar�send �� "�"�

�� Memory read settings

X��Mem�RD�L �� "�"�

X��Mem�WR�L �� "�"�

ONE �� ���������������������

PROCESS

BEGIN

WAIT until X��Clk"event AND X��Clk � "�"�

�� connections to I	O pads

pad�output �X��Mem�A� Address��

pad�input �X��Mem�D� Data��

Pad�Output �X��XB�Data� Xbar�Out��

out��� downto �� �� data�� downto ���

out��� downto �� �� data�� downto ���

out� �� out��

result �� out� �� downto ��
 out� �� downto ���

Xbar�out�� downto �� �� out��� downto ���

Xbar�out��� downto #� �� result��� downto ���

Address �� Address�one�

END PROCESS �

X��Int �� "�"�

X��Broadcast�Out �� "�"�

end X��XBAR�BROADCAST�

���

��

��

�� PROGRAM ��D averaging� stage�

��

�� DATE �� Apr� ����

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION First row for �x� mask �� � � � � � ��

��

��

���

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

��

�� Splash � Simulator v��� Xilinx�Processing�Part Entity Declaration

��

entity Xilinx�Processing�Part is

Generic�

BD�ID Integer � �� �� Splash Board

�� ID

PE�ID Integer � � �� Processing

�� Element ID

��

Port �

XP�Left inout DataPath� �� Left Data

�� Bus

XP�Right inout DataPath� �� Right Data

�� Bus

XP�Xbar inout DataPath� �� Crossbar Data

�� Bus

XP�Xbar�EN�L out Bit�Vector�� downto ���

�� Crossbar Enable

�� �low�true�

XP�Clk in Bit� �� System Clock

XP�Int out Bit� �� Interrupt Signal

XP�Mem�A inout MemAddr� �� Memory Address Bus

���

XP�Mem�D inout MemData� �� Memory Data Bus

XP�Mem�RD�L inout RBit�� �� Memory Read

�� �low� true�

XP�Mem�WR�L inout RBit�� �� Memory Write Signal

�� �low�true�

XP�Mem�Disable in Bit� �� Memory Disable

XP�Broadcast in Bit� �� Broadcast Signal

XP�Reset in Bit� �� Reset Signal

XP�HS� inout RBit�� �� Handshake Signal

XP�HS� in Bit� �� Handshake Signal

XP�GOR�Result inout RBit�� �� Global OR Result

XP�GOR�Valid inout RBit�� �� Global OR Valid

XP�LED out Bit �� LED Signal

��

end Xilinx�Processing�Part�

��

�� Architecture

��

ARCHITECTURE conv�s��f� OF Xilinx�Processing�Part IS

Constant STAGES integer � ��

Constant REGS integer ����

type bvarray is array �� to REGS� of Bit�vector��� downto ���

type pixarray is array �� to STAGES� of Bit�vector��� downto ���

type sumarray is array �� to STAGES� of Bit�vector��� downto ���

���

�� Signal Declarations

���

Signal datain bvarray� ���sum partial

SIGNAL left�in pixarray�

SIGNAL tsum sumarray�

SIGNAL tsum� sumarray�

SIGNAL part�sum sumarray�

SIGNAL left�sum Bit�Vector ��� downto ���

SIGNAL right�out Bit�Vector��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���

SIGNAL add� sub�ofl��ofl��ofl��ofl��ofl��ofl��ofl� Bit�

��

�� Architecture Behavior

��

BEGIN

���

XP�Xbar�En�L �� ��������

add �� "�"�

sub �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Xbar� input�left��

Pad�output �XP�Right� right�out��

for i in � to STAGES loop

left�in�i��� downto �� �� left�in�i����� downto ���

end loop�

left�in����� downto �� �� input�left�� downto ���

left�sum �� itobv�������

�� partial sums to be computed here using hardmacros

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� Shifters

for i in � to REGS loop

datain�i� �� datain�i����

end loop�

datain������ downto �� �� part�sum����

right�out��� downto #� �� datain�REGS���� downto ���

right�out�� downto �� �� left�in�STAGES��� downto ���

��	

END PROCESS�

addsub�

adsu��h

port map�left�in����left�sum�add�tsum����ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum����ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

END conv�s��f��

���

���

��

�� PROGRAM ��D convolution� stage�

��

�� DATE �� Apr ����

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION First row for �x� mask �Averaging � � � � � � ��

��

��

��

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

��

�� Architecture of Self Diagnostic

��

ARCHITECTURE conv�s��f� OF Xilinx�Processing�Part IS

Constant STAGES integer � ��

Constant REGS integer ����

type bvarray is array �� to REGS� of Bit�vector��� downto ���

type pixarray is array �� to STAGES� of Bit�vector��� downto ���

type sumarray is array �� to STAGES� of Bit�vector��� downto ���

��

�� Signal Declarations

��

Signal datain bvarray� ���sum partial

SIGNAL left�in pixarray�

SIGNAL tsum sumarray�

SIGNAL tsum� sumarray�

SIGNAL part�sum sumarray�

SIGNAL left�sum Bit�Vector ��� downto ���

SIGNAL right�out Bit�Vector��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���

���

SIGNAL add� sub�ofl��ofl��ofl��ofl��ofl��ofl��ofl� Bit�

��

�� Architecture Behavior

��

BEGIN

XP�Xbar�En�L �� ��������

add �� "�"�

sub �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Left� input�left��

Pad�output �XP�Right� right�out��

for i in � to STAGES loop

left�in�i��� downto �� �� left�in�i����� downto ���

end loop�

left�in����� downto �� �� input�left�� downto ���

left�sum �� input�left��� downto #��

�� partial sums to be computed here using hardmacros

�� PE �

�� tsum��� �� left�in����left�sum�

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

���

�� PE �

�� tsum��� �� part�sum����left�in����

tsum���� �� tsum����

part�sum��� �� tsum�����

�� Shifters

for i in � to REGS loop

datain�i� �� datain�i����

end loop�

datain������ downto �� �� part�sum����

right�out��� downto #� �� datain�REGS���� downto ���

right�out�� downto �� �� left�in�STAGES��� downto ���

END PROCESS�

addsub�

adsu��h

port map�left�in����left�sum�add�tsum����ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum����ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

END conv�s��f��

���

��

��

�� PROGRAM ��D convolution� stage�

��

�� DATE �� April ����

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION Seventh row for �x� mask �� � � � � � ��

��

��

��

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

��

�� Architecture of Self Diagnostic

��

ARCHITECTURE conv�s��f� OF Xilinx�Processing�Part IS

Constant STAGES integer � ��

Constant REGS integer ����

type bvarray is array �� to REGS� of Bit�vector��� downto ���

type pixarray is array �� to STAGES� of Bit�vector��� downto ���

type sumarray is array �� to STAGES� of Bit�vector��� downto ���

��

�� Signal Declarations

��

Signal datain bvarray� ���sum partial

SIGNAL left�in pixarray�

SIGNAL tsum sumarray�

SIGNAL tsum� sumarray�

SIGNAL part�sum sumarray�

SIGNAL left�sum Bit�Vector ��� downto ���

SIGNAL right�out Bit�Vector��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���

���

SIGNAL add� sub�ofl��ofl��ofl��ofl��ofl��ofl��ofl� Bit�

��

�� Architecture Behavior

��

BEGIN

�� XP�Xbar�En�L �� ��������

XP�Xbar�En�L �� ��������

add �� "�"�

sub �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Left� input�left��

Pad�output �XP�Xbar� right�out��

for i in � to STAGES loop

left�in�i��� downto �� �� left�in�i����� downto ���

end loop�

left�in����� downto �� �� input�left�� downto ���

left�sum �� input�left��� downto #��

�� partial sums to be computed here using hardmacros

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� Shifters

��

for i in � to REGS loop

datain�i� �� datain�i����

end loop�

datain������ downto �� �� part�sum����

right�out��� downto �� �� datain�REGS���� downto ���

right�out��� downto ��� �� left�in�STAGES��� downto ���

END PROCESS�

addsub�

adsu��h

port map�left�in����left�sum�add�tsum����ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum����ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

END conv�s��f��

���

���

��

�� PROGRAM ��D convolution� stage�

��

�� DATE �� Apr ����

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION First row for �x� mask �� � � � � � ��

��

��

���

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

���

�� Architecture of Self Diagnostic

���

ARCHITECTURE conv�s��f� OF Xilinx�Processing�Part IS

Constant STAGES integer � ��

Constant REGS integer ����

type bvarray is array �� to REGS� of Bit�vector��� downto ���

type pixarray is array �� to STAGES� of Bit�vector��� downto ���

type sumarray is array �� to STAGES� of Bit�vector��� downto ���

���

�� Signal Declarations

���

Signal datain bvarray� ���sum partial

SIGNAL left�in pixarray�

SIGNAL tsum sumarray�

SIGNAL tsum� sumarray�

SIGNAL part�sum sumarray�

SIGNAL left�sum Bit�Vector ��� downto ���

SIGNAL right�out Bit�Vector��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���

SIGNAL add� sub�ofl��ofl��ofl��ofl��ofl��ofl��ofl� Bit�

���

���

�� Architecture Behavior

���

BEGIN

XP�Xbar�En�L �� ��������

add �� "�"�

sub �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Xbar� input�left��

Pad�output �XP�Right� right�out��

for i in � to STAGES loop

left�in�i��� downto �� �� left�in�i����� downto ���

end loop�

left�in����� downto �� �� input�left��� downto ����

�� �� bit x$�	��� value

�� left�sum �� itobv�������

�� partial sums to be computed here using hardmacros�

�� tsum and tsum� are to be used accordingly

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� PE �

tsum���� �� tsum����

part�sum��� �� tsum�����

�� Shifters

���

for i in � to REGS loop

datain�i� �� datain�i����

end loop�

datain������ downto �� �� part�sum����

right�out��� downto #� �� datain�REGS���� downto ���

right�out�� downto �� �� left�in�STAGES��� downto ���

END PROCESS�

addsub�

adsu��h

port map�left�in����left�sum�add�tsum����ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum����ofl���

addsub�

adsu��h

port map�left�in���� part�sum����add� tsum���� ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

addsub�

adsu��h

port map�part�sum����left�in����add�tsum����ofl���

END conv�s��f��

��	

��

��

�� PROGRAM ��D convolution� result stage

��

�� DATE �	��	��

��

�� AUTHOR Nalini K� Ratha

��

�� DESCRIPTION From sigma x and sigma X$�� compute variance and

�� decide the pixel class label

��

��

��

library SPLASH��

use SPLASH��TYPES�all�

use SPLASH��SPLASH��all�

use SPLASH��ARITHMETIC�all�

use SPLASH��COMPONENTS�all�

use SPLASH��HMACROS�all�

library IEEE�

USE IEEE�std�logic������all�

��

�� Architecture of Self Diagnostic

��

ARCHITECTURE conv�s�� OF Xilinx�Processing�Part IS

��

�� Signal Declarations

��

SIGNAL Data Bit�Vector��� downto ���

SIGNAL Address Bit�Vector��� downto ���

SIGNAL right Bit�Vector ��� downto ���

SIGNAL left Bit�Vector ��� downto ���

SIGNAL input�left Bit�Vector ��� downto ���

SIGNAL p� Bit�Vector �� downto ���

SIGNAL p� Bit�vector ��� downto ���

SIGNAL mean�sum Bit�vector��� downto ���

SIGNAL mean�sumold� mean�sumold� Bit�vector��� downto ���

SIGNAL mean�sqr Bit�vector��� downto ���

SIGNAL x��sum�x��sum�old Bit�vector��� downto ���

SIGNAL x��sum�old� Bit�vector��� downto ���

���

SIGNAL variance Bit�vector ��� downto ���

SIGNAL const��const� Bit�Vector ��� downto ���

SIGNAL one�mean� Bit�vector��� downto ���

SIGNAL temp�mean�mean Bit�Vector�� downto ���

SIGNAL tmp�mean�tmean Bit�vector�� downto ���

���

�� Architecture Behavior

���

BEGIN

const� �� ��������������������� ���
�� ��FDA�

const� �� ��������������������� ���
�� ���#��

one �� �������������������

XP�Xbar�En�L �� ��������

xp�mem�rd�l �� "�"�

xp�mem�wr�l �� "�"�

PROCESS

BEGIN

WAIT until Xp�Clk"event AND XP�Clk � "�"�

Pad�Input �XP�Left� input�left��

Pad�Input �XP�Xbar� left��

pad�output �XP�RIGHT� right��

Pad�output�xp�mem�a� address��

Pad�output�xp�mem�d� data��

p� �� downto �� �� left��� downto ����

mean�sum ��� downto �� �� left��� downto ���

temp�mean �� downto �� �� left��� downto ��� �� mean�sum	��

tmp�mean �� downto �� �� left��� downto #�� �� mean�sum	���

tmean �� downto �� �� left ��� downto ���� ��mean�sum	����

mean �� temp�mean�tmp�mean�tmean� �� mean�sum	��

mean� �� mean�sum�

mean�sumold �� mean��

mean�sumold� �� mean�sumold�

mean�sqr ��� downto �� �� mean
 mean��

right�� downto �� �� p��� downto ���

right��� downto #� �� p��� downto ���

right��� downto ��� �� mean�� downto ���

p� �� downto �� �� input�left�� downto ���

x��sum�old���� downto ��� �� one�� downto #��

x��sum�old���� downto #� �� x��sum�old ��� downto ���

x��sum�old��� downto �� �� one�� downto ���

x��sum�old �� x��sum �

x��sum��� downto �� �� input�left��� downto #��

���

if �x��sum�old��mean�sqr� then �� resolution loss error

variance��itobv�������

else

variance �� x��sum�old� � mean�sqr�

end if�

if �variance�const�� then

data�� downto �� �� �����

elsif �mean�sumold��const�� then

data�� downto �� �� �����

else data�� downto �� �� �����

end if�

Address �� Address � one�

END PROCESS�

END conv�s���

���

PPR RESULTS FOR DESIGN PE��� Page i

Table of Contents

�����������������

Design Statistics and Device Utilization ������������������� �

Xact Performance Summary ����������������������������������� �

Chip Pinout Description ������������������������������������ �

Split Nets ��� ��

Information in Other Reports ������������������������������� ��

Design Statistics and Device Utilization

��

Partitioned Design Utilization Using Part ����PG�����

No� Used Max Available � Used

���������������������������� ������� ������������� ������

Occupied CLBs ��� ��� �#�

Packed CLBs ��� ��� ���

���������������������������� ������� ������������� ������

Bonded I	O Pins ��# ��� #��

F and G Function Generators ��# #�� ���

H Function Generators �� ��� �#�

CLB Flip Flops ��� #�� ���

IOB Input Flip Flops �# ��� ���

IOB Output Flip Flops �� ��� �#�

Memory Write Controls � ��� ��

��State Buffers � ##� ��

��State Half Longlines � #� ��

Edge Decode Inputs � ��� ��

Edge Decode Half Longlines � �� ��

Routing Summary

Number of unrouted connections �

���

PPR Parameters

Design � pe����xtf

Parttype � ����PG�����

Guide�cell �

Seed � �����

Estimate � FALSE

Complete � TRUE

Placer�effort � �

Router�effort � �

Path�timing � TRUE

Stop�on�miss � FALSE

DC�S � none

DP�S � none

DC�P � none

DP�P � none

Guide�only � FALSE

Ignore�maps � FALSE

Ignore�rlocs � FALSE

Outfile � �design name�

PPR RESULTS FOR DESIGN PE��� Page �

CPU Times

Partition �� �� ��

Placement �� �� ��

Routing �� �� ��

Total �� �� ��

PPR RESULTS FOR DESIGN PE��� Page �

Xact Performance Summary

��

Deadline Actual�
� Specification

�������� ��������� �������������

�
� ����ns �����ns TS��clock to setup

�auto� ����ns �default� pad to setup

����ns ����ns TS�#�pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Left����

���

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS�#�pad to setup XP�Left��#�

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS�#�pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar�#�

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS�#�pad to setup XP�Xbar��#�

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Left����

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS���pad to setup XP�Left���

����ns ����ns TS���pad to setup XP�Xbar���

����ns ����ns TS���pad to setup XP�Xbar����

����ns ����ns TS��pad to setup XP�Left���

����ns ����ns TS#�pad to setup XP�Xbar���

����ns ����ns TS��pad to setup XP�Left����

����ns ����ns TS��pad to setup XP�Left����

����ns ����ns TS��pad to setup XP�Xbar����

����ns ����ns TS��pad to setup XP�Left�#�

����ns ����ns TS��pad to setup XP�Xbar����

����ns ����ns TS��pad to setup XP�Left���

��

����ns ����ns TS��pad to setup XP�Xbar���

�auto� ���ns DEFAULT�FROM�FFS�TO�PADS�FROM ffs TO pads

�
� Note the actual path delays computed by PPR indicate that � of

�� timing specifications you provided was not met� To confirm this

result� please use the �FailedSpec and	or �TSMaxpaths options of the

������������Reprt has been truncated here for brievity �������������

���

	

Sample host interface program for Splash �� This C�code uses the

raw file generated by t� for the simple page layout segmentation

algorithm explained in Chapter �� The makefile to compile this file

given separately�

	

include �stdio�h�

include �string�h�

include �csplash�h�

SPLASH
splash�

Stream
stream�

stepfile
in�
out�

int simd�data������� tag�������

long clock���

main�argc�argv�

int argc�

char
argv���

�

int unit��� board � ��

int i�j�

FILE
fp�
fp��
fp��

int sim�val�sim�tag�

int start�skip�elem�row�elem�col�

int rbus�rbustag�cycles�

char
infile��image�dat��

outfile��output�conv��

rawfile��mult�raw��

memfile �����

xbarfile��broadcast�bar��

char fname�����count�

EnvInit���

SetMessageLevel����

if ��splash � OpenAndInit�unit�� �� NULL� exit���

if �LoadRaw�splash�board�rawfile� %��� exit���

if �ConfigArray�splash�board� %��� exit���

ConfigXBar�splash���xbarfile��

ClearMem�splash������

if �argc����

strcpy�fname�argv�����

else

strcpy�fname�infile��

���

printf���d �s �s�n��argc�infile�argv�����

if �argc����

start�atoi�argv�����

else start���

skip���

if �argc����

elem�row�atoi�argv�����

else elem�row����

elem�col����

if �argc����

cycles�atoi�argv�����

else cycles���

LoadMem�splash�����fname��

ClearMem�splash�������

printf��Clock� �ld�n��clock����

Step�splash�cycles��

DumpMem�splash�board�������������
	

j��#
�#�

fp� � fopen��output�conv���w���

count � ��

for �i�start�i�start�j�i���

�

int result�result��

if �i ! ��

�

result � CEMEM�splash������i��

result� � result ! �xffff�����

result� � result� �� ���

result� � result� ! �xffff�

fprintf�fp����d �d ��result ! �xffff� result���

count ����

�

if �count��elem�row�

�

fprintf�fp����n���

i � i�skip�

count � ��

�

�

fprintf�fp����n���

�

	
end of main
	

���

SIMULATOR�&�SPLASH��	simulator

TYPES�&�SPLASH��	lib	sim	SPLASH��sim &�SPLASH��	lib	sim	TYPES�sim

MODULES�&�SIMULATOR�	s�board	SPLASH��BOARD�sim �

&�SIMULATOR�	interface	INTERFACE�BOARD�sim

LIB�DEFAULT

TOP�sim &�SPLASH�� &�MODULES� SPLASH�SYSTEM�sim pe���vhd �

pe���vhd pe���vhd pe���vhd pe�#�vhd pe���vhd �

pe����vhd pe����vhd

vhdlan �nc pe���vhd

vhdlan �nc pe���vhd

vhdlan �nc pe���vhd

vhdlan �nc pe���vhd

vhdlan �nc pe�#�vhd

vhdlan �nc pe���vhd

vhdlan �nc pe����vhd

vhdlan �nc pe����vhd

vhdlan �w &�LIB� �nc config

SPLASH�SYSTEM�sim &�SPLASH�� &�MODULES� system�vhd

vhdlan �w &�LIB� �nc system

gcc �I	home	pixel	l��	splash	include �g �w �fvolatile �o cver �

cver�c 	home	pixel	l��	splash	lib	libsplash�a �lm

Appendix B

Image Segmentation
 Mask Values

���

������� ������� ������� ������� ������� ������� ������#

������� ������� ������� ������� ������� �����#� �������

������� ������� ������� ������� ������� ������� �������

������# ������# ������� ������� ������# ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������# ������� ������� ������� ������� �������

������� ������� ������� ������# ������� ������� �������

���

���

������� ������� ������� ������� ������� ������� ����#��

������� �����## ������� ������# ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������# ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ���##�# ������� ������� ������#

���

���

������� ������� ������� ������� ������� ������� �����#�

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ����#�� ������� �������

������# �����#� ������� ������� ������# ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

�		

�	�

������� ������� ������� ����#�� ������� ������� �������

���

���

������� ������� ������� ������� ������� ������� �������

������� ������# ������� ������� ������� ������� �������

������� ������� ����#�# ������� ������# ������� �������

������� ������� ������� ������� ����#�� ������� �������

������� ������� ������# �����#� ������# ������� �������

������� ������� ������� ������� ������� ����#�� �������

����#�� ������� ������� ������� ������� ������� ����#��

���

���

�����#� ������� ������� �����#� ������� ������� �������

������� ����#�� ������� �����#� ������� �����#� �������

������� ������� ������� ������� ������� ������� �������

���#��� ������� ������� ������� ���#��� ������� ������#

������� ������� ����#�� ������# ������� ������� �������

������� ����#�� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

���

���

�����#� ������� ������� ����##� ������� ������� �����#�

������� ���#��� ������� �����#� ������� ������# �������

������� ������� ������� ������# ������# ������� �������

���#��� ������� ������� ������� ������� ���#��� �������

������� ������� ������� ������� ������� ������� �������

������� ���#��� ������� ������� ������� ������� �������

�����#� ������� ������� ������� ������� ������� �������

���

���

����##� ������� ������� ������� ������� ������� �������

������� ������� ������� ����##� ������� ������# �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� �����#� ������� ����#�� �����#�

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

���

���

�����#� ������� ������� ������� ������� ������� ������#

�	�

������� ������� ������� ������� ������� ������� �������

������� ������� ������# ������� �����#� ������� �������

������# �����## ������� ������� �����#� ������� �������

������� ������� ������� ������# ������� ������� �������

������� ������� ������� ������� ������� ������� �������

����#�� ������� ������� �����#� ������� ������� ������#

���

���

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� �����#� ������� ������� �������

������� ������# ������� ������� ������� ������� ������#

������� ������� ������� �����#� ����#�� ������� �������

������� ������� ������� ������� ������� ������� �������

������# ������� ������� ������� ������� ������� ����#��

���

���

������� ������� ������� ������� ������� ������� �������

������� ����#�� ������� ������� ������� ������� �������

������� ������� �����## �����#� ������� ������� �������

�����#� ������� ������� ������� ������� �����#� �������

������� ������� ������� ������� ������� ������� �������

������� ������# ������� ������� ������� ���##�� �������

����##� ������� ������� ������� ������� ������� ����#��

���

���

������# ������� ������� ������# ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� �����#� ������� ������� ������� �������

������� ������� ������� ������� ������� ����#�� �������

������� ������� ������# ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

���

���

������� ������� ������� ����#�� ������� ������� ����##�

������� ������� ������� ������� ������� �����#� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� �����#� �������

������� ������� ���#��� ������� ������� ������� �������

������� ������� ������� ������# ������� ������� �������

�	�

������� ������� ������� ������# ������� ������� ����#��

���

���

������# ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������# �������

������� ������� ������� �����#� ������� ������� �������

�����#� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������# ������� ������� ������� ������� �������

������# ������� ������� ����#�� ������� ������� ����#��

���

���

������� ������� ������� ������� ������� ������� �����#�

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ���#��# �����#� ������� �������

�����#� ������# ����#�� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ����#�� ������� ������� ������� ������� �������

������� ������� ������� �����#� ������� ������� �������

���

���

������# ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

�����#� ������� ������� ������� ������� ����#�� ������#

������� ������� �����#� ������� ������� ������� �������

������� ������� ������� ������� ������� ������# �������

������# ������� ������� ������� ������� ������� �������

���

���

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������# ������# ������� ������� �������

������� ������� ������� ������# ������� ������� �������

������� ������� ������� ����#�� ������� ������� �������

������� ������� ������� ������� ������� �����#� �������

������� ������� ������� ����#�� ������� ������� �������

���

���

������� ������� ������� ������� ������� ������� �������

�	�

������� ������� ������� �����#� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������# ������� ������� ������� ������# �������

������� ������� ������# ������� ������# ������� �������

������� ������� ������� ������# ������� �����#� �������

������� ������� ������� ����#�� ������� ������� �������

���

���

������# ������� ������� ������� ������� ������� �����#�

������� ������� ������� ����#�� ������� �����#� �������

������� ������� ������� ������� ������� ������� �������

������� ����#�� ������� �����#� ������# ������� �������

������� ������� ������� ������� �����#� ������� �������

������� ������# ������� ������� ������� ���#��# �������

������� ������� ������� ������� ������� ������� ���#���

���

���

������� ������� ������� ������# ������� ������� �������

������� ������� ������� �����## ������� ������# �������

������� ������� ������� ����#�� ������# ������� �������

������� �����#� �����## ������� ������� ������� �����#�

������� ������� ������� ������� ������� ������� �������

������� ����#�� ������� �����#� ������� ������� �������

������� ������� ������� �����#� ������� ������� ����#�#

���

���

������� ������� ������� ������� ������� ������� ������#

������� ������� ������� ����#�� ������� �����#� �������

������� ������� ����#�� ������� ����#�� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ����#�� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

������� ������� ������� ������� ������� ������� �������

���

Appendix C

Image Segementation
 Neural

Network Weights

��������� �������#� ����#��� ��������� ��������� ����#��� ������#��

�������� �����#�� �������# �������� ��������� ��������� ���������

�������� �������� ��������� ��������� �������� �������� ��������

�������� �����#�� �����#��� �����##� ��������� ���#���� ��������

����#��� ����#�#� ��������� �����#��� ��������# �������� ��#�����

������#� ������#�� ��������� �������� �������� �������� ��������

��������� �������� ����#��� �����#�� �������� �����##�� ���������

���#����� �����#�� ��������� ��������� �������� �������� ��������

�������� ������#�� �������# �������� ��������� ��������� ������#�

����#���� �����#�#� ������#� �������� ����#�#�� �������� ��������

��������# �������� ��������� �������� �����#��� �������� ���������

������## ��������# ����#���� ���#����� ����#��� ��������# �����###

��������� ������## �������� ��#�#��� ����#���� �������� ���������

��������� �������� �����#�� ��������� ��������# �������� ��������

�����#�� ��������� �������� ����#��� ��������� ��������� ��������

������#�� ��������� �������# ������#� �������� ����#�#� ��������

�������� �������� ������#� ��#����� ��#����� �������� ����#�#��

�������� ��###��� �����#��� ���##���� �������� ��������# ��������

�	�

�	

��������� ��������� �������� �������� ���#�#��� �������� �����#�#

����#��� �������� �������� �������# ���#����� �������� �������#�

�������# �������� �����#��� ��������# �����#�� ��������� ��������

������#�� �������#� ������#� �������� �������#� �����##� �����#��

�������# �������� �������� ��#�#��� �����#��� �������� ���������

��#���## ����#�#� ��������� ����##��� ������#� ��������# �����#��

��������� ��������� �����##�� �������#� ��������� �������� ��#����#

������## ����#���� �������# ���#���� �������#� ��������� �������#�

���#���� ���#�#�� �������#� ��������# �������� �������� �����#���

�������� �������� ���#����# ��������� ��������# �����#�� ��������

�������� �����#��� ������#� ������#� ��������� ��������� ������#��

��������� �������� ��������� �������#� ������#� �������� ���������

�������� ��������� ��������� ����#���� ��������# �����#�� ���������

��������� ��������� ��������� ������#�� ��������� �����#��� ������#�

�������� ��������� �������� �������� �������� ��������� ���������

��������� ��������� �������� �������� ��������� �������� ������#�

������#� ������#� �������� ����#��# ��������� �������� ���������

�������� �������� ����#���� ��������� �������� �������� �����##�

����#���# ��������� ��������� ��������� �������#� �������� ��������

������#� �������� �������� �����#�� ��������� ��������� ��������

�������� �������� ��������� ��������� �������# �����#�� ��������

����##�� �������� �������� �������� ��#����� �����#�� �������#

�������� ������#� �������# ��##���# ������## �����#�# ��������

��������� �����#�# �������� �����#�� �������# ����#��� �����#���

��������� ��������� ����#��� �������� ��������� �������� ����#���

�������� �������� �������� �������# �������� �������� ��������#

�������� ���##��� ��������# ��������� �����#�� ����#��� ��������

��������� ��������� ��������# ��������� �����#�� �������� ��������

�������� ��������� �����#�# �������� ��������� ��������� ���������

�������� �������� ��������� ��������� ���#�#�� �������� ��������#

��������� �������� �������� �������� �����#�� ��������� ���������

�����#��� �������#� ��������� ��������� ����#�#�� �������# ��������

��������� ��������# �����#�� �������# �������#� ��������� ���������

��������# ��������� ������#� �������� �������� �������� ��������

�	�

�������� ����#��# �������� �����#�� �������� ������#� �������#�

�������� ����##�� ��������� ����#���� �����#�� �������� ��������

��������� �������� �������� �������� ��������� �������� ��������

��������� ���#�#�� ����#���� ��������� ��������� �������� �����#��

�������� ��������� ��������� ��������� ��������� ��������� ��������

��������� �������� �������� �������# ���#���#� ��������� �������#

�������� �����### �������� ���#���� �������#� ���##��� ��������

����#��## ��������� ��������� �����#�� ��������� �������� �����#��

��������� ��������� ���#���#� ��#����� ��������� �������� ��������

�����#�� �������� ����#���� ������#�� �������� ������#� ���##��#

���#����� �������� �����#��# ��������� �������� �������� ��������

��������� ��������� �������## ��������# �����#��� ��������� �����#�#�

����##�� �������� �����#��# ���#���� �������� �������� ���������

������#�� ��������� ����#��� �������� ��������� ��������# �������#

���#����� ��������� �������#� �������� ��������� ��������� ������#��

��������# ��������� ��������� �������� �����#�� �����#��� ����#����

����#���� ���#����� ��������# �������� ��������� ��������� ���#��#�#

Bibliography

Bibliography

��� A� L� Abbott� P� M� Athanas� L� Chen� and R� L� Elliott� Finding lines and
building pyramids with Splash �� In Proceedings �nd IEEE Workshop on FP�
GAs for Custom Computing Machines� Napa Valley� California� pages �����
��
April� �����

��� R� C� Agarwal� B� Alpern� L� Carter� F� G� Gustavson� D� J� Klepacki�
R� Lawrence� and M� Zubair� High�performance parallel implementations of the
NAS kernel benchmarks on the IBM SP�� IBM Systems Journal� ������
������
�����

��� T� Agerwala� J� L� Martin� J� H� Mirza� D� C� Sadler� D� M� Dias� and M� Snir�
SP� system architecure� IBM Systems Journal� ������������� �����

��� Alacron� Nashua� New Hampshire� Alacron FT �		 and Sharc� �����

��� R� Allen� D� Yasuda� S� Tanimoto� L� Shapiro� and L� Cinque� A parallel
algorithm for graph matching and its MasPar implementation� In Proc� of IEEE
Workshop on Computer Architecture for Machine Perception� New Orleans�
pages ������ December� �����

�
� H� M� Alnuweiri� Constant�time parallel algorithms for image labeling on a
recon�gurable network of processors� IEEE Trans� on Parallel and Distributed
Systems� ������	���
� March �����

��� H� M� Alnuweiri and V� K� Prasanna� Parallel architectures and algorithms
for image component labeling� IEEE Trans� on Pattern Analysis and Machine
Intelligence� ����	��	����	��� October �����

��� R� Amerson� R� J� Carter� W� B� Culbertson� P� Kuekes� and G� Snider� Teramac
� con�gurable custom computer� In Proc� of the IEEE Symposium on FPGAs
for Custom Computing Machines� Napa Valley� California� pages ������ April�
�����

��� N� Ansari� M��H� Chen� and E� S� H� Hou� A genetic algorithm for point pattern
matching� In B� Soucek� editor� Dynamic� Genetic� and Chaotic Programming�
pages �������� John Wiley and Sons� New York� �����

�	�

�	�

��	� J� M� Arnold� D� A� Buell� and E� G� Davis� Splash �� In Proceedings �th
Annual ACM Symposium on Parallel Algorithms and Architectures� pages ��
�
���� �����

���� J� M� Arnold and M� A� McGarry� Splash � programmer�s manual� Technical
Report SRC�TR�����	�� Supercomputing Research Center� Bowie� Maryland�
�����

���� K� Asanovic� J� Beck� J� Feldman� N� Morgan� and J� Wawrzynek� A super�
computer for neural computation� In Proc� Intl� Joint Conference on Neural
Networks� pages ���� Orlando� Florida� June �����

���� K� Asanovic� J� Beck� B� E� D� Kingsbury� P� Kohn� N� Morgan� and
J� Wawrzynek� SPERT A VLIW!SIMD neuro�microprocessor� In Proc� Intl�
Joint Conference on Neural Networks� pages II�����II����� Baltimore� June
�����

���� P� M� Athanas and A� L� Abbott� Real�time image processing on a custom�
computing platform� IEEE Computer� ������
���� February �����

���� P� M� Athanas and H� F� Silverman� Processor recon�guration through
instruction�set metamorphosis� IEEE Computer� �
��������� March �����

��
� A� Averbuch� E� Gabber� B� Gordissky� and Y� Medan� A parallel FFT on an
MIMD machine� Parallel Computing� �������
����� September ���	�

���� H� S� Baird� Model�Based Image Matching using Location� The MIT Press�
Cambridge� Massachusetts� �����

���� D� H� Ballard and C� M� Brown� Computer Vision� Prentice�Hall� Englewood
Cli�s� New Jersy� �����

���� S� M� Barber� J� G� Delgado�Frias� S� Vassiliadis� and G� G� Pechanek� SPIN�L
sequential pipelined neuro�emulator with learning capabilities� In Proc� Intl�
Joint Conference on Neural Networks� pages ��������	� Nagoya� Japan� Octo�
ber �����

��	� A� Basu and C� M� Brown� Algorithms and hardware for e�cient image smooth�
ing� Computer Vision� Graphics� and Image Processing� �	���������
� Novem�
ber �����

���� D� Ben�Tzvi� A� Naqvi� and M� Sandler� Synchronous multiprocessor imple�
mentation of the Hough transform� Computer Vision� Graphics� and Image
Processing� ��������
� ���	�

���� P� Bertin and H� Touati� PAM programming environments Practice and ex�
perience� In Proc� of the IEEE Symposium on FPGAs for Custom Computing
Machines� Napa Valley� California� pages �������� April� �����

��	

���� S� Bhama� H� Singh� and N� D� Phadte� Parallelism for the faster implementa�
tion of the K�L transform for image compression� Pattern Recognition Letters�
�����
���
��� August �����

���� B� Bhanu and L� A� Nutall� Recognition of ��D objects in range images using
a Butter�y multiprocessor� Pattern Recognition� ��������
�� Jan �����

���� S� K� Bhaskar� A� Rosenfeld� and A� Y� Wu� Parallel processing of regions
represented by quadtrees� Computer Vision� Graphics� and Image Processing�
������������� June �����

��
� P� K� Biswas� J� Mukherjee� and B� N� Chaterji� Component labeling in pyramid
architecture� Pattern Recognition� �
����		������� July �����

���� R� V� D� Boomgaard and R� V� Balen� Methods for fast morphological im�
age transform using bitmapped binary images� CVGIP� Graphical Models and
Image Processing� ������������� May �����

���� N� M� Bortos and M� Abdul�Aziz� Harware implementation of an arti�cial neural
network� In Proc� Intl� Joint Conference on Neural Networks� pages ����������
Nagoya� Japan� October �����

���� D� E� V� D� Bout� J� N� Morris� D� Thomae� S� Labrozzi� S� Wingo� and D� Hall�
man� Anyboard An fpga�based recon�gurable system� IEEE Design and Test
of Computers� pages ����	� September �����

��	� C� M� Brown and D� Terzopoulos� editors� Real�time computer vision� Cam�
bridge University Press� Cambridge� �����

���� J� Brown and D� Crookes� A high level language for parallel image processing�
Image and Vision Computing� �����
����� March �����

���� D� A� Buell� J� M� Arnold� and W� J� Kleinfelder� editors� Splash �� FPGAs for
Custom Computing Machines� IEEE Computer Society Press� Los Alamitos�
���
�

���� C� Chakrabarti and J� Jaja� VLSI architectures for template matching and block
matching� In V� K� P� Kumar� editor� Parallel architectures and algorithms for
image understanding� pages ����� Academic Press� San Diego� �����

���� P� K� Chan and S� Mourad� Digital Design using Field Programmable Gate
Arrays� Prentice Hall� Englewood Cli�s� New Jersey� �����

���� J� H� Chang� O� H� Ibarra� T� Pong� and S� M� Sohn� Two�dimensional convo�
lution on a pyramid computer� IEEE Trans� on Pattern Analysis and Machine
Intelligence� �	�����	����� July �����

��
� V� Chaudhary and J� K� Aggarwal� A generalized scheme for mapping parallel
algorithms� IEEE Trans� on Parallel and Distributed Systems� ����������
�
March �����

���

���� R� Chellappa and A� Rosenfeld� Vision engineering Designing computer vision
systems� In C� H� Chen� L� F� Pau� and P� S� P� Wang� editors� Handbook
of Pattern Recognition and Computer Vision� pages �	������ World Scienti�c
Publishing Company� New Jersey� �����

���� K� Chen� E�cient parallel algorithms for the computation of two�dimensional
image moments� Pattern Recognition� ����!���	������ ���	�

���� M��H� Chen and T� Pavlidis� Image seaming for segmentation on parallel archi�
tecture� IEEE Trans� on Pattern Analysis and Machine Intelligence� ���
�����
���� June ���	�

��	� Y��A� Chen� Y��L� Lin� and L��W� Chang� A systolic algorithm for the k�nearest
neighbors problem� IEEE Trans� on Computers� ������	���	�� January �����

���� H� D� Cheng and K� S� Fu� VLSI architectures for string matching and pattern
matching� Pattern Recognition� �	����������� �����

���� H��D� Cheng� W��C� Lin� and K��S� Fu� Space�time domain expansion approach
to VLSI and its application to hierarchical scene matching� IEEE Trans� on
Pattern Analysis and Machine Intelligence� PAMI������	
����� May �����

���� H� D� Cheng� C� Tong� and Y� J� Lu� VLSI curve detector� Pattern Recognition�
����!������	� ���	�

���� G� Chinn� K� A� Grajski� C� Chen� C� Kuszmaul� and S� Tomboulian� Systolic
array implementation of neural nets on the MasPar MP�� massively parallel
processor� In Proc� Intl� Joint Conference on Neural Networks� pages II��
��
II����� San Diego� ���	�

���� A� Choudhary and S� Ranka� Mesh and pyramid algorithms for iconic indexing�
Pattern Recognition� ������	
���	
�� May �����

��
� A� Choudhary and R� Thakur� Connected component labeling on coarse grain
parallel computers An experimental study� Journal of Parallel and Distributed
Computing� �	��������� January �����

���� A� N� Choudhary� J� H� Patel� and N� Ahuja� NETRA A hierarchical and
partitionable architecture for computer vision systems� IEEE Trans� on Parallel
and Distributed Systems� ���	��	�����	�� October �����

���� K��L� Chung and H��Y� Lin� Hough transform on recon�gurable meshes�
CVGIP� Image Understanding�
������������ March �����

���� Y� Chung� V� K� Prasanna� and C��L� Wang� A fast asynchronous algorithm
for linear feature extraction on IBM SP��� In Proc� of IEEE Workshop on
Computer Architecture for Machine Perception� Como� Italy� pages �����	��
September� �����

���

��	� L� Cinque� C� Guerra� and S� Levialdi� Computing shape description transform
on a multiresolution architecture� CVGIP� Image Understanding� ���������
���� May �����

���� M� Conner and R� Tolimieri� Special purpose hardware for Discrete Fourier
Transform implementation� Parallel Computing� �	����������� February �����

���� C� E� Cox and E� Blanz� GANGLION�a fast �eld�programmable gate array im�
plementation of a connectionist classi�er� IEEE Journal of Solid�State Circuits�
������������� March �����

���� J� D� Crisman and J� A� Webb� The Warp machine on Navlab� IEEE Trans�
on Pattern Analysis and Machine Intelligence� ����������
�� May �����

���� R� Cypher� J� L� C� Sanz� and L� Snyder� An EREW PRAM algorithm for
image component labeling� IEEE Trans� on Pattern Analysis and Machine
Intelligence� ����������
�� March �����

���� M� Daallen� P� Jeavons� and J� Shawe�Taylor� A stochastic neural architecture
that exploits dynamic recon�gurable FPGAs� In Proceedings �st IEEE Work�
shop on FPGAs for Custom Computing Machines� Napa Valley� California�
pages �	������ April� �����

��
� Data Translation� Marlboro� Massachusetts� Data Translation Data book� ���
�

���� Datacube Inc�� Massachusetts� MaxVideo ��	� �����

���� H� Derin and C��S� Won� A parallel image segmentation algorithm using relax�
ation with varying neighborhoods and its mapping to array processors� Com�
puter Vision� Graphics� and Image Processing� �	��������� October �����

���� V� Dixit and D� I� Moldovan� Semantic network array processor and its applica�
tions to image understanding� IEEE Trans� on Pattern Analysis and Machine
Intelligence� PAMI����������
	� January �����

�
	� H� Embrechts� D� Roose� and P� Wambacq� Component labeling on a MIMD
multiprocessor� CVGIP� Image Understanding� ����������
�� March �����

�
�� D� J� Evans and M� Gusev� New linear systolic arrays for digital �lter and
convolution� Parallel Computing� �	������
�� January �����

�
�� W� C� Fang� C� Y� Chang� B� J� Sheu� O� T� C� Chen� and J� C� Curlander� VLSI
systolic binary tree�searched vector quantizer for image compression� IEEE
Transactions on Very Large Scale Integration Systems� ���������� March �����

�
�� Z� Fang� X� Li� and L� M� Ni� Parallel algorithms for image template matching
on hypercube SIMD computers� IEEE Trans� on Pattern Analysis and Machine
Intelligence� ��
��������� November �����

���

�
�� Z� Fang� X� Li� and L� M� Ni� On the communication complexity of generalized
��d convolution on array processors� IEEE Trans� on Computers� �������������
February �����

�
�� Federal Bureau of Investigation� U� S� Government Printing O�ce� Washington�
D� C� The Science of Fingerprints� Classi�cation and Uses� �����

�

� O� Firschein� Defense applications of image understanding� IEEE Expert� pages
������ October �����

�
�� A� L� Fisher and P� T� Highnam� Computing the Hough transform on a scan line
array processor� IEEE Trans� on Pattern Analysis and Machine Intelligence�
������
���
�� March �����

�
�� A� L� Fisher and P� T� Highnam� The SLAP image computer� In V� K� P� Kumar�
editor� Parallel Architectures and Algorithms for Image Understanding� pages
�	������ Academic Press� San Diego� �����

�
�� Y� Fujita� N� Yamashita� and S� Okazaki� A
� parallel integrated memory array
processor and a �	 GIPS real�time vision system� In Proc� of IEEE Workshop
on Computer Architecture for Machine Perception� Como� Italy� pages ��������
September� �����

��	� D� Galloway� D� Karchmer� P� Chow� D� Lewis� and J� Rose� The Transmogri�
�er The University of Toronto Field�Programmable System� Technical report�
CSRI��	
� �����

���� A� Geist� A� Beguelin� J� Dongarra� W� Jiang� R� Manchek� and V� Sunderam�
PVM � User�s guide and reference manual� Oak Ridge National Laboratory�
Tennessee� �����

���� L� Geppert� Technology ���� Solid state� IEEE Spectrum� ����������� Jan�
uary �����

���� D� Gerogiannis and S� C� Orphanoudakis� Load balancing requirements in paral�
lel implementations of image feature extraction tasks� IEEE Trans� on Parallel
and Distributed Systems� ���������	��� September �����

���� I� Gertner and M� Rofheart� A parallel algorithm for ��D FFT computation
with no interprocessor communication� IEEE Trans� on Parallel and Distributed
Systems� ������������ July ���	�

���� J� Ghosh and K� Hwang� Mapping neural networks onto message passing mul�
ticomputers� Journal of Parallel and Distributed Computing�
������	� �����

��
� J� M� Gilbert and W� Yang� A real�time face recognition system using custom
VLSI hardware� In Proc� of IEEE Workshop on Computer Architecture for
Machine Perception� New Orleans� pages ���

� December� �����

���

���� M� Gokhale and R� Minich� FPGA computing in a data parallel C� In Proceed�
ings �st IEEE Workshop on FPGAs for Custom Computing Machines� Napa
Valley� California� pages ����	�� �����

���� M� Gokhale and B� Schott� Data parallel C on a recon�gurable logic array�
Technical Report SRC�TR�������� Supercomputing Research Center� Bowie�
Maryland� �����

���� M� Gokmen and C��C� Li� Edge detection and surface reconstruction using
re�ned regularization� IEEE Trans� on Pattern Analysis and Machine Intelli�
gence� ������������� May �����

��	� R� C� Gonzalez and P� Wintz� Digital Image Processing� Addison�Wesley� Read�
ing� Masschusetts� second edition� �����

���� J� Greene� E� Hamdy� and S� Beal� Antifuse �eld programmable gate arrays�
Proceedings of the IEEE� ������	����	�
� July �����

���� J� Gu� W� Wang� and T� C� Henderson� A parallel architecture for discrete re�
laxation algorithm� IEEE Trans� on Pattern Analysis and Machine Intelligence�
PAMI�������
����� November �����

���� A� Gupta and V� Kumar� The scalability of FFT on parallel computers� IEEE
Trans� on Parallel and Distributed Systems� ������������ August �����

���� R� K� Gupta� Hardware�software cosynthesis for digital systems� IEEE Design
and Test of Computers� pages ������ Spetember �����

���� S� Hambrusch� X� He� and R� Miller� Parallel algorithms for gray�scale digitized
picture component labelling on a mesh�connected computer� Journal of Parallel
and Distributed Computing� �	����
�
�� January �����

��
� M� Hamdi� Parallel architectures for wavelet transform� In Proc� of IEEE
Workshop on Computer Architecture for Machine Perception� New Orleans�
pages ��
����� December� �����

���� D� Hammerstrom� A VLSI architecture for high�performance� low�cost� on�chip
learning� In Proc� Intl� Joint Conference on Neural Networks� pages II�����II�
���� San Diego� ���	�

���� K� Hanahara� T� Maruyama� and T� Uchiyama� A real�time processor for the
Hough transform� IEEE Trans� on Pattern Analysis and Machine Intelligence�
�	����������� January �����

���� R� M� Haralick� Document image undestanding geometric and logical layout�
In Proc� of IEEE Computer Vision and Pattern Recognition� Seattle� pages
������	� June� �����

���

��	� R� M� Haralick and L� G� Shapiro� Image segmentation techniques� Computer
Vision� Graphics� and Image Processing� ������		����� January �����

���� R� M� Haralick and L� G� Shapiro� Computer and Robot Vision� Addison�Wesley�
Reading� Masschusetts� �����

���� R� M� Haralick� S� R� Sternberg� and X� Zhuang� Image analysis using math�
ematical morphology� IEEE Trans� on Pattern Analysis and Machine Intelli�
gence� ����������	� July �����

���� D� Helman and J� Jaja� E�cient image processing algorithms on the scan line
array processor� IEEE Trans� on Pattern Analysis and Machine Intelligence�
���������
� January �����

���� J� L� Hennessy and D� A� Patterson� Computer Architecture� A Quantitative
Approach� Morgan Kaufman� San Mateo� California� ���	�

���� S� Heydorn and P� Weinder� Optimization and performance analysis of thinning
algorithms on parallel computers� Parallel Computing� ����������� April �����

��
� K� Hwang� Advnaced Computer Architecture� Parallelism� Scalability� Pro�
grammability� McGraw�Hill� New York� �����

���� H� A� H� Ibrahim� J� R� Kender� and D� E� Shaw� On the application of massively
parallel simd tree machines to certain intermediate�level vision tasks� Computer
Vision� Graphics� and Image Processing� �
��������� October ���
�

���� IEEE Computer Society Press� Los Alamitos� California� Proc� of FPGAs for
custom computing machines� Napa Valley� California� April� �����

���� IEEE Computer Society Press� Los Alamitos� California� Proc� of FPGAs for
custom computing machines� Napa Valley� California� April� �����

��		� IEEE Computer Society Press� Los Alamitos� California� Proc� of FPGAs for
custom computing machines� Napa Valley� California� April� �����

��	�� Imaging Technology� Bedford� Massachusetts� MVC ��	� ���
�

��	�� A� K� Jain� Fundamentals of Digital Image Processing� Prentice Hall� Englewood
Cli�s� New Jersey� �����

��	�� A� K� Jain and S� Bhattacharjee� Text segmentation using Gabor �lters for
automatic document processing� Machine Vision and Applications� ��
������
�����

��	�� A� K� Jain and Y� Chen� Address block location using color and texture analysis�
CVGIP� Image Understanding�
	���������	� September �����

��	�� A� K� Jain and R� C� Dubes� Algorithms for Clustering Data� Prentice�Hall�
Englewood Cli�s� New Jersy� �����

��

��	
� A� K� Jain and K� Karu� Learning texture discrimination masks� IEEE Trans�
on Pattern Analysis and Machine Intelligence� ����������	�� February ���
�

��	�� A� K� Jain and Y� Zhong� Page layout segmentaion based on texture analysis� In
Proc� �nd International Conf� on Image Processing� Washington� D� C�� pages
�	������ October� �����

��	�� J� Jaja� An Introduction to Parallel Algorithms� Addison�Wesley� Reading�
Masschusetts� �����

��	�� J� W� Jang� H� Park� and V� K� Prasanna� A fast algorithm for computing his�
togram on recon�gurable mesh� IEEE Trans� on Pattern Analysis and Machine
Intelligence� ���������	
� February �����

���	� J� H� Jenkins� Designing with FPGAs and CPLDs� Prentice Hall� Englewood
Cli�s� New Jersey� �����

����� J��F� Jenq and S� Sahni� Image shrinking and expanding on a pyramid� IEEE
Trans� on Parallel and Distributed Systems� �������������
� November �����

����� J��F� Jenq and S� Sahni� Recon�gurable mesh algorithms for the Hough trans�
form� Journal of Parallel and Distributed Computing� �	���
����� January
�����

����� S� L� Johnson and R� L� Krawitz� Cooley�Tukey FFT on the connection machine�
Parallel Computing� ��������	������� November �����

����� J��M� Jolion� Computer vision methodologies� CVGIP� Image Understanding�
����������� January �����

����� P� P� Jonker� Why linear arrays are better image processors$ In Proc� of ��th
Int�l� Conf� on Pattern Recognition� Jerusalem� pages �������� �����

���
� S� J� C� Jr�� L��P� Yuan� and R� Ehrlich� A fast and accurate erosion�dilation
method suitable for microcomputers� CVGIP� Graphical Models and Image
Processing� �����������	� May �����

����� D� Judd� N� K� Ratha� P� K� McKinley� J� Weng� and A� K� Jain� Parallel
implementation of vision algorithms on workstation clusters� In Proc� of ��th
Intl� Conf� of Pattern Recognition� Jerusalem� pages �������� �����

����� P� Kahn� Building blocks for computer vision systems� IEEE Expert� ��
��	��	�
December �����

����� A� Kalavade and E� A� Lee� A hardware�software codesign methodology for
DSP applications� IEEE Design and Test of Computers� pages �
���� December
�����

���	� M� Kamada� K� Toraichi� R� Mori� K� Yamamoto� and H� Yamada� A parallel
architecture for relaxation operation� Pattern Recognition� ������������� �����

���

����� E� W� Kent� M� O� Shneier� and R� Lumia� PIPE� Journal of Parallel and
Distributed Computing� ��	���� �����

����� A� Khotanzad and A� Bourfa� Image segementation by a parallel� non�
parametric histogram based clustering algorithm� Pattern Recognition�
������
������ September ���	�

����� H� N� Kim� M� J� Irwin� and R� M� Owens� MGAP applications in machine
perception� In Proc� of IEEE Workshop on Computer Architecture for Machine
Perception� Como� Italy� pages
����� September� �����

����� D� V� Kirsanov� Digital architecture for neural networks� In Proc� Intl� Joint
Conference on Neural Networks� pages ���������� Nagoya� Japan� October
�����

����� P� Kotilainen� J� Saarinen� and K� Kaski� Neural network computation in a
parallel multiprocessor architecture� In Proc� Intl� Joint Conference on Neural
Networks� pages ���������� Nagoya� Japan� October �����

���
� O� G� Koufopavlou and C� E� Goutis� Image reconstruction on a special purpose
array processor� Image and Vision Computing� �	����������� September �����

����� A� V� Kulkarni and D� W� L� Yen� Systolic processing and implementation for
signal and image processing� IEEE Trans� on Computers� ����	��			��		��
October �����

����� V� K� P� Kumar and V� Krishnan� E�cient parallel algorithm for image template
matching on hypercube SIMD machines� IEEE Trans� on Pattern Analysis and
Machine Intelligence� ���
�

��

�� June �����

����� H� T� Kung� Why systolic architectures$ IEEE Computer� ���������
� January
�����

���	� H� T� Kung� L� M� Ruane� and D� W� L� Yen� A two�level pipelined systolic
array for convolutions� In H� T� Kung� B� Sproull� and G� Steele� editors� VLSI
Systems and Computations� pages �����
�� Computer Science Press� Maryland�
�����

����� D� Lattard and G�Mazare� A VLSI implementation of parallel image reconstruc�
tion� CVGIP� Graphical Models and Image Processing� ���
��������� Novem�
ber �����

����� H� C� Lee and R� E� Gaensslen� editors� Advances in Fingerprint Technology�
Elsevier� New York� �����

����� S��W� Lee and W��H� Hsu� Parallel algorithms for hidden markov models on
the orthogonal multiprocessor� Pattern Recognition� ������������� Feb �����

���

����� S� Y� Lee and J� K� Aggarwal� Parallel ��D convolution on a mesh connected
array processor� IEEE Trans� on Pattern Analysis and Machine Intelligence�
������	����� July �����

����� S��Y� Lee and J� K� Aggarwal� A system design!scheduling strategy for parallel
image processing� IEEE Trans� on Pattern Analysis and Machine Intelligence�
����������	�� February ���	�

���
� S� Y� Lee� S� Yalamanchili� and J� K� Aggarwal� Parallel image normalization
on a mesh connected array processor� Pattern Recognition� �	����������� �����

����� F� T� Leighton� Introduction to Parallel Algorithms and Architectures� Arrays�
Trees� Hypercubes� Morgan Kaufman� San Mateo� California� �����

����� P� Lenders and H� Schroder� A programmable systolic device for image process�
ing based on mathematical morphology� Parallel Computing� �������������
March ���	�

����� M� D� Levine� Nonmetric multidimensional scaling and hierarchical clustering �
procedure for investigations of perception of sports� Research Quarterly� ������
���� �����

���	� H� F� Li� R� Jayakumar� and M� Youssef� Parallel algorithms for recognizing
handwritten characters using shape features� Pattern Recognition� ���
�
���

��� �����

����� X� Li and Z� Fang� Parallel clustering algorithms� Parallel Computing�
�����������	� August �����

����� S� Liang� M� Ahmadi� and M� Shridhar� A morphological approach to text string
extraction from regular periodic overlapping text background images� CVGIP�
Graphical Models and Image Processing� �
����	������ September �����

����� R� Lin and E� K� Wong� Logic gate implementation for gray�scale morphology�
Pattern Recognition Letters� ������������� July �����

����� W��M� Lin and V� K� P� Kumar� E�cient histogramming on hypercube SIMD
machines� Computer Vision� Graphics� and Image Processing� ���	����	� ���	�

����� J� J� Little� G� E� Blelloch� and T� A� Cass� Algorithmic techniques for computer
vision on a �ne�grained parallel machine� IEEE Trans� on Pattern Analysis and
Machine Intelligence� ������������� March �����

���
� X� Liu and G� L� Wilcox� Benchmarking of the CM�� and Cray machines with
a very large backpropagation neural network� In Proc� Intl� Joint Conference
on Neural Networks� pages ������ Orlando� Florida� June �����

����� D� G� Lowe� Perceptual Organization and Visual Recognition� Kluwer Academic
Publishers� Massachussets� �����

���

����� M� Manohar and H� K� Ramapriyan� Connected component labeling of binary
images on a mesh connected massively parallel processor� Computer Vision�
Graphics� and Image Processing� ���������� �����

����� P� Maragos� Tutorial on advances in morphological image processing and anal�
ysis� Optical Engineering� �
���
���
��� July �����

���	� M� Maresca� M� A� Lavin� and H� Li� Parallel architectures for vision� Proceed�
ings of the IEEE� �
�����	����� August �����

����� D� Marr� Vision� W� H� Freeman and Co�� San Francsisco� �����

����� P� Mass� K� Hoen� and H� Wallinga� �	 input� �	 nanosecond pattern classi�er�
In Proc� Intl� Joint Conference on Neural Networks� pages ���������� Orlando�
Florida� June �����

����� R� W� Means� High speed parallel hardware performance issues for neural
network applications� In Proc� Intl� Joint Conference on Neural Networks� pages
�	��
� Orlando� Florida� June �����

����� R� S� Michaleski and R� E� Stepp� Automated construction of classi�cations
Conceptual clustering versus numerical taxonomy� IEEE Trans� on Pattern
Analysis and Machine Intelligence� ������
��	�� July �����

����� G� D� Micheli� Computer�aided Hardware�Software codesign� IEEE Micro�
pages �	��
� August �����

���
� B� Miller� Vital signs of identity� IEEE Spectrum� ���������	� February �����

����� D� Mueller and D� Hammerstorm� A neural network system component� In
Proc� Intl� Joint Conference on Neural Networks� pages �������
�� Baltimore�
June �����

����� U� A� Muller� A high performance neural net simulation� In Proc� Intl� Joint
Conference on Neural Networks� pages ���� Orlando� Florida� June �����

����� P� J� Narayanan and L� S� Davis� Replicated data algorithms in image process�
ing� CVGIP� Image Understanding� �
��������
�� November �����

��
	� L� M� Ni and A� K� Jain� A VLSI systolic architecture for pattern clustering�
IEEE Trans� on Pattern Analysis and Machine Intelligence� PAMI������	����
January �����

��
�� T� Nordstrom and B� Svensson� Using and designing massively parallel comput�
ers for arti�cial neural networks� Journal of Parallel and Distributed Computing�
���
	����� �����

��	

��
�� NSF� Grand Challenge� High�Performance Computing and Communications�
Report of the Committee on Physical� Mathematical� and Engineering sciences�
U� S� O�ce of Science and Technology Policy� National Science Foundation�
Washington� D� C�� �����

��
�� S� Olariu� J� L� Schwing� and J� Zhang� Fast computer vision algorithms for
recon�gurable meshes� Image and Vision Computing� �	���
�	�
�
� November
�����

��
�� S� Olariu� J� L� Schwing� and J� Zhang� Computing the Hough transform on re�
con�gurable meshes� Image and Vision Computing� ����	�
���
��� December
�����

��
�� S� Olariu� J� L� Schwing� and J� Zhang� Fast component labeling and con�
vex hull computation on recon�gurable meshes� Image and Vision Computing�
������������� September �����

��

� J� Onuki� T� Maenosono� M� Shibata� N� Iijima� H� Mitsui� and Y� Yoshida� ANN
accelarotor by parallel processor based on DSP� In Proc� Intl� Joint Conference
on Neural Networks� pages ��������
� Nagoya� Japan� October �����

��
�� S� Oteki� A� Hashimoto� T� Furuta� S� Motomura� T� Wantanabe� D� G� Stork�
and H� Eguichi� A digital neural network VLSI with on�chip learning using
stochastic pulse encoding� In Proc� Intl� Joint Conference on Neural Networks�
pages �	����	��� Nagoya� Japan� October �����

��
�� N� R� Pal and S� K� Pal� A review on image segmentation techniques� Pattern
Recognition� �
������������� September �����

��
�� J� N� Patel� A� A� Khokhar� and L� H� Jameison� Implementation of parallel
image processing algorithms in the CLONER environment� In Proc� of IEEE
Workshop on VLSI signal processing� La Jolla� California� pages ������ Oct��
�����

���	� T� Pavlidis and J� Zhou� Page segmentation and classi�cation� CVGIP� Image
Understanding� ���
�������
� November �����

����� G� G� Pechanek� S� Vassiliadis� J� G� Delgado�Frias� and G� Triantafyllos� Scal�
able completely connected digital neural network� In Proc� Intl� Joint Confer�
ence on Neural Networks� pages �	����	��� Orlando� Florida� June �����

����� J� B� Peterson and P� M� Athanas� Addressing the computational needs of high�
speed image processing with a custom computing machine� Journal of VLSI
Signal Processing� Under review�

����� T� D� S� Pierre and M� Milgram� New and e�cient cellular algorithms for image
processing� CVGIP� Image Understanding� ������
������ May �����

���

����� T� Poggio� Early vision From computational structure to algorithms and paral�
lel hardware� Computer Vision� Graphics� and Image Processing� �������������
August �����

����� V� K� Prasanna� C��L� Wang� and A� A� Khokhar� Low level vision process�
ing on connection machine CM��� In Proc� of IEEE Workshop on Computer
Architecture for Machine Perception� New Orleans� pages ������
� December�
�����

���
� U� Ramacher� SYNAPSE'a neurocomputer that synthesizes neural algorithms
on a parallel systolic engine� Journal of Parallel and Distributed Computing�
���	
����� �����

����� N� Ranganathan and K� B� Doreswamy� A VLSI chip for computing medial axis
transform of an image� In Proc� of IEEE Workshop on Computer Architecture
for Machine Perception� Como� Italy� pages �
���� September� �����

����� N� Ranganathan and R� Mehrotra� A VLSI architecture for dynamic scene
analysis� CVGIP� Image Understanding� ������������� March �����

����� N� Ranganathan and M� Shah� A VLSI architecture for computing scale space�
Computer Vision� Graphics� and Image Processing� �������	�� �����

���	� N� Ranganathan and S� Venugopal� An e�cient VLSI architecture for template
matching based on momemt preserving pattern matching� In Proc� of ��th Int�l�
Conf� on Pattern Recognition� Jerusalem� pages ������	� �����

����� S� Ranka and S� Sahni� Convolution on mesh connected multicomputers� IEEE
Trans� on Pattern Analysis and Machine Intelligence� ������������� March
���	�

����� A� R� Rao� A Taxonomy for Texture Description and Identi�cation� Springer�
Verlag� New York� ���	�

����� N� K� Ratha� T� Acar� M� Gokmen� and A� K� Jain� A distrbuted edge detection
and surface reconstruction algorithm based on weak membrane modeling� In
Proc� of IEEE Workshop on Computer Architecture for Machine Perception�
Como� Italy� pages �������� September� �����

����� N� K� Ratha� S� Chen� and A� K� Jain� Adaptive �ow orientation based tex�
ture extraction in �ngerprint images� Pattern Recognition� �������
����
���
November �����

����� N� K� Ratha and A� K� Jain� High performance custom computing for image
segmentation� In High Performance Computing Conference� New Delhi� pages

����� December� �����

���

���
� N� K� Ratha� A� K� Jain� and M� J� Chung� Clustering using coarse�grained
parallel genetic algorithm a preliminary study� In Proc� of IEEE Workshop on
Computer Architecture for Machine Perception� Como� Italy� pages ��������
September� �����

����� N� K� Ratha� A� K� Jain� and D� T� Rover� Convolution on Splash �� In Proc�
of the IEEE Symposium on FPGAs for Custom Computing Machines� Napa
Valley� California� pages �	������ �����

����� N� K� Ratha� A� K� Jain� and D� T� Rover� Fpga�based high performance page
layout segmentation� In Proc� of the IEEE Great Lakes Symposium on VLSI�
Ames� Iowa� pages ������ March� ���
�

����� N� K� Ratha� A� K� Jain� and D� T� Rover� An FPGA�based point pattern
matching coprocessor with application to �ngerprint matching� In Proc� of
IEEE Workshop on Computer Architecture for Machine Perception� Como�
Italy� pages �����	�� September� �����

���	� J� H� Reif� editor� Synthesis of Parallel Algorithms� Morgan Kaufman� San
Mateo� California� �����

����� F� M� Rhodes� J� J� Dituri� G� H� Chapman� B� E� Emerson� A� M� Soares� and
J� I� Ra�el� A monolithic Hough transform processor based on restructurable
VLSI� IEEE Trans� on Pattern Analysis and Machine Intelligence� �	����	
�
��	� January �����

����� I� Rigoutsos and R� Hummel� Massively parallel model matching� IEEE Com�
puter� ����������� February �����

����� J� Rose� A� E� Gammal� and A� Sangiovanni�Vincentelli� Architecture of �eld�
programmable gate arrays� Proceedings of the IEEE� ������	����	��� July
�����

����� A� Rosenfeld� Computer vision Basic principles� Proceedings of the IEEE�
�
����
���
�� August �����

����� E� Sackinger and H��P� Graf� A board system for high�speed image analysis
and neural networks� IEEE Trans� on Neural Networks� ������������ January
���
�

���
� T� Sakai� M� Nagao� and H� Matsushima� Extraction of invariant picture sub�
structures by computer� Computer Graphics and Image Processing� ��������
�
�����

����� A� Sangiovanni�Vincentelli� A� E� Gamal� and J� Rose� Synthesis methods for
�eld programmable gate arrays� Proceedings of the IEEE� ������	����	��� July
�����

���

����� Y� Sato� K� Shibata� M� Asai� M� Ohki� M� sugie� T� Sakaguchi� M� Hashimoto�
and Y� Kuwabara� Development of a high�performance general purpose neuro�
computer composed of ��� digital neurons� In Proc� Intl� Joint Conference on
Neural Networks� pages ��
�����	� Nagoya� Japan� October �����

����� R� J� Schalko�� Digital Image Processing and Computer Vision� John Wiley�
New York� �����

��		� N� B� Serbedzija� Simulating arti�cial neural networks on parallel architecture�
IEEE Computer� ������
�
�� March ���
�

��	�� R� V� Shankar and S� Ranka� Parallel vision algorithms using sparse array
presentations� Pattern Recognition� �
��	����������� October �����

��	�� SharpImage Software� New York� The HIPS Image Processing Software� �����

��	�� Y� Shimokawa� Y� Fuwa� and N� Aramaki� A parallel ASIC VLSI neural com�
puter for a large number of neurons and billion connections per second speed�
In Proc� Intl� Joint Conference on Neural Networks� pages ��
����
�� Seattle�
July �����

��	�� K� G� Shin and P� Ramanathan� Real�time computing a new discipline of
computer science and engineering� Proceedings of the IEEE� �����
���� January
�����

��	�� D� Skea� I� Barrodale� R� Kuwahara� and R� Poecker� A control point matching
algorithm� Pattern Recognition� �
����
����
� Feb �����

��	
� A� Srivastava� A comparison between conceptual clustering and conventional
clustering� Pattern Recognition� ������������� September ���	�

��	�� X��H� Sun and J� L� Gustafson� Toward a better parallel performance metric�
Parallel Computing� ���	�����	�� �����

��	�� M� H� Sunwoo and J� K� Aggarwal� Flexibly coupled multiprocessors for image
processing� Journal of Parallel and Distributed Computing� �	����������� ���	�

��	�� M� H� Sunwoo and J� K� Aggarwal� VisTA � An image understanding archi�
tecture� In V� K� P� Kumar� editor� Parallel Architectures and Algorithms for
Image Understanding� pages �������� Academic Press� San Diego� �����

���	� M� F� X� B� V� Swaaij� F� V� M� Catthoor� and H� J� DeMan� Deriving ASIC
architectures for the Hough transform� Parallel Computing� �
�����������
November ���	�

����� P� N� Swartztrauber� R� A� Sweet� W� L� Briggs� V� E� Henson� and J� Otto�
Bluestein�s FFT for arbitrary n on the hypercube� Parallel Computing� ���
�
��
	��
��� September �����

���

����� H� L� Tan� S� B� Gelfand� and E� J� Delp� A cost minimization approach to
edge detection using simulated annealing� IEEE Trans� on Pattern Analysis
and Machine Intelligence� ���������� January �����

����� S� L� Tanimoto and E� W� Kent� Architectures and algorithms for iconic�to�
symbol transformation� Pattern Recognition� ���������������� December ���	�

����� Texas Instruments� Texas� Designer�s workbook � MVP��	 training manual�
�����

����� D� E� Thomas� J� K� Adams� and H� Schmit� A model and methodology for
hardware�software codesign� IEEE Design and Test of Computers� pages
����
September �����

���
� M� S� Tomlinson� D� J� Walker� and M� A� Sivilotti� A digital neural network
architecture for VLSI� In Proc� Intl� Joint Conference on Neural Networks�
pages II�����II���	� San Diego� ���	�

����� J� Ton and A� K� Jain� Registering Landsat images by point matching� IEEE
Trans� on Geoscience and Remote Sensing� �����
���
��� September �����

����� A� Torrabla� A systolic array with applications to image processing and wire�
routing in VLSI circuits� Parallel Computing� ����������� April �����

����� N� Tredennick� Technology and business forces driving microprocessor evolu�
tion� Proceedings of the IEEE� �������
����
��� December �����

���	� S� Trimberger� A reprogrammable gate array and applications� Proceedings of
the IEEE� ������	�	��	��� July �����

����� S� Umeyama� Parameterized point pattern matching and its application to
recognition of object families� IEEE Trans� on Pattern Analysis and Machine
Intelligence� �������
����� February �����

����� V� V� Vinod and S� Ghose� Point matching using asymmetrical neural networks�
Pattern Recognition� ���
���	������� August �����

����� M� A� Viredaz and P� Ienne� MANTRA I a systolic neuro�computer� In Proc�
Intl� Joint Conference on Neural Networks� pages �	����	
�� Nagoya� Japan�
October �����

����� C��L� Wang� V� K� Prasanna� H� J� Kim� and A� A� Khokhar� Scalable data
parallel implementations of object recognition using geometric hashing� Journal
of Parallel and Distributed Computing� ������
��	�� April �����

����� C� C� Weems� Architectural requirements of image understanding with respect
to parallel processing� Proceedings of the IEEE� ������������� April �����

���

���
� C� C� Weems� S� P� Levitan� A� R� Hanson� E� M� Riseman� D� B� Shu� and
J� G� Nash� The image understanding architecture� International Journal of
Computer Vision� ������������ �����

����� J� H� Wegstein� An automated �ngerprint identi�cation system� Technical
Report �		���� National Bureau of Standards� Bethesda� Maryland� �����

����� F� Weil� L� H� Jamieson� and E� J� Delp� Dynamic intelligent scheduling and
control of recon�gurable parallel architectures for computer vision!image pro�
cessing� Journal of Parallel and Distributed Computing� ������������� Novem�
ber �����

����� J� Weng� N� Ahuja� and T� S� Huang� Matching two perspective views� IEEE
Trans� on Pattern Analysis and Machine Intelligence� ������	
����� August
�����

���	� W� H� Wolf� Hardware�software co�design of embedded systems� Proceedings of
the IEEE� ������
������ July �����

����� J� Worlton� Toward a taxonomy of performance metrics� Parallel Computing�
���	����	��� �����

����� A� Y� Wu� S� K� Bhaskar� and A� Rosenfeld� Parallel processing of region
boundaries� Pattern Recognition� ������
������ �����

����� A� Y� Wu and A� Rosenfeld� Parallel processing of encoded bit strings� Pattern
Recognition� ���
������
�� �����

����� Xilinx� Inc�� San Jose� California� The Programmable Logic Data Book� �����

����� S� Yalamachili and J� K� Aggarwal� A system organization for parallel image
processing� Pattern Recognition� ����������� �����

���
� D��L� Yang and C��H� Chen� A real�time systolic array for distance transform�
In Proc� of ��th Int�l� Conf� on Pattern Recognition� Jerusalem� pages ��������
�����

����� J� C� Yen� F� J� Chang� and S� Chang� A new architecture for motion�
compensated image coding� Pattern Recognition� ����������

� April �����

����� E� L� Zapata� F� F� Rivera� and O� G� Plata� Parallel fuzzy clustering on �xed
size hypercube SIMD computers� Parallel Computing� ����������	�� August
�����

